N
N

N

HAL

open science

Simultaneous data assimilation and cardiac
electrophysiology model correction using differentiable
physics and deep learning

Victoriya Kashtanova, Mihaela Pop, Ibrahim Ayed, Patrick Gallinari, Maxime

Sermesant

» To cite this version:

Victoriya Kashtanova, Mihaela Pop, Ibrahim Ayed, Patrick Gallinari, Maxime Sermesant. Simultane-
ous data assimilation and cardiac electrophysiology model correction using differentiable physics and

deep learning. Interface Focus, 2023, 13 (6), 10.1098/rsfs.2023.0043 . hal-04359753

HAL Id: hal-04359753
https://hal.science/hal-04359753
Submitted on 21 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04359753
https://hal.archives-ouvertes.fr

Simultaneous Data Assimilation and Cardiac Electrophysiology
Model Correction Using Differentiable Physics and Deep Learning

Victoriya Kashtanoval? Mihaela Pop!?3 Ibrahim Ayed*®

Patrick Gallinari*® Maxime Sermesant!?

nria Université Cote d’Azur, Nice, France
23IA Cote d’Azur, Sophia Antipolis, France
3Sunnybrook Research Institute, Toronto, Canada
4Sorbonne University, Paris, France
STheresis lab, Paris, France
6Criteo AI Lab, Paris, France
{victoriya.kashtanova@inria.fr, maxime.sermesant@inria.fr}

Abstract

Modelling complex systems, like the human heart, has made great progress over the last
decades. Patient-specific models, called ”digital twins”, can aid in diagnosing arrhythmias
and personalising treatments. However, building highly accurate predictive heart model re-
quires a delicate balance between mathematical complexity, parameterisation from measure-
ments, and validation of predictions. Cardiac electrophysiology models range from complex
biophysical models to simplified phenomenological models. Complex models are accurate
but computationally intensive and challenging to parameterise, while simplified models are
computationally efficient but less realistic. In this paper, we propose a hybrid approach
by leveraging deep learning to complete a simplified cardiac model from data. Our novel
framework has two components, decomposing the dynamics into a physics-based and a data-
driven term. This construction allows our framework to learn from data of different com-
plexity, while simultaneously estimating model parameters. First, using in silico data, we
demonstrate that this framework can reproduce the complex dynamics of cardiac transmem-
brane potential even in presence of noise in the data. Second, using ex vivo optical data
of action potentials, we demonstrate that our framework can identify key physical param-
eters for anatomical zones with different electrical properties, as well as to reproduce the
action potential wave characteristics obtained from various pacing locations. Our physics-
based data-driven approach may improve cardiac electrophysiology modeling by providing a
robust biophysical tool for predictions.

Keywords— Physics-based learning, Deep Learning, Cardiac electrophysiology, Simulations

1 Introduction

Computational cardiology is a multi-disciplinary field that has seen extensive progress in the past decade [23,
8, 4]. In particular, recent advances in numerical analysis and the development of virtual patient-specific
models (known as ‘digital twin’) have allowed researchers to address critical challenges related to limita-
tions of clinical methods routinely employed to diagnose arrhythmia, as well as to help planning the best
therapy on an individual basis [10]. However, in order to build such accurate predictive heart models, one
needs to select the most suitable theoretical framework, balancing the degree of mathematical complexity
needed for the specific problem studied, the correct parameterisation of model from measurements, and
the validation of predictions.

Physiological and multi-physics phenomena characterising the heart function in normal and patho-
logical conditions can be mechanistically described by mathematical models of different complexity [5].
Notably, several electrophysiology (EP) models are able to accurately reproduce the electrical behaviour



of the heart at different scales (i.e. cell, tissue, organ). For instance, detailed biophysical models have
been proposed in order to describe the dynamics of transmembrane potential, the flowing currents as
well as the different ionic concentrations inside and outside the cardiac cell, such as the complex Ten
Tusscher-Panfilov model [34, 35]. On the other hand, ionic models are not only intricate but also com-
putationally expensive, requiring costly resources. In addition, these sophisticated models also employ
numerous hidden variables that are impossible to be all measured, making difficult to accurately identify
all model parameters.

An attractive alternative to complex computational models, is to use phenomenological models in-
volving descriptions derived from simple biophysical models adapted to cardiac EP. Examples of such
models are the FitzHugh-Nagumo [11, 25], Aliev-Panfilov [1, 26], and Mitchell-Schaeffer [24] models,
which only make use of a few variables and parameters. These models are used for rapid simulations of
the action potential wave propagation at tissue level (e.g. on a 2D tissue layer or a 3D tissue slab), and
organ level (through the entire heart). Nevertheless, being less realistic, these simplified models are also
less accurate. Given the increasing availability of synthetically-generated data and observation data, an
important research issue is to consider how machine learning (ML), and more specifically, deep learning
(DL), could help complementing simple physical models in order to improve their accuracy.

Physics-aware deep learning is a recent field of research aiming at promoting the use of data-intensive
methods for the modeling of complex physical phenomena [17, 39, 38]. This research topic motivates
works from different disciplines, ranging from climate to aeronautics and biology, by encompassing diverse
objectives including: accelerating numerical simulations; improvement over physical models; building of
emulators; solving differential equations in large variable spaces; discovering physical laws from data; etc.
The methods developed for reaching these objectives are also multiple-folded: incorporating prior physical
background in the loss functions [29, 30, 41] or as strict constraints in the NN architecture [15]; enforcing
invariance or equivariance properties characteristic of physical laws in DL models [36, 37], combining DL
and physical components into hybrid systems [42].

Pure DL methods have been also increasingly used in order to learn dynamical models from data
and make intelligent decision without human intervention. Notably, neural networks are capable to learn
and to model various complex (e.g. nonlinear) relationships between input and output data [40]. For
example, a framework useful for automatic learning PDEs from data [22, 21] has been proposed. Another
group used an adjoint method to learn differential equations parameterised with neural networks [7],
while Ayed et al. [3] proposed a framework for learning models using a purely data-driven approach in
partially observable settings.

However, despite achieving good progress and producing promising results in cardiac EP simula-
tions [2, 19], these works suggested that data-driven models alone were not able to reproduce complex
unseen dynamics (such as the repolarisation phase of an action potential) [19]; thus, the maximum fore-
casting horizon remains limited.

Subsequently, several researchers have started to use coupled physico-statistical approaches for car-
diac EP simulations, in order to achieve a high precision at low cost. For example, one group designed a
neural network that approximates the FitzHugh-Nagumo model [9], while others used a physics-informed
neural networks to construct cardiac activation maps by accounting for the underlying wave propagation
dynamics [33] and to estimate the cardiac fiber architecture of the human atria from catheter recordings
of the electrical activation [32]. Furthermore, another group proposed an approach to create a nonlin-
ear reduced order model by employing deep learning algorithms (DL-ROM) designed for cardiac EP
simulations [12]. Finally, other researchers presented a physics-informed neural network for an accurate
simulation of action potential wave and a correct estimation of the model parameters [14]. Unfortunately,
the majority of these coupled approaches use a high-fidelity physical model as a core component of its
structure. As a result, fitting those models to real data may not only be computationally expensive, but
also difficult especially in order to properly deal with frequently observed large discrepancies between
simulated and real data.

To address this critical limitation, here we propose a framework to Augment incomplete PHYsical
models with a deep learning component for ideNtifying complex cardiac ElectroPhysiology dynamics
(APHYN-EP) from data, based on a fast low-fidelity (or incomplete) physical model. This framework
has two main components which decompose the model dynamics into a physical term and a data-driven
term, respectively. The data-driven DL component is designed such that it captures only the information
that cannot be modeled by the incomplete physical model. This construction allows our framework to
learn from data of different complexity and to handle the different temporal and spatial resolution. The
proposed framework closely follows the approach of Yin et al. [42]. However, in contrast to this previous
work (which considers fully-observable dynamics and simple test use cases), cardiac EP dynamics have a



high complexity and represent simultaneously multiple underlying processes. Furthermore, most cardiac
EP models lack measurements for some of the model variables, which requires inferring the dynamics
from incomplete observations only, making a model partially-observable.

Figure 1 presents the general scheme of our approach. The observed data, which represent only part
of cardiac EP dynamics, is decomposed by the framework into two ”physics-based” and ”data-driven”
parts. The ”data-driven” part acts as a complement (or a correction) to the ”physics-based” part, and
handles quantities and dynamics which were neglected. The parameters of the physical model (inverse
problem) and of the neural network (direct problem) were learned simultaneously during the training
phase (see Fig. 2). After the complete training, the APHYN-EP framework can be used to forecast the
learned dynamics at multiple horizons.

dx A + data points
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Figure 1: General APHYN-EP framework. Correction of a PDE-based model with an additional
term learned from the data.

We showed in previous papers [18, 20] the preliminary results of the this framework application. In
this current paper, we present in detail our novel framework, demonstrating results of its application on
more complex settings. Furthermore, we also explore the generalisation capabilities of the framework.

In Section 2, we give a thorough overview of the method, with training details and a comparison with
a traditional numerical method. In Section 3, we introduce the data used to test different abilities of the
framework. In Section 4, we present numerical results obtained using our framework in comparison to
the baseline methods. Finally, in Section 5, we discuss the possible framework improvements and future
applications.

2 Learning Framework

The cardiac EP dynamics can be driven by an equation of the form:

dX;

Et = F(X) (1)

defined over a finite time interval [0,7], where the state X; is a spatio-temporal vector field over the
domain Q € R*, with k& € {0, 2} in our experiments. We suppose that we have access to a set of observed

trajectories:

D= {X:[0,T] = ANt € [0, 7], % — F(X)},

where A is the set of vector field values X. In our case, the unknown F' has A as domain and we only
assume that F' € F, with (F,|| - ||) a normed vector space.
Since we consider that only part of the mesuared dynamics can be modeled via a family of PDEs

characterised by their temporal evolution F, € F, C F, APHYN-EP framework introduce a data-driven
augmentation term Fy € F complementing F,,. F being a vector space, thus we can write:

F=F,+Fy, (2)

where F), represents a physical model (which is an incomplete description of the underlying phenomenon)
and Fy is a neural network complementing the physical model by capturing the information that cannot



be modeled by the physics-described component. The physical and data-driven parameters defining F),
and Fy are unknown and need to be estimated from data by fitting the trajectories from D.

The decomposition (2) is not unique, as shown in [2, 19], all the measured dynamics could be cap-
tured by the F; component alone. This decomposition is therefore ill-defined, which complicates the
interpretability and extrapolation possibilities of the framework. However, we aim to reduce the action
of Fj; on the dynamics measured through its norm, and to find its optimal minimum.

Therefore, in order to learn the cardiac EP dynamics X, in this work, we solve following optimisation
problem via our physics-based data-driven APHYN-EP framework:

i Fy|| subj VX € D,V 11, 9%t _ pix,) = Fy(X0) + Fa(X
Fpeg;{gdefll all subject to VX € D,Vt € [0,T], —= = F(Xy) = Fp(X:) + Fa(Xo). (3)

Assuming that F), is a Chebyshev set, Propositions 1 and 2 from Yin et al. [42] guarantee the existence
and uniqueness of a minimising pair for (3).

Specifically, in our experiments the incomplete physical model is derived (F,(X:) = v;) from the
two-variable (v, h) model [24] for cardiac EP simulations, as described by equations (4). The variable v
represents a normalised (v € [0,1]) dimensionless transmembrane potential, while the “gating” variable
h controls the repolarisation phase (i.e., the gradual return to the initial resting state):

hv?(1 —
Jr1)( v) v

0w = div (6IV) - + Jstim
Tin Tout (4)
Tlfh if v < vgqte
Oth = .
Terose 11U > Vgate

where Jgm is a transmembrane potential activation function, which is equal to 1 during the time
the stimulus is applied (¢s¢m) in a certain stimulated area.

This physical model has been successfully used in patient-specific modelling [31], covering general EP
dynamics. Furthermore, in contrast to the very detailed ionic/cellular models, this model is flexible in
terms of spatial and temporal steps set in the numerical analysis. Thus, assuming the initial conditions
for this system (4) v(t = 0) = 0 and h(t = 0) = 1 we can compute an approximation of h for any time
point ¢ by employing a simple integration scheme.

In the experiments presented later (see Section 3), F, is the set of models spanned by the R.H.S. of
the equations above for varying variables o, T;n, Tout, Telose- Lhis is a finite dimensional vector subspace
which is indeed Chebyshev, thus falling under the assumption guaranteeing theoretical existence and
uniqueness of a minimising pair.

The data-driven component (Fy) of the framework was implemented via a neural network. The choice
of a neural network depends on the application problem and the dimension of the data. In this paper,
we used a ResNet network [13], because it could accurately reproduce complex cardiac EP dynamics
[2, 19]. However, a simpler neural network could also be used for more rapid computations, as discussed
in Section 5.

In APHYN-EP framework the physical (F},) and the data-driven (Fy) components are trained simul-
taneously. This insures the finding of the best minimising pair for (3) determined by the set of parameters
0 = (6p,04) based on observed measurements X,(lgt,i € [1,N] and h € [1,T/At].

The 'Loss function’ (£) in training phase consisted of 2 parts: trajectory-based loss (L4rq;) and loss
on norm of Fy, being represented as following;:

L(0) = X% Lipaj(0) + HF;’ .

N T/At ) .
>R~ KR Ol + | P (5)
=1 h=1

?

~ (i () .
where each state X}(IZ (9) = ;;8) +hAt(FI?” + FJ)(X,) dX, was calculated from the initial state X((,Z) via

a differentiable ODE solver [7, %]

The key role of the A coefficient is to balance the two parts of the loss. During training, we used A in
a dynamic state, as A\j 11 = Aj +7Lrq;(0j11) (j is an epoch number), in order to artificially increase the
importance of Ly, at the beginning of training and then to gradually decrease it, changing the focus of
optimisation on the norm of Fj.

This training algorithm, adapted from Yin et al. [42], is presented below.

Figure 2(a) is a schematic representation of the APHYN-EP training algorithm 1. This algorithm
is similar to the traditional numerical method of Gradient Descent for solving Inverse and Ill-posed



Algorithm 1 APHYN-EP training
Initialisation: 6y, Ag > 0,7 > 0;
for epoch = 1: Nepochs do

for batch in 1: B do
Lorag(05) = S0y Sale 1K, — XX 0)]
041 =0; — ¥ [Ajctmj(ej) + HF:dj H

end for
Aj+1 = Aj+ YLiraj (0541)
end for
= o = Gp 6d
Data f\XJ mm—p dX;/dt=F%(X;) = (F,% +Fq%)(X;) Direct Adjoint
T model model
Estimated Estimated H ~—
physical neural network Discretisation
parameters ; parameters
<;: Smnlgl(‘?elEP DL model :> Direct Adjoint
Update of weights model > model

0=(6,,04) code code
via Loss function Automatic

gradient calculations differentiation
ODE Solver(Xr, Fp,°P + F%d, (T+1:T+A)) Loss
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Figure 2: (a) General APHYN-EP framework training scheme. (b) Calculation of the Loss
function gradient via Pytorch framework (blue part) vs. Adjoint model (yellow part).

Problems, which is based on the solution of an adjoint problem to calculate the gradient of the Loss
function [16] (Fig. 2(b, yellow part)). However, thanks to the automatic differentiation tools provided
by the Pytorch library [27], the gradient of (5) is calculated automatically inside of PyTorch framework
(Fig. 2(b, blue part)).

Additionally, in order to train simultaneously the physical and the data-driven components of APHYN-
EP, we implemented the Laplace operator in (4) with a simple finite-difference scheme. Lastly, in order
to avoid potential difficulties associated with the high time resolution required in this numerical scheme,
we used two different time steps in the integration schemes for the computing the physical component
and for computing the final forecast given by the framework, respectively.

3 Experiments

In order to test the performance of our APHYN-EP framework and to further show its capability to
reproduce transmembrane potential dynamics of different complexities, we chose two types of experiments.
First, using synthetic in silico data, we tested the ability of the framework to reproduce the complex
dynamics of transmembrane potential including a case where noise is present in the data. Second, using
optical fluorescence imaging data of action potentials recorded ez vivo on explanted porcine hearts, we
aimed to show that our framework: a) can identify key physical parameters for different anatomical zones
having abnormal electrical function (using 0D data from a heart with an ischemic region); b) is capable
to reproduce the action potential wave characteristics obtained following heart stimulation from different
locations (2D mapping data from a healthy heart).

The details of data collection and training settings used for the experiments are presented in detail
below.
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Figure 3: (a,b) Example of a selected 2D myocardial tissue slab with the transmembrane poten-
tial activation (yellow) and resting phase (dark blue), for train and validation dataset, respec-
tively. (c) Typical temporal sequence for the simulation experiment (without noise), with the
normalised amplitude of the transmembrane potential being represented on the Y-axis and the
time (ms) on the X-axis.

3.1 In silico data
3.1.1 Data collection

To evaluate our method, we used a dataset of transmembrane potential activations simulated by employ-
ing a monodomain reaction-diffusion equation and the Ten Tusscher — Panfilov ionic model [35], which
represents twelve different transmembrane ionic currents. The simulations were performed using a spatial
step of 0.2 mm and a time step of 1 ms (similarly to those used in the original model [35]), with the
open-source finetwave software!. For this, our computational domain was chosen to represent a 2D slab
of cardiac tissue (isotropic), with 24 x 24 elements in size. For one data sample, in order to activate
the transmembrane potential, an excitation pulse delivered via a stimulus was applied for 1 ms on a
selected area. Each simulation represented 400 ms of a heart beat, and was intended to achieve a full
depolarisation-repolarisation cycle (note that video examples showing simulated dynamics across time
are available online?). This required 20 seconds of computation time on a 8-core Intel i7-7820HQ CPU
per simulation.

0D data In order to generate 0D databases, we selected the 2D data samples with the pacing
stimulus applied as follows: on the left top corner for training datasets, and near the center for validation
datasets, as shown in Figure 3. Next, we saved in separate files a time sequence for each pixel of the 2D
cardiac slab, creating two databases: one for training and one for validation, respectively. To simplify
the workflow for our framework, we removed the section of time sequences where the transmembrane
potential was equal to zero (for non-activated at time 0 pixels), thus obtaining a time sequence of 350 ms
per data sample, as shown in Figure 3(c). To test the ability of the framework to operate with noisy
data, we added to each time sequence a 5 percent random noise characterised by a normal Gaussian
distribution.

2D data In order to generate 2D databases, we applied an excitation pulse at each grid point of
2D cardiac tissue slab. Next, we added a 5 percent random noise with normal Gaussian distribution
directly on simulated data. Finally, we obtained a 2D database of around 500 training samples and 100
validation samples.

The data simulated via the Ten Tusscher — Panfilov model with added noise were considered here
as the ground truth. The objective was then to learn the complex dynamics generated via this model
using the APHYN-EP framework, by combining a simplified physics description with a deep learning
component. We hypothesised that this approach will result in a low computational cost surrogate model
of the computationally intensive, biophysically detailed Ten Tusscher — Panfilov model.

Thttps://github.com/TiNezlobinsky /Finitewave
Zhttps://doi.org/10.6084/m9.figshare.21648752.v3



3.1.2 Training settings

The physical model (Fj) described by Eq. 4 was implemented with a standard finite-difference scheme
for the Laplace operator, using a spatial resolution of 1 mm? pixels (absent for 0D data experiments)
and an inner time resolution of 0.1 ms. We estimated only o, 7;,, Tout and 7T¢pse as unknown parameters
in (4), since these control the major part of the model’s dynamics (i.e., the main difference between
the Mitchell-Schaeffer and the Ten Tusscher — Panfilov models in our simulations). The other Mitchell-
Schaeffer model parameters were taken from the original paper [24], as follows: Topen = 120, vgqre = 0.13
and tgpm = 1.

For the deep learning component (Fy) of the framework, we used: a ResNet [13].with 4 input/output
channels (assimilating the first milliseconds of dynamics). In order to demonstrate and to compare
APHYN-EP framework’s performance with simpler neural network, we also tested an MLP network
(for 0D experiments) and a ConvNet (for 2D experiments) as a deep learning component (Fy) of the
framework.

We used a time resolution of 1 ms to compute the forecast given by APHYN-EP framework. The
training was performed using a horizon of 350 ms. More details on the training configurations can be
found in the Supplementary material.

It is important to emphasise that while the framework took a few hours to train (e.g. approximately
3h on Nvidia Quadro M2200 GPU in case of 2D data), once this was done, the inference step was
rapidly computed (i.e., less than 10 sec to compute 350 ms of 2D forecasting) and did not require any
re-calibration. Furthermore, the major part of the inference time is taken by computing the integral of
X(TZ) from X(()z) and could be reduced by using a larger time step.

3.2 Ex vivo data
3.2.1 Data collection

As mentioned above, we tested the APHYN-EP framework performance using ex vivo experimental
datasets from optical fluorescence imaging of action potential. Briefly, the optical signals were recorded
ex vivo from the epicardial surface of hearts explanted from juvenile swine ( 25kg in weight). Each
heart was attached to a Langendorff perfusion system and a voltage sensitive dye (i.e., di-4-ANEPPS)
was injected into the perfusate solution. In order to avoid cardiac motion artifacts during the optical
recordings, the heart contraction was suppressed by a bolus of saline and Cytochalasin D, an electro-
mechanical uncoupler. All optical images were acquired using a high-speed CCD camera (MICAMO02,
BrainVision Inc. Japan), with high-temporal resolution (3.7ms) as well as a high-spatial resolution (i.e.,
pixel size 0.7mm x 0.7mm). The action potential was then derived at each pixel from the relative change
in the intensity of fluorescence signal. The ez vivo studies were described in more detail in Pop et al. [28].
The recorded optical signals were saved and exported from the BV-Ana acquisition software. Notably,
within each pixel, the relative change in optical signal intensity is directly proportional with the action
potential.

0D data Our specific objective was to learn the complex dynamics of the measured action potential
(AP), and then to identify its relevant physical parameters for different zones of the heart. Note that
the optical data were considered as the ground truth. For this 0D experiment, we chose to use epicardial
optical data recorded from a heart having an ischaemic region (artificially induced by occluding a blood
vessel). For the analysis, we manually selected two rectangular regions of interest (ROIs) with different
AP dynamics across time, as seen in Figure 4. For post-processing of the data, we normalised the optical
signal intensity in order to obtain a [0, 1] min/max interval for the transmembrane potential, while
keeping the noise in the data. Next, we took a first full cardiac cycle and removed the parts with zero
potential, keeping only time-sequences of 300 ms per experiment. Then, we saved in separate files a
time sequence for each pixel in the two selected ROI, creating two databases (ROI A and ROI B), each
containing approximately 10 and 5 time-sequences for training and validation, respectively.

2D data For this experiment, we chose a healthy heart stimulated via a pacing electrode placed
onto two different zones within the heart (see Fig. 5), having two recordings of depolarisation wave
propagation. For one recording, we normalised the optical signal intensity in order to obtain a [0, 1]
min/max interval for the transmembrane potential, slightly denoising 2D data. We manually selected a
rectangular region of interest (see Fig. 5), where there were no changes in the tissue physical properties.
Next, we divided this region of the heart into smaller 2D squares of 10 pixels. For each square, we took
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Figure 4: Example of mapping data from the optical experiment: (left) explanted porcine heart,
and (right) tracings of denoised action potential waves recorded from the epicardial surface of
the left ventricle, LV. Note that ROI B represents an ischaemic region characterised by a shorter
action potential duration (APD) compared to the normal APD recorded from ROI A.

a first full cardiac cycle and removed the frames with zero potential, keeping only 2D time-sequences of
300 ms per experiment. Then, we saved each obtained 2D time sequence, having about 120 samples for
training and 30 samples for validation, respectively. The optical data recorded for the case of pacing
from the right ventricle, RV, (see Fig. 5(a)) were considered here as the ground truth for training and
validation, while the optical data recorded with the pacing electrode placed onto the left ventricle, LV,
(see Fig. 5(b)), were used for testing.

120
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p 60
{40
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(a) RV pacing

Figure 5: Example of depolarisation maps selected from the optical data recorded ex vivo in a
healthy porcine heart, with the stimulating electrode (used for pacing the heart) placed onto the
right ventricle (a), and left ventricle (b), respectively. Red areas correspond to early activation
times (i.e., where the excitation pulse was delivered), while the late depolarisation times are
depicted in green-blue, color scale is represented in ms.

3.2.2 Training settings

The training settings for this experiment were similar to the ones described in section 3.1.2, except for
training horizon (300 ms).

4 Results

4.1 In silico data
4.1.1 0D data

Results demonstrated that our proposed APHYN-EP framework was able to accurately reproduce sev-
eral key features, the wave morphology and the electrical conduction properties of the transmembrane
potential solution generated by the Ten Tusscher — Panfilov model (see Fig. 6), even in presence of noise
in data.
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Figure 6: Validation results of the trained framework with learning of: (a) 2 (7, and Tou)
and (b) 3 (Tin, Tout and Tyese) physical parameters. Legend: ground truth (GT), prediction
of the framework (Prediction FW), decomposition of prediction on physical (F},) and DL (Fy)
components.

Figure 6(a) shows that in absence of learning of parameter 7.j,s (controlling the repolarisation), the
data-driven component (ResNet model) completed the dynamics generated by physical component. The
value of 7.5 was fixed at 150 [24]. In the presence of learning of 7.j,se the error of dynamics corrected
by data-driven component is minimal (Fig. 6(b)). Note that the predicted dynamic was generated via
an Euler integration scheme, by assimilating only one first measurement of the transmembrane potential
dynamics. Overall, the framework demonstrated robustness and was not sensitive to the noise in data,
and, as a result, rapid changes in transmembrane potential activation were neglected, as observed during
the first 40 ms of the action potential duration presented in Figure 6.

4.1.2 2D data

We include here our qualitative results obtained for the forecast over 8 ms, after assimilating only one
first frame of dynamics (see Fig. 7). These first 8 ms (i.e., the AP upstroke) represent an important
part of the cardiac dynamics, ranging from the earliest depolarisation phase to the full depolarisation
phase. Importantly, one can observe a very good agreement between the ground truth and the forecast
transmembrane potentials generated by APHYN-EP, as illustrated in Figure 8. The effect of the cor-
rection term introduced by Fjy is clearly visible. Moreover, in Figure 8(b), one can also observe that for
the 2D data (which includes now a diffusion part) APHYN-EP framework achieves a good precision in
transmembrane potential forecasting even when noise is present in the data.
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Figure 7: APHYN-EP predicted dynamics for the transmembrane potential diffusion. Figure
shows a period of 8 ms of the forecast. Red point is the reference point for Figure 8.

Figures 8 and 9 present the performance of different components of APHYN-EP and associated
contribution to the final result. We can observe which part of the generated transmembrane potential
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and data-driven (Fj;) component of APHYN-EP.

was created by the physical component of the framework (as seen in the second row of Fig. 9). The
data-driven component was used only to correct the difference between the ground-truth dynamics and
the physical part (Fig. 9 (third and fourth rows)).
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Figure 9: Exemplary results illustrating: the dynamics of the transmembrane potential diffusion
predicted by the APHYN-EP physical component (second row); the error with ground-truth
diffusion for this physical component of APHYN-EP (third row); and, the trained APHYN-EP
data-driven component contribution (bottom row).
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Table 1 presents the mean squared error (MSE) results for our framework on the training and valida-
tion data samples. Note that to calculate this error, for each data sample, we fed the model with only one
initial test measurement, then allowed the model to predict 300 ms forward without any additional input
information. Furthermore, for comparison, we also added two baseline models: the “incomplete” physical
model (F, from APHYN-EP framework, trained alone) and a fully data-driven model (EP-Net 2.0 [19])
trained on the same dataset as APHYN-EP described in 3.1(2D). We clearly noticed that APHYN-EP
captured the observed dynamics with good precision for a large time horizon (400 ms) and also outper-
formed the physical model for every dataset. At the same time, the pure data-driven model encountered
difficulties to learn the proper dynamics.

Generalisation ability of APHYN-EP: Planar wave Since our objective was to train a
model able to generalise to new conditions, outside of the training environment, we performed a test on
out-of-domain data represented by planar wave dynamics (see Fig. 10). One can observe that APHYN-EP
(trained on data from 3.1.1) has successfully generated the forecast of the new transmembrane potential
wave dynamics.
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Figure 10: APHYN-EP predicted dynamics for the transmembrane potential diffusion of plannar
wave. The frames show a period of 8 ms of forecast obtained without re-training the APHYN-
EP framework.

4.2 FEx vivo data

4.2.1 0D data

Using optical imaging mapping data, our APHYN-EP framework was able to reproduce the observed
action potential dynamics for different ROIs within the heart, identifying the 3 major physical dynamics
parameters (Tin, Tour and Tepose). Figure 11 demonstrates that the framework correctly estimated the
difference in value for the parameter 7.,s., which either increased APD or shortened it, respectively.
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Figure 11: Validation results of the framework trained on: (a) ROI A data and (b) ROI B
data, respectively. Ground truth (GT) data, prediction of the framework (Prediction FW),
decomposition of prediction on physical (F},) and DL (Fy) components.

Table 1 summarises the quantitative results for our framework forecasting on train and validation
data samples, in comparison to baseline methods trained on the same data. The obtained MSE is
relatively small for both ROI, and, despite the use of a limited dataset for training, the APHYN-EP
framework achieved forecasting the dynamics with good accuracy for new data samples from the validation
dataset. Furthermore, our framework clearly outperformed the physical model for every dataset, while
the contribution of F; component was still minimal. Despite having a good results on ROI B, the pure
data-driven model encountered difficulties to learn the dynamics from ROI A data.

Generalisation ability of APHYN-EP: Fast personalisation Having noted that the
obtained correction of the DL component is similar for both ROIs (Fig. 11), we assumed that it is
possible to obtain a single DL correction term (Fy) suitable for each selected ROI in the whole heart.

To prove our hypothesis, we first performed a test where we simply replaced the Fy component of
APHYN-EP trained on data in one ROI by the the Fy component of APHYN-EP trained on data from

11



another ROT (and vice versa), and obtained confirming results.
Second, we preformed a series of personalisation experiments. Since we can obtain an estimation of

physical parameters specific for each ROI (e.g. by training only the F}, component of the framework), we
fixed the estimated 6, parameters (for ROI A and ROI B, respectively) in the APHYN-EP framework
and trained only the F,; component (separately for each ROI). Next, we replaced in the framework the
F,; component trained on ROI A data (Fy,(A)) by the F; component trained on ROI B data (Fy, (B))

(and vice versa), and achieved similar results in forecasting (see Fig. 12-15).
Figures 13 and 15 visually confirm our initial hypothesis, suggesting that in order to obtain an
appropriate forecast of 0D ex vivo dynamics for any region selected on the epicardium, it is sufficient to

train the whole APHYN-EP framework using only one selected ROI.
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Figure 12: (a) Validation results of the F), trained alone on ROI A data to obtain 6,(A) param-
eters. (b) Validation results for APHYN-EP framework (with fixed 6,(A) parameters) trained
on ROI A data. (c) Validation results of the APHYN-EP framework (with fixed 6,(A) parame-
ters) with F; component trained on ROI B data. Legend: ground truth (GT) data, prediction
of the framework (Prediction FW), decomposition of prediction on physical (F},) and DL (Fy)

components.
1.0 — o
8 Prediction FW_A 0.10{ — Prediction Fd_A(A)
° === Prediction FW_AB —= PredictionFd BA)  f -
0.8 g o GT data 0.05 4
() 1
0.00 I
0.6 !
~0.05 - I
I
0.4 . 1
~0.10 I
\ !
0.2+ ~0.15 1 ]
\ !
\ !
0.04 ~0.20 N
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (ms) Time (ms)
(a) (b)

Figure 13: (a) Validation results of the framework for ROI A, with the following legend: Ground
truth (GT) data, prediction of the framework (Prediction FW_A) trained on only ROI A data,
and prediction of the framework composed of (F},) component trained on ROI A data and
DL (F;) component trained on ROI B data (Prediction FW_AB). (b) Comparison of the DL
component trained on ROI A data (F;,(A)) and on ROI B data (Fy,(A)), applied on validation

ROI A data.

4.2.2 2D data

Finally, we observed that APHYN-EP framework was able to reproduce the features of action potential
wave from 2D optical mapping data (see Fig. 16 and Fig. 17). Table 1 shows the quantitative results
for our framework forecasting on train, validation and out-of-domain test data samples in comparison
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Figure 14: (a) Validation results of the F), trained alone on ROI B data to obtain §,(B) pa-
rameters. (b) Validation results of the APHYN-EP framework (with fixed 6,(B) parameters)
trained on ROI B data. (c) Validation results of the APHYN-EP framework (with fixed 6,(B)
parameters) with F,; component trained on ROI A data. Legend: ground truth (GT) data,
prediction of the framework (Prediction FW), decomposition of prediction on physical (F},) and
DL (F4) components.
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Figure 15: (a) Validation results of the framework for ROI B, with the following legend: Ground
truth (GT) data, prediction of the framework (Prediction FW_B) trained on only ROI B data,
and prediction of the framework composed of (F},) component trained on ROI B data and DL
(F4) component trained on ROI A data (Prediction FW_BA). (b) Comparison of DL components
trained on ROI B data (F;,(B)) and on ROI A data (Fy,(B)) applied on validation ROI B
data.

to baseline methods trained on the same data. One can notice that the Physical model and a simple
Data-driven model outplay the APHYN-EP framework on training and validation datasets, but they
have worse performance on a test dataset, which indicates either their possible overfitting or disability
to generalise to new conditions. It is also important to note that APHYN-EP has the best results of
forecasting for first 150 ms (see Table 1) and retains persistent performance on out-of-domain test data.

Generalisation ability of APHYN-EP: LV pacing As shown in Figure 17, the framework
keeps the capability to generalise to unseen conditions (e.g. LV pacing). The absolute error was slightly
larger than that on images obtained with RV pacing (used for training); however, this error was still
acceptable. The quantitative results are provided in Table 1.

5 Discussion
In this work, we developed and tested a robust learning framework that is able to assimilate cardiac

electrophysiology dynamics. Overall, our results suggest that automated learning of cardiac EP dynamics
is feasible and has great potential in predicting the features of action potential wave. In particular, we
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Figure 16: APHYN-EP predicted dynamics for the transmembrane potential diffusion, RV pac-
ing. The frames illustrate time sequences from a 30 ms period of forecast.

demonstrated that the APHYN-EP framework can master the EP data of different origin (i.e, data
simulated via the Ten Tusscher — Panfilov ionic model, as well as real optical mapping data), even
in the presence of noise in the data. This framework may be useful for applications concerning fast
parameterisation of computational models that predict electrical wave propagation through the heart.

In the section 4.2.1, we demonstrated that APHYN-EP framework can identify the major physical
dynamics parameters for different heart regions. Alongside, we also demonstrated an example of fast
personalisation for the framework.

Moreover, in sections 4.1.2 and 4.2.2 we illustrated the generalisation abilities of our framework, by
applying the framework on new data without the need of further re-training or a change in its parameters.

However, we acknowledge that the performance of the framework depends on many hyper-parameters,
such as a choice of DL component of the framework, or of the training strategy, etc. For instance, due
to the data-driven architecture, our framework training could lead to a local minimum for the physical
component parameters and additional involvement of the DL component. Several solutions for this
problem may be given by the rigid boundaries on physical model parameters or a more strict training
protocol such as separate sequential training of physical and DL components.

Furthermore, we observed that the usage of simple neural networks for the DL component of our
APHYN-EP framework, is able to improve the results (see Table 1); however, the choice of such models
depends entirely on the learning data configurations such as data dimension, presence/absence of noise,
etc. In this work we have focused mostly on results generated by the framework with DL component
represented by a ResNet network, that is because of its robustness and capability of resting stable during
different simulations. Additionally, thanks to its residual connections, ResNet can accurately reproduce
complex cardiac EP dynamics [2, 19].

6 Conclusion

In this article we successfully demonstrated the ability of a novel APHYN-EP framework to learn cardiac
EP dynamics from data of different complexity. The main advantage of our proposed framework is its
coupled architecture, which allowed us to use a simplified low-fidelity EP model as a physical component of
the framework, along with a neural network as a data-driven correction mechanism for the EP model. Our
original framework opens up several possibilities in order to introduce prior knowledge in deep learning
approaches through explicit equations, as well as to correct the physical model errors from assimilated
data.
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Figure 17: APHYN-EP predicted dynamics for the transmembrane potential diffusion, LV pac-
ing. The frames show a period of 30 ms of forecast obtained without re-training the APHYN-EP
framework.
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