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Modelling complex systems, like the human heart, has made great progress over the last decades. Patient-specific models, called "digital twins", can aid in diagnosing arrhythmias and personalising treatments. However, building highly accurate predictive heart model requires a delicate balance between mathematical complexity, parameterisation from measurements, and validation of predictions. Cardiac electrophysiology models range from complex biophysical models to simplified phenomenological models. Complex models are accurate but computationally intensive and challenging to parameterise, while simplified models are computationally efficient but less realistic. In this paper, we propose a hybrid approach by leveraging deep learning to complete a simplified cardiac model from data. Our novel framework has two components, decomposing the dynamics into a physics-based and a datadriven term. This construction allows our framework to learn from data of different complexity, while simultaneously estimating model parameters. First, using in silico data, we demonstrate that this framework can reproduce the complex dynamics of cardiac transmembrane potential even in presence of noise in the data. Second, using ex vivo optical data of action potentials, we demonstrate that our framework can identify key physical parameters for anatomical zones with different electrical properties, as well as to reproduce the action potential wave characteristics obtained from various pacing locations. Our physicsbased data-driven approach may improve cardiac electrophysiology modeling by providing a robust biophysical tool for predictions.

Introduction

Computational cardiology is a multi-disciplinary field that has seen extensive progress in the past decade [START_REF] Lopez-Perez | Three-dimensional cardiac computational modelling: methods, features and applications[END_REF][START_REF] Richard H Clayton | An audit of uncertainty in multi-scale cardiac electrophysiology models[END_REF][START_REF] Bai | Editorial: Diagnosis, monitoring, and treatment of heart rhythm: new insights and novel computational methods[END_REF]. In particular, recent advances in numerical analysis and the development of virtual patient-specific models (known as 'digital twin') have allowed researchers to address critical challenges related to limitations of clinical methods routinely employed to diagnose arrhythmia, as well as to help planning the best therapy on an individual basis [START_REF] Anouk | From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy[END_REF]. However, in order to build such accurate predictive heart models, one needs to select the most suitable theoretical framework, balancing the degree of mathematical complexity needed for the specific problem studied, the correct parameterisation of model from measurements, and the validation of predictions.

Physiological and multi-physics phenomena characterising the heart function in normal and pathological conditions can be mechanistically described by mathematical models of different complexity [START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF]. Notably, several electrophysiology (EP) models are able to accurately reproduce the electrical behaviour of the heart at different scales (i.e. cell, tissue, organ). For instance, detailed biophysical models have been proposed in order to describe the dynamics of transmembrane potential, the flowing currents as well as the different ionic concentrations inside and outside the cardiac cell, such as the complex Ten Tusscher-Panfilov model [START_REF] Ten Tusscher | A model for human ventricular tissue[END_REF][START_REF] Ten Tusscher | Alternans and spiral breakup in a human ventricular tissue model[END_REF]. On the other hand, ionic models are not only intricate but also computationally expensive, requiring costly resources. In addition, these sophisticated models also employ numerous hidden variables that are impossible to be all measured, making difficult to accurately identify all model parameters.

An attractive alternative to complex computational models, is to use phenomenological models involving descriptions derived from simple biophysical models adapted to cardiac EP. Examples of such models are the FitzHugh-Nagumo [START_REF] Fitzhugh | Impulses and physiological states in theoretical models of nerve membrane[END_REF][START_REF] Nagumo | An active pulse transmission line simulating nerve axon[END_REF], Aliev-Panfilov [START_REF] Aliev | A simple two-variable model of cardiac excitation[END_REF][START_REF] Nash | Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias[END_REF], and Mitchell-Schaeffer [START_REF] Colleen | A two-current model for the dynamics of cardiac membrane[END_REF] models, which only make use of a few variables and parameters. These models are used for rapid simulations of the action potential wave propagation at tissue level (e.g. on a 2D tissue layer or a 3D tissue slab), and organ level (through the entire heart). Nevertheless, being less realistic, these simplified models are also less accurate. Given the increasing availability of synthetically-generated data and observation data, an important research issue is to consider how machine learning (ML), and more specifically, deep learning (DL), could help complementing simple physical models in order to improve their accuracy.

Physics-aware deep learning is a recent field of research aiming at promoting the use of data-intensive methods for the modeling of complex physical phenomena [START_REF] George | Physics-informed machine learning[END_REF][START_REF] Willard | Integrating Scientific Knowledge with Machine Learning for Engineering and Environmental Systems[END_REF][START_REF] Wang | Physics-Guided Deep Learning for Dynamical Systems: A Survey[END_REF]. This research topic motivates works from different disciplines, ranging from climate to aeronautics and biology, by encompassing diverse objectives including: accelerating numerical simulations; improvement over physical models; building of emulators; solving differential equations in large variable spaces; discovering physical laws from data; etc. The methods developed for reaching these objectives are also multiple-folded: incorporating prior physical background in the loss functions [START_REF] Raissi | Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[END_REF][START_REF] Raissi | Hidden physics models: Machine learning of nonlinear partial differential equations[END_REF][START_REF] Yang | B-pinns: Bayesian physics-informed neural networks for forward and inverse pde problems with noisy data[END_REF] or as strict constraints in the NN architecture [START_REF] Chiyu | Enforcing physical constraints in cnns through differentiable pde layer[END_REF]; enforcing invariance or equivariance properties characteristic of physical laws in DL models [START_REF] Wang | Incorporating symmetry into deep dynamics models for improved generalization[END_REF][START_REF] Wang | Approximately equivariant networks for imperfectly symmetric dynamics[END_REF], combining DL and physical components into hybrid systems [START_REF] Yuan Yin | Augmenting physical models with deep networks for complex dynamics forecasting[END_REF].

Pure DL methods have been also increasingly used in order to learn dynamical models from data and make intelligent decision without human intervention. Notably, neural networks are capable to learn and to model various complex (e.g. nonlinear) relationships between input and output data [START_REF] Willard | Integrating physics-based modeling with machine learning: A survey[END_REF]. For example, a framework useful for automatic learning PDEs from data [START_REF] Long | PDE-net: Learning PDEs from data[END_REF][START_REF] Long | PDE-net 2.0: Learning PDEs from data with a numericsymbolic hybrid deep network[END_REF] has been proposed. Another group used an adjoint method to learn differential equations parameterised with neural networks [START_REF] Ricky | Neural ordinary differential equations[END_REF], while Ayed et al. [START_REF] Ayed | Learning dynamical systems from partial observations[END_REF] proposed a framework for learning models using a purely data-driven approach in partially observable settings.

However, despite achieving good progress and producing promising results in cardiac EP simulations [START_REF] Ayed | EP-Net: Learning cardiac electrophysiology models for physiology-based constraints in data-driven predictions[END_REF][START_REF] Kashtanova | EP-Net 2.0: Out-of-domain generalisation for deep learning models of cardiac electrophysiology[END_REF], these works suggested that data-driven models alone were not able to reproduce complex unseen dynamics (such as the repolarisation phase of an action potential) [START_REF] Kashtanova | EP-Net 2.0: Out-of-domain generalisation for deep learning models of cardiac electrophysiology[END_REF]; thus, the maximum forecasting horizon remains limited.

Subsequently, several researchers have started to use coupled physico-statistical approaches for cardiac EP simulations, in order to achieve a high precision at low cost. For example, one group designed a neural network that approximates the FitzHugh-Nagumo model [START_REF] Court | Design of the monodomain model by artificial neural networks[END_REF], while others used a physics-informed neural networks to construct cardiac activation maps by accounting for the underlying wave propagation dynamics [START_REF] Sahli Costabal | Physicsinformed neural networks for cardiac activation mapping[END_REF] and to estimate the cardiac fiber architecture of the human atria from catheter recordings of the electrical activation [START_REF] Herrera | Physics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps[END_REF]. Furthermore, another group proposed an approach to create a nonlinear reduced order model by employing deep learning algorithms (DL-ROM) designed for cardiac EP simulations [START_REF] Fresca | POD-enhanced deep learningbased reduced order models for the real-time simulation of cardiac electrophysiology in the left atrium[END_REF]. Finally, other researchers presented a physics-informed neural network for an accurate simulation of action potential wave and a correct estimation of the model parameters [START_REF] Herrero Martin | EP-PINNs: Cardiac electrophysiology characterisation using physics-informed neural networks[END_REF]. Unfortunately, the majority of these coupled approaches use a high-fidelity physical model as a core component of its structure. As a result, fitting those models to real data may not only be computationally expensive, but also difficult especially in order to properly deal with frequently observed large discrepancies between simulated and real data.

To address this critical limitation, here we propose a framework to Augment incomplete PHYsical models with a deep learning component for ideNtifying complex cardiac ElectroPhysiology dynamics (APHYN-EP) from data, based on a fast low-fidelity (or incomplete) physical model. This framework has two main components which decompose the model dynamics into a physical term and a data-driven term, respectively. The data-driven DL component is designed such that it captures only the information that cannot be modeled by the incomplete physical model. This construction allows our framework to learn from data of different complexity and to handle the different temporal and spatial resolution. The proposed framework closely follows the approach of Yin et al. [START_REF] Yuan Yin | Augmenting physical models with deep networks for complex dynamics forecasting[END_REF]. However, in contrast to this previous work (which considers fully-observable dynamics and simple test use cases), cardiac EP dynamics have a high complexity and represent simultaneously multiple underlying processes. Furthermore, most cardiac EP models lack measurements for some of the model variables, which requires inferring the dynamics from incomplete observations only, making a model partially-observable.

Figure 1 presents the general scheme of our approach. The observed data, which represent only part of cardiac EP dynamics, is decomposed by the framework into two "physics-based" and "data-driven" parts. The "data-driven" part acts as a complement (or a correction) to the "physics-based" part, and handles quantities and dynamics which were neglected. The parameters of the physical model (inverse problem) and of the neural network (direct problem) were learned simultaneously during the training phase (see Fig. 2). After the complete training, the APHYN-EP framework can be used to forecast the learned dynamics at multiple horizons. We showed in previous papers [START_REF] Kashtanova | Deep learning for model correction in cardiac electrophysiological imaging[END_REF][START_REF] Kashtanova | Aphyn-ep: Physics-based deep learning framework to learn and forecast cardiac electrophysiology dynamics[END_REF] the preliminary results of the this framework application. In this current paper, we present in detail our novel framework, demonstrating results of its application on more complex settings. Furthermore, we also explore the generalisation capabilities of the framework.

In Section 2, we give a thorough overview of the method, with training details and a comparison with a traditional numerical method. In Section 3, we introduce the data used to test different abilities of the framework. In Section 4, we present numerical results obtained using our framework in comparison to the baseline methods. Finally, in Section 5, we discuss the possible framework improvements and future applications.

Learning Framework

The cardiac EP dynamics can be driven by an equation of the form:

dX t dt = F (X t ) (1) 
defined over a finite time interval [0, T ], where the state X t is a spatio-temporal vector field over the domain Ω ∈ R k , with k ∈ {0, 2} in our experiments. We suppose that we have access to a set of observed trajectories:

D = {X : [0, T ] → A|∀t ∈ [0, T ], dX t dt = F (X t )},
where A is the set of vector field values X. In our case, the unknown F has A as domain and we only assume that F ∈ F, with (F, || • ||) a normed vector space. Since we consider that only part of the mesuared dynamics can be modeled via a family of PDEs characterised by their temporal evolution F p ∈ F p ⊂ F, APHYN-EP framework introduce a data-driven augmentation term F d ∈ F complementing F p . F being a vector space, thus we can write:

F = F p + F d , (2) 
where F p represents a physical model (which is an incomplete description of the underlying phenomenon) and F d is a neural network complementing the physical model by capturing the information that cannot be modeled by the physics-described component. The physical and data-driven parameters defining F p and F d are unknown and need to be estimated from data by fitting the trajectories from D.

The decomposition (2) is not unique, as shown in [START_REF] Ayed | EP-Net: Learning cardiac electrophysiology models for physiology-based constraints in data-driven predictions[END_REF][START_REF] Kashtanova | EP-Net 2.0: Out-of-domain generalisation for deep learning models of cardiac electrophysiology[END_REF], all the measured dynamics could be captured by the F d component alone. This decomposition is therefore ill-defined, which complicates the interpretability and extrapolation possibilities of the framework. However, we aim to reduce the action of F d on the dynamics measured through its norm, and to find its optimal minimum. Therefore, in order to learn the cardiac EP dynamics X t , in this work, we solve following optimisation problem via our physics-based data-driven APHYN-EP framework:

min Fp∈Fp,F d ∈F ∥F d ∥ subject to ∀X ∈ D, ∀t ∈ [0, T ], dX t dt = F (X t ) = F p (X t ) + F d (X t ). (3) 
Assuming that F p is a Chebyshev set, Propositions 1 and 2 from Yin et al. [START_REF] Yuan Yin | Augmenting physical models with deep networks for complex dynamics forecasting[END_REF] guarantee the existence and uniqueness of a minimising pair for [START_REF] Ayed | Learning dynamical systems from partial observations[END_REF].

Specifically, in our experiments the incomplete physical model is derived (F p (X t ) = v t ) from the two-variable (v, h) model [START_REF] Colleen | A two-current model for the dynamics of cardiac membrane[END_REF] for cardiac EP simulations, as described by equations (4). The variable v represents a normalised (v ∈ [0, 1]) dimensionless transmembrane potential, while the "gating" variable h controls the repolarisation phase (i.e., the gradual return to the initial resting state):

∂ t v = div (σI∇v) + hv 2 (1 -v) τ in - v τ out + J stim ∂ t h = 1-h τopen if v < v gate -h τ close if v > v gate (4)
where J stim is a transmembrane potential activation function, which is equal to 1 during the time the stimulus is applied (t stim ) in a certain stimulated area.

This physical model has been successfully used in patient-specific modelling [START_REF] Relan | Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia[END_REF], covering general EP dynamics. Furthermore, in contrast to the very detailed ionic/cellular models, this model is flexible in terms of spatial and temporal steps set in the numerical analysis. Thus, assuming the initial conditions for this system (4) v(t = 0) = 0 and h(t = 0) = 1 we can compute an approximation of h for any time point t by employing a simple integration scheme.

In the experiments presented later (see Section 3), F p is the set of models spanned by the R.H.S. of the equations above for varying variables σ, τ in , τ out , τ close . This is a finite dimensional vector subspace which is indeed Chebyshev, thus falling under the assumption guaranteeing theoretical existence and uniqueness of a minimising pair.

The data-driven component (F d ) of the framework was implemented via a neural network. The choice of a neural network depends on the application problem and the dimension of the data. In this paper, we used a ResNet network [START_REF] He | Deep residual learning for image recognition[END_REF], because it could accurately reproduce complex cardiac EP dynamics [START_REF] Ayed | EP-Net: Learning cardiac electrophysiology models for physiology-based constraints in data-driven predictions[END_REF][START_REF] Kashtanova | EP-Net 2.0: Out-of-domain generalisation for deep learning models of cardiac electrophysiology[END_REF]. However, a simpler neural network could also be used for more rapid computations, as discussed in Section 5.

In APHYN-EP framework the physical (F p ) and the data-driven (F d ) components are trained simultaneously. This insures the finding of the best minimising pair for (3) determined by the set of parameters θ = (θ p , θ d ) based on observed measurements

X (i) h∆t , i ∈ [1, N ] and h ∈ [1, T /∆t].
The 'Loss function' (L) in training phase consisted of 2 parts: trajectory-based loss (L traj ) and loss on norm of F d , being represented as following:

L(θ) = λ * L traj (θ) + F θ d d = λ * N i=1 T /∆t h=1 ||X (i) h∆t - X(i) h∆t (θ)|| + F θ d d ( 5 
)
where each state

X(i) h∆t (θ) = X (i) 0 +h∆t X (i) 0 (F θp p + F θ d d )(X s ) dX s was calculated from the initial state X (i)
0 via a differentiable ODE solver [START_REF] Ricky | Neural ordinary differential equations[END_REF][START_REF] Ricky | Learning neural event functions for ordinary differential equations[END_REF].

The key role of the λ coefficient is to balance the two parts of the loss. During training, we used λ in a dynamic state, as λ j+1 = λ j + γL traj (θ j+1 ) (j is an epoch number), in order to artificially increase the importance of L traj at the beginning of training and then to gradually decrease it, changing the focus of optimisation on the norm of F d .

This training algorithm, adapted from Yin et al. [START_REF] Yuan Yin | Augmenting physical models with deep networks for complex dynamics forecasting[END_REF], is presented below. Figure 2(a) is a schematic representation of the APHYN-EP training algorithm 1. This algorithm is similar to the traditional numerical method of Gradient Descent for solving Inverse and Ill-posed

Algorithm 1 APHYN-EP training

Initialisation: θ 0 , λ 0 ≥ 0, γ > 0; Problems, which is based on the solution of an adjoint problem to calculate the gradient of the Loss function [START_REF] Sergey | Inverse and Ill-posed Problems: Theory and Applications[END_REF] (Fig. 2(b, yellow part)). However, thanks to the automatic differentiation tools provided by the Pytorch library [START_REF] Paszke | Pytorch: An imperative style, highperformance deep learning library[END_REF], the gradient of ( 5) is calculated automatically inside of PyTorch framework (Fig. 2(b, blue part)).

for epoch = 1 : N epochs do for batch in 1 : B do L traj (θ j ) = N i=1 T /∆t h=1 ||X (i) h∆t - X(i) h∆t (θ j )|| θ j+1 = θ j -∇ λ j L traj (θ j ) + F
Additionally, in order to train simultaneously the physical and the data-driven components of APHYN-EP, we implemented the Laplace operator in (4) with a simple finite-difference scheme. Lastly, in order to avoid potential difficulties associated with the high time resolution required in this numerical scheme, we used two different time steps in the integration schemes for the computing the physical component and for computing the final forecast given by the framework, respectively.

Experiments

In order to test the performance of our APHYN-EP framework and to further show its capability to reproduce transmembrane potential dynamics of different complexities, we chose two types of experiments. First, using synthetic in silico data, we tested the ability of the framework to reproduce the complex dynamics of transmembrane potential including a case where noise is present in the data. Second, using optical fluorescence imaging data of action potentials recorded ex vivo on explanted porcine hearts, we aimed to show that our framework: a) can identify key physical parameters for different anatomical zones having abnormal electrical function (using 0D data from a heart with an ischemic region); b) is capable to reproduce the action potential wave characteristics obtained following heart stimulation from different locations (2D mapping data from a healthy heart).

The details of data collection and training settings used for the experiments are presented in detail below. 3.1 In silico data

Data collection

To evaluate our method, we used a dataset of transmembrane potential activations simulated by employing a monodomain reaction-diffusion equation and the Ten Tusscher -Panfilov ionic model [START_REF] Ten Tusscher | Alternans and spiral breakup in a human ventricular tissue model[END_REF], which represents twelve different transmembrane ionic currents. The simulations were performed using a spatial step of 0.2 mm and a time step of 1 ms (similarly to those used in the original model [START_REF] Ten Tusscher | Alternans and spiral breakup in a human ventricular tissue model[END_REF]), with the open-source finetwave software1 . For this, our computational domain was chosen to represent a 2D slab of cardiac tissue (isotropic), with 24 × 24 elements in size. For one data sample, in order to activate the transmembrane potential, an excitation pulse delivered via a stimulus was applied for 1 ms on a selected area. Each simulation represented 400 ms of a heart beat, and was intended to achieve a full depolarisation-repolarisation cycle (note that video examples showing simulated dynamics across time are available online2 ). This required 20 seconds of computation time on a 8-core Intel i7-7820HQ CPU per simulation.

0D data

In order to generate 0D databases, we selected the 2D data samples with the pacing stimulus applied as follows: on the left top corner for training datasets, and near the center for validation datasets, as shown in Figure 3. Next, we saved in separate files a time sequence for each pixel of the 2D cardiac slab, creating two databases: one for training and one for validation, respectively. To simplify the workflow for our framework, we removed the section of time sequences where the transmembrane potential was equal to zero (for non-activated at time 0 pixels), thus obtaining a time sequence of 350 ms per data sample, as shown in Figure 3(c). To test the ability of the framework to operate with noisy data, we added to each time sequence a 5 percent random noise characterised by a normal Gaussian distribution.

2D data

In order to generate 2D databases, we applied an excitation pulse at each grid point of 2D cardiac tissue slab. Next, we added a 5 percent random noise with normal Gaussian distribution directly on simulated data. Finally, we obtained a 2D database of around 500 training samples and 100 validation samples.

The data simulated via the Ten Tusscher -Panfilov model with added noise were considered here as the ground truth. The objective was then to learn the complex dynamics generated via this model using the APHYN-EP framework, by combining a simplified physics description with a deep learning component. We hypothesised that this approach will result in a low computational cost surrogate model of the computationally intensive, biophysically detailed Ten Tusscher -Panfilov model.

Training settings

The physical model (F p ) described by Eq. 4 was implemented with a standard finite-difference scheme for the Laplace operator, using a spatial resolution of 1 mm 2 pixels (absent for 0D data experiments) and an inner time resolution of 0.1 ms. We estimated only σ, τ in , τ out and τ close as unknown parameters in (4), since these control the major part of the model's dynamics (i.e., the main difference between the Mitchell-Schaeffer and the Ten Tusscher -Panfilov models in our simulations). The other Mitchell-Schaeffer model parameters were taken from the original paper [START_REF] Colleen | A two-current model for the dynamics of cardiac membrane[END_REF], as follows: τ open = 120, v gate = 0.13 and t stim = 1.

For the deep learning component (F d ) of the framework, we used: a ResNet [START_REF] He | Deep residual learning for image recognition[END_REF].with 4 input/output channels (assimilating the first milliseconds of dynamics). In order to demonstrate and to compare APHYN-EP framework's performance with simpler neural network, we also tested an MLP network (for 0D experiments) and a ConvNet (for 2D experiments) as a deep learning component (F d ) of the framework.

We used a time resolution of 1 ms to compute the forecast given by APHYN-EP framework. The training was performed using a horizon of 350 ms. More details on the training configurations can be found in the Supplementary material.

It is important to emphasise that while the framework took a few hours to train (e.g. approximately 3h on Nvidia Quadro M2200 GPU in case of 2D data), once this was done, the inference step was rapidly computed (i.e., less than 10 sec to compute 350 ms of 2D forecasting) and did not require any re-calibration. Furthermore, the major part of the inference time is taken by computing the integral of X(i)

T from X (i) 0 and could be reduced by using a larger time step.

Ex vivo data

Data collection

As mentioned above, we tested the APHYN-EP framework performance using ex vivo experimental datasets from optical fluorescence imaging of action potential. Briefly, the optical signals were recorded ex vivo from the epicardial surface of hearts explanted from juvenile swine ( 25kg in weight). Each heart was attached to a Langendorff perfusion system and a voltage sensitive dye (i.e., di-4-ANEPPS) was injected into the perfusate solution. In order to avoid cardiac motion artifacts during the optical recordings, the heart contraction was suppressed by a bolus of saline and Cytochalasin D, an electromechanical uncoupler. All optical images were acquired using a high-speed CCD camera (MICAM02, BrainVision Inc. Japan), with high-temporal resolution (3.7ms) as well as a high-spatial resolution (i.e., pixel size 0.7mm x 0.7mm). The action potential was then derived at each pixel from the relative change in the intensity of fluorescence signal. The ex vivo studies were described in more detail in Pop et al. [START_REF] Pop | Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: A feasibility study[END_REF].

The recorded optical signals were saved and exported from the BV-Ana acquisition software. Notably, within each pixel, the relative change in optical signal intensity is directly proportional with the action potential.

0D data Our specific objective was to learn the complex dynamics of the measured action potential (AP), and then to identify its relevant physical parameters for different zones of the heart. Note that the optical data were considered as the ground truth. For this 0D experiment, we chose to use epicardial optical data recorded from a heart having an ischaemic region (artificially induced by occluding a blood vessel). For the analysis, we manually selected two rectangular regions of interest (ROIs) with different AP dynamics across time, as seen in Figure 4. For post-processing of the data, we normalised the optical signal intensity in order to obtain a [0, 1] min/max interval for the transmembrane potential, while keeping the noise in the data. Next, we took a first full cardiac cycle and removed the parts with zero potential, keeping only time-sequences of 300 ms per experiment. Then, we saved in separate files a time sequence for each pixel in the two selected ROI, creating two databases (ROI A and ROI B), each containing approximately 10 and 5 time-sequences for training and validation, respectively.

2D data For this experiment, we chose a healthy heart stimulated via a pacing electrode placed onto two different zones within the heart (see Fig. 5), having two recordings of depolarisation wave propagation. For one recording, we normalised the optical signal intensity in order to obtain a [0, 1] min/max interval for the transmembrane potential, slightly denoising 2D data. We manually selected a rectangular region of interest (see Fig. 5), where there were no changes in the tissue physical properties. Next, we divided this region of the heart into smaller 2D squares of 10 pixels. For each square, we took , where the excitation pulse was delivered), while the late depolarisation times are depicted in green-blue, color scale is represented in ms.

Training settings

The training settings for this experiment were similar to the ones described in section 3.1.2, except for training horizon (300 ms).

Results

4.1 In silico data

0D data

Results demonstrated that our proposed APHYN-EP framework was able to accurately reproduce several key features, the wave morphology and the electrical conduction properties of the transmembrane potential solution generated by the Ten Tusscher -Panfilov model (see Fig. 6), even in presence of noise in data. Figure 6(a) shows that in absence of learning of parameter τ close (controlling the repolarisation), the data-driven component (ResNet model) completed the dynamics generated by physical component. The value of τ close was fixed at 150 [START_REF] Colleen | A two-current model for the dynamics of cardiac membrane[END_REF]. In the presence of learning of τ close the error of dynamics corrected by data-driven component is minimal (Fig. 6(b)). Note that the predicted dynamic was generated via an Euler integration scheme, by assimilating only one first measurement of the transmembrane potential dynamics. Overall, the framework demonstrated robustness and was not sensitive to the noise in data, and, as a result, rapid changes in transmembrane potential activation were neglected, as observed during the first 40 ms of the action potential duration presented in Figure 6.

2D data

We include here our qualitative results obtained for the forecast over 8 ms, after assimilating only one first frame of dynamics (see Fig. 7). These first 8 ms (i.e., the AP upstroke) represent an important part of the cardiac dynamics, ranging from the earliest depolarisation phase to the full depolarisation phase. Importantly, one can observe a very good agreement between the ground truth and the forecast transmembrane potentials generated by APHYN-EP, as illustrated in Figure 8. The effect of the correction term introduced by F d is clearly visible. Moreover, in Figure 8(b), one can also observe that for the 2D data (which includes now a diffusion part) APHYN-EP framework achieves a good precision in transmembrane potential forecasting even when noise is present in the data. GT v [START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF][START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF] Prediction FW v [START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF][START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF] Prediction Fp v [START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF][START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF] Prediction Fd v [START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF][START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF] GT data v [START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF][START_REF] Camara | Inter-model consistency and complementarity: Learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology[END_REF] was created by the physical component of the framework (as seen in the second row of Fig. 9). The data-driven component was used only to correct the difference between the ground-truth dynamics and the physical part (Fig. 9 (third and fourth rows)). Table 1 presents the mean squared error (MSE) results for our framework on the training and validation data samples. Note that to calculate this error, for each data sample, we fed the model with only one initial test measurement, then allowed the model to predict 300 ms forward without any additional input information. Furthermore, for comparison, we also added two baseline models: the "incomplete" physical model (F p from APHYN-EP framework, trained alone) and a fully data-driven model (EP-Net 2.0 [START_REF] Kashtanova | EP-Net 2.0: Out-of-domain generalisation for deep learning models of cardiac electrophysiology[END_REF]) trained on the same dataset as APHYN-EP described in 3.1(2D). We clearly noticed that APHYN-EP captured the observed dynamics with good precision for a large time horizon (400 ms) and also outperformed the physical model for every dataset. At the same time, the pure data-driven model encountered difficulties to learn the proper dynamics.

Generalisation ability of APHYN-EP: Planar wave Since our objective was to train a model able to generalise to new conditions, outside of the training environment, we performed a test on out-of-domain data represented by planar wave dynamics (see Fig. 10). One can observe that APHYN-EP (trained on data from 3.1.1) has successfully generated the forecast of the new transmembrane potential wave dynamics. 4.2 Ex vivo data

0D data

Using optical imaging mapping data, our APHYN-EP framework was able to reproduce the observed action potential dynamics for different ROIs within the heart, identifying the 3 major physical dynamics parameters (τ in , τ out and τ close ). Figure 11 demonstrates that the framework correctly estimated the difference in value for the parameter τ close , which either increased APD or shortened it, respectively. Table 1 summarises the quantitative results for our framework forecasting on train and validation data samples, in comparison to baseline methods trained on the same data. The obtained MSE is relatively small for both ROI, and, despite the use of a limited dataset for training, the APHYN-EP framework achieved forecasting the dynamics with good accuracy for new data samples from the validation dataset. Furthermore, our framework clearly outperformed the physical model for every dataset, while the contribution of F d component was still minimal. Despite having a good results on ROI B, the pure data-driven model encountered difficulties to learn the dynamics from ROI A data.

Generalisation ability of APHYN-EP: Fast personalisation Having noted that the obtained correction of the DL component is similar for both ROIs (Fig. 11), we assumed that it is possible to obtain a single DL correction term (F d ) suitable for each selected ROI in the whole heart.

To prove our hypothesis, we first performed a test where we simply replaced the F d component of APHYN-EP trained on data in one ROI by the the F d component of APHYN-EP trained on data from another ROI (and vice versa), and obtained confirming results.

Second, we preformed a series of personalisation experiments. Since we can obtain an estimation of physical parameters specific for each ROI (e.g. by training only the F p component of the framework), we fixed the estimated θ p parameters (for ROI A and ROI B, respectively) in the APHYN-EP framework and trained only the F d component (separately for each ROI). Next, we replaced in the framework the F d component trained on ROI A data (F d A (A)) by the F d component trained on ROI B data (F d B (B)) (and vice versa), and achieved similar results in forecasting (see Fig. 12131415).

Figures 13 and15 visually confirm our initial hypothesis, suggesting that in order to obtain an appropriate forecast of 0D ex vivo dynamics for any region selected on the epicardium, it is sufficient to train the whole APHYN-EP framework using only one selected ROI. 

2D data

Finally, we observed that APHYN-EP framework was able to reproduce the features of action potential wave from 2D optical mapping data (see Fig. 16 and Fig. 17). Table 1 shows the quantitative results for our framework forecasting on train, validation and out-of-domain test data samples in comparison to baseline methods trained on the same data. One can notice that the Physical model and a simple Data-driven model outplay the APHYN-EP framework on training and validation datasets, but they have worse performance on a test dataset, which indicates either their possible overfitting or disability to generalise to new conditions. It is also important to note that APHYN-EP has the best results of forecasting for first 150 ms (see Table 1) and retains persistent performance on out-of-domain test data.

Generalisation ability of APHYN-EP: LV pacing As shown in Figure 17, the framework keeps the capability to generalise to unseen conditions (e.g. LV pacing). The absolute error was slightly larger than that on images obtained with RV pacing (used for training); however, this error was still acceptable. The quantitative results are provided in Table 1.

Discussion

In this work, we developed and tested a robust learning framework that is able to assimilate cardiac electrophysiology dynamics. Overall, our results suggest that automated learning of cardiac EP dynamics is feasible and has great potential in predicting the features of action potential wave. In particular, we demonstrated that the APHYN-EP framework can master the EP data of different origin (i.e, data simulated via the Ten Tusscher -Panfilov ionic model, as well as real optical mapping data), even in the presence of noise in the data. This framework may be useful for applications concerning fast parameterisation of computational models that predict electrical wave propagation through the heart.

In the section 4.2.1, we demonstrated that APHYN-EP framework can identify the major physical dynamics parameters for different heart regions. Alongside, we also demonstrated an example of fast personalisation for the framework.

Moreover, in sections 4.1.2 and 4.2.2 we illustrated the generalisation abilities of our framework, by applying the framework on new data without the need of further re-training or a change in its parameters.

However, we acknowledge that the performance of the framework depends on many hyper-parameters, such as a choice of DL component of the framework, or of the training strategy, etc. For instance, due to the data-driven architecture, our framework training could lead to a local minimum for the physical component parameters and additional involvement of the DL component. Several solutions for this problem may be given by the rigid boundaries on physical model parameters or a more strict training protocol such as separate sequential training of physical and DL components. Furthermore, we observed that the usage of simple neural networks for the DL component of our APHYN-EP framework, is able to improve the results (see Table 1); however, the choice of such models depends entirely on the learning data configurations such as data dimension, presence/absence of noise, etc. In this work we have focused mostly on results generated by the framework with DL component represented by a ResNet network, that is because of its robustness and capability of resting stable during different simulations. Additionally, thanks to its residual connections, ResNet can accurately reproduce complex cardiac EP dynamics [START_REF] Ayed | EP-Net: Learning cardiac electrophysiology models for physiology-based constraints in data-driven predictions[END_REF][START_REF] Kashtanova | EP-Net 2.0: Out-of-domain generalisation for deep learning models of cardiac electrophysiology[END_REF].

Conclusion

In this article we successfully demonstrated the ability of a novel APHYN-EP framework to learn cardiac EP dynamics from data of different complexity. The main advantage of our proposed framework is its coupled architecture, which allowed us to use a simplified low-fidelity EP model as a physical component of the framework, along with a neural network as a data-driven correction mechanism for the EP model. Our original framework opens up several possibilities in order to introduce prior knowledge in deep learning approaches through explicit equations, as well as to correct the physical model errors from assimilated data. 

Figure 1 :

 1 Figure 1: General APHYN-EP framework. Correction of a PDE-based model with an additional term learned from the data.

Figure 2 :

 2 Figure 2: (a) General APHYN-EP framework training scheme. (b) Calculation of the Loss function gradient via Pytorch framework (blue part) vs. Adjoint model (yellow part).

Figure 3 :

 3 Figure 3: (a,b) Example of a selected 2D myocardial tissue slab with the transmembrane potential activation (yellow) and resting phase (dark blue), for train and validation dataset, respectively. (c) Typical temporal sequence for the simulation experiment (without noise), with the normalised amplitude of the transmembrane potential being represented on the Y-axis and the time (ms) on the X-axis.

Figure 4 :

 4 Figure 4: Example of mapping data from the optical experiment: (left) explanted porcine heart, and (right) tracings of denoised action potential waves recorded from the epicardial surface of the left ventricle, LV. Note that ROI B represents an ischaemic region characterised by a shorter action potential duration (APD) compared to the normal APD recorded from ROI A.

Figure 5 :

 5 Figure 5: Example of depolarisation maps selected from the optical data recorded ex vivo in a healthy porcine heart, with the stimulating electrode (used for pacing the heart) placed onto the right ventricle (a), and left ventricle (b), respectively. Red areas correspond to early activation times (i.e., where the excitation pulse was delivered), while the late depolarisation times are depicted in green-blue, color scale is represented in ms.

Figure 6 :

 6 Figure 6: Validation results of the trained framework with learning of: (a) 2 (τ in and τ out ) and (b) 3 (τ in , τ out and τ close ) physical parameters. Legend: ground truth (GT), prediction of the framework (Prediction FW), decomposition of prediction on physical (F p ) and DL (F d ) components.

Figure 7 :

 7 Figure 7: APHYN-EP predicted dynamics for the transmembrane potential diffusion. Figure shows a period of 8 ms of the forecast. Red point is the reference point for Figure 8.

Figures 8

 8 Figures 8 and 9 present the performance of different components of APHYN-EP and associated contribution to the final result. We can observe which part of the generated transmembrane potential

Figure 8 :

 8 Figure 8: Transmembrane potential at point (5,5) in the cardiac slab (red point, see Fig. 7): (a) Original, (b) Zoom-in of first 40 ms. Legend: ground truth (GT), APHYN-EP, physical (F p ) and data-driven (F d ) component of APHYN-EP.

Figure 9 :

 9 Figure 9: Exemplary results illustrating: the dynamics of the transmembrane potential diffusion predicted by the APHYN-EP physical component (second row); the error with ground-truth diffusion for this physical component of APHYN-EP (third row); and, the trained APHYN-EP data-driven component contribution (bottom row).

Figure 10 :

 10 Figure 10: APHYN-EP predicted dynamics for the transmembrane potential diffusion of plannar wave. The frames show a period of 8 ms of forecast obtained without re-training the APHYN-EP framework.

Figure 11 :

 11 Figure 11: Validation results of the framework trained on: (a) ROI A data and (b) ROI B data, respectively. Ground truth (GT) data, prediction of the framework (Prediction FW), decomposition of prediction on physical (F p ) and DL (F d ) components.

Figure 12 :Figure 13 :

 1213 Figure 12: (a) Validation results of the F p trained alone on ROI A data to obtain θ p (A) parameters. (b) Validation results for APHYN-EP framework (with fixed θ p (A) parameters) trained on ROI A data. (c) Validation results of the APHYN-EP framework (with fixed θ p (A) parameters) with F d component trained on ROI B data. Legend: ground truth (GT) data, prediction of the framework (Prediction FW), decomposition of prediction on physical (F p ) and DL (F d ) components.

Figure 14 :Figure 15 :

 1415 Figure 14: (a) Validation results of the F p trained alone on ROI B data to obtain θ p (B) parameters. (b) Validation results of the APHYN-EP framework (with fixed θ p (B) parameters) trained on ROI B data. (c) Validation results of the APHYN-EP framework (with fixed θ p (B) parameters) with F d component trained on ROI A data. Legend: ground truth (GT) data, prediction of the framework (Prediction FW), decomposition of prediction on physical (F p ) and DL (F d ) components.

Figure 16 :

 16 Figure 16: APHYN-EP predicted dynamics for the transmembrane potential diffusion, RV pacing. The frames illustrate time sequences from a 30 ms period of forecast.

Table 1 :

 1 Mean-squared error, MSE (x 10 -3 ) of the normalised transmembrane potential (adimensional) forecasting (forecasting horizon of 400 ms for In silico experiments and of 300 ms for Ex vivo experiments). Baseline models: the Physical model (4) and a fully data-driven model (EP-Net 2.0[START_REF] Kashtanova | EP-Net 2.0: Out-of-domain generalisation for deep learning models of cardiac electrophysiology[END_REF]) trained on the same dataset as APHYN-EP. Out-of-domain tests: Plannar wave for In silico 2D dataset, LV pacing for Ex vivo 2D dataset.

	Dataset	Method	Training	Validation	Out-of-
				data (||F d || 2 )	data (||F d || 2 )	domain
						test (||F d || 2 )
	In silico	2D	APHYN-EP ResNet	2.54 (0.47)	2.54 (0.472)	4.2 (0.4)
			APHYN-EP ConvNet	2.5 (0.81)	2.5 (0.8)	4.4 (1)
			Physical model	5.7	5.6	4.3
			Data-driven model	10	10	100
	Ex vivo	0D ROI A APHYN-EP ResNet	9.12 (0.16)	5.72 (0.08)	
			APHYN-EP MLP	9 (0.0785)	5.37 (0.077)	
			Physical model	14	10	
			Data-driven model	20	9.78	
		ROI B APHYN-EP ResNet	10 (0.08)	8 (0.07)	
			APHYN-EP MLP	8.79 (0.18)	7 (0.21)	
			Physical model	14.5	9.3	
			Data-driven model	7.78	6.79	
		2D RV	APHYN-EP ResNet	54.5 (92.6)	53.26 (94.2)	49.9 (134.6)
			APHYN-EP ConvNet	60.3 (105.6)	58.9 (108.1)	42 (128.6)
			Physical model	39.2	37.5	106.4
			Data-driven model	33.89	31.7	93
		RV	APHYN-EP ResNet	8.9 (110.85)	7.66 (109.9)	8.93 (135.8)
		150	APHYN-EP ConvNet	8.26 (101.16)	6.93 (107.5)	7.47 (124.4)
			Physical model	20	18.42	32.5
			Data-driven model	16.84	15.23	14.9
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