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Abstract
Over the past decades, research in cognitive and affective neuroscience has emphasized that emotion

is crucial for human intelligence and in fact inseparable from cognition. Concurrently, there has been
growing interest in simulating and modeling emotion-related processes in robots and artificial agents.
In this opinion paper, our goal is to provide a snapshot of the present landscape in emotion modeling
and to show how neuroscience can help advance the current state of the art. We start with an overview
of the existing literature on emotion modeling in three areas of research: affective computing, social
robotics, and neurorobotics. Briefly summarizing the current state of knowledge on natural emotion, we
then  highlight  how  existing  proposals  in  artificial  emotion  do  not  make  sufficient  contact  with
neuroscientific evidence. We conclude by providing a set of principles to help guide future research in
artificial emotion and intelligent robotics. Overall,  we argue that a stronger integration of emotion-
related processes in robot models is critical for the design of intelligent, human-like behavior. Such
integration  not only will  contribute to  the development  of autonomous social  machines  capable of
tackling real-world problems but would contribute to advancing understanding of natural emotion. 

Résumé 

Au cours des dernières décennies, la recherche en neurosciences cognitives et affectives a souligné
que  l'émotion  est  cruciale  pour  l'intelligence  humaine,  et  qu'elle  est  en  réalité  inséparable  de  la
cognition.  Parallèlement,  il  y  a  eu  un  intérêt  croissant  pour  la  simulation  et  la  modélisation  des
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processus liés aux émotions dans les robots et les agents artificiels. Dans cet article d'opinion, notre
objectif est de donner un aperçu du paysage actuel dans la modélisation des émotions et de montrer
comment les neurosciences peuvent contribuer à faire progresser l'état  de l’art  en la matière.  Nous
commençons  par  un  aperçu  de  la  littérature  existante  sur  la  modélisation  des  émotions  dans  trois
domaines de recherche : l'informatique affective, la robotique sociale et la neurorobotique. Après un
bref  résumé de l'état  actuel  des  connaissances  sur  les  émotions  naturelles,  nous montrons  que  les
propositions existantes en matière  d'émotions artificielles ne tiennent  pas suffisamment compte des
données neuroscientifiques. Nous concluons en proposant un ensemble de principes pour guider les
futures  recherches  sur  les  émotions  artificielles  et  la  robotique  intelligente.  Dans l'ensemble,  nous
soutenons qu'une meilleure intégration des processus liés aux émotions dans les modèles de robots est
essentielle pour la conception d'un comportement intelligent, semblable à celui de l'humain. Une telle
intégration contribuera non seulement au développement de machines sociales et autonomes capables
de s’attaquer  à  des  problèmes  du monde réel,  mais  aussi  à  faire  progresser  la  compréhension des
émotions naturelles.

1. INTRODUCTION

In recent  decades  there has  been increased interest  in  modeling  emotion or  affect1 in  robots  and
artificial agents (Marsella et al., 2010; Kowalczuk & Czubenko, 2016; Moerland et al., 2018; Ojha et
al.,2021;  and  Smith  & Carette,  2022).  This  may  include  the  recognition  of  human  emotions,  the
generation of emotion expressions, but also the study and modeling of the link between emotion and
certain  brain  processes  (e.g.  neuromodulation),  physiological  processes  (e.g.  hormones),
mental/cognitive processes (e.g. attention, decision, memory), or behavioral processes (e.g. navigation,
social  interaction).  Proposed attempts at tackling this challenge stem from diverse fields, including
social  robotics,  neurorobotics,  and  affective  computing,  which  differ  in  terms  of  their  theoretical
foundations, engineering approaches, and research goals (see Section 2). As such, existing approaches
are largely disconnected from one another. However, progress in the field requires identifying common
threads so that the strengths and weaknesses of different proposals and frameworks can be evaluated. A
key goal of the present opinion paper is to outline such a synthesis so as to identify fruitful research
directions in the development of emotion in intelligent machines.

But  why  should  machines  be  concerned  with  emotion  in  the  first  place?  In  a  nutshell,  because
flexible, intelligent behaviors in animals (including humans) critically rely on emotion. The definition
of “emotion” is broad and subject to debate. Here we focus on affective processes defined as the mental
and physiological processes which determine the valence of an object or event, its significance and/or

1 In the literature, the term “emotion” usually refers to a bounded episode in response to a specific event or object. The 
term “affect” generally encompasses what pertains to emotional responses but also feelings, mood, and so on. This 
distinction is particularly useful when specialists need to be precise about their object of study. Yet, “emotion” 
continues to be used to refer to emotional/affective mechanisms and phenomena in general terms, as is typically the 
case when researchers discuss the distinction or connection between “cognition” and “emotion”. Unless stated 
otherwise, in this paper we use “emotion” and “affect” interchangeably. Likewise, we use “emotion modeling” and 
“affective modeling” interchangeably to refer to attempts to model emotion- and affect-related processes in machines 
(see Hudlicka (2011) for a proposed classification of emotion modeling).
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relevance for one’s survival, well-being and goals, as well as the responses that ensue. These processes
are ubiquitous in our mental activities and contribute to how we perceive the world, how we learn and
remember past experiences, how we make decisions, how we adapt to new situations, and how we
communicate  with  each  other.  Thus,  the  focus  of  this  paper  is  about  whether  and how modeling
affective processes could enable the design of intelligent behavior in the sense of animal- or human-
like ability to interact with their physical and social environment. The question of whether machines
can experience “feelings” or show “empathy” is, however, beyond the scope of the paper. 

Considerable effort has been devoted to developing systems that detect emotions in human users and
display simulated emotional expressions in response. However, the brain and behavior literature shows
that  emotion  is  involved  in  nearly  all  mental  processes  underlying  intelligent  behavior,  including
perception,  attention,  decision-making,  and  action  (Pessoa,  2017;  Lindquist  &  Barrett,  2012).
Accordingly, we ask how to go beyond the recognition/production of emotional expressions so as to
allow robots to tackle real-world problems, such as navigating an unknown environment or handling an
uncontrolled social interaction. For machines to deal intelligently with such problems, much like in
humans, affective processing should be integrated across the computational processes that determine
their behavior. Our aim is to bridge the gap between computational models of intelligent behaviors and
the neuroscience of emotion, while providing a set of recommendations for future research. 
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2. VIRTUAL AND ROBOTIC MODELS OF EMOTION

The past  two decades  have  witnessed  the  development  of  a  variety  of  computational  and robotic
models of emotion, mostly stemming from three research fields:  affective computing, social robotics,
and neurorobotics. Affective computing involves “the design of systems that can recognize, interpret,
and  simulate  human  emotions  and  related  affective  phenomena”2.  Thus,  emotion  and  affective
processes are at the core of the field (it is worth noting that it also covers systems aimed at sensing and
analyzing human emotion, for instance, with no interest in modeling or simulating emotion). Second,
social  robotics  involves  “the  study  of  robots  that  are  able  to  interact  and  communicate  among
themselves, with humans, and with the environment, within the social and cultural structure attached to
its role”3. This notion encompasses modeling socio-affective capabilities but also other research topics
ranging  from  measuring  humans’  attitude  toward  robots  to  speech  generation,  for  instance.  Last,
neurorobotics  investigates  “embodied  systems  built  on  the  basis  of  brain-inspired  algorithms,
computational models of biological neural networks, or actual biological systems”4. Thus, it covers a
wide range of brain functions and mechanisms, many (if not all) of which involve affective processes
as we ague in Section 3 (though emotion is far from being considered at the core of neurorobotics).
Overall,  despite  considerable  overlap,  research  in  these  fields  typically  rely  on  different  theories,
methods, and approaches. 

To characterize the range of work related to emotion modeling in these fields (Figure 1), we propose
the following set of criteria: Is the model virtually or physically embodied? Is the focus on social or
non-social behavior? Is the architecture modular or integrative? Is the model defined by a theory of
emotion or in a more bottom-up approach? Is the end goal to develop a specific application and to
better  understand  natural  emotion?  In  some  cases,  these  criteria  clearly  distinguish  the  above-
mentioned fields.  For instance,  neurorobotics  and social  robotics  study systems that  are physically
embodied, which is not necessarily the case in affective computing. Also, social robotics focuses on
social behavior while the other two may also address non-social behavior. However, more generally,
the  distinction  between  fields  is  less  straightforward  and  one  has  to  consider  each  proposal
individually. Thus, to describe the current state of the art, we selected representative examples from the
literature which we sought to discuss through the prism of these criteria (see summary in Table 1).
Rather than a comprehensive review5 of computational and robotic models of emotion, this overview
aims  to  provide  a  snapshot  of  the  present  landscape  so  as  to  identify  common  research  threads,
different approaches and potential weaknesses.

2.1. Snapshot of the existing literature
Embodiment: virtual vs. physical 

The first, and most straightforward, criterion that can be used to distinguish existing emotion models
is embodiment.  Several computational models of emotion have been implemented on 3-D animated
agents (Gratch & Marsella, 2004; Courgeon et al., 2011). Such virtual avatars can exhibit rich non-
2 Taken from the website of the journal IEEE Transactions on Affective Computing: 

https://www.computer.org/csdl/journal/ta, last visited on September 7, 2023
3 Taken from the website of the International Journal of Social Robotics: https://www.springer.com/journal/12369, last 

visited on September 7, 2023
4 Taken from the website of the journal Frontiers in Neurorobotics: 

https://www.frontiersin.org/journals/neurorobotics/about, last visited on September 7, 2023
5 For further examples of computational models and architectures of emotion, we invite the reader to refer to Marsella 

and colleagues (2010), Kowalczuk and Czubenko (2016), Moerland and colleagues (2018), Ojha and colleagues (2021),
and Smith and Carette (2022). 
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verbal behaviors (gestures, postures, and facial expressions), in addition to verbal utterances to convey
socio-emotional cues to human users (Pelachaud, 2009; Courgeon et al., 2011; Sagar et al., 2016). To
increase the feeling of immersion and give a sense of situated interaction, they can be integrated in
virtual reality (Ochs et al., 2016). Nevertheless, these models suffer from limitations due to the absence
of physical interaction with the real world. Robots, on the other hand, are embodied and situated in the
real world. In  this category, there are expressive robots equipped with actuators controlling eye and
mouth movements with enough degrees of freedom to mimic stereotypical emotional facial expressions
(Breazeal, 2003; Karaouzene et al., 2013; Correira et al., 2016). Some platforms are based on more
anthropomorphic robot faces (e.g. Wu et al., 2009), while simpler ones display facial expressions on a
screen (e.g. Masuyama et al., 2018). Moreover, physically embodied yet non-expressive robots have
also  been used  to  model  aspects  of  affective  processes  related  to  behavior  regulation during  task
performance  (e.g.  Avila-Garcia  &  Cañamero  2004;  Krichmar,  2013;  Belkaid  et  al.,  2018).  While
benefiting from real physical embodiment, robotic models suffer from limited behavioral repertoires
due to the inherent difficulties of movement generation in mechanical systems, among other factors. 



This is the postprint version accepted for publication in Intellectica, 79 (2023).

Figure  1:  Emotion  modeling  approaches.  In  affective  computing,  virtual  agents  convey  socio-
emotional signals through facial expression and postures (top, left; Courgeon et al., 2011), such as in
professional training applications (top, right; Ochs et al., 2016). In social robotics, expressive robots,
which  may have  robotic  appearances  (middle,  left;  Masuyama et  al.,  2018)  or  anthropomorphic
characteristics  mimicking  human  features  such  as  a  face  with  eyes  and  mouth  (middle,  right;
Karaouzene et  al.,  2013)  are used for  situated interactions  with humans in  applications  such as
museum guides (middle, right; Karaouzene et al., 2013). In neurorobotics, affective processing helps
robots navigate their environments (bottom, left; Krichmar, 2013) and visually explore objects in the
visual scene (bottom, right;  Belkaid et al., 2017).  Pictures are adapted from Courgeon (2011; top
row), Masuyama (2016; middle, left), Karaouzene (2017; middle, right), Krichmar (2013; bottom,
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left) and Belkaid et al. (2018; bottom, right).

Behavior socialness:  social vs. non-social
Another distinction can be made in terms of the nature of the behavior exhibited by the machine.

Indeed, the majority of artificial emotion models focus on social behavior for the purpose of facilitating
human-machine  interactions:  selecting  verbal  utterances  for  customer  service  chatbots  (Yacoubi  &
Sabouret,  2018),  interacting with and learning from museum visitors (Karaouzene et  al.,  2013),  or
enriching  socio-affective  behaviors  in  companion  robots  (Correira  et  al.,  2016)  or  virtual  trainers
(Gratch & Marsella, 2004). On the other hand, we mentioned above that another family of models
examines  emotion  in  non-social  behaviors,  including  foraging  (Avila-Garcia  &  Cañamero,  2004,
Krichmar, 2013) and visual search (Belkaid et al., 2017). Such models emphasize the role of emotion in
organizing and motivating behavior. Notably, few models address both social and non-social behaviors
simultaneously (for an exception related to action selection balancing the need for food and the need
for social interaction, see Khan & Cañamero, 2018).

Architecture design:  modular vs. integrative
In  cognitive  science,  modularity refers  to  the  notion  that  the  mind  is  composed  of  independent

processing modules – typical  modules would be attention,  memory, decision,  emotion6,  and so on.
Similarly, modularity is an engineering design principle and an important aspect to take into account in
system’s architecture. In the context of emotion modeling, a modular design means that emotion is
simply added to the overall system architecture as a separate module which communicates with other
components; for example, to activate certain expressive behaviors (e.g. facial expression, posture) in an
action module (Breazeal, 2003; Courgeon et al., 2011; Correira et al., 2016). In contrast, integrative
approaches highlight the interdependence between emotion and cognition by distributing emotional
processing across the system (Krichmar, 2013; Belkaid et al., 2018). 

Theoretical approach:  top-down vs. bottom-up
Theories of emotion in psychology generally pertain to one of the following three classes (Coppin &

Sander, 2012): theories of basic emotions, appraisal theories of emotion, and constructivist emotion
theories  (including  dimensional  theories).  Some  computational  models  of  emotion  take  direct
inspiration from emotion theories developed by psychologists (Smith & Carette, 2022), and explicitly
instantiate theoretical principles in what can be referred to as a  top-down fashion. For example, the
EMA model  (Gratch  & Marsella,  2004)  implements  the  appraisal  and coping theory  proposed by
Lazarus (1991), and TEATIME (Yacoubi & Sabouret, 2018) implements the action-tendency theory
proposed by Frijda (1986). In contrast,  affective modeling can be approached in a more  bottom-up
fashion by focusing on the implementation of specific brain mechanisms related to natural emotion. For
example, deriving robot affect (e.g. joy, frustration, boredom) from internal signals such as prediction
errors, novelty, and progress in task performance (Belkaid et al., 2017; Broekens & Chetouani, 2019).
6 As will be highlighted later on, a growing literature in neuroscience provides evidence for the integration of emotion 

and cognition in the brain (Phelps and LeDoux, 2005; Pessoa, 2008; 2013; Grossberg, 2018).
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Importantly,  such bottom-up approaches  can complement  and inform existing  emotion  theories  by
providing concrete implementations of processes that are otherwise outlined descriptively.

Research goal:  application-oriented vs. modeling-oriented
One last aspect on which emotion models can greatly differ is the research goal. Indeed, a significant

portion of the literature on emotion modeling has aimed to enrich human-machine interactions across
multiple applications, such as elderly care (Correira et al., 2016) or training in the context of high-
stakes decision-making (Gratch & Marsella, 2004). A complementary goal is to model mechanisms of
natural emotion to advance the understanding of the neural systems involved (Balkenius et al., 2009;
Krichmar, 2013; Belkaid et al., 2018; Khan & Cañamero, 2018; Lowe et al., 2019). In this context, it is
worth  noting  that  many  neuroscience-informed  models  are  implemented  in  simplified  simulated
environments, and are not embodied in virtual or robotic agents.

Embodiment Behavior Design Approach Goal

(Avila-Garcia & 
Cañamero, 2004)

Robotic Non-social Integrative Bottom-up Modeling

(Balkenius et al., 
2009)

Robotic Non-social Integrative Bottom-up Modeling

(Belkaid et al., 
2017)

Robotic Non-social Integrative Bottom-up Modeling

(Breazeal, 
2003)

Robotic Social Modular Top-down Application

(Broekens & 
Chetouani, 2019)

Undetermined Undetermined Undetermined Bottom-up Application

(Correira et al., 
2016)

Robotic Social Modular Top-down Application

(Courgeon et al., 
2011)

Virtual Social Undetermined Top-down Application

(Gratch & 
Marsella, 2004)

Virtual Social Modular Top-down Application

(Karaouzene et 
al., 2013)

Robotic Social Integrative Bottom-up Application

(Khan & 
Cañamero, 2018)

Robotic Both Integrative Bottom-up Modeling

(Krichmar, 
2013)

Robotic Non-social Integrative Bottom-up Modeling

Lowe et al., 
2019)

Undetermined Undetermined Undetermined Bottom-up Modeling
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(Masuyama et al.,
2018)

Robotic Social Modular Top-down Application

(Ochs et al., 
2016)

Virtual Social Undetermined Undetermined Application

(Pelachaud, 
2009)

Virtual Social Undetermined Undetermined Application

(Sagar et al., 
2016)

Virtual Social Integrative Bottom-up Application

(Yacoubi & 
Sabouret, 2018)

Undetermined Social Modular Top-down Application

Table 1: Summary of how representative examples of affective modeling from the areas of affective
computing, social robotics, and neurorobotics can tentatively be characterized in terms of the five
proposed  criteria:  embodiment  (virtual  vs.  physical),  behavior  socialness  (social  vs.  non-social),
architecture design (modular vs. integrative),  theoretical  approach (top-down vs. bottom-up), and
research goal (application-oriented vs. modeling-oriented).

2.2. Outlook

In  our  view,  despite  advances,  the  literature  on  affective  modeling  suffers  from  a  number  of
shortcomings. In particular, existing models are often domain specific. For example, models of how
emotion can improve communication in social contexts do not address how affective processes can
guide environment exploration or behavior regulation when handling conflicting goals, and vice versa.
Thus, adapting a model to a new context of application effectively amounts to designing a new model.
More  importantly,  emotion-based  architectures  are  seldom  designed  as  more  general-purpose
architectures.  Overall,  the field  lacks  frameworks for  integrating  affective  processing in  intelligent
systems that can scale up beyond controlled toy scenarios. 

To develop such frameworks, we argue that stronger connections with the neuroscience of emotion is
needed. While it is in theory possible to engineer intelligent machines without consideration of living
organisms,  we  believe  it  is  enormously  beneficial  to  take  cues  from  how  biology  gives  rise  to
intelligent behaviors, as demonstrated by proposals inspired by biological cognition (e.g. Mnih et al,
2015; Cully et al., 2015; Moulin-Frier et al., 2017; Doncieux et al., 2018).  As a model of autonomous
learning  and  decision-making,  reinforcement  learning7 is  a  good  example  of  fruitful  interaction
between  neuroscience  and  artificial  intelligence  (Neftci  &  Averbeck,  2019).  Interestingly,

7 The core idea in reinforcement learning is that autonomous behavior is driven by the process of learning and selecting 
actions that maximize the agent’s rewards. The foundations of these models come from research in biology on 
associative learning, while more sophisticated models are constantly being developed in the field of artificial 
intelligence and machine learning.
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reinforcement learning has been proposed as a possible framework to bridge the machine learning and
emotion  modeling  communities  (Moerland  et  al.,  2018).  Indeed,  reinforcement  learning  models
acknowledge  the  central  role  of  affective  processing  by  postulating  that  reward-seeking  drives
autonomous behavior. However, this framework primarily addresses processes related to specific forms
of  learning  and decision-making.  Notably,  it  does  not  encompass  processes  such  as  attention  and
executive control that we believe have strong potential to benefit from affective processing (see Section
3.1). More generally, how affective processes are modeled in robots and artificial agents often contrasts
sharply with current knowledge about biological emotion. In the following, we summarize key findings
of  the  neuroscientific  literature  that  highlight  the  gap  between  natural  and  artificial  emotion.  In
particular, we stress the integration between emotion and perception/cognition in humans and animals
at multiple levels: brain, body, and behavior.

3. NATURAL EMOTION: BRAIN, BODY, AND BEHAVIOR

3.1. Emotion and the brain
Historically,  the brain basis of emotion was conceptualized in an area-centric manner.  For a long

period, the hypothalamus was believed to be the emotion center, shifting to the amygdala in the 1980s.
In the last decades, not only has the number of regions of the “emotional brain” increased steadily, but
how they function via complex circuits is starting to be unraveled. These regions include the medial
prefrontal  cortex,  the orbitofrontal  cortex,  the  cortex  of  the  insula,  the  thalamus,  and many more.
Critically,  rather  than  being  functionally  localized  in  specific  areas,  emotion-related  processes  are
implemented by distributed neural circuits that rely on multiple structures at the same time (Pessoa,
2017; Tovote et al. 2015; Lindquist and Barrett, 2012).

More broadly, the classical separation between emotion and cognition has been gradually eroded.
Behind the blurring of their boundaries is the notion that mental processes are implemented via large-
scale, distributed networks (Sporns, 2010). The networks that have been uncovered in the context of
cognitive processes share many nodes (i.e. regions) with those that are important for emotion (Pessoa,
2008;  Najafi  et  al.,  2016).  Thus,  neural  computations  underlying  behavior  are  implemented  via
overlapping networks. In this manner, specific brain areas affiliate, or group with, multiple large-scale
networks depending on behavioral demands.

Even more generally, the separation between mental domains such as perception, cognition, action,
motivation,  and emotion,  while  possibly  suitable  for  a  textbook  organization,  does  not  reflect  the
organization  of  the  brain.  To understand  how the  brain  generates  complex,  flexible,  and adaptive
behaviors it is necessary to understand how brain circuits disrespect standard boundaries. In a very real
sense, the domains cannot be separated. 

3.2. Emotion and the body
Intelligence is not a mere collection of computations  occurring in the central  nervous system but

result from the coupling of the brain, the body, and the environment (Varela et al., 1992; O’Regan &
Noë, 2001). From this perspective of embodied cognition, emotion is rooted in homeostatic processes
that guarantee bodily integrity, and the associated construction of bodily representations capturing the
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state of body at any instant.  These key functions engage both subcortical  and cortical  areas.  Thus,
neuroscientifically  grounded theories  of  emotion  attribute  a  central  role  to  the  body in emotional-
related  processes.  For  example,  in  the  core  affect  theory,  bodily  states  are  central  to  emotional
experience (Russell, 2003). In the somatic marker theory, associations between particular situations and
patterns  of elicited  physiological  and emotional  reactions  are  established,  and help shape behavior
(Damasio et al., 1996).

3.3. Emotion and behavior
Emotion  expressions,  including  those  such  as  facial  expressions,  gestures,  and  postures,  are  an

important feature of the relationship between emotion and the body (de Gelder et al., 2015; Cowen et
al., 2019). The variety and complexity of processes involved in emotion expression and recognition
underlines their importance in human social behaviors. 

Emotion-behavior coupling is not limited to communicative functions but is also strongly related to
motivation and action generation (Frijda 1986; Blakemore & Vuilleumier, 2017). In living organisms,
motivated  behaviors  are  represented  in  terms  of  approach  and  avoidance.  Even  ostensibly  simple
behaviors  like  escape  leverage  complex  cognitive-emotional  processes  (Evans  et  al.,  2019).  More
generally, survival – and autonomous function – depends on the ability to generate flexible behaviors
and to adapt to dynamical environments. In sum, how an organism acts in its environment is a key
problem that  depends on emotion-related  processes,  which  therefore  is  not  confined to  generating
expressive behaviors for communication.

4. TOWARD BETTER MODELS OF EMOTION

Based on the preceding discussion, we propose four principles to motivate guidelines for affective
modeling  in  machines  capable  of  displaying  human-like  intelligent  behaviors.  We  use  the  term
machines as these ideas may apply for systems ranging from simulated agents to virtual  agents to
robots. Yet, it is worth noting that while simulated and virtual agents can be valuable tools in many
instances of emotion modeling, most of the examples and illustrations that follow involve robots. As
pointed out in the previous section, interactions with the body and with the environment are key aspects
of natural emotion. Therefore, because of their physical embodiment and their ability to interact with
the real world, we believe that robots offer more powerful architectures for emotion modeling (see
Sections 4.2 and 4.3).

4.1. Account for emotion-cognition integration
The integration of emotion and cognition in the brain can be used to inform how affective processing

interacts with other computational processes, and more generally the notion of architecture modularity.
Consider a traditional architecture with standard components such as perception and decision-making
(Figure 2A). Recognizing the utility of affective information, models have included an emotion-related
component that interfaces with some of its components, for example,  allowing motivational factors
(“fatigue”  and “cold”)  to  influence  action  selection  (Avila-Garcia  & Cañamero  2004).  Employing
affective  information  in  a  subset  of  processes  is  viable  in  single-purpose  systems  that  operate  in
specific, controlled contexts. However, we suggest that more general-purpose architectures should be
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designed such that emotion-related mechanisms interface with all of the remaining processes. This is
because in unconstrained, complex environments systems with  limited computational resources need
effective ways to allocate them and to organize their behavior intelligently. This is where emotion-
related processing is important, in particular the concept of value, relevance, and/or significance.

Figure 2B illustrates  how all  processes that are traditionally  separated in distinct  modules  should
actually be more connected and, more importantly, involve emotional processing. But how can this
principle be translated into concrete implementation? Consider the example of attention, a cognitive
operation central to the notion of computational resource allocation. A fruitful way to conceptualize
attention is in terms of  priority maps (Itti et al., 1998). In particular, the priority of a to-be-attended
visual item depends on a series of factors, including stimulus salience and top-down control, which can
be respectively labeled as perceptual and cognitive factors. Critically, priority also depends on affective
and motivational significance, including reward (Anderson and Phelps, 2001; Anderson et al., 2011).
For example, an item paired with aversive consequences in the past will acquire negative significance,
and gain prioritized processing so that it  can be adequately handled. Likewise, an item paired with
reward in the past will acquire motivational value. Combined, the determination of the overall object
relevance integrates multiple factors, typically via competition/cooperation mechanisms (Figure 2C).
For example, objects with both high perceptual saliency and high value (e.g paired with reward in the
past) can outcompete objects that are goal-relevant. The ability to direct attention according to multiple
factors, including affective and motivational ones, is of utmost importance for intelligent systems with
finite resources dealing with real-world situations. Note that the proposed approach is different from
those  using  neuromodulation  to  implement  attention-related  processes  (e.g.  Krichmar,  2013),  as
neuromodulation typically evolves across slower time scales than the “on-the-fly” integration of factors
in Figure 2C. The two approaches are complementary.
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Figure  2:  Emotion  integration  in  robot  cognitive  architectures.  A) Traditional  cognitive
architecture  in  which  emotion  interacts  with  some  of  the  other  components.  In  this  type  of
architecture,  emotion  is  an  added  module  that  can  be  disconnected  from  others.  B) Brain-like
architecture  in  which  the  separation  between  mental  processes  is  blurred.  More importantly,  all
processes involve a combination of emotional and non-emotional computations. This view emphasizes
that affective processing is an integral element of the system.  C) The process of attention combines
multiple  priority maps to determine which elements in the environment the robot should attend to.
Priority maps are based on multiple factors: perceptual (e.g. based on saliency), cognitive (e.g. based
on current plan), but also emotional/motivational (e.g. based on value and relevance). D) The process
of Executive control is based on a set of operations such as inhibiting, updating and shifting that take
into account affective factors to support successful autonomous adaptive behaviors. At the same time,
the very same functions help determine factors such as value, relevance, and significance.

As  another  example,  consider  executive  control (also  called  “cognitive  control”),  which  includes
operations  involved  in  maintaining  and  updating  information,  monitoring  conflict  and/or  errors,
resisting distracting information, inhibiting prepotent responses, and shifting goals. A useful way to
conceptualize executive control is in terms of a set of processes, including inhibition, updating, and
shifting (Miyake et al., 2000). Insofar as value, relevance, and/or significance need to be taken into
account for proper executive control, emotion/motivation participate in these processes. In other words,
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objects  or  contexts  that  influence  cognitive  control  processes  such  that  rewards  (respectively,
punishments) ensue, become positively (respectively, negatively) relevant to guide or direct executive
control.  Why is  the  architecture  in  Figure  2A not  sufficient?  After  all,  information  about  what  is
emotionally/motivationally relevant will be conveyed to the particular architecture components. The
central  reason is  that  influences  must  be  bidirectional  (Figure  2D).  For  example,  dealing  with  an
emotional  stimulus  or  situation  requires  multiple  adjustments,  including  “updating”  to  refresh  the
contents of working memory, “shifting” to switch the current task subgoal, or “inhibiting” to cancel
previously  planned  actions.  In  this  manner,  resources  are  coordinated  in  the  service  of  proper
(“intelligent”) function.

Moving from high-level descriptions such as those exposed here to an implementable model that is
relevant at the psychological, neural, and behavioral levels is quite challenging. Consider a robot whose
task is to prepare a dish from a complex, multi-step recipe. In addition to perception, memory, decision,
and motor action, such a task may involve a combination of affective, attentional, and control processes
as described above. Indeed, performing this task requires attending and manipulating specific objects
according to the subgoals of the recipe steps (e.g., looking for a knife to cut some vegetable while
periodically attending to the ingredients slowly simmering in the meantime). Previous work from one
of the authors (Belkaid et al., 2017) provides an example of a cognitive-emotional robot architecture in
which affective signals are used to determine the relevance of the objects present in the visual scene,
allowing the inhibition of an irrelevant focus area when visual searching for a target object. The model
is based on a dynamic, structured neural network that makes it possible to correlate (in future work)
some of the implemented computational processes with the activity of certain brain circuits. Yet, many
of the  mechanisms listed  above are  missing  in  the  model;  for  instance,  accounting  for  how some
objects  acquire  a  stronger  value  or  emotional  significance  (e.g.,  preferred  ingredient  attended  and
selected before others), how some behavioral responses are inhibited (e.g., getting too close to the hot
pot), or how to shift from a subgoal to another (e.g., if an interruption is needed to give the simmering
stew a quick stir). 

4.2. Subscribe to principles of embodiment
To stress the importance of embodiment for artificial  intelligence,  roboticists often use arguments

related to  morphology and physical  interaction with the environment  (Brooks,  1991;  Pfeifer et  al.,
2007). Consider a system that must learn the concept of a “chair”. Purely vision-based approaches (e.g.
using deep neural networks) would need a massive amount of data and would only be able to recognize
chairs by shape. In contrast,  a humanoid robot able to sit on a flat surface could learn that sitting
minimizes  energy  loss  and  thus  start  to  learn  the  functional  aspects  of  chairs.  In  other  words,
disembodied machines cannot make sense of the world the same way as humans do. In the context of
emotion,  we  believe  that  the  same  reasoning  applies.  For  instance,  human-like  facial  expression
recognition should be embedded in a system that can produce expressive behavior and associate it with
its own internal states in order to process what is being expressed, by the system itself or others (see
also  Sagar et al., 2016, on the importance of modeling low-level brain-body mechanisms to produce
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realistic  face animations).  Otherwise,  it  will  be little  more than a detection  device of stereotypical
patterns labeled as ‘happy’ or ‘afraid’, and thereby unlikely to reach human-level performance. 

When addressing emotion embodiment in artificial systems, there has been a focus on how emotion is
expressed through the  body (e.g.  emotion  recognition  in  computer  vision,  face  actuators  in  social
robotics, synthesis of social cues in computer animation). But, for models of emotion and cognition to
be more truly embodied, the behavior they implement must be driven by signals related to potential
bodily harm, safety, satiation, energy depletion, and so on (Figure 3A; see also Froese & Ziemke, 2009,
and  Man  &  Damasio,  2019).  In  particular,  the  successful  execution  of  higher-order  goals  partly
depends on the association between a set of actions with their affective and motivational consequences
(positive or negative). Therefore, building a robot capable of autonomously and intelligently exploring
an unknown environment requires mechanisms to monitor energy level, avoid physical harm, develop a
preference for safe locations, attend to objects which are relevant to goals/plans, and switch between
goals and behaviors depending on current own and external states (Figure 3B), all of which rely on
embodied emotional-cognitive processes.

Figure  3: Embodiment and emotion for intelligent robots.  A) As embodied intelligent machines,
robots are able to acquire information about, and to act upon, the world through a variety of sensors
and actuators.  The  notion  of  embodiment  also  includes  the  processing  and regulation  of  bodily
signals  related  to  bodily  harm,  safety,  and energy  depletion.  B) Effective  integration  of  emotion
allows robots to generate and coordinate intelligent behaviors in complex situations involving social
and non-social interactions. The illustration of iCub robot in A) is reproduced with permission from
Antoni Gracia.

4.3. Support both social and non-social behaviors and interactions 
Real-world  situations  consist  of  a  combination  of  social  and  non-social  interactions  with  the

environment.  In order  to  properly operate  in such situations,  machines  need architectures  that  can
support both types of interactions. In the context of attentional processes, social (e.g. other agents) and
non-social (e.g. objects) stimuli can have different types of relevance to the system and should capture
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attention  accordingly.  In  addition,  goals  can  be  social  (e.g.  helping  someone)  or  non-social  (e.g.
reaching a location, grasping an object; see Figure 3B). Accordingly, architectures should be able to
direct processing and allocate resources in a manner that takes into account both social and non-social
priorities. From an engineering perspective, autonomous cars could be safer if they had the capacity to
interpret social cues (e.g. pedestrian patterns and interactions); industrial robots could be more efficient
if they were able to manage both independent and collaborative tasks; and companion robots could be
more  engaging  and  fun  if  they  could  develop  a  “personality”  from  both  social  and  non-social
experiences.

Developing human-like models of emotion for robots has the potential to enable intelligent behaviors
that are relevant for both social and non-social contexts. In Section 3.1, we highlighted the importance
of integrating emotional factors with attentional processes, which is relevant in non-social situations so
that machines can autonomously allocate computational resources to the most important stimuli. But
the other side of visual attention is gaze, which is a powerful social cue. Translating a robot’s attention
into gaze-orienting behaviors provides an intuitive way for signaling to-be-attended objects, preferred
objects, or to-be-avoided objects (Belkaid et al., 2017; illustrated in Fig 1) described an approach for
top-down  modulation  of  a  robot’s  attention  based  on  emotional  signals,  such  as  frustration  and
boredom, derived from the agent’s own evaluation of ongoing performance. Similarly, Broekens &
Chetouani (2019) described a model in which emotional expressions rely on reinforcement learning
variables  (e.g.  prediction  errors)  to  define  affective  states  such as  joy  and distress.  Thus,  overall,
models  of  emotion  can  jointly  contribute  to  social  and  non-social  interactions.  Returning  to  the
example  of  collaborative  robots,  while  some  aspects  of  emotion  may  not  be  relevant  for  these
applications,  this  approach  would  allow  the  generation  of  socially  relevant  behaviors  which  are
grounded  in  the  very  same  processes  that  enable  them  to  function  autonomously  in  non-social
situations; as opposed to being triggered by ad-hoc modules in a pre-scripted fashion.

4.4. Inform research on natural emotion and cognition
Computational and robotic models have the potential to play increasingly important roles in the study

of the neural basis of emotion (Arbib & Fellous, 2004; Cañamero, 2019). To do so, machines should be
conceived as models which can advance our understanding of human intelligence through the process
of recreating it (for example, see Lewis et al., 2019). Can we build machines able to process different
types of stimuli  and events,  to safely explore an unknown environment,  to  self-regulate  and adapt
behavior  in  the  face  of  diverse contexts,  to  develop long-term knowledge,  preferences,  goals,  and
relationships? In doing so, designing intelligent machines can benefit not only  from but also  to the
study of natural intelligence.

Computational models can inform research on human emotion and cognition at four levels: 1) testing
existing  theories,  2)  proposing  new  theories,  3)  proposing  new  experiments,  and  4)  creating
opportunities for new experiments (Figure 4). For instance, does the current understanding of how we
process social  and non-social  stimuli  (e.g.  threatening face vs.  snake) suffice to implement  similar
mechanisms in a robot? Assessment  of the current  state  of knowledge will  reveal  ambiguities  and
important gaps in the literature (level 1). For example, how is processing prioritized in the presence of



This is the postprint version accepted for publication in Intellectica, 79 (2023).

diverse types  of  distractors  (social,  non-social,  positive,  negative)?  The process  of  testing  theories
should  be  hypothesis-driven  and  based  on  scientific  knowledge,  rather  than  solution-oriented  (i.e.
engineering  a  functional  system)  to  contribute  to  the  development  of  new theories  (level  2).  The
process can then suggest new experimental  designs to test  the validity  of the proposed hypotheses
(level 3). Finally, modeling intelligent behavior in machines has the potential  to lead to innovative
experimental research (level 4). For instance, there is a growing body of research investigating aspects
of social cognition using robot-based paradigms (Henschel et al., 2020; Belkaid et al., 2021). Indeed,
robots offer a unique opportunity to create real-time, yet controlled, interactions. 

Figure 4: Schematic of how emotion modeling in robots can inform neuroscientific research. Levels
at  which  modeling  can  help  advance  neuroscientific  knowledge:  1)  testing  existing  theories,  2)
proposing  new  theories,  3)  proposing  new  experiments,  and  4)  creating  opportunities  for  new
experiments. Embracing an interdisciplinary approach will be beneficial to both the robotics and the
neuroscience communities.
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5. DISCUSSION

Recent advances in neuroscience emphasize the importance of emotion in human intelligence and
stress the interdependent relationship between brain, body, and  environment. Modeling and integrating
emotion in “cognitive architectures” thus has the potential to help build autonomous social robots able
to behave intelligently in diverse and challenging real-world situations. Indeed, several research groups
have advocated  for  interdisciplinary  approaches  to  emotion  modeling  in  machines  (e.g.  Sloman &
Croucher,  1981;  Arbib & Fellous,  2004;  Cañamero & Gaussier,  2005;  Cañamero,  2019).  Previous
research in social robotics, neurorobotics, and affective computing have made considerable progress in
this regard. Yet, modeling human-like emotion in robots remains a challenge.

In this paper, we provided an overview of the state of the art in affective modeling. Rather than a
comprehensive literature review, we sought to summarize the research landscape from different areas
by selecting representative examples. This allowed us to characterize the affective modeling literature
with  respect  to  five  criteria:  embodiment,  behavior,  architecture  design,  theoretical  approach,  and
research goal. By linking this literature to current knowledge about human emotion, we identified a set
of  potential  issues  that  can  be  summarized  as  follows.  On  the  one  hand,  emotion-based  robotic
architectures are often domain-specific, where emotion-related mechanisms are restricted to specific
processes  or  modules.  As  a  result,  these  models  fail  to  capture  fundamental  aspects  of  affective
processes and, importantly, to account for their multiple roles across diverse functions. On the other
hand, neuroscience-informed models of emotion that describe affective processes more accurately are
generally tested via simulations using rather simplified inputs; they have not been implemented on
embodied machines that interact with the physical and social worlds. We hope our proposal contributes
to the development of research guidelines for designing autonomous social machines in a manner that
is centered on the integration between emotion and cognition.

A questions this paper might raise is ‘how much human-like emotion do we want machines to have?’.
Our  goal  is  to  encourage  a  focus  on  “affective  processing”  that  is  separate  from  the  subjective
experience of emotion per se. We propose that key features of affective processes are constitutive and
inseparable from human-like intelligence, and that modeling those features is essential if we want to
build autonomous social robots able to tackle real-world problems. Moreover, we argue that the process
of  seeking  to  model  animal-  and  human-like  emotion  in  machines  following  an  interdisciplinary
approach has the potential  to unravel fundamental computational principles that may be difficult  to
capture through current  neuroscientific methods. Further understanding those principles would help
answer the question of whether their implementation in machines is ultimately desirable for human
society.
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