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Abstract

This paper develops a coupled model for day-ahead electricity prices and average daily
temperature which allows to model quanto weather and energy derivatives. These products
have gained on popularity as they enable to hedge against both volumetric and price risks.
Electricity day-ahead prices and average daily temperatures are modelled through non homo-
geneous Ornstein-Uhlenbeck processes driven by a Brownian motion and a Normal Inverse
Gaussian Lévy process, which allows to include dependence between them. A Conditional
Least Square method is developed to estimate the different parameters of the model and used
on real data. Then, explicit and semi-explicit formulas are obtained for derivatives including
quanto options and compared with Monte Carlo simulations. Last, we develop explicit for-
mulas to hedge statically single and double sided quanto options by a portfolio of electricity
options and temperature options (CDD or HDD).

Keywords: Energy quanto options, Weather derivatives, Joint Temperature-Electricity model,
Risk hedging

Introduction

The increasing impact of climate change on businesses has led to a growing demand for risk
transfer instruments to hedge against its consequences. The energy sector is particularly affected
by such weather variability. On the one hand, weather variability affects energy production.
The availability of wind and solar radiation impacts the production of renewable electricity [9].
Similarly, experienced and predicted temperatures influence demand, as cold snaps increase heating
demand in winter and heat waves increase cooling demand in summer [14]. This exposure to
weather variability is often referred to as volumetric risk [43]. On the other hand, weather forecasts
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can have a direct impact on energy prices as actors anticipate demand increases and act in advance.
This less frequently discussed risk is referred to as price risk [19].

Weather derivatives emerged in the 1990s as a response to this need for risk transfer. These
financial instruments are based on an underlying weather index and trigger a claim depending on
the value of the index at maturity, similar to other financial market derivatives. These instruments
experienced significant success in the early 2000s, reaching $45 billion in notional volume traded
in the market in 2006 according to the World Risk Management Association [3]. Mainly domi-
nated by temperature-based derivatives, up to 95% of the market, the weather market remained
illiquid with small volumes traded in the standardized open market and most of the volume traded
OTC [52]. It also led to extensive research into the modeling of weather derivatives and best
pricing methodologies [34] [16] [10] [1] [22] [21] [20].

By 2008, the weather market experienced a significant slowdown, with trading volumes declining
to $11.8 billion in 2011 [4]. This corresponded to a general slowdown of financial markets, but
also, according to Pérez-González and Yun [46], to the birth of new hybrid derivatives that could
combine both volumetric and price risk. These new products, also called quantos, were indexed
to two underlying parameters, one proxying the volumetric risk, typically a weather parameter,
and one proxying the price risk, typically the spot price of electricity, gas or oil. These double-
indexed products already existed in the market for other financial assets (foreign exchange, bonds,
commodities) [6] [33]. They are technically challenging because they require a convincing model
of the joint distribution of the underlyings. Our analysis will focus on finding a model to price
temperature and spot electricity price quantos.

Unfortunately, the literature exploring weather quantos is thin. Benth and al. [13] use a Heath-
Jarrow-Morton approach to price hybrid derivatives combining New York Mercantile Exchange-
traded natural gas futures and Chicago Mercantile Exchange-traded heating degree day futures for
New York. Matsumoto and Yamada study the optimal design of mixed weather derivatives on wind
indices and electricity prices [55]. Benth and Ibrahim [9] develop continuous-time models com-
bining spot prices and logarithmic photovoltaic power production. For quantos combining energy
prices and temperature, we should mention Caporin and al [23], who develop a two-dimensional
daily ARFIMA-FIGARCH model for energy prices and temperature. They consider both an ac-
tuarial and a financial approach and perform simulation-based pricing that leads to important
price differences [23]. Cucu and al. [26] develop a combined natural gas spot price and tempera-
ture model. They address calibration and pricing challenges for temperature-gas swaps. Finally,
Benth and al. [7] consider bivariate Markov-modulated additive processes with independent non-
stationary increments to model quantos combining temperature and energy and electricity and gas
prices. Given a known analytical joint characteristic function for the logarithmic futures prices,
they derive quanto pricing formulas for the Fast Fourier Transform (FFT) technique.

We begin our analysis by exploring various marginal models for spot energy price and daily
temperature. In particular, we dive deep into a large literature on energy and commodity model-
ing [28] [54]. First, we examine mean-reverting diffusion models. Pioneering models by Gibson and
Schwartz [31], Schwartz [49], and Lucia and Schwartz [41] propose two- or three-factors Gaussian
diffusion dynamics to model commodity assets. However, the presence of non-Gaussian behaviors,
including spikes, jumps, and heavy tails, has led to a refinement of these initial models. One
proposal is to extend mean-reverting diffusion processes to Levy noises. Thus, compound Poisson
processes have been studied by Geman and Roncoroni [30], Cartea and Figueroa [25], and Meyer-
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Brandis and Tankov [42]. A second widespread proposal is to move to multi-factor models with
Brownian [41] [7] or Levy increments [11] [17]. Finally, Benth and Benth explore the relevance
of mean-reverting diffusion processes with Normal Inverse Gaussian (NIG) increments [15]. We
compare these models and consider different estimation and process characterization challenges
for day-ahead auction market clearing prices [53] for the French and Northern Italian electricity
markets. Finally, we propose to model the daily day-ahead log spot prices with mean-reverting
processes and NIG increments.

For daily temperature models, our analysis is less extensive as the reader can refer to Alfonsi and
Vadillo [2] for a more detailed presentation of daily temperature modeling applied to temperature
derivatives pricing. We mainly suggest using a simple mean-reverting Gaussian model as in Benth
and Benth [10] to model the daily average temperature for Charles de Gaulle and Milano Linate
weather station data.

Third, we address the challenge of the joint temperature and log spot energy price distribution
by proposing a coupled model on the dynamics. In particular, we introduce the Brownian noise
of the temperature dynamics into the energy process. This allows the integration of weather
information available at the time of price formation, as suggested by Benth and Meyer-Brandis [14],
while maintaining flexibility and tractability in both processes. We estimate the marginals and
dependence parameters of the joint model using Condition Least Square estimation applied to the
characteristic function. χ2 tests comparing the simulated and observed joint distributions confirm
the goodness of fit of the combined model for both French and Northern Italian datasets.

Next, we introduce the pricing of quanto derivatives. Contrary to Benth and al [7], we do not
consider quanto and temperature derivatives market as arbitrage-free complete markets. As noted
above, most exchanges are OTC and CME standardized weather derivatives lack daily trading
volume [52]. Temperature and energy quantos do not exist in any open market. Therefore, risk-
neutral pricing is arguable and we stick to analyse the risk under the historical probability. Given
our combined model, we derive explicit and semi-explicit formulas for the average payoff of futures,
swaps and single sided options, here called E-options, and double-sided options on temperature
indices (HDD and CDD) and spot electricity price. These formulas are compared with payoff
distributions derived from Monte Carlo simulations. Finally, we discuss the static hedging of E-
HDD and double sided quanto options in an self-financing portfolio framework, where the option
is hedged by HDD and energy spot derivatives. We show that by using our model we can hedge
most of the risk of quanto options and reduce their variances.

Hence the contributions of this paper are multiple. First, it develops a convincing joint model
for spot energy prices and daily average temperatures. Second, it proposes a method to estimate
all the parameters of the model and assess the goodness of fit. Third, it develops pricing formulas
under historical probability for futures, swaps, single and double-sided quanto options. Finally, it
shows the hedging capability of single and double-sided quanto options.

The paper is organized as follows. Section 1 presents the models for the univariate and combined
dynamics of the logarithmic day-ahead spot price and the average daily temperature. Section 2
explores different dynamics for the log day-ahead energy spot price and justifies the modeling
choice. Section 3 discusses the estimation challenges. Section 4 introduces the combined model
and confirms its goodness of fit. Section 5 addresses the risk valuation of quantos that depend on
both energy and temperature and develops a framework for static hedging of E-HDDs and quanto
options.
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1 Model and data description

In this section we introduce our combined models to describe the dynamics of daily day-ahead
energy log spot price (Xt)t≥0 and the temperature (Tt)t≥0. In the following, we will also note
St = eXt , t ≥ 0, the daily day-ahead energy spot price. We will consider time-continuous models
with the time unit of one day (∆ = 1), which follows literature practices as noted by Deschatre [28].
Thus, Ti∆ will model the average daily temperature of the i-th day, usually defined in financial
contracts as the average between the hourly minimum and maximum temperature.

We will consider the below Model (ETM) as the combined model for daily day-ahead energy
log spot price and average daily temperature.{

d(Xt − µX(t)) = −κX(Xt − µX(t)) + λσTdW
T
t + dLX

t

d(Tt − µT (t)) = −κT (Tt − µT (t)) + σTdW
T
t

(ETM)

When λ = 0, the dynamics of X and T are independent. The elements characterizing the dynamics
of the log-price X are:

• The deterministic function µX : R+ → R represents the trend and seasonality component.
We assume that

µX(t) = βX
0 t+ αX

1 sin(ξt) + βX
1 cos(ξt) + αX,DoW

DoW (t) (1)

where ξ = 2π
365

and DoW (t) = ⌊ t
∆
⌋ mod p where p ∈ N∗. In practice, p = 7 and αX,DoW

DoW (·)
corresponds to the constant depending of the day in the week.

• The parameter κX > 0 corresponds to the mean-reverting (or autoregressive) behaviour.

• LX is a Normal Inverse Gaussian distribution of parameters (αX , βX , δX ,mX) which proper-
ties are described in Appendix A. We will assume that this process is centered (E[LX

t ] = 0),
which means

mX + δX
βX

γX
= 0.

Similarly, the elements characterizing the dynamics of the temperature T are:

• The function µT represents the trend and seasonality component. We assume that

µT (t) = αT
0 + βT

0 t+ αT
1 sin(ξt) + βT

1 cos(ξt), where ξ =
2π

365
. (2)

• The parameter κT corresponds to the mean-reverting behaviour.

• W T is a Brownian motion independent of LX , and σT > 0 to the standard deviation of the
noise.

Last, the parameter λ ∈ R allows for some dependence between both processes. For the tempera-
ture, the Ornstein-Uhlenbeck (OU) model with Brownian noise corresponds to a well established
model developed by Benth et al. [10] and largely spread on literature. We refer to Alfonsi and
Vadillo [2] for a recent discussion on temperature models. Section 2 presents different models for
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the electricity spot price and justifies the choice of dynamics of X in (ETM) when λ = 0. Then,
Section 4 explores the pertinence of Model (ETM) and shows that it reproduces well the features
of our data.

As it will be often useful in the calculations, we write here the integrated version of Model (ETM)
Xt − µX(t) = e−κX(t−s)(Xs − µX(s)) + λσT

∫ t

s

e−κX(t−u)dW T
u +

∫ t

s

e−κX(t−u)dLX
u

Tt − µT (t) = e−κT (t−s)(Ts − µT (s)) + σT

∫ t

s

e−κT (t−u)dW T
u ,

(3)

and introduce the notation X̃t = Xt − µX(t) and T̃t = Tt − µT (t) that will be used through the
paper.

Data description

The above model is tested in real world data. In particular, we study day-ahead log spot energy
prices in France and North Italy from 5th January 2015 to 31st December 2018. This data is
extracted from the ENTSO-E Transparency Platform and Gestore Mercati Energetici (GME) and
are available hourly until 31st December 2022. We decided to average hourly data into daily data
to avoid additional intra-day noise and follow literature practices [28]. This granularity choice
will equally enable us to match the granularity of other dynamics like the temperature data’s.
Additionally, we exclude 2019 to 2022 years as energy price time series show considerably erratic
paths due two major macroeconomic shocks: the COVID-19 pandemic and the Ukrainian war.

For temperature data, we choose to extract average daily temperature time series for Paris-
Charles de Gaulle airport and Milano-Linate airport weather stations. These weather stations
are referenced in WMO with the following identification numbers 7157 and 16080. Daily average
temperature is defined as the average between the maximum and minimum hourly temperatures.
Data is extracted from a private data provider platform. This latter is in charge of the removal of
outliers. The data is therefore considered as cleaned in the following of this study.

2 Overview of different energy models

The literature on energy modeling is large. We would particularly recommend the surveys of Weron
[54] and Deschatre et al.[28]. Although there can be exceptions, experts usually focus on either
day ahead daily spot or forwards prices. The granularity kept is hence the day and is seen as the
average of hourly spot prices. While forward price market modeling has been explored successfully
through HJM-modeling paradigm [12], we will focus on spot or log spot price modeling. In the
study of this section, we do not consider structural models nor neural networks models, but we
focus rather on stochastic models. Indeed, our objective is to combine energy dynamic modeling
with temperature modeling to handle the risk of hybrid options and have a clear understanding of
the model parameters. In the following we will consider log spot price to ensure positivity of the
energy dynamics.

5



2.1 Mean-reverting diffusion models

The first models describing electricity dynamics are mean-reverting diffusion models. They were
first developed by Gibson and Schwartz [31], Schwartz [49] and Lucia and Schwartz [41]. They do
not focus only on electricity but apply these models to wider range of energy commodities (crude
oil, on-peak electricity spot prices). They are built around the concept of convenience yield and
model daily commodity through a Ornstein-Uhlenbeck (OU) process with Brownian noise [51] as
follows: {

Xt = µ(t) + X̃t

X̃t = −κX̃tdt+ σdWt

(4)

where µ(·) corresponds to a deterministic function including trend and seasonality and W to a
Brownian noise.

There is not much discussion on the form of the deterministic function µ(·). While several
papers reduce this function to a simple constant [49] [31] [27] [37], other suggest different order
Fourier expansions [15] [25] or piece-wise stepped functions [41]. These latter enable to include
annual seasonality and capture differences in winter and summer prices, a phenomenon agreed upon
literature [37] [29]. Pawlowsky and Nowak [45] justifies the presence of a trend component on the
deterministic component. We suggest to keep this constant, trend and seasonality deterministic
components and test their significance such that we define:

µ(t) = β0t+ α1 sin(ξt) + β1 cos(ξt), where ξ =
2π

365
(5)

This first deterministic equation is implemented and tested on our data. For this we consider the
results of the following regression function.

N−1∑
i=0

(
Xi+1 − µ(i+ 1) − e−κ(Xi − µ(i))

)2
, (6)

where µ(·) is defined as in Equation (5).
Following minimisation of Equation (6), we check significance of the coefficients and residual

plots. While all coefficients show 5% significance, residual plots are less satisfactory. Indeed, as
shown in Figure 1, residuals show important weekly dependencies. This phenomenon has already
been observed by several papers. Following this observation, some suggest to distinguish week and
week-end effects [41] [42] while others show statistical significance of daily dummy integration [18].
We also considered alternatives such as additional weekly seasonality terms. The form of µ(·)
minimising the AIC criteria turned to be the defined in Equation (1).
Now let turn to the noise W , in our case we consider the residuals of Regression (6) where µ(.)
as defined in (1) to assess the characteristics of the distribution of W . Initially, the first models
suggested Brownian dynamics for such noise following the model of Vasicek [51]. However, this
proposal has been considerably challenged. Indeed, as can be seen in Figure 2, the qqplot of the
residuals show significant deviation from normal theoretical quantiles. The residuals seem indeed
to present heavier tails than normal residuals.

Different answers have been giving to this limitations. Some authors suggest to introduce
price spikes thanks to jump-diffusion processes [27] [25] [30] while others explore multi-factor
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Figure 1: Partial autocorrelation plots of residuals of the Regression (6) where µ(·) defined as in
Equation (5) (left) and as in Equation (1) (right). The dashed red line corresponds to the 95%
confidence interval from which we can consider the partial autocorrelation coefficient is significantly
different from 0.

Figure 2: Quantile quantile plots for residuals of Regression (6) compared with a theoretical
quantiles of a normal distribution (left) and of a normal inverse gaussian distribution (right) for
French energy (first row) and North Italian Energy (second row).
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jump-diffusion models [42] or alternative distributions for the residuals [15]. Next sections will
concentrate on these proposals and on their estimation power.

2.2 Mean-reverting jump-diffusion models (MRJD)

Several papers have studied the possibility to consider non-Gaussian increments. A particularly
popular one is to combine Brownian motion with a compound Poisson process [27] that would
capture the price spikes usually observed in energy prices, extending (4) as follows

Xt = µ(t) + X̃t

X̃t = −κX̃tdt+ σdWt + dJt,
(7)

where Jt is a Poisson process of intensity λ such that Jt =
∑Nt

i=1 ξi where ξi are i.i.d. jump
magnitudes that can follow distributions such as log-Normal [25], exponential [27] or mixture of
exponential distributions [45]. One of the main drivers for distribution selection is the ability to
obtain explicit formulas for forward prices which mainly depends on the jump magnitude assump-
tions and the time-dependence of the other parameters. Indeed more flexible models, such us
Geman and Roncoroni [30]’s, offer more flexibility on the properties of the Poisson process but do
not enable explicit formulas of the forward prices.

However, only few papers analyse the challenge of estimating the parameters of such dynamics.
Indeed, in order to estimate the parameters of both the continuous and the spiked noise, we need
first to be able to distinguish them. There exist different methods of jump filtering. A first intuitive
one is to settle a threshold, for example 3 standard deviations, such that data points within this
threshold are considered to belong to the continuous part while the data points above correspond
to the jumps. Cartea and Figueroa [25] and Paw lowski and Nowak [45] use an iterative method
of filtering based on such threshold. However, the choice of the threshold seems arbitrary and
integrates a standard deviation that itself combines continuous and spiked noises. Figure 3 shows
the residuals of Regression (6) filtered through the above method. The residuals categorized as
continuous suit well the normal quantiles however the jumps are pretty sparse and, hence, difficult
to fit. We explored this method but we hardly could estimate the jump parameters convincingly
and found the filtering criteria rather arbitrary. We also considered alternative jump estimation

Figure 3: Jump filtering method as described by Cartea and Figueroa [25] (left). Filtered contin-
uous residuals qqplot against a normal distribution (center). Histogram of jumps (right).

methods. Meyer-Brandis and Tankov [42] challenge the threshold method in their two factor model
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an suggest two alternative filtering algorithm. Their implementation involves a hypothesis on the
stochastic nature of the processes and the number of spikes. Alternatively, Deng [27] suggests to
implement the method of moments which can introduce bias. Finally, Geman and Roncoroni [30]
apply a maximum likelihood estimation applied to an unknown process using a prior reference
process. This method is highly dependent on the underlying distribution and choice of priors.

2.3 Multi-factor mean-reverting models

Multi-factor models with non-Gaussian increments represent another popular alternative to model
erratic dynamics. Two factors and three factors models with Gaussian increments were developed
by Schwartz through different collaborations [49] [48] [31] [41]. The idea behind is that the spot
prices could be driven by a long-term and a short-term dynamics, so that the spot price would
integrate long-run terms and potential circumstantial tensions on the energy market. The esti-
mation of such models can be performed through classic Kalman filtering. However, they do not
answer the issue of bad fitting of the residuals with normal distribution as can be observed on the
right figure of Figure 4.

Taking inspiration of Schwartz’s models, several papers have explored the possibility to combine
multi-factor models with Levy processes [17] [42]. The adaptation of (4) to a multi-factor model
of n factors takes the following form:{

Xt = µ(t) +
∑
X̃n

t

X̃n
t = −κnX̃n

t dt+ dLn
t

(8)

where Ln
t corresponds to a Levy process.

While Björk and Landén [17] deduce analytical expression for forward contracts with compound
Poisson processes, they do not address the estimation challenges. On their side, Meyer-Brandis
and Tankov [42] study two factor models with non-defined Levy processes and suggest a calibra-
tion based on the autocorrelation function. Figure 4 shows the autocorrelation function and the
exponential fitting enabling to compute the autoregressive parameters. It can be observed that
the autocorrelation function does not present a clear exponential shape. Furthermore the fitting
is extremely sensitive to the time horizon considered for the autocorrelation function.

Finally, the inclusion of more than one autoregressive factors blocks from obtaining an integrant
form of the dynamics. Given the latter and the lack of robust fitting method for multi-factor models
with Levy processes, we prefer to focus on one factor models.

2.4 Mean-reverting diffusion models with NIG noise

As suggested by Benth and Benth [15], we explore non-Gaussian Ornstein-Uhlenbeck process. The
Normal Inverse Gaussian distribution was first introduced by Barndorff-Nielsen [5] and presents
the distribution and properties in Appendix A. The first motivation to keep this model is a rather
good fitting of the residuals as can been seen in Figure 2. While residuals corresponding to∫ t

s
e−κ(t−u)dLu are not exactly distributed in NIG, the estimation of tinniness κ suggested a very

close distribution that we find convincing. The second motivation to keep this model consisted in
the relative easy estimation of the parameters. Section 3 will focus on these challenges.
Finally, this model can be easily generalized to multivariate distributions which will enable us

9



Figure 4: On the left, quantile quantile plots for residuals after removal of the two autocorrelation
dynamics compared with a theoretical quantiles of a normal distribution. On the right, two factor
model fitted through the autocorrelation function as described in [42]. First row corresponds to
French energy data while second row to North Italy.

to foresee combinations of energy and weather parameters dynamics in order to compute hybrid
options.
As rightly noted by Benth and Benth [15], OU-NIG dynamics correspond to a first step towards
stochastic volatility models that are common models for commodity derivative modelling [27] [50]
[8]. While these models are usually developed for commodity forwards under the Heath–Jarrow–Morton
(HJM) framework, the methodology can be replicated to spot price modeling [39]. Nevertheless,
stochastic volatility models imply observing daily volatility on the modeled variable. While this is
possible for energy spot prices, our objective is to combine this dynamic with daily average tem-
perature dynamics for which the volatility is unobserved [2]. The following section will therefore
focus on a two dimensional Ornstein-Uhlenbeck dynamic with NIG noise.
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3 Separate parameter estimation of the two marginal pro-

cesses

This section focuses on the estimation challenges of our two marginals: the daily day-ahead energy
log spot price (Xt)t≥0 and the average daily temperature (Tt)t≥0. We assume that λ = 0 in
Section 3, which gives the independence of these processes and allow to estimate their parameters
separately. The joint estimation when λ ̸= 0 will be discussed in the next section.

3.1 Estimation of κX and µX(·)
Following Klimko and Nelson [36], the objective of this section is to estimate κX and µX(·) using
Conditional Least Squares Estimation (CLSE). For this, we first write the conditional expectation
of (Xt)t≥0. From

Xt+∆ − µX(t+ ∆) = e−κX∆(Xt − µX(t)) +

∫ t+∆

t

e−κX(t+∆−u)dLX
u ,

we get
E[Xt+∆ − µX(t+ ∆)|Ft] = e−κX∆(Xt − µX(t)), (9)

since we consider that LX is centered, that is mX + δXβX/γX = 0. We then get the following
expression for the conditional expectation:

E[Xt+∆|Ft] = µX(t+ ∆) + e−κX∆(Xt − µX(t)) (10)

where µX(t) = βX
0 t+ αX

1 sin(ξt) + βX
1 cos(ξt) + αX,DoW

DoW (t) where ξ = 2π
365

and DoW (t) = ⌊ t
∆
⌋ mod 7.

We can now apply CLSE to the discrete for form of Equation (10) which boils down to minimise

N−1∑
i=0

(
X(i+1)∆ − E[X(i+1)∆|Xi∆]

)2
. (11)

This can be solved through linear regression, and Proposition B.1 gives:

κ̂X = − ln η̂2

β̂X
0 = η̂1

1−η̂2

α̂X
1 = η̂3(cos(ξ∆)−e−κ̂X∆)+η̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂X∆)2+sin2(ξ∆)

β̂X
1 = η̂4(cos(ξ∆)−e−κ̂X∆)−η̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂X∆)2+sin2(ξ∆)

α̂X,DoW
j = 1

1−e−7κ̂X∆

∑6
k=0(η̂

DoW
j+k − β̂0)e

−(6−k)κ̂X∆,

(12)

where

η̂ =

(
N−1∑
i=0

Ξi∆Ξ⊤
i∆

)−1(N−1∑
i=0

Ξi∆X(i+1)∆

)
, (13)

with Ξi∆ = (i∆, Xi∆, sin(ξi∆), cos(ξi∆), (1{DoW (i∆)=j})0≤j≤6) ∈ R4 × {0, 1}7 for i ∈ N and

(η̂DoW
0 , . . . , η̂DoW

6 ) = (η̂5, . . . , η̂11) and η̂DoW
j = η̂DoW

j̃
, with j̃ ∈ {0, . . . 6} such that j = j̃ mod 7.
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Figure 5 represents the fitted trend and seasonality component µX(·) in the original logarithm
of spot prices. We can observe an important difference of µX(·) between week-ends and week
days. In particular, Saturdays and Sundays are particularly cheaper days. Although energy still
is traded on weekends, the volume is smaller which explains the different behaviours also noted
by Meyer-Brandis and Tankov [42]. Finally, Table 1 shows estimated parameters for French and
North Italian data.

Figure 5: Fitted deterministic curve µX(·) for France (left) and Italy (right).

κ̂ Residuals mean Residuals SD

France 0.226 9.614 × 10−16 0.171
North Italy 0.129 5.056 × 10−16 0.099

Table 1: Fitted κ̂ and residuals of Regression (11) for France (left) and Italy (right)

3.2 Parameter estimation for the NIG noise

We now move to the estimation of the parameters of the NIG process. Let first recall that:

X̃t+∆ = e−κX∆X̃t +

∫ t+∆

t

e−κX(t+∆−v)dLX
v where X̃t = Xt − µX(t) (14)

We can first observe that the residuals we study correspond to
∫ t

s
e−κX(t−v)dLX

v and not the Levy
noise per se. There is some study on the distribution of this integral particularly as Tempered
Stable Processes, see Sabino [47]. However, given the inability to compute an explicit formula, we
decided to work with approximations of this integrant. The following section will concentrate in
three estimation methodologies: CLS, maximum likelihood and EM algorithm applied to a second
order approximation of the characteristic function.

Let first study the form of the characteristic function of our process (X̃t)t≥0. We have

E(eiuX̃t+∆) = E
(

exp(iu[e−κX∆X̃t +

∫ t+∆

t

e−κX(t+∆−v)dLX
v ])

)
12



If we focus on the second term and use Lemma 4.1. on Benth and Benth [15]. We call φ the
characteristic function and we can write as follows:

φ(u; ∆) = E(exp(iu

∫ t+∆

t

e−κX(t+∆−v)dLX
v )) = exp

(∫ t+∆

t

ψ(iue−κX(t+∆−v))dv

)
(15)

where ψ corresponds to the cumulant function of NIG distributions and is given by

ψ(x) = xmX + δX(γX −
√

(αX)2 − (βX + x)2)

Finally, we have:

φ(u; ∆) = exp

(
iumX 1 − e−κX∆

κX
+ δγX∆ − δX

∫ t+∆

t

√
(αX)2 − (β + iue−κX(t+∆−v))2dv

)
(16)

Estimation through CLS In this paragraph, we apply the CLS method developed by Klimko
and Nelson [36] to the characteristic function φ. Our objective is to minimise the below function
for u ∈ R. ∣∣∣eiu(X̃t+∆−e−κX∆X̃t) − φ(u; ∆)

∣∣∣2 (17)

Now let consider a discrete time interval, the objective function in Equation (17) becomes:

N−1∑
t=0

∣∣∣eiu(X̃t+∆−e−κX∆X̃t) − φ(u; ∆)
∣∣∣2

In our case, we minimise for different values of u the below objective function:∑
u

N−1∑
t=0

∣∣∣eiu(X̃t+∆−e−κX∆X̃t) − φ(u; ∆)
∣∣∣2 (18)

We compute the characteristic function through numerical integration using the function quad in
Python and u is taken in {−5,−4, ..., 5}.

Remark 3.1. We contemplated to approximate the characteristic function through a Simpson’s
integration method. We tested how the choice of this approximation impacts the estimation by
comparing with with the exact numerical integration. This method lead to similar results (see Ta-
ble 2) and not particularly quicker (it takes 0.53s (resp. 0.63s) to minimize (18) with Simpson’s on
France (resp. North Italy) data) instead of 1.14s (resp. 1.25s) with exact integration). Therefore,
on the following we keep using the exact numerical integration.

The minimisation algorithm we apply is the Nelder–Mead algorithm [44]. We choose this
method because it enables to integrate boundary constraints such as αX > 0 and αX ≥ |βX | and
shows good convergence. Table 2 summarizes the results of the minimisation.

The reader can also note that the above methodology was validated with simulated data. We
simulated 100, 000 Normal Inverse Gaussian simulations with predefined parameters, computed the
corresponding integral and verify that the minimisation of metric (18) lead to the correct parameter
estimates. The sensitivity of this method was also tested with convincing results. We leave the
mathematical proof of the characteristics of these estimators as a possible further research.
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MLE and EM-algorithm estimation through second order approximation An alterna-
tive approach for Normal Inverse Gaussian parameter estimation is to implement the Expectation-
Maximization algorithm (EM) or maximum likelihood estimation (MLE). Unfortunately we do

not know explicitly the density of
∫ t+∆

t
e−κX(t+∆−v)dLX

v . We hence proceed to an approximation
of this density.

For this, let consider the characteristic function φ(·,∆) in Equation (16). We can see that:

φ(u; ∆) ≈ exp

(
∆

(
iumXe−κX∆/2 + δXγX − δX

√
(αX)2 − (βX + iue−κX∆/2)2

))
Let apply the transformation, 

m̃X = ∆mX

δ̃X = ∆δX

ũ = ue−κX∆/2

to obtain the below approximation for the characteristic function:

E(exp(iũeκX∆/2

∫ t+∆

t

e−κX(t+∆−v)dLX
v )) ≈ exp

(
iũm̃X + δ̃XγX − δ̃X

√
(αX)2 − (βX + iũ)2

)
Therefore,

(
eκX∆/2

∫ (ℓ+1)∆

ℓ∆
e−κX((ℓ+1)∆−v)dLX

v

)
ℓ≥1

behaves, at second order approximation, as a

NIG independent distribution, the EM algorithm or maximum likelihood estimation is therefore
applied to this time series. The Maximum Likelihood Estimation (MLE) is applied through the
function pre-implemented in the Python library scipy.stats while the EM-algorithm is imple-
mented following Karlis [35].

Method α̂X β̂X m̂X δ̂X

CLS Simp 4.222 -0.361 0.011 0.128
CLS Num 4.222 -0.361 0.011 0.128

EM 4.066 -0.340 0.011 0.131
MLE 4.013 -0.203 0.007 0.130

Method α̂X β̂X m̂X δ̂X

CLS Simp 13.736 0.319 0.004 0.152
CLS Num 13.736 0.319 0.004 0.152

EM 12.576 0.533 -0.006 0.140
MLE 12.575 0.533 -0.006 0.140

Table 2: Parameter estimation through the CLS, EM and maximum likelihood estimation for
French (left) and Italian (right) energy log spot price.

Table 2 shows the parameter estimations through the CLS method, EM algorithm and max-
imum likelihood minimisation. We choose to move forward with the CLS Numerical method as
all method lead to similar results and EM and MLE method cannot be directly applied to the
combined model. From here onwards, MLE estimates are mainly used to initialize the CLS min-
imisation problem (18).

3.3 Estimation of κT and µT (·)
As introduced in Section 1, we consider that (Tt)t≥0 follows an Ornstein Uhlenbeck with Gaussian
residuals such that:

d(Tt − µT (t)) = −κT (Tt − µT (t))dt+ dW T
t

14



where µT (·) represents the trend and seasonality component such that µT (t) = αT
0 + βT

0 t +
αT
1 sin(ξt) +βT

1 cos(ξt), κT the autoregressive parameter of the OU and W T
t is a Brownian motion.

First, similarly to Subsection 3.1, we implement CLS estimation to (Tt)t≥0 by minimising:

N−1∑
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆]

)2
. (19)

This can be solved through linear regression to obtain (see [2, Proposition C.1])

κ̂T = − ln ζ̂2

α̂T
0 = ζ̂0

1−ζ̂2
− ζ̂1

(1−ζ̂2)2

β̂T
0 = ζ̂1

1−ζ̂2

α̂T
1 = ζ̂3(cos(ξ∆)−e−κ̂T∆)+ζ̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂T∆)2+sin2(ξ∆)

β̂T
1 = ζ̂4(cos(ξ∆)−e−κ̂T∆)−ζ̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂T∆)2+sin2(ξ∆)
,

(20)

where

ζ̂ =

(
N−1∑
i=0

Πi∆Π⊤
i∆

)−1(N−1∑
i=0

Πi∆T(i+1)∆

)
(21)

with Πi∆ = (1, i∆, Ti∆, sin(ξi∆), cos(ξi∆)) ∈ R5 for i ∈ N.
Figure 6 represents the daily average temperature and fitted function µT (·). Table 3 presents the
estimates of κT and residuals of Regression (19) for Paris and Milan. We can observe that the
residuals are well centered.

κ̂T Residuals mean Residuals SD

France 0.254 −1.741 × 10−15 2.138
North Italy 0.250 −1.138 × 10−16 1.638

Table 3: Fitted κ̂ and residuals of Regression (19) for France (left) and Italy (right).

Figure 6: Fitted deterministic curve µT (·) for France (left) and Italy (right).

From here onwards, we will note T̃ the deseasonalised temperature such that T̃t = Tt − µT (t).

15



3.4 Parameter estimation for the temperature residuals

Our first idea was to implement a multivariate NIG for (X̃t, T̃t). We first then test if (T̃t)t≥0 can
also follow a Ornstein Uhlenbeck process with NIG noise and finally show that Gaussian noises
are more stable and reliable.

To estimate NIG parameters on (T̃t)t≥0, we implement the CLS approach as in Subsection 3.2.

Method α̂T β̂T m̂T δ̂T

CLS 14.095 10−3 -0.002 98.610

Method α̂T β̂T m̂T δ̂T

CLS 38.152 10−9 10−9 111.119
Table 4: Parameter estimation through the CLS for French (left) and North Italian (right) tem-
perature.

Table 4 shows the parameter estimations through CLS initiated with the MLE estimates. The
results are quite unstable and particularly because β shrinks towards 0. Indeed, we are here
confronted to the special case where (T̃t)t≥0 nearly follows a Normal distribution. The analysis
of quantile quantile plots in Figure 7 show indeed that a Normal regression fits considerably well
to the residuals regression 19. This result is aligned with Larsson’s conclusions on German mean
temperatures [40].

Figure 7: Quantile quantile plots for residuals of regression 19 compared with a theoretical quantiles
of a normal distribution for Paris temperatures (left) and Milan temperatures (right).

Hence, we choose to stick to a Normal distribution for (Tt)t≥0. To estimate its parameters,

we have that W T is a Brownian noise ∼ N (mT , σ2
T ). Hence, we have

∫ t+∆

t
e−κT (t+∆−v)dW T

v ∼
N (mT

√
1−e−2κT∆

2κT
, σ2

T
1−e−2κT∆

2κT
). We can obtain the parameters of the Normal distribution by cor-

recting the residuals of Regression (19) by the factor
√

2κT

1−e−2κT∆ . Table 5 summarized the results.

Method m̂T σ̂2
T

MLE 10−15 2.413

Method m̂T σ̂2
T

MLE 10−16 1.846
Table 5: Parameter estimation through the maximum likelihood estimation for dynamic of tem-
perature normally distributed for Paris (left) and Milan (right) temperature.
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4 Towards a combined model for (X̃t, T̃t)

In the previous section, we have considered separate models for the electricity spot price and the
temperature. This has enabled us to estimate the trend functions µX(·) and µT (·) and the speeds
of mean-reversion κX and κT . We now consider the joint model (ETM) with λ ̸= 0. First, we
show empirical results on the dependence between electricity prices and the temperature. Then,
we propose an estimation procedure of the different parameters. Since the temperature follows an
autonomous dynamics in Model (ETM), the estimation of κT , µT (·) and σT is unchanged from
the previous section. By Proposition B.1, the least square estimation of κX and µX(·) is also
unchanged when λ ̸= 0. Therefore, this section focuses on the estimation of λ and then on the
estimation of the NIG parameters when λ ̸= 0.

4.1 Test of dependence

This section analyses the significance of the dependence structure between (X̃t)t≥0 and (T̃t)t≥0.
For this we first estimate the Pearson correlation between the residuals (X̃(i+1)∆ − e−κX∆X̃i∆)

and (T̃(i+1)∆ − e−κT∆T̃i∆). We obtain a correlation equal to −0.087 for France and −0.043 for
north Italy, which suggests a small dependence. Figure 8 shows standardized residuals and ranked
residuals plots for France and Italy. We cannot observe a clear dependence structure through these
plots which supports the low correlations that we have obtained.

To better analyse the dependence, Table 6 shows the frequencies of ranked residuals given a
tercile classification. This time we can observe a slight anti-correlation as left top and bottom low
corners are more populated than right top and bottom left corners in both cases.

197 162 126
163 160 162
124 163 197

165 173 149
176 147 163
145 166 175

Table 6: Observed frequencies by couple tercile for French (left) and Italian (right) coupled data.

In order to move forward, we perform chi-square independence tests on the ranked residuals.
For this we classify the ranked residuals based on quantiles, compute contingency tables with
frequencies per coupled quantile classification and perform a chi-square independence test on these
frequencies compared to a binomial distribution.

Figure 9 represents the results of the χ2 independence test performed on residuals. We can see
that the two datasets do not show same results: the French dataset clearly rejects the indepen-
dence hypotheses while the North Italian dataset only rejects the independence hypothesis for 16
categories. This motivates us to propose a combined model for (X̃t, T̃t) that allows dependence on
the residuals.

4.2 Estimation of λ and NIG parameters

Let us recall that the parameters of the Temperature diffusion κT , µT (·) and σT can be estimated
as in Section 3, as well κX and µX(·) by Proposition B.1. We assume these parameters estimated,
and focus first on the estimation of λ.
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Figure 8: Standardized residuals (left) and ranked residuals (right) plots for France (top) and
North Italy (bottom).

Estimation of λ From (3), we compute the covariance of the residuals:

Cov
(
Xt+∆ − µX(t+ ∆) − e−κX∆(Xt − µX(t)), Tt+∆ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

)
= Cov

(
λσT

∫ t+∆

t

e−κX(t+∆−v)dW T
v +

∫ t+∆

t

e−κX(t+∆−v)dLX
v , σT

∫ t+∆

t

e−κT (t+∆−s)dW T
v

)
=

∫ t+∆

t

σ2
Tλe

−(κX+κT )(t+∆−v)dv = σ2
Tλ

1 − e−(κX+κT )∆

κX + κT
.

Hence, discretizing for a time period ∆, we get the following estimator

λ̂ =
κ̂X + κ̂T

σ̂2
T (1 − e−(κ̂X+κ̂T )∆)

Ĉov,

where Ĉov is the usual covariance estimator between residuals. Using values in Table 5, we get
the estimated value of λ in Table 7.
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p− value = 1.764e− 06 p− value = 6.532e− 07

p− value = 0.118 p− value = 0.008

Figure 9: χ2-test performed on ranked residuals for 9 (left) and 16 (right) category classification
for France (top) and Italy (bottom).

Estimation of NIG parameters We will use, as in Section 3 the CLS estimation method. For
this, we write the (conditional) characteristic function of the log-prices:

ψXt(u; ∆) := E(eiuXt+∆|Xt) = e
iu(µX(t+∆)+e−κX∆(Xt−µX(t))− 1

2
λ2σ2

T
1−e−2κX∆

2κX
u2

φ(u; ∆). (22)

This gives immediately the characteristic function of the residuals

E[eiu(X̃t+∆−e−κX∆X̃t)|Ft] = e
− 1

2
λ2σ2

T
1−e−2κX∆

2κX
u2

φ(u; ∆).

Then, to apply Conditional Least Square Estimation, we update the objective function in Equa-
tion (18) accordingly and seek to minimise the following quantity:

∑
u

N−1∑
t=0

∣∣∣eiu(X̃t+∆−e−κX∆X̃t) − e
− 1

2
λ2σ2

T
1−e−2κX∆

2κX
u2

φ(u; ∆)
∣∣∣2. (23)
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Market λ̂

France −0.007
North Italy −0.002

Table 7: Estimated λ of Model (ETM) for France and North Italy.

Method α̂X β̂X m̂X δ̂X

CLS 4.189 -0.379 0.011 0.125

Method α̂X β̂X m̂X δ̂X

CLS 13.621 0.003 10−3 0.151
Table 8: Parameter estimation through the CLS for French (left) and Italian (right) energy log
spot price.

Table 8 summarizes the NIG parameter estimations through CLS. We can observe that Table 8 is
very close to Table 2 which is expected as the parameter λ is quite small.

We then turn to the goodness of fit of the estimated combined Model (ETM). Figure 10
and 11 represent χ2 test performed between the historical and simulated distributions on the (2-
dimensional) empirical copula between temperature and electricity spot price residuals. To ensure
reliability of the results, we perform 1, 000, 000 simulations and rescale the frequencies to compare
with observed frequencies. We can see that the test does not globally reject the null hypotheses
which means that the dependence is correctly reproduced by Model (ETM) for both French and
North Italian data.

Finally we analyse the standard deviation explained by temperature component in Model (ETM).
We use the ratio below:

|σTλ|√
σ2
Tλ

2 + δα2

γ3

we found that 9.43% and 4.34% of the standard deviation of the random term of the log energy
spot price is explained by the temperature component for French and North Italian data corre-
spondingly. This is small but not negligible, especially for handling the risk of derivatives as shown
in the next section.

5 Handling the risk of quanto derivatives

On the previous sections we have developed a combined model for energy spot price and tem-
perature in order to price financial derivatives combining both parameters. The objective of this
section is to apply this model for quanto valuation and hedging.

5.1 An overview on quanto design and risk valuation

Quantos are derivative contracts of which payoff depends a double trigger, meaning the claim
depends on the value at maturity of two indices. Their main interest relies on their capacity to
hedge simultaneously volumetric risk, linked to weather conditions, and price risk, represented by
the energy price. Quanto derivatives are defined, like weather and energy derivatives, over a time
period [t1, t2] such that the payoff of the contract will depend on the value of the underlying during
all this risk period. While there exist large studies on quanto risk valuation involving different
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p− value = 0.219 p− value = 0.892

p− value = 0.616 p− value = 0.124

Figure 10: From top left to bottom right, χ2 test performed on the distributions of real (blue) and
simulated (green - based on 1, 000, 000 simulations) ranked residuals for 4 and 25 categories for
French data.

commodities [56], there exist little literature on the structuration and pricing of quanto products
mixing commodity and weather inputs [23] [13] [38].

On the one hand, there is no clear consensus on the structuring of the products. For Benth and
al. [13] and Kafakunusu [38], the payoff structure is applied to an aggregate of the two underlyings:

Payoff := f

(
t2∑

t=t1

gS(St),

t2∑
t=t1

gT (Tt)

)
(24)

where f represents the payoff function and gS and gT represent transformations of the initial
inputs. The dates t1 < t2 indicates two days, and the summation is made on each day between t1
and t2 (including these days). In particular, for Caporin [23], f takes the form of a product and

21



p− value = 0.961 p− value = 0.834

p− value = 0.198 p− value = 0.7

Figure 11: From top left to bottom right, chi-square test performed on the distributions of real
(blue) and simulated (green - based on 1, 000, 000 simulations) ranked residuals for 4 and 25
categories for North Italian data.

integrates common derivative payoff functions such that:

Payoff := fS

(
t2∑

t=t1

gS(St)

)
× fT

(
t2∑

t=t1

gT (Tt)

)
(25)

Here, fS and fT can correspond to the payoff function of put and call options, capped linear for
swaps and identity for futures. Commonly fT can correspond to the formula enabling to compute
the Heating Degree Days (HDD) such that fT (·) = (T̄ − Tt)

+, with T̄ = 18◦C. Finally, some
practitioners seem to favour another definition [26]. In these cases the payoff function is directly
applied to the daily values such that:

Payoff :=

t2∑
t=t1

fS(St) × fT (Tt) (26)
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We will focus on this latter definition as it answers to practitioner’s needs. In addition, we consider
price settlement takes place at t0 and payoff payment at t2.

We now discuss briefly the valuation of these products. Under classic risk-neutral pricing theory
for financial derivatives we would like to write the price as follows:

EQ

(
D(t0, t2)

t2∑
t=t1

fS(St) × fT (Tt)

)
(27)

where Q corresponds to the risk-neutral probability and D(t0, t2) is a discount factor between t0
and t2.

However, temperature is not an asset traded on markets, and hence risk neutral theory cannot
be applied. A possible way to get around this is to work with payoffs written on futures contracts,
as in the works of Benth and al. [13] and Kafakunusu [38]. However, futures on temperature are
still not liquid and usual quanto payoffs are written on the temperature itself, not on the future
contracts. Here, we will rather work on the real-world probability world and analyse the payoff
distribution in this framework. We will be particularly focus on the average payoff, which we
discuss in the next subsection. In addition, we consider a unit discount rate (i.e. D(t0, t2) = 1) as
the time span t2 − t0 is rather short and there is no clear alignment on which rate should be used,
see e.g. [10] [20]. Note also that if the discount rate is deterministic or independent of (S, T ), the
formulas below are still valid up to a constant factor.

In the following section we develop explicit formulas for different payoff and compare then with
Monte Carlo simulations. We also consider the possibility to hedge statically (26) with electricity
and temperature derivatives, and analyse numerically the hedging error distribution.

5.2 Expected values of some standard payoffs

This section concentrates on our ability to get explicit values for the average payoff of different
financial instruments. Namely, we will consider the payoff (26) for different choices of functions
fS and fT . Let t0 denote the present date, we consider two dates t1 and t2 such that t0 < t1 < t2
and want to determine:

E

(
t2∑

t=t1

fS(St) × fT (Tt) | Ft0

)
. (28)

The dates t1 and t2 indicate days, and the summation is made on all days between t1 and t2
including them. We also apply these formulas and compare the results to prices computed through
Monte Carlo simulation. The Monte Carlo discretization schemes can be found in Appendix C and
are applied to parameters in Table 9 and µX and µT as estimated for France with Formulas (13)
and (21).

Forwards/Futures First, let consider t0 < t1 < t2 and a future derivative between times t1 and
t2. The payoff is given by (26) with fT (·) = fS(·) = ·. We consider the average payoff at time t0
under the historical probability:

F(t1, t2) = E
( t2∑

t=t1

St × Tt | Ft0

)
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κX βX
0 αX

1 βX
1 αX

DoW0 αX,DoW
1 αX,DoW

2 αX,DoW
3 αX,DoW

4 αX,DoW
5 αX,DoW

6

0.226 0.0003 -0.165 0.187 3.523 3.594 3.594 3.589 3.566 3.370 3.175

κT αT
0 βT

0 αT
1 βT

1

0.254 6.578 0.00004 -4.139 -6.959

αX βX mX δX σT λ

4.189 -0.379 0.011 0.125 2.413 -0.007
Table 9: Parameters used for numerical experiments. These parameters are the ones obtained with
the estimation on French electricity and temperature data.

Proposition 5.1. Under Model (ETM) and for t ∈ [t1, t2], we have:

F(t1, t2) =

t2∑
t=t1

[
exp

(
µX(t) + e−κX(t−t0)(Xt0 − µX(t0))

)
φ(−i; t− t0)(

(µT (t) + e−κT (t−t0)(Tt0 − µT (t0)))e
1
2
kX(t−t0)2λ2σ2

T

+λσ2
Tk

2
XT (t− t0)e

1
2
λ2σ2

T kX(t−t0)2

)] (29)

where φ is the characteristic function defined in Equation (16) and

kT (∆) =

√
1 − e−2κT∆

2κT
, kX(∆) =

√
1 − e−2κX∆

2κX
and kXT (∆) =

√
1 − e−(κX+κT )∆

κX + κT
. (30)

This result is a direct consequence of Proposition D.3 that calculates explicitly E(St×Tt | Ft0).
Figure 12 shows the price of monthly futures computed 30 days in advance for France data. The
prices have been computed with 100,000 Monte Carlo simulations and with explicit formula in
Equation (29). We can see that both methodologies provide same results. However, computation
with Equation (29) is around 650 times faster. Additionally we compute the price with λ = 0.
Although it is close to the precedent case, the price computed with λ = 0 is usually not within the
confidence intervals of the Monte Carlo simulations.

Swap Swaps are derivatives where the payoff is given by (26), that is, fT (·) = (T̄ − ·) and
fS(·) = (· − S̄). Here we suppose strikes S̄ and T̄ are given. For applications, and on the following
of the paper, T̄ = 18◦C and S̄ = 50 EUR/MWh. While taking T̄ = 18◦C is a market standard,
taking S̄ = 50 is our choice. We decide to take a strike which is relatively into the money and
repeat the exercise for other strikes (S̄ = 40, 60), the below conclusions remain unchanged.

We define the swap’s average payoff under historical probability S(t1, t2) as follows:

S(t1, t2) = E
( t2∑

t=t1

(St − S̄)(T̄ − Tt) | Ft0

)
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Proposition 5.2. Under Model (ETM) and for t ∈ [t1, t2], we have

S(t1, t2) =

t2∑
t=t1

T̄ψXt0
(−i; t− t0) −F(t1, t2) − S̄T̄ (t2 − t1 + 1)

+ S̄

t2∑
t=t1

(µT (t) + e−κT (t−t0)(Tt0 − µT (t0)))

(31)

where ψ is the characteristic function defined in Equation (22), F(t1, t2) as defined in Equation (29)
and kT (·) , kX(·) and kXT (·) are defined in Equation (30).

This result is a direct consequence of Proposition D.4 that calculates E((St− S̄)(T̄ −Tt) | Ft0).
Figure 12 shows the price of monthly swaps computed 30 days in advance for France data. The
prices have been computed with 100,000 Monte Carlo simulations and with explicit formula in
Equation (31). As for forwards, we can see that both methods provide similar results while using
Formula (31) is around 300 times faster. Again, prices computed for λ = 0 are close but out of
the confidence interval of the Monte Carlo simulations.

Figure 12: Forward (left) and Swap (right) prices computed with 100,000 simulation-Monte Carlo
(blue) and Equations (29) and (31) (green) methods. Each contract lasts one month of 2018. Time
t0 corresponds to 30 days ahead of the first day of the month, t1 to the first day of the month and
t2 to the last day of the month.

Single sided options E-HDD and E-CDD We now focus on put and call options on temper-
ature. These are defined by the payoff (26) with fS(x) = x and either fT (·) := (T̄ − ·)+ for a put
option or f(·) := (· − T̄ )+ for a call option. We call these products single sided options, since the
option brings only on the temperature. We define the average payoff under historical probability
of a single sided option E−HDD(t1, t2) as follows:

E−HDD(t1, t2) = E
( t2∑

t=t1

St(T̄ − Tt)
+ | Ft0

)
=

t2∑
t=t1

E(St(T̄ − Tt)
+ | Ft0) (32)
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Let first consider each term separately. We have:

E(St(T̄ − Tt)
+ | Ft1) =

∫ T̄

T 0

E(eXt1Tt≤u | Ft1)du, (33)

where T 0 = −∞. Note that the Gaussian model for the temperature allows in principle any
real temperature. In practice, with the estimated parameters, the probability of having extreme
temperatures is very infinitesimal. We can thus use (33) with T 0 = −273.15 (the absolute zero
temperature) or T 0 = −100 with a negligible error.

Proposition 5.3. Under Model (ETM) and for t ∈ [t1, t2], we have

E−HDD(t1, t2) =

t2∑
t=t1

[
ψXt0

(−i; t− t0)×

∫ T̄

T 0

Φ
(u− (µT (t) + e−κT (t−t0)(Tt0 − µT (t0)))

σTk(t− t0)
− λσT

k2XT (t− t0)

kT (t− t0)

)
du

] (34)

where ψ is the characteristic function defined in Equation (22), Φ is the cumulative function of
the standard Gaussian distribution and kT (·) , kX(·) and kXT (·) are as in Equation (30).

Proof. For t ∈ [t1, t2], we use (33) and apply then Proposition D.8.

Similarly, we can calculate explicitly the average payoff of a E-CDD defined as:

E−CDD(t1, t2) = E
( t2∑

t=t1

St(Tt − T̄ )+ | Ft0

)
. (35)

Proposition 5.4. Under Model (ETM) and for t ∈ [t1, t2], we have:

E−CDD(t1, t2) =

t2∑
t=t1

[
ψXt0

(−i; t− t0)×

∫ Tm

T̄

Φ
(
λσT

k2XT (t− t0)

kT (t− t0)
− u− (µT (t) + e−κT (t−t0)(Tt0 − µT (t0)))

σTkT (t− t0)

)
du

] (36)

where Tm = +∞, ψ is the characteristic function defined in Equation (22), Φ is the cumulative
function of the standard Gaussian distribution, kT (·), kX(·) and kXT (·) are as in Equation (30).

In practice, (36) can be used with Tm = 100 with a negligible error, the probability of having
temperature above 100°C being infinitesimal.

Figures in 13 show the price of monthly E-HDD and E-CDD computed 30 days in advance
for French data. The prices have been computed with 100,000 Monte Carlo simulations and with
explicit formula in Equations (34) and (36). We can see that both methodologies provide same
results. However, computation with formulas is, again, around 40 times faster for E-HDD and 3
times faster for E-CDD. In addition, we compute the price with λ = 0, the impact on prices is
visual for E-CDD as the prices are out of the confidence interval of the Monte Carlo simulations.
This shows the significance of λ on the valuation of derivatives.
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Figure 13: E-HDD (left) and E-CDD (right) prices computed with 100,000 simulation-Monte
Carlo (blue) and Equations (34) and (36) (green) methods. Each contract lasts a month of 2018.
t0 corresponds to 30 days ahead of the first day of the month, t1 to the first day of the month and
t2 to the last day of the month. The computation of the derivatives through the formulas around
40 times faster for E-HDD and 3 times faster for E-CDD.

Quanto options Let now consider double sided options given by Equation (26) with the fol-
lowing payoff function specifications fS(·) = (· − S̄)+ and fT (·) = (T̄ − ·)+. We consider then the
average payoff function:

Q(t1, t2) = E
( t2∑

t=t1

(St − S̄)+(T̄ − Tt)
+ | Ft0

)
(37)

Given our Model (ETM), there is no explicit formula for Q up to our knowledge. However, we
suggest to perform a Taylor’s series expansion to the first order on λ given that λ is quite small.
The next proposition gives semi-explicit formulas for this expansion.

Proposition 5.5. Under Model (ETM) and for t ∈ [t1, t2], we have the following Taylor’s series
expansion:

Q(t1, t2) =

t2∑
t=t1

(
Eλ=0((St − S̄)+ | Ft0) ×

((
T̄ − µT (t) − e−κT (t−t0)(Tt0 − µT (t0))

)
×

Φ
( T̄ − µT (t) − e−κT (t−t0)(Tt0 − µT (t0))

σTkT (t− t0)

)
+
σTkT (t− t0)√

2π
exp

(
− 1

2

( T̄ − µT (t) − e−κT (t−t0)(Tt0 − µT (t0))

σTkT (t− t0)

)2))
−
(
Eλ=0((St − S̄)+ | Ft0) + S̄Pλ=0

(
St ≥ S̄ | Ft0

) )
×

σ2
TkXT (t− t0)

2Φ
( T̄ − µT (t) − e−κT (t−t0)(Tt0 − µT (t0))

−σTkT (t− t0)

))
λ

)
+ o(λ)

(38)
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where Φ is the cumulative distribution function of the standard Gaussian distribution, kT (·) , kX(·)
and kXT (·) are as in Equation (30).

This result is a direct application of Proposition D.6. Note that Eλ=0((St − S̄)+ | Ft0) (resp.
Pλ=0

(
St ≥ S̄ | Ft0

)
) can be computed efficiently as in Equation (51) (resp. Equation (52)).

Figure 14 shows quanto prices computed with Equation (38) and 100,000 simulation-Monte
Carlo simulations. We can see that the first order Taylor development is sufficient as prices are
always within Monte Carlo confidence intervals. We compare this with a quanto approached
keeping only the first term of Taylor development which is equivalent to λ = 0. This time,
average payoff values are close but out of the Monte Carlo confidence intervals. Explicit formula
computation remains faster than Monte Carlo simulations however it gets less attractive than for
previous derivatives as it includes several numerical integrations.

Figure 14: Quanto prices computed with 100,000 simulation-Monte Carlo (blue) and Equation (38)
(green) methods. On the left the price corresponds to Formula (38). On the right only the first
term of the Taylor development in Equation (38) is considered. This is equivalent to consider
λ = 0. Each contract lasts a month of 2018. Time t0 corresponds to 30 days ahead of the first
day of the month, t1 to the first day of the month and t2 to the last day of the month. The
computation of the derivatives through the formulas is around 6 times faster than using Monte
Carlo simulations.

To sum up, we have developed in this subsection explicit or semi-explicit formulas for futures,
swaps, single-sided and double sided options given Model (ETM). These formulas are verified
through Monte Carlo simulations and remain faster to use than Monte Carlo techniques. Finally,
approaching the formulas with λ = 0 provides results close to the simulated ones but out of their
confidence intervals showing the significance of the dependence between electricity and temperature
on the risk associated to these derivatives.

5.3 Static hedging of hybrid derivatives

In the following section, we leverage explicit formulas developed in the above subsection and discuss
potential statistic hedging strategies for E-HDD and double-sided quantos.
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We remind that hedging challenges are key for portfolio and risk managers to handle risk aggre-
gation questions and meet solvency constraints. The aim of this subsection is to show that while
quantos are somehow exotic derivatives, they can be hedged through more common derivatives
increasing their attractiveness and risk understanding.

5.3.1 Risk decomposition of E-HDD

Let first focus on E-HDD and take a self-financing portfolio approach. We suppose that we are at
time t and that we want to find the static portfolio made with single HDD, future on electricity
and cash that minimizes the square hedging error at t+ ∆ where ∆ > 0:

E[(St+∆(T̄ − Tt+∆)+ − c0t,t+∆ − c1t,t+∆(T̄ − Tt+∆)+ − c2t,t+∆St+∆)2|Ft]. (39)

Remark 5.1. The risk related to the future on the electricity spot can in principle be hedged
dynamically on the electricity market. Instead, the risk related to the elementary HDD (T̄ − Tt)

+

cannot be hedged.

This is a quadratic function with respect to (c0t,t+∆, c
1
t,t+∆, c

2
t,t+∆) and the first order condition

leads to: 1 E[(T̄ − Tt+∆)+|Ft] E[St+∆|Ft]
E[(T̄ − Tt+∆)+|Ft] E[((T̄ − Tt+∆)+)2|Ft] E[St+∆(T̄ − Tt+∆)+|Ft]

E[St+∆|Ft] E[St+∆(T̄ − Tt+∆)+|Ft] E[S2
t+∆|Ft]

c0t,t+∆

c1t,t+∆

c2t,t+∆



=

 E[St+∆(T̄ − Tt+∆)+|Ft]
E[St+∆((T̄ − Tt+∆)+)2|Ft]
E[S2

t+∆(T̄ − Tt+∆)+|Ft]


(40)

Proposition 5.6. Under Model (ETM) and for ∆ > 0, the vector (c0t,t+∆, c
1
t,t+∆, c

2
t,t+∆) minimising

the function (39) is the unique solution of the linear equation (40), whose components can be
explicitly or semi-explicitly calculated.

Proof. The fact that the linear quadratic problem (39) boils down to (40) is standard, one only has
to check that the matrix on the left-hand side is invertible so that there is a unique solution. This
matrix is a (conditional) covariance matrix: it is invertible, otherwise we could find Ft-measurable
coefficients (c0t,t+∆, c

1
t,t+∆, c

2
t,t+∆) such that c0t,t+∆ + c1t,t+∆(T̄ − Tt+∆)+ + c2t,t+∆St+∆ = 0, which is

clearly impossible from (3).
We now recall how to calculate explicitly or semi-explicitly: E[(T̄−Tt+∆)+|Ft] is given by Propo-

sition D.5, E[((T̄ − Tt+∆)+)2|Ft] by Proposition D.7, E[St+∆|Ft] and E[S2
t+∆|Ft] can be calculated

with the characteristic function in Equation (16), E[St+∆(T̄ − Tt+∆)+|Ft] by Proposition D.8 and
E[S2

t+∆(T̄ −Tt+∆)+|Ft] by Proposition D.9. Finally we compute E[St+∆((T̄ −Tt+∆)+)2|Ft] by using
Proposition D.10.

Figures 15 show the results of the daily portfolio optimisation during 31 days starting the 1st
January 2018. First, we can observe that c0 and c1 present a seasonality. This is explained by
the integration of weekend days where there is small energy trade while the constant c0 and c1 are
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related to non-seasonal tools. This seasonality is not present in c2 as the instrument hedged by
the c2 has the same seasonality as the output. Second, we can also comment on the signs of c1

and c2 which are both positive. This shows that both instruments are used to hedge the output
St+∆(T̄ − Tt+∆)+ − c0t,t+∆ − c1t,t+∆(T̄ − Tt+∆)+ − c2t,t+∆St+∆. The cash quantity c0 accommodates
to respond to the minimisation. Third, we can observe that for λ non-zero a small share of
c0 is reported to c2 as we are leveraging the dependence structure between the energy and the
temperature.

Figure 15: From top left to bottom right, c0t0,t1+i∆, c1t0,t1+i∆ and c2t0,t1+i∆ starting from 1st January
2018 (t1) and with t0 = t1 − 30, ∆ = 1 and i = 0, . . . , 30.

Figure 16 shows the empirical density of the portfolio only composed by St+∆(T̄ − Tt+∆)+ and
including hedging for the month of January and May 2018. We compare the 100, 000 Monte Carlo
simulations of the portfolio with and without hedging. We can see that the hedging is efficient
as the average of the hedge portfolio is 0 while the average of the portfolio without hedging is
negative. In addition, the hedging strategy also decreases the variances of a portfolio payoff as the
portfolio without hedging is clearly more spread than the one hedged. In the example of January
(resp. May), the average payoff of the E-HDD is 22, 055 (resp. 3, 014) and its standard deviation
is 4, 127 (resp. 1, 487). In contrast, the average PnL of the static hedging portfolio is −0.754 (resp.
−0.389 in May) and its standard deviation is 534 (resp. 276).

Furthermore, we analyse the impact of λ < 0 supposing a portfolio hedged by using the model
with λ = 0. While the hedging of the portfolio still is effective the average PnL of the portfolio
in January (resp. May) is −137.638 (resp. −67.734) with λ = 0 instead of −0.754 (resp. −0.389)
with the correct value of λ, and the corresponding standard deviation is 597 (resp. 282) with λ = 0
instead of 534 (resp. 276) with the correct value of λ. This shows that λ has some influence on the
quality of the hedge, and the portfolio hedging effectiveness when using options on temperature
and energy as hedging instruments.

5.3.2 Risk decomposition of quantos

We replicate the above exercise for portfolios including quantos. We suppose that we are at time t
and that we want to find the static portfolio made with single HDD, puts on electricity and cash
that minimizes the square hedging error:

E[((St+∆ − S̄)+(T̄ − Tt+∆)+ − d0t,t+∆ − d1t,t+∆(T̄ − Tt+∆)+ − d2t,t+∆(St+∆ − S̄)+)2|Ft]. (41)
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Figure 16: Empirical density of
∑31

i=1 −St+i∆(T̄ − Tt1+i∆)+ (blue) and
∑31

i=1 c
0
t0,t1+(i−1)∆ +

c1t0,t1+(i−1)∆(T̄ − Tt1+i∆)+ + c2t0,t1+(i−1)∆St − St1+i∆(T̄ − Tt1+i∆)+ (green) for portfolio optimisa-

tion starting on 1st January 2018 (for t1 on the left) and 1st May 2018 (for t1 on the right), with
t0 = t1 − 30 and lasting the whole month.

This is again a quadratic function with respect to (d0t,t+∆, d
1
t,t+∆, d

2
t,t+∆) and the first order

condition leads to: 1 E[(T̄ − Tt+∆)+|Ft] E[(St+∆ − S̄)+|Ft]
E[(T̄ − Tt+∆)+|Ft] E[((T̄ − Tt+∆)+)2|Ft] E[(St+∆ − S̄)+(T̄ − Tt+∆)+|Ft]
E[(St+∆ − S̄)+|Ft] E[(St+∆ − S̄)+(T̄ − Tt+∆)+|Ft] E[((St+∆ − S̄)+)2|Ft]

d0t,t+∆

d1t,t+∆

d2t,t+∆


=

 E[(St+∆ − S̄)+(T̄ − Tt+∆)+|Ft]
E[(St+∆ − S̄)+((T̄ − Tt+∆)+)2|Ft]
E[((St+∆ − S̄)+)2(T̄ − Tt+∆)+|Ft]


(42)

Proposition 5.7. Under Model (ETM) and for ∆ > 0, the vector (d0t,t+∆, d
1
t,t+∆, d

2
t,t+∆) minimising

the quadratic criterion (41) is the unique solution of the linear system (42). The first order Taylor
development when λ→ 0 of all components of this linear system can be explicitly or semi-explicitly
calculated.

Proof. The arguments assuring the existence of a unique minimizer are the same as in Proposi-
tion 5.6. All the terms above have already been implemented in the Subsection 5.2 except for
E[((St+∆ − S̄)+)2|Ft], E[(St+∆ − S̄)+((T̄ − Tt+∆)+)2|Ft] and E[((St+∆ − S̄)+)2(T̄ − Tt+∆)+|Ft].
The calculation of the first one can be made by using the Carr-Madan approach as presented in
Proposition D.2, while the Taylor developments of the two other terms are given respectively by
Proposition D.11 and Proposition D.12.

Figure 17 shows the coefficients d0t,t+∆, d1t,t+∆ and d2t,t+∆ evolution on the month of January
2018. We can observe that d0t,t+∆ and d1t,t+∆ are, as before, weekly seasonal. In addition, in this
case d0t,t+∆ and d1t,t+∆ are very close for both λ nill and negative. For d2t,t+∆, we only get the weekly
phenomenon when λ is negative.

Figure 18 shows the empirical density of the PnL of the portfolio for January and May 2018.
In both cases we observe a significant hedging effect. The hedging effect is more important in
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January as the double condition on the options are hit more frequently. In May, the quanto does
not claim so often and the PnL Monte Carlo simulations are closer to 0. In both cases, the PnL
of the portfolio is reduced on average from −3, 358 to 0.208 in January (from −89.174 to −0.113
in May) and on standard deviation from 2, 197 to 391 in January (from 177 to 98 in May).

We again compare the hedging obtained with the exact value of λ < 0 (coupled model) and the
one obtained with λ = 0 (independent dynamics). In January (resp. May), the average PnL of the
portfolio with λ is 0.208 (resp. −0.113) instead of −93.072 (resp. −12.283) for λ = 0 for January.
The standard deviation with λ is 391 (resp. 99) instead of 394 (resp. 100) for λ = 0 respectively.
This again shows that the parameter λ has some notable influence on the portfolio hedging: while
λ is small, the hedging constructed with this value performs better than the one using λ = 0.

Figure 17: From top left to bottom right, d0t0,t1+i∆, d1t0,t1+i∆and d2t0,t1+i∆ starting from 1st January
2018 (t1), with t0 = t1 − 30 and with t0 = t1 − 30, ∆ = 1 and i = 0, . . . , 30.

Figure 18: Empirical density of
∑31

i=1−(St1+i∆ − S̄)+(T̄ − Tt1+i∆)+ (blue) and
∑31

i=1 d
0
t0,t1+(i−1)∆ +

d1t0,t1+(i−1)∆(T̄ − Tt1+i∆)+ + d2t0,t1+(i−1)∆(St1+i∆ − S̄)+ − (St1+i∆ − S̄)+(T̄ − Tt1+i∆)+ (green) for

portfolio optimisation starting on 1st January 2018 (for t1 on the left) and 1st May 2018 (for t1
on the right), with t0 = t1 − 30 and lasting the whole month.

To sum up, the portfolio study above shows that one can effectively hedge E-HDD and double-
sided option quantos through single index-based derivatives. This single-index-based derivatives
are traded in open market which ease accessibility and decrease operational costs. For energy
derivatives, we can even consider these markets as liquid and suppose a perfect hedging of this
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risk component. Understanding this risk decomposition is key for risk managers and risk transfer
businesses as it enables to gain comfort on the product and ensure meeting their own solvency
constraints. Given this is a highly regulated economic sector, regulators are also concerned about
this hedging capacity.

Finally, in this section we address the pricing of quanto derivatives on temperature and electric-
ity. We explore different payoff functions and develop explicit pricing formulas for swaps, futures,
single sided quanto options and double sided quanto options. These formulas are verified through
Monte Carlo simulations. Finally we explore the possibility to statistically hedge single and double
sided quanto options. We obtain an efficient daily risk decomposition of these derivatives lead-
ing to a averaged-simulated complete hedging of these derivatives. This capacity to hedge these
derivatives is key to confirm the efficiency and market viability of these products.
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A The Normal Inverse Gaussian (NIG) distribution

This paragraph recalls the parametrization of NIG distributions and some elementary properties.
The NIG distribution is a generalised hyperbolic distribution introduced by Barndorff-Nielsen [5].
Its density function is defined as follow:

f(x;α, β, δ,m) =
αδK1

(
α
√
δ2 + (x−m)2

)
π
√
δ2 + (x−m)2

eδγ+β(x−m), x ∈ R (43)

where m ∈ R is the location of the density, β ∈ R, α > |β|, and δ ∈ R the scale and K1

denotes a modified Bessel function of the second kind. We denote by NIG(α, β, δ,m) this law and
set γ =

√
α2 − β2 > 0. The moments and the characteristic function are known explicitly: for

X ∼ NIG(α, β, δ,m), we have

E(X) = m+
δβ

γ
, V ar(X) =

δα2

γ3

Skewness(X) =
3β

α
√
γδ
, Ex.Kurtosis(X) = 3

1 + 4β2/α2

δγ
.

The characteristic function is given by

E[eiuX ] = e
ium+δ

(
γ−
√

α2−(β+iu)2
)
, u ∈ R.

B CLS estimator of the drift parameters of the log spot

price process

We consider Model (ETM), and we want to estimate the mean-reversion parameter κX as well as
the parameters defining the function µX(·) given by (1).

The goal of this appendix is to compute the conditional least squares estimator of (κX , β
X
0 , α

X
1 , β

X
1 , α

X,DoW
0 , . . . , αX,DoW

6 )
and to prove the next proposition. We note αX,DoW = (αX,DoW

0 , . . . , αX,DoW
6 ) and define, for j ∈ N,

αX,DoW
j = αX,DoW

j̃
, with j̃ ∈ {0, . . . 6} such that j = j̃ mod 7.

Proposition B.1. Let Ξi∆ = (i∆, Xi∆, sin(ξi∆), cos(ξi∆),
(
1{DoW (i∆)=j}

)
j=0,...,6

) ∈ R4×{0, 1}7 for
i ∈ N with (Xt)t≥0 following the dynamics of (ETM) and ∆ > 0. We assume that

∑N−1
i=0 Ξi∆Ξ⊤

i∆

is invertible and define

η̂ = (η̂1, . . . η̂11)
⊤ =

(
N−1∑
i=0

Ξi∆Ξ⊤
i∆

)−1(N−1∑
i=0

Ξi∆X(i+1)∆

)
. (44)

If η̂2 ∈ (0, 1) ∪ (1,+∞), the solution of the minimisation problem

min
κX , β

X
0 , α

X
1 , β

X
1 , α

X,DoW

N−1∑
i=0

(
X(i+1)∆ − E[X(i+1)∆|Xi∆]

)2
(45)
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is given by 

κ̂X = − ln η̂2

β̂X
0 = η̂1

1−η̂2

α̂X
1 = η̂3(cos(ξ)−e−κ̂X∆)+η̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂X∆)2+sin2(ξ∆)

β̂X
1 = η̂4(cos(ξ)−e−κ̂∆)−η̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂∆)2+sin2(ξ∆)

α̂X,DoW
j = 1

1−e−7κ̂X∆

∑6
k=0(η̂

DoW
j+k − β̂0)e

−(6−k)κ̂X∆,

with (η̂DoW
0 , . . . , η̂DoW

6 ) = (η̂5, . . . , η̂11) and η̂DoW
j = η̂DoW

j̃
, with j̃ ∈ {0, . . . 6} such that j = j̃

mod 7.

Proof. From (3), we get

E[Xt+∆|Ft] = Xte
−κX∆ + µX(t+ ∆) − µX(t)e−κX∆

by using the martingale property of the stochastic integral and the fact that LX is centered. We
now use trigonometric identities to get

µX(t+ ∆) − e−κX∆µX(t) =β0(t+ ∆) − β0e
−κX∆t+ α1 sin(ξ(t+ ∆)) − α1e

−κX∆ sin(ξt)

+ β1 cos(ξ(t+ ∆)) − β1e
−κX∆ cos(ξt) +

6∑
j=0

αDoW
j 1{DoW (t+∆)=j}

− αDoW
j e−κX∆

1{⌊DoW (t)=j}

= η1t+ η3 sin(ξt) + η4 cos(ξt) +
6∑

j=0

ηDoW
j 1{⌊DoW (t)=j},

with 

η1 = β0(1 − e−κX∆)

η2 = e−κX∆

η3 = α1(cos(ξ∆) − e−κX∆) − β1 sin(ξ∆)

η4 = α1 sin(ξ∆) + β1(cos(ξ∆) − e−κX∆)

ηDoW
j = αDoW

j+1 − αDoW
j e−κX∆ + β0∆ with convention αDoW

7 = αDoW
0 ,

(46)

where η2 is set to have E[X(i+1)∆|Fi∆] = η⊤Ξi∆, i.e. is the regression coefficient with respect
to Xi∆. The minimization problem (45) is then equivalent to

min
η ∈ R11

N−1∑
i=0

(
X(i+1)∆ − η⊤Ξi∆

)2
.

This corresponds to a linear regression, whose solution is given by (44). When η2 ∈ (0, 1), the
system can be inverted, and the claim follows easily.

Let us note here that η̂⊤Ξi∆ can then be seen as the estimation of E[X(i+1)∆|Xi∆].
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C Simulation of Model (ETM) and associated characteristic

function

Let recall (3):
Xt+∆ − µX(t+ ∆) = e−κX∆(Xt − µX(t)) + λσT

∫ t+∆

t

e−κX(t+∆−v)dW T
v +

∫ t+∆

t

e−κX(t+∆−v)dLX
v

Tt+∆ − µT (t+ ∆) = e−κT∆(Tt − µT (t)) + σT

∫ t+∆

t

e−κT (t+∆−v)dW T
v .

(47)
The simulation algorithm is the following:

1. Simulate N1 ∼ N (0, 1) and N2 ∼ N (0, 1).

2. Simulate ZX ∼ NIG(αX , βX , δX ,− δXβX

γX ) (we work with centered NIG distributions).

3. Simulate (X̃t+∆, T̃t+∆) given (X̃t, T̃t) using the below scheme
Xt+∆ = µX(t+ ∆) + e−κX∆(Xt − µX(t)) + λσT

√
1 − e−2κX∆

2κX
N1 + e−κX∆/2ZX

Tt+∆ = µT (t+ ∆) + e−κT∆(Tt − µT (t)) + σT

√
1 − e−2κT∆

2κT
(ρN1 +

√
1 − ρ2N2),

with ρ defined as in Proposition D.1.

Note that this is the exact scheme for T , and the only discretization error on X comes from
the approximation of

∫ t+∆

t
e−κX(t+∆−v)dLX

v . When comparing the pricing by Monte-Carlo with
the formulas using the Fourier transform as in Section 5, it is then worth to use the characteristic
function associated to this discretization scheme. This avoids to have a bias between both methods.
Namely, we use for t0 < t such that t− t0 is a multiple of the discretization step ∆

ψ̂Xt(u; t0 − t) =e
iu(µX(t)+e−κX (t−t0)(Xt−µX(t))− 1

2
λ2σ2

T
1−e−2κX (t−t0)

2κX
u2

×

exp

(
∆

t−t0
∆

−1∑
ℓ=0

(
iumXe−κX(ℓ+1/2)∆ + δXγX − δX

√
(αX)2 − (βX + iue−κX(ℓ+1/2)∆)2

))
.

(48)
instead of (22).

D Proofs of the results of Section 5

D.1 Results on the dependence between X and T

From (3), we are interested in the law of (
∫ t+∆

t
e−κX(t+∆−v)dW T

v ,
∫ t+∆

t
e−κT (t+∆−v)dW T

v ) that cap-
tures the dependence between Xt+∆ and Tt+∆ given Xt and Tt.
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Proposition D.1. The random vector

(∫ t+∆

t
e−κX(t+∆−v)dW T

v∫ t+∆

t
e−κT (t+∆−v)dW T

v

)
is a centered Gaussian vector

with covariance matrix

K(∆) :=

[
k2X(∆) k2XT (∆)
k2XT (∆) k2T (∆)

]
=

[
1−e−2κX∆

2κX

1−e−(κX+κT )∆

κX+κT
1−e−(κX+κT )∆

κX+κT

1−e−2κT∆

2κT

]
.

It has the same law as (
kX(∆)ϱ
kT (∆)

)
G+

(
kX(∆)

√
1 − ϱ2

0

)
G⊥

where G and G⊥ ∼ N (0, 1) are independent and ϱ =
k2XT (∆)

kX(∆)kT (∆)
∈ [0, 1].

Proof. The Brownian motion is a Gaussian process, which gives the Gaussian property. We use
then the Itô isometry to get the covariance matrix.

From Proposition D.1, we can quickly get the following corollary.

Corollary D.1. Conditionally on (
∫ t+∆

t
e−κT (t+∆−v)dW T

v ), (
∫ t+∆

t
e−κX(t+∆−v)dW T

v ) follows a Gaus-
sian distribution with mean

E
(∫ t+∆

t

e−κX(t+∆−v)dW T
v

∣∣∣ ∫ t+∆

t

e−κT (t+∆−v)dW T
v

)
=

2κT
1 − e−2κT∆

1 − e−(κX+κT )∆

κX + κT

∫ t+∆

t

e−κT (t+∆−v)dW T
v

and variance
1 − e−2κX∆

2κX
−
(1 − e−(κX+κT )∆

κX + κT

)2 2κT
(1 − e−2κT∆)

.

D.2 Identities on the normal distribution

We note Φ the cumulative distribution function of the normal distribution N (0, 1).

Lemma D.1. Let G ∼ N (0, 1), a ∈ R, b > 0. We have

E[(a+ bG)+] = aΦ(a/b) +
b√
2π
e−a2/(2b2).

Proof. We have E[(a+ bG)+] =
∫∞
−a/b

(a+ bx) e
−x2/2
√
2π

dx = aΦ(a/b) + b√
2π
e−a2/(2b2).

Lemma D.2. Let a ∈ R, b ∈ R and G ∼ N (0, 1). We have

E[bG(a+ bG)+] = b2Φ(a/|b|) (49)

Proof. It is sufficient to prove the result for b > 0 since bG
law
= |b|G. Let d = a/b. We have

E[bG(a+ bG)+] = b2E[G(d+G)+] and

E[G(d+G)+] =

∫ ∞

−d

x(d+ x)
e−

x2

2

√
2π
dx = Φ(d).
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Lemma D.3. Let a ∈ R, b > 0 and G ∼ N (0, 1). We have

E[((a+ bG)+)2] = (a2 + b2)Φ(a/b) +
ab√
2π
e−

a2

2b2 .

Proof. Let d = a/b. We have E[((a+ bG)+)2] = b2E[((d+G)+)2] and

E[((d+G)+)2] =

∫ ∞

−d

(d2 + 2dx+ x2)
e−

x2

2

√
2π
dx = d2Φ(d) +

2d√
2π
e−

d2

2 − d√
2π
e−

d2

2 + Φ(d).

Lemma D.4. Let a ∈ R, b ∈ R and G ∼ N (0, 1). We have

E[bG((a+ bG)+)2] = |b|3
(√ 2

π
e−

1
2
( a
|b| )

2

+ 2
a

|b|
Φ(

a

|b|
)
)

(50)

Proof. Since bG has the same law as |b|G, it is sufficient to consider the case b > 0. We have
E[bG((a+ bG)+)2] = b3E[G((d+G)+)2] with d = a

b
. We then get by integration by parts and then

Lemma D.1

E[G((d+G)+)2] =

∫ ∞

−d

(d+ x)2x
e−

x2

2

√
2π
dx = 2

∫ ∞

−d

(d+ x)
e−

x2

2

√
2π
dx

= 2E[(d+G)+] =

√
2

π
e−

d2

2 + 2dΦ(d).

D.3 Computations with Fourier transform

In the following section, we will develop some conditional expectations for different derivatives.
However, some derivatives do not admit explicit formulas and were computed through inverse
Fourier methods.

We first use Carr Madan formula [24, Equations (5) and (6)] to compute E((St+∆ − S̄)+ | Ft)
for t ≥ 0,∆ > 0:

E((St+∆ − S̄)+ | Ft) =
exp(−αX̄)

π

∫ ∞

0

e−iX̄v ψXt(v − (α + 1)i)

α2 + α− v2 + i(2α + 1)v
dv, (51)

where ψ corresponds to the characteristic function as in Equation (22), α > 0 and X̄ := ln(S̄).
Note that from (22), we have E[S1+α

t+∆|Ft] <∞ a.s. and is equal to ψXt(−(α+ 1)i; ∆). In practice,
we take α = 0.5 for (51) as well as for Proposition D.2 below.

Second, we apply Gil-Pelaez [32] inversion formula to compute P
(
St+∆ ≥ S̄ | Ft

)
.

Pλ=0

(
St+∆ ≥ S̄ | Ft

)
=

1

2
+

1

π

∫ ∞

0

R
(e−ivX̄ψXt(v)

iv

)
dv (52)

where R denotes the real part, ψ the characteristic function as in Equation (22) and X̄ := ln(S̄).

Third, we leverage again Carr Madan [24] approach to compute E(((St+∆ − S̄)+)2 | Ft).
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Proposition D.2. Under Model (ETM), we have

E(((St+∆ − S̄)+)2 | Ft)

=
exp(−αX̄)

π

∫ ∞

0

e−iX̄vψ(v − (α + 2)i; ∆)
( 1

α + iv
− 2

1

α + 1 + iv
+

1

α + 2 + iv

)
dv

(53)

where ψ corresponds is the characteristic function as in Equation (22), α > 0 and X̄ := ln(S̄).

Proof. We prove the result for a random variable Y with distribution µ on R such that E[e(2+α)Y ] <
∞. We define

C(k) = E
[(

(eY − ek)+
)2]

=

∫ ∞

k

(ey − ek)2µ(dy)

and c(k) = eαkC(k). The function c is nonnegative and integrable on R since∫
R
c(k)dk ≤

∫
R
eαkE[e2Y 1Y >k]dk =

E[e(2+α)Y ]

α
<∞,

by Fubini’s theorem. Following Carr Madan [24], as c is integrable, we can define its inverse Fourier
transform ψ̃ : C −→ C such that:

ψ̃(v) =

∫ ∞

−∞
eivkc(k)dk

=

∫ ∞

−∞
eivk

∫ ∞

k

e−αk(ek − ey)2µ(dy)dk

=

∫ ∞

−∞

( 1

α + iv
− 2

1

α + 1 + iv
+

1

α + 2 + iv

)
e(α+2+iv)yµ(dy)

= ψ(v − (α + 2)i)
( 1

α + iv
− 2

1

α + 1 + iv
+

1

α + 2 + iv

)
,

(54)

by using Fubini’s theorem. We have |ψ̃(v)| ≤ E[e(2+α)Y ] 2
|α+iv||α+1+iv||α+2+iv| , and thus ˜ψ(v) is inte-

grable on R and bounded. We get then the claim by Fourier inversion and using that E[S2+α
t+∆|Ft] =

ψXt(−(α + 2)i) <∞ a.s.

D.4 Results to calculate the average payoffs of derivatives

D.4.1 Future

Proposition D.3. Under Model (ETM), we have

E(St+∆Tt+∆ | Ft) = exp

(
µX(t+ ∆) + e−κX∆(Xt − µX(t))

)
φ(−i; ∆)×(

(µT (t+ ∆) + e−κT∆(Tt − µT (t)))e
1
2
kX(∆)2λ2σ2

T + λσ2
Tk

2
XT (∆)e

1
2
λ2σ2

T kX(∆)2

)
where φ is the characteristic function defined in Equation (16) and kT (·) , kX(·) and kXT (·) are
as in Equation (30).
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Proof. From (3), we get

E(eXt+∆Tt+∆ | Ft) = E

(
exp

(
µX(t+ ∆) + e−κX∆(Xt+∆ − µX(t+ ∆)) + λσT

∫ t+∆

t

e−κX(t+∆−u)dW T
u

+

∫ t+∆

t

e−κX(t+∆−u)dLX
u

)
Tt+∆

∣∣∣∣∣Ft

)

= exp

(
µX(t+ ∆) + e−κX∆(Xt − µX(t))

)
E(e

∫ t+∆
t e−κX (t+∆−u)dLX

u )×

E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u Tt+∆

∣∣∣∣∣Tt
)
,

since
∫ t+∆

t
e−κX(t+∆−u)dLX

u is independent of Ft and Tt. The first term is deterministic, the second
term is equal to φ(−i; ∆) by (15). We use (3) to write as follows the third term:

E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u Tt+∆

∣∣∣∣∣Tt
)

= (µT (t+ ∆) + e−κT∆(Tt − µT (t)))E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u

)

+ σTE

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u

∫ t+∆

t

e−κT (t+∆−u)dW T
u

)
.

From Proposition D.1, we get E
(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u

)
= e

1
2
kX(∆)2λ2σ2

T and

E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u

∫ t+∆

t

e−κT (t+∆−u)dW T
u

)
= E

(
e
λσT (

k2XT (∆)

kT (∆)
G+

√
kX (∆)2kT (∆)2−k4

XT
(∆)

kT (∆)
G⊥)

kT (∆)G

)

= E

(
e
λσT

√
kX (∆)2kT (∆)2−k4

XT
(∆)

kT (∆)
G⊥

)
kT (∆)E

(
Ge

λσT
k2XT (∆)

kT (∆)
G

)
.

Since E[exG] = ex
2/2 and E[GexG] = xex

2/2, we get the claim.

D.4.2 Swap

Proposition D.4. Under Model (ETM) and for ∆ > 0 , we have

E((St+∆ − S̄)(T̄ − Tt+∆) | Ft) = T̄ψXt(−i; ∆) −F(t, t+ ∆) − S̄T̄ + S̄(µT (t) + e−κT∆(Tt − µT (t)))

where ψ is the characteristic function defined in Equation (22), F(t, t + ∆) as in Equation (29)
and kX(·) is as in Equation (30).

Proof. Let first develop the formula:

E((St+∆ − S̄)(T̄ − Tt+∆) | Ft) = T̄E(St+∆ | Ft) − E(St+∆Tt+∆ | Ft) − S̄T̄ + S̄E(Tt+∆ | Ft)
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We have E(St+∆Tt+∆ | Ft) from Equation (29) and Proposition D.3. The first term is equal to:

T̄E(St+∆ | Ft) = T̄ψXt(−i; ∆)

and, by using the independence between LX and W T , we get the forth term:

S̄E(Tt+∆ | Ft) = S̄(µT (t+ ∆) + e−κT∆(Tt − µT (t))).

D.4.3 Quanto

Proposition D.5. Under Model (ETM) and for ∆ > 0 , we have

E[(T̄ − Tt+∆)+ | Ft] =
(
T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t)

)
Φ

(
T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

)
+
σTkT (∆)√

2π
exp

(
− 1

2

( T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

)2)
Proof. Under Model (ETM), the distribution of T̄−Tt+∆ given Ft is N (T̄−µT (t+∆)−e−κT∆(Tt−
µT (t)), σ2

TkT (∆)2). We then apply Lemma D.1 to obtain the result.

Proposition D.6. Under Model (ETM) and for ∆ > 0, we can write the following Taylor expan-
sion on λ:

E((St+∆ − S̄)+(T̄ − Tt+∆)+ | Ft) = Eλ=0((St+∆ − S̄)+ | Ft)×((
T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

)
×

Φ
( T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

)
+
σTkT (∆)√

2π
exp

(
− 1

2

( T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

)2))
−
(
Eλ=0((St+∆ − S̄)+ | Ft) + S̄Pλ=0

(
St+∆ ≥ S̄ | Ft

) )
×

σ2
TkXT (∆)2Φ

( T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

))
λ+ o(λ)

where kT (·) , kX(·) and kXT (·) are as in Equation (30).

Proof. Under Model (ETM) and for ∆ > 0 , we want to compute the first order Taylor expansion
of E((St+∆ − S̄)+(T̄ − Tt+∆)+ | Ft). For λ = 0,

E((St+∆ − S̄)+(T̄ − Tt+∆)+ | Ft) = E((St+∆ − S̄)+ | Ft)E((T̄ − Tt+∆)+ | Ft)

We have E((T̄ − Tt+∆)+ | Ft) from Proposition D.5 and E((St+∆ − S̄)+ | Ft) from Equation (51).
Let now consider the derivative of E((St+∆ − S̄)+(T̄ − Tt+∆)+ | Ft) in λ = 0:

d

dλ

∣∣∣∣
λ=0

E((St+∆ − S̄)+(T̄ − Tt+∆)+ | Ft) = Eλ=0

(
1St+∆≥S̄σT

∫ t+∆

t

e−κX(t+∆−s)dWse
Xt+∆(T̄ − Tt+∆)+ | Ft

)
= Eλ=0

(
1St+∆≥S̄e

Xt+∆ | Ft

)
×

Eλ=0

(
σT

∫ t+∆

t

e−κX(t+∆−s)dWs(T̄ − Tt+∆)+ | Ft

)
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Let consider the first term,

Eλ=0

(
1St+∆≥S̄St+∆ | Ft

)
= Eλ=0((St+∆ − S̄)+ | Ft) + S̄Pλ=0

(
St+∆ ≥ S̄ | Ft

)
The first element is computed with Equation (51) and the second with Equation (52).

We can now develop the second term by using Proposition D.1 and (3):

E
(
σT

∫ t+∆

t

e−κX(t+∆−s)dW T
s (T̄ − Tt+∆)+ | Ft

)
=
kXT (∆)2

kT (∆)2
E
(
σT

∫ t+∆

t

e−κT (t+∆−s)dW T
s (T̄ − Tt+∆)+ | Ft

)
=
kXT (∆)2

kT (∆)2
E

(
σT

∫ t+∆

t

e−κT (t+∆−s)dW T
s

×
(
T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t)) − σT

∫ t+∆

t

e−κT (t+∆−s)dW T
s

)+
∣∣∣∣∣Ft

)
.

(55)
Now we apply Lemma D.2 with a = T̄ − µT (t+ ∆)− e−κT∆(Tt − µT (t)) and b = −σTkT (∆) to get

E
(
σT

∫ t+∆

t

e−κT (t+∆−s)dW T
s (T̄ − Tt+∆)+

∣∣∣∣Ft

)
= −σ2

TkT (∆)2Φ

(
T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

)
(56)

D.5 Results for static hedging portfolios

D.5.1 Results for E-HDD

Proposition D.7. Under Model (ETM), we have

E[((T̄ − Tt+∆)+)2 | Ft] =
(

(T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t)))2 + σ2
TkT (∆)2

)
×

Φ
( T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

)
+

(T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t)))σTkT (∆)√
2π

×

exp
(
− 1

2

( T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

)2)
.

Proof. Since T̄ − Tt+∆ follows a Gaussian distribution given Ft, we have an explicit formula by
using Lemma D.3.

Proposition D.8. Under Model (ETM), we have

E(eXt+∆1Tt+∆≤u | Ft) = ψXt(−i; ∆)Φ
( ũ(Tt)

kT (∆)
− λσT

k2XT (∆)

kT (∆)

)
.
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E(eXt+∆1u≤Tt+∆
| Ft) = ψXt(−i; ∆)Φ

(
λσT

k2XT (∆)

kT (∆)
− ũ(Tt)

kT (∆)

)
.

where ψ is the characteristic function defined in Equation (22), kT (·) , kX(·) and kXT (·) are as in

Equation (30) and ũ(Tt) = u−(µT (t+∆)+e−κT∆(Tt−µT (t)))
σT

.

Proof. From (3), we can write

E(eXt+∆1Tt+∆≤u | Ft) = exp

(
µX(t) + e−κX∆(Xt − µX(t))

)
E(e

∫ t+∆
t e−κX (t+∆−u)dLX

u )×

E

(
eλσT

∫ t+∆
t e−κX (t+∆−u)dWT

u 1Tt+∆≤u

∣∣∣∣∣Ft

)

The second term is φ(−i; ∆), see (15). We now consider the last term:

E

(
eλσT

∫ t+∆
t e−κX (t+∆−s)dWT

s 1Tt+∆≤u

∣∣∣∣∣Ft

)
= E

(
eλσT

∫ t+∆
t e−κX (t+∆−s)dWT

s 1∫ t+∆
t e−κX (t+∆−s)dWT

s ≤ũ(Tt)

∣∣∣∣∣Ft

)

where ũ(Tt) = u−(µT (t+∆)+e−κT∆(Tt−µT (t)))
σT

. For ũ ∈ R and G,G⊥ ∼ N (0, 1) independent, we have:

E

(
e
λσT (

k2XT (∆)

kT (∆)
G+

√
kX (∆)2kT (∆)2−k2

XT
(∆)

kT (∆)
G⊥)

1kT (∆)G≤ũ

)
= e

λ2σ2
T

2

kX (∆)2kT (∆)2−k4XT (∆)

k2
T
(∆) ×

e
(λσT )2

2
(
k2XT (∆)

kT (∆)
)2

Φ
( ũ

kT (∆)
− λσT

k2XT (∆)

kT (∆)

)
,

because E[exG1G≤a] = e
x2

2 Φ(a − x) for x, a ∈ R. Since ũ(Tt) is Ft-measurable and the variables∫ t+∆

t
e−κX(t+∆−u)dW T

u and
∫ t+∆

t
e−κT (t+∆−u)dW T

u are independent of Ft, we get the claim by ap-
plying Proposition D.1.

Proposition D.9. Under Model (ETM), we have

E(e2Xt+∆1Tt+∆≤u | Ft) = exp

(
2µX(t+ ∆) + 2e−κX∆(Xt − µX(t))

)
×

exp

(
2mX 1 − e−κX∆

κX
+ δXγX∆ − δX

∫ ∆

0

√
(αX)2 − (βX + 2e−κX(∆−v))2dv

)
×

e4
λ2σ2

T
2

kX(∆)2Φ
( ũ(Tt)

kT (∆)
− 2λσT

k2XT (∆)

kT (∆)

)
.

where kT (·) , kX(·) and kXT (·) are as in Equation (30) and ũ(Tt) = u−(µT (t+∆)+e−κT∆(Tt−µT (t)))
σT

.
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Proof. From (3), we can write

E(e2Xt+∆1Tt+∆≤u | Ft) = exp

(
2µX(t+ ∆) + 2e−κX∆(Xt − µX(t))

)
E(e2

∫ t+∆
t e−κX (t+∆−u)dLX

u )×

E

(
e2λσT

∫ t+∆
t e−κX (t+∆−u)dWT

u 1Tt+∆≤u

∣∣∣∣∣Ft

)

The second term is φ(−i; ∆) by (15), and the last one is

E

(
e2λσT

∫ t+∆
t e−κX (t+∆−s)dWT

s 1Tt+∆≤u

∣∣∣∣∣Ft

)
= E

(
e2λσT

∫ t+∆
t e−κX (t+∆−s)dWT

s 1∫ t+∆
t e−κX (t+∆−s)dWT

s ≤ũ(Tt)

∣∣∣∣∣Ft

)

where ũ(Tt) = u−(µT (t+∆)+e−2κT∆(Tt−µT (t)))
σT

. We now calculate for ũ ∈ R, and G,G⊥ ∼ N (0, 1)
independent:

E

(
e
2λσT (

k2XT (∆)

kT (∆)
G+

√
kX (∆)2kT (∆)2−k2

XT
(∆)

kT (∆)
G⊥)

1kT (∆)G≤ũ

)
= e

4λ2σ2
T

2

kX (∆)2kT (∆)2−k4XT (∆)

k2
T
(∆) ×

e
(2λσT )2

2
(
k2XT (∆)

kT (∆)
)2

Φ

(
ũ

kT (∆)
− 2λσT

k2XT (∆)

kT (∆)

)
.

Since ũ(Tt) is Ft-measurable and the variables
∫ t+∆

t
e−κX(t+∆−u)dW T

u and
∫ t+∆

t
e−κT (t+∆−u)dW T

u

are independent of Ft, we get the claim by applying Proposition D.1.

Proposition D.10. Under Model (ETM), we have

E[St+∆((T̄ − Tt+∆)+)2|Ft] = 2

∫ T̄

T 0

(T̄ − u)E[St+∆1u≤Tt+∆
|Ft]du,

with T0 = −∞.

We write this result with T 0, because for numerical purposes we use T 0 = −273.15 or T 0 = −100.
Note that E[St+∆1u≤Tt+∆

|Ft] can be calculated by using Proposition D.8.

Proof. We have

((T̄ − Tt+∆)+)2 =

∫ T̄

T 0

∫ T̄

T 0

1Tt+∆≤u1Tt+∆≤vdudv

= 2

∫ T̄

T 0

∫ T̄

T 0

1Tt+∆≤u1Tt+∆≤v1u≤vdudv = 2

∫ T̄

T 0

(T̄ − u)1Tt+∆≤udu,

and therefore

E[St+∆((T̄ − Tt+∆)+)2|Ft] = 2

∫ T̄

T 0

(T̄ − u)E[St+∆1Tt+∆≤u|Ft]du.
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D.5.2 Results for two-sided quantos

Proposition D.11. Under Model (ETM), we have the following Taylor decomposition:

E[(St+∆ − S̄)+((T̄ − Tt+∆)+)2|Ft] = Eλ=0[(St+∆ − S̄)+|Ft]E[((T̄ − Tt+∆)+)2|Ft]

− λ
(
Eλ=0[(St+∆ − S̄)+|Ft] + S̄Pλ=0[(St+∆ − S̄)+|Ft]

)
×

σ3
TkT (∆)k2XT (∆)

(√ 2

π
e
− 1

2
(
T̄−µ(t+∆)−e−κT ∆(Tt−µ(t))

σT kT (∆)
)2

+ 2
T̄ − µ(t+ ∆) − e−κT ∆(Tt − µ(t))

σTkT (∆)
×

Φ
( T̄ − µ(t+ ∆) − e−κT ∆(Tt − µ(t))

σTkT (∆)

))
+ o(λ)

where kT (·), kXT (·) are as in Equation (30).

Note that Eλ=0[(St+∆ − S̄)+|Ft] and Pλ=0

(
St+∆ ≥ S̄ | Ft

)
are computed through Equation (51)

and (52) respectively, and that Eλ=0[((T̄−Tt+∆)+)2|Ft] can be calculated by using Proposition D.7.

Proof. As for E[(St+∆ − S̄)+] we will perform a Taylor decomposition of E[(St+∆ − S̄)+((T̄ −
Tt+∆)+)2|Ft]. Let consider the 0 order term,

Eλ=0[(St+∆ − S̄)+((T̄ − Tt+∆)+)2|Ft] = Eλ=0[(St+∆ − S̄)+|Ft]E[((T̄ − Tt+∆)+)2|Ft].

Now, let us compute the derivative at λ = 0:

d

dλ

∣∣∣∣
λ=0

E
[
(St+∆ − S̄)+((T̄ − Tt+∆)+)2

∣∣∣∣Ft

]
= E

[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v St+∆1St+∆≥S̄((T̄ − Tt+∆)+)2

∣∣∣∣Ft

]
= Eλ=0

(
St+∆1St+∆≥S̄ | Ft

)
E
[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v ((T̄ − Tt+∆)+)2

∣∣∣∣Ft

]
,

and Eλ=0[St+∆1St+∆≥S̄|Ft] = Eλ=0[(St+∆ − S̄)+|Ft] + S̄Pλ=0[(St+∆ − S̄)+|Ft].
By Proposition D.1, we have

E[σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v ((T̄−Tt+∆)+)2|Ft] =

k2XT (∆)

k2T (∆)
E
[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v ((T̄ − Tt+∆)+)2

∣∣Ft

]
.

We can now use Lemma D.4 with a = T̄ − µ(t+ ∆) − e−κT∆(Tt − µ(t)) and b = −σTkT (∆) to get

E
[
σT

∫ t+∆

t

e−κT (t+∆−v)dW T
v ((T̄ − Tt+∆)+)2

∣∣∣∣Ft

]
= −σ3

TkT (∆)3
(√ 2

π
e
− 1

2
(
T̄−µ(t+∆)−e−κT∆(Tt−µ(t))

σT kT (∆)
)2

+ 2
T̄ − µ(t+ ∆) − e−κT∆(Tt − µ(t))

σTkT (∆)
×

Φ
( T̄ − µ(t+ ∆) − e−κT∆(Tt − µ(t))

σTkT (∆)

))
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Proposition D.12. Under Model (ETM), we have the following Taylor expansion:

E[((St+∆ − S̄)+)2(T̄ − Tt+∆)+|Ft] = Eλ=0[((St+∆ − S̄)+)2|Ft]E[(T̄ − Tt+∆)+|Ft]

− 2
(
Eλ=0[((St+∆ − S̄)+)2|Ft] + S̄Eλ=0[(St+∆ − S̄)+|Ft]

)
×

σ2
TkXT (∆)2Φ

( T̄ − µT (t+ ∆) − e−κT∆(Tt − µT (t))

σTkT (∆)

)
λ+ o(λ)

where kT (·) and kXT (·) are as in Equation (30).

Note that Eλ=0[(St+∆ − S̄)+|Ft] and Eλ=0[((St+∆ − S̄)+)2|Ft] can be computed through Equa-
tion (51) and (53) respectively, Eλ=0[(T̄ − Tt+∆)+|Ft] is given by Proposition D.5 and Eλ=0[((T̄ −
Tt+∆)+)2|Ft] can be calculated by using Proposition D.7.

Proof. For λ = 0, we have

Eλ=0[((St+∆ − S̄)+)2(T̄ − Tt+∆)+|Ft] = Eλ=0[((St+∆ − S̄)+)2|Ft]Eλ=0[(T̄ − Tt+∆)+|Ft].

Now, let us compute the derivative in λ = 0:

d

dλ

∣∣∣∣
λ=0

E[((St+∆ − S̄)+)2(T̄ − Tt+∆)+|Ft] = Eλ=0

[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v ×

2St+∆(St+∆ − S̄)+(T̄ − Tt+∆)+
∣∣∣∣Ft

]
= 2Eλ=0[St+∆(St+∆ − S̄)+|Ft]×

E
[
σT

∫ t+∆

t

e−κX(t+∆−v)dW T
v (T̄ − Tt+∆)+

∣∣Ft

]
.

The calculation of E[σT
∫ t+∆

t
e−κX(t+∆−v)dW T

v (T̄ − Tt+∆)+|Ft] has already been done in Equa-
tions (55) and (56).
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