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Abstract 

 

This study examines the perceptual mechanisms involved in the processing of words without 

vowels, a lexical form that is common in Tashlhiyt but highly dispreferred cross-linguistically. In 

Experiment 1, native and naive (English-speaking) listeners completed a paired discrimination 

task where the middle segment of the different-pair contained either a different vowel (e.g., fan 

vs. fin), consonant (e.g., ʁbr vs. ʁdr), or vowelless vs. voweled contrast (e.g., tlf vs. tuf). 

Experiment 2 was a wordlikeness ratings task of Tashlhiyt-like tri-segmental nonwords 

constructed to vary in the sonority of the middle segment. We find that vowelless words 

containing different types of sonority profiles are generally discriminable by both native and 

naive listeners. This can be explained by the phonetic and acoustic properties of vowelless 

words: Since Tashlhiyt exhibits low consonant-to-consonant coarticulation, the presence of 

robust consonantal cues in the speech signal means that the internal phonological structure of 

vowelless words is recoverable by listeners. Moreover, speech style variation provides further 

evidence that the phonetic implementation of vowelless words makes them perceptually stable. 

At the same time, wordlikeness ratings of nonwords indicate that listeners rely on their native-

language experience to process the wellformedness of new words: Tashlhiyt listeners accept 

sonorant- and obstruent-centered vowelless words equally; meanwhile, English listeners’ 

preferences increase with higher sonority values of the word center. Thus, our findings provide 

an overview of the low-level acoustic-phonetic and higher-level phonological processing 

mechanisms involved in the perception of vowelless words. Our results can inform 

understandings of the relationship between language-specific phonetic variation and phonotactic 

patterns, as well as how auditory processing mechanisms shape phonological typology. 
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1. Introduction 

 

Identifying the forces that shape the form of words across languages can inform phonological 

theory. One fundamental observation about phonology is that certain sequences of speech sounds 

are favored, and others dispreferred, in the forms of words and syllables found cross-

linguistically. For instance, across languages, there is an overwhelming preference for words to 

contain vowels. However, in some languages, such as Tashlhiyt, words can contain sequences of 

only consonants. Why are vowelless words so cross-linguistically uncommon? Understanding 

this asymmetry in word shapes can shed light on some of the fundamental questions about how 

sound patterns emerge and evolve in linguistic systems. Tashlhiyt is even more unique in that not 

only are vowelless words permitted but also words with sequences of obstruents are allowed and 

are common within the language. There is a body of work investigating the articulatory 

properties of vowelless words in Tashlhiyt, as well as in other languages where they are 
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permitted, some with a focus on understanding what makes them phonologically stable 

(Ridouane, 2008; Ridouane & Fougeron, 2011; Fougeron & Ridouane, 2008; Pouplier & Beňuš, 

2011). Yet, another theoretical approach is that auditory factors can also provide insight into the 

stability of a phonological system (Ohala, 1993; Beddor, 2009; Harrington et al., 2019). For 

instance, some have argued that observed cross-linguistic phonological tendencies are the result 

of auditory properties of the speech signal or perceptual processing mechanisms (Ohala, 1981; 

Blevins, 2004). A focus on the perception of vowelless words can provide insight into how they 

emerge and are maintained in a phonological system.    

The focus of the present study is to investigate the perception of words without vowels in 

Tashlhiyt. We asked whether there are clues in the perceptual mechanisms involved in the 

processing of vowelless words that can speak to their rare typological distribution. To this end, 

we examine lexical discrimination performance and nonword acceptability judgements of tri-

segmental vowelless words containing different sonority profiles by native Tashlhiyt and non-

native (English-speaking) listeners. Across these tasks, we also manipulated speaking style (clear 

vs. casual speech) to explore the effect of systematic hypo- and hyper-articulatory variation on 

the perceptual patterns. 

 

1.1. Tashlhiyt and vowelless words 

 

Tashlhiyt (iso: [shi]) is an Amazigh (Berber; Afroasiatic) language spoken in southern Morocco 

with an estimated 5 million speakers. The phoneme inventory of Tashlhiyt is consonant-heavy: 

there are 34 consonants (/b, m, f, t, tˤ, d, dˤ, n, r, rˤ, s, sˤ, z, zˤ, l, lˤ, ʃ, ʃˤ, ʒ, ʒˤ, j, k, kʷ, g, gʷ, w, q, 

qʷ, χ, χʷ, ʁ, ʁʷ, ħ, ʕ, h/), which contrast as singleton and geminate in all word positions, and three 

vowels (/a, i, u/) (Ridouane, 2014). Tashlhiyt permits highly complex syllable structures, which 

are more likely to be found in languages with higher consonant-to-vowel inventories 

(Maddieson, 2013; Easterday, 2019). Phonotactics in Tashlhiyt are extremely permissive: words 

containing consonant sequences that challenge cross-linguistic sonority tendencies are common, 

for instance, word-initial sequences containing plateau /kti/ or falling /rku/ sonority profiles (Dell 

& Elmedlaoui, 2002; Ridouane et al., 2014; Lahrouchi, 2010, 2018; Jebbour, 1996, 1999; 

Boukous, 1987, 2009). Another cross-linguistically rare pattern in Tashlhiyt is the presence of 

“vowelless” words containing only consonants and no lexical vowels, e.g., /tftktstt/ ‘you sprained 

it’ (Dell & Elmedlouai, 2002; Ridouane, 2008; though other varieties of Amazigh do display 

schwa epenthesis).  

A very robust cross-language phonological tendency is for words to contain vowels. This 

is consistent with phonotactic sequencing accounts that syllables containing rises in sonority 

from periphery to nucleus are preferred (Clements, 1990; Zec, 1995). Yet, it has also been shown 

that constraints on sonority are language-specific and vowels-as-nuclei is not an absolute; for 

instance, some languages allow consonants to be syllabic. Even within the languages that allow 

consonant nuclei, sonorant consonants are the most commonly permitted syllabic segment (Bell, 

1970), and in many languages syllabic consonants are restricted to some environments (e.g., in 

unstressed syllables in German and English, e.g., bottle, button). Allowance of consonant nuclei 

in stressed positions (e.g., monosyllabic words) is less common, but can be found in languages 

such as Slovak (syllabic liquids) and Yoruba (syllabic nasals). The most cross-linguistically rare 

phenomenon is that of syllabic obstruents.  

Tashlhiyt allows any segment to occupy the syllable nucleus (Dell & Elmedlaoui, 1985, 

2002; Bensoukas, 2001; Ridouane, 2008; Ridouane, 2014; Lahrouchi, 2018). Moreover, 
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vowelless words are frequent in Tashlhiyt; for instance, Ridouane (2008: 328) reports that in a 

collection of texts, 22% of the lexical items are vowelless words and around 8% of words 

contain voiceless obstruents only. Lahrouchi (2010) compiled a list of 222 bi- and tri-segmental 

Tashlhiyt verbs and categorized them into classes based on sonority profile of C1-C2 (note that a 

focus on word-onset sequences is consistent with work showing that the coordination of C1 and 

C2 in vowelless words is more constrained than that for C2 and C3, Pouplier & Beňuš, 2011): 

about 20% of the verbs in his database are vowelless words containing an initial sonorant-

obstruent sequence (rising sonority, e.g., krz ‘plow’), 17% contain an initial cluster of obstruents 

(plateauing sonority; e.g., gzm ‘cut’), 15% contain an initial obstruent-sonorant sequence (falling 

sonority; e.g., rgl ‘knock’). 33% contain vowels (e.g. knu ‘lean’) and just 2% contain plateauing 

sonority with initial sonorants (SSO or SSS). Thus, within tri-segmental vowelless words in 

Tashlhiyt, rising (OSC), falling (SOC), and plateauing (OOC) sonority profiles are all frequent 

forms. (Note that the morphology of the language is sensitive to the syllable structure of 

consonant-only verbs. A case in point is imperfective internal vs. external gemination, as in the 

monosyllabic verb krz/kkrz 'plow' and disyllabic verb mgr/mggr 'harvest'. (Dell & Elmedlaoui, 

1985; Jebbour, 1996; Bensoukas, 2001).) 

There is also a large body of work investigating the articulatory and acoustic properties of 

vowelless words in Tashlhiyt. Ridouane (2008; Ridouane et al., 2014) uses phonetic and 

phonological evidence to demonstrate that consonant sequences in Tashlhiyt are heterosyllabic 

and do not form clusters. In a “complex cluster” language, like English, consonant sequences 

form temporally overlapping, coarticulated gestures; for instance, in English, the duration of a 

consonant compresses when onsets contain more than one segment (e.g., the /k/ in scab is shorter 

than that in cab, Marin & Pouplier, 2010). However, in Tashlhiyt, as the number of consonants 

within a word increases, the segment durations remain stable indicating non-overlapping 

coordination of segments (Ridouane et al., 2014; Hermes et al., 2011; Hermes et al., 2017). 

Tashlhiyt listeners also treat consonant sequences heterosyllabic: while participating in a game 

where they heard a lexical item containing an initial consonant sequence and then had to repeat 

back only the “first part”, Tashlhiyt speakers responded overwhelmingly with simpleton onsets, 

indicating that they parse consonant sequences into multiple independent syllables (Ridouane et 

al., 2014).  

Furthermore, Tashlhiyt has been shown to have “wide” timing of sequential consonants 

(Fougeron & Ridouane, 2008). In fact, in many languages that allow words with highly complex 

consonant sequences, the gestures for sequential consonants are timed far apart from one another 

(Gafos, 2002 for Moroccan Arabic; Pouplier & Beňuš, 2011 for Slovak; Tilsen et al., 2012 for 

Hebrew). This “non-coarticulating consonants” property also appears to be a common feature of 

languages that permit vowelless words (Pouplier & Beňuš, 2011). This often results in an 

intrusive acoustic element between consonants, ranging in quality from a vocoid to a full schwa-

like element (Kirby, 2014; Hall 2006). In Tashlhiyt, the vocoid or schwa does not increase the 

length of the sequence when it occurs (Ridouane & Fougeron, 2011), compared to epenthesis in 

other languages where the addition of a schwa increases word duration (Davidson & Roon, 2008; 

Hall, 2006). In Tashlhiyt, the presence of these variable vocoid elements in consonant sequences 

is argued to reflect a transitional acoustic signal due to production of consonants that are 

coordinated to be timed far apart from one another, rather than an epenthetic vowel (Dell & 

Elmedlaoui, 2002; Ridouane, 2008; though, cf, Coleman, 2001). 
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1.2. Perceptual explanations for the rarity of vowelless words 

 

The existence, and prevalence, of vowelless words in Tashlhiyt presents an opportunity to 

address a fundamental puzzle in phonological theory: why are vowelless words so rare across 

languages of the world? In the current study, we focus on possible perceptual explanations. Some 

argue that cross-linguistic phonological tendencies can be explained by perceptual processing 

mechanisms since many common phonological patterns have perceptual motivations (Ohala, 

1993; Blevins, 2004; Beddor, 2009; Harrington et al., 2019). Perception biases could be at play 

in the cross-linguistic preference for CV structure: it is harder to identify a consonant when it 

appears in a cluster (e.g., in English, listeners recognize the “b” in band faster than the “b” in 

brand or bland, Cutler et al., 1987); and a speech stream containing CV sequences will contain 

maximally distinct acoustic modulations which are more salient, and thus recoverable, to a 

listener than a speech stream containing only consonants or vowels (Ohala & Kawasaki-

Fukumori, 1997).  

Our approach follows theoretical frameworks exploring how the mechanisms of human 

speech processing can be a source of understanding the stability of sound patterns and how they 

emerge and evolve over time (Ohala, 1993; Blevins, 2004; Harrington et al., 2019). By 

investigating perceptual patterns of synchronic speech variants using laboratory methods, 

phonological forms that are harder for listeners to recover can be identified. As outlined above, 

there is much work examining the gestural dynamics of vowelless words in Tashlhiyt (e.g., 

Ridouane et al., 2014). Yet, investigating the perception of vowelless words is comparatively 

under-researched. We ask whether examining the perception of vowelless words in Tashlhiyt can 

provide clues as to why they are so cross-linguistically rare, and also perhaps, the phonetic pre-

conditions that permit them to be maintained in Tashlhiyt.  

One of the auditory mechanisms that might make vowelless words susceptible to 

mistransmission is that consonantal cues can be obscured when surrounded by other consonants 

(Wright, 1996, 2004). Perceptual cues vary based on the neighboring sounds. This means that the 

“same sound” can be more or less perceptually recoverable depending on the context in which it 

occurs. For instance, stops generate robust formant transitions on adjacent vowels, due to the 

large amount of movement from a closed to an open oral constriction. Formant transitions are an 

acoustic cue that listeners rely on to identify both the place and voicing of plosives (Liberman et 

al., 1954; Benkí, 2001). A stop produced before another stop will result in fewer and less robust 

acoustic cues in the speech signal: A release burst between the first and second consonants 

would provide the only cues for listeners about the identity of the initial segment; reduction, or 

loss, of the release burst could jeopardize listeners’ ability to recover the speaker’s intended form 

(Wright, 1996). Thus, a potential perceptual bias against vowelless words comes from the role of 

acoustic cues in the maintenance of phonological contrast. We focus on the perception of 

Tashlhiyt tri-segmental vowelless minimal pairs contrasting in the middle segment. 

Moreover, the perceptibility of vowelless words might vary based on sonority patterns. 

One view is that greater acoustic contrast between adjacent segments allows for more robust 

transmission from speakers to hearers (Ohala & Kawasaki-Fukumori, 1997). If adjacent 

segments are acoustically similar, they are more likely to be confused by a listener, thus 

diachronically unstable. Ohala and Kawasaki-Fukumori predict that sound sequences containing 

plateau sonority patterns (e.g., /sfs/) are the hardest to perceive since they contain the smallest 

differences in acoustic modulations across segments. Meanwhile, sequences containing larger 

acoustic perturbations (like, /ble/ or /ske/) are less susceptible to perceptual confusion, thus more 
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phonologically stable. Evidence supporting this comes from Chen et al. (2022), who investigated 

Mandarin listeners’ discrimination of rising (e.g., kl), falling (e.g., lk), and plateau (e.g., kp) onset 

clusters with and without vowel epenthesis. Discrimination performance was higher for both 

rising and falling sonority clusters because the acoustic difference between the consonants makes 

them more perceptible to listeners, compared to plateauing clusters. For the perception of 

vowelless words, an acoustic similarity hypothesis is that since sequences of consonants are 

more acoustically similar, vowelless words will be overall harder to discriminate than words with 

vowels. Moreover, within vowelless words, the prediction is that forms with more similar 

sonority patterns should be even harder to discriminate. If these predictions are borne out, it 

could explain why vowelless words would not be robust to transmission and, thus, evolutionarily 

dispreferred. 

On the other hand, as outlined above, prior work on vowelless words in Tashlhiyt finds 

that they are often produced with vocoid elements between consonants (Ridouane & Fougeron, 

2011). Since Tashlhiyt exhibits low consonant-to-consonant coarticulation, the presence of 

robust cues in the speech signal means that the internal phonological structure of vowelless 

words could be recoverable by listeners. Some cross-linguistic evidence in support of this 

possibility comes from Wright’s (1996) study of stop+stop consonant clusters in Tsou across 

different word positions. He found that stop release bursts are absent intervocalically, but distinct 

word-initially where the formant cues are absent. He argued that speakers are actively enhancing 

secondary acoustic cues for consonants in contexts where they are more likely to be difficult for 

the listener to perceive; and indeed, when the release bursts are present in initial clusters, 

listeners accurately identify the stop+stop clusters. Thus, a cue preservation hypothesis is that the 

phonetic implementation of vowelless words in Tashlhiyt creates salient acoustic cues that make 

them perceptually stable.  

It is also possible that perceptual patterns follow predictions made by a traditional 

sonority sequencing account (Clements, 1990). One common way of assessing the perceptual 

preferences of consonant clusters is to present nonwords to participants (either auditorily, or 

through orthography) and have them rate the likelihood each item could be a possible word in 

their language. Studies by Berent and colleagues (e.g., Berent et al., 2009) have demonstrated 

that speakers from various language backgrounds prefer rising sonority consonant sequences 

over plateauing sequences, which are in turn preferred over falling sonority profiles (e.g., blif  > 

bnif  > bdif  > lbif; rising > plateau > falling). This is consistent with theoretical accounts that the 

sonority hierarchy governs sound sequences in an active way in synchronic grammars (Zec, 

1995).  

 

1.3. Phonetic variation across speaking styles 

 

Above and beyond their perception more generally, we also ask the impact on listeners when 

speakers explicitly enhance vowelless words. Talkers adapt their speech based on the 

communicative context: speakers vary between hyper- and hypo-speech variants depending on 

whether there is evidence that the listener will misunderstand them (Lindblom, 1990). 

Hyperarticulated speech contains a variety of acoustic enhancements relative to non-clarity-

oriented speech, such as longer and more extreme segment realizations (Picheny et al., 1986; 

Krause & Braida, 2004; Cohn et al., 2022). Also, moreover, the acoustic effects of clear speech 

have been shown to increase intelligibility for listeners (Picheny et al., 1985; Smiljanić & 

Bradlow, 2011). While clear speech effects have been found across several languages (e.g., 
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Smiljanić & Bradlow, 2005 for Croatian, Tupper et al., 2021 for Mandarin, Kang & Guion, 2008 

for Korean), more work is needed to understand how enhancement affects different types of 

phonological contrasts.  

 Prior work on clear speech reports acoustic enhancements of both consonants and vowels 

(Krause & Braida, 2004). Therefore, clear speech should improve the perceptibility of all words 

in Tashlhiyt. However, examining Tashlhiyt enhancement effects can further inform different 

hypotheses about perception of different vowelless word types. From an acoustic similarity 

account, words containing the largest acoustic differences across segments (i.e., words vowel or 

sonorant centers) could receive the largest clear speech boost since phonetic enhancement might 

make those sounds even more acoustically distinct. Evidence for this comes from a recent study 

of the perception of onset singleton-geminate-cluster contrasts in Tashlhiyt (Zellou, Lahrouchi, 

& Bensoukas, 2022). They found that discrimination of the rarer onset contrasts (geminate vs. 

non-rising onset consonant sequences) is harder for listeners in both clear and causal speech; in 

fact, there was no clear speech boost for contrasts involving the non-rising clusters. We predict 

similar patterns for vowelless words in the present study.  

A cue enhancement prediction is that clear speech enhancements are targeted for 

phonological contrasts that might be particularly challenging for listeners. Wright’s (1996) 

observation of consistent release bursts in stop+stop clusters in contexts where other cues are not 

present in Tsou is consistent with this. There is also evidence that talkers selectively enhance 

phonetic cues in response to a listener misunderstanding a target word with a minimal pair 

competitor (e.g., Seyfarth et al., 2016; Buz et al., 2016). For the present study, if vowelless 

words containing plateau sonority are the hardest to perceive in reduced speech because the cues 

to segments are not salient, they could receive the largest perceptual boost in clear speech where 

the speaker is aiming to make words maximally intelligible to listeners.  

Regardless of which hypothesis is supported, the mere existence of alternative forms of 

words due to hypo- and hyper-articulation provides a rich testing ground to examine the 

mechanisms of perceptually-based variation (Blevins, 2004). Since vowelless words are 

typologically rare, we believe that a comprehensive investigation into their perceptual processing 

should also include systematic acoustic variants since listeners encounter multiple phonetic 

forms of words. Moreover, descriptively, examining how speech variation affects the range of 

different linguistic contrasts found across the world’s languages is important to understand the 

relationship between speech communication and phonology. Thus, we examine speech style 

variation as an additional factor in this present study. 

 

1.4. Non-native speech perception 

 

How do naive listeners perceive vowelless words? There is much work examining how non-

native listeners process unfamiliar consonant sequences. For instance, there is evidence that 

speech processing is sensitive to the sound sequencing probabilities in one’s native language 

(e.g., van der Lugt, 2001; Best et al., 2001; Davidson, 2011). Investigating cross-language 

speech perception of typologically rare contrasts adds to our scientific understanding about 

universal processing mechanisms of different types of speech sounds (Bohn, 2017). For instance, 

cross-linguistically rarer phonotactic patterns are less likely to be rated as a possible word in 

one’s native language (Berent et al., 2009).  

 Comparing across listeners with different language backgrounds can also inform about 

the fundamental mechanisms of speech processing. For instance, some researchers have argued 
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that a near-universal in word identification is the possible-word constraint that listeners exploit 

transitional probabilities when segmenting sequences of sounds into words. For instance, since 

most languages only have words that contain vowels, listeners from a range of different language 

backgrounds segment words more easily from a context where the remainder would itself create 

a word with a vowel (e.g., apple from vuffapple; vuff is an acceptable word form), compared to 

where the remainder would create a vowelless word (e.g., fapple; *f) (Norris et al., 1997). 

However, El Aissati et al. (2012) found that native Tarifiyt (an Amazigh language related to 

Tashlhiyt) listeners do not exhibit the possible-word constraint when segmenting words in 

running speech. They argue that fundamental speech processing mechanisms, such as the 

possible-word constraint, are simply not active during spoken word comprehension by native 

speakers of a language that allows vowelless words. We explore this possibility further by 

comparing native and non-native Tashlhiyt listeners’ perception of vowelless words in two 

additional types of tasks.  

At the same time, there is work showing that clear speech increases the intelligibility of 

non-native sound contrasts (Kabak & Maniwa, 2007; Zellou et al., 2022). Since L2 adult learners 

usually begin as naive listeners, exploring the perception of novel sound contrasts in a foreign 

language also has applications for second language acquisition (Bohn, 2017). Looking at cross-

language perception of vowelless words, as we do in the present study, is critical in order to 

make generalizations about what makes them harder (or not) to comprehend above and beyond 

what a native-speaker experience allows.  

 

1.5. Current study 

 

For the current study, we designed two experiments to investigate the perception of vowelless 

words in Tashlhiyt by native and non-native listeners. As mentioned above, vowelless words are 

frequent in Tashlhiyt and vary in length, from two segments (e.g. fk ‘give’) to multisyllabic 

words containing long strings of consonants (e.g., tsskʃftstt ‘you dried it (F)’, Ridouane, 2014). In 

the current study, we focus only on tri-segmental vowelless words (CCC structure) as a test case. 

The present study had four experimental manipulations. We outline each of these manipulations 

in turn next, as well as how the perception of vowelless words can shed light on fundamental 

issues in phonological typology.  

First, we varied the listeners’ language background: native Tashlhiyt speakers and 

speakers who are Tashlhiyt-naive (here, American English speakers). English does permit 

relatively complex syllable structures (e.g., strengths, sixths) and syllabic consonants (e.g., 

bottle). However, only sonorants in unstressed syllables can be nuclei (though, alternating with a 

schwa pronunciation, Roach et al., 1992) and no monosyllabic vowelless words are allowed.  

Second, we used two different perceptual paradigms: a paired discrimination (41AX) task 

and a nonword acceptability ratings task. In a paired discrimination task (Fowler, 1984), a 

listener hears two pairs of items - one contains the same word repeated twice, the other contains 

two different words. In our task, the different-pair items varied in the middle segment (e.g., tuf 

vs. tlf or ʁbr vs. ʁdr). The discrimination task gauges low-level, auditory processing of vowelless 

words since listeners rely on acoustic similarity between pairs. If the cross-linguistic rarity of 

vowelless words stems from an acoustic processing bias, we predict that discrimination will be 

lower for vowelless words than for words with vowels. Meanwhile, the wordlikeness task 

requires listeners to compare the phonetic and phonological properties of stimuli to the 

characteristics of words in their memory. It has been shown that nonwords with greater lexical 
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support are rated as more wordlike than nonwords with less (Munson, 2001; Frisch et al., 2001). 

We predict that Tashlhiyt listeners will show greater perceptual sensitivity and higher 

wordlikeness ratings of vowelless words than English speakers.  

Thirdly, we examine variations in the sonority profile of the first and second segments in 

the tri-segmental items. We focus on this sonority profile since that is a meaningful classification 

for Tashlhiyt (Lahrouchi, 2010). Also, word-onset sonority profiles are argued to be more 

constrained than coda profiles cross-linguistically (Pouplier & Beňuš, 2011), and listeners are 

more sensitive to sequential probabilities in onset position (van der Lugt, 2001). Tashlhiyt test 

words contained one of four sonority types (where V = vowel, C = any consonant, O = obstruent, 

S = sonorant): rising sonority with a vowel nucleus (CVC), vowelless with rising sonority 

(OSC), vowelless with plateau sonority (OOC; NB: SSC are not frequent forms in Tashlhiyt, 

Lahrouchi, 2010), and vowelless with falling sonority (SOC). Each of these four sonority profile 

types are illustrated with examples in Figure 1. In each example, the segments are ranked based 

on the sonority hierarchy (Parker, 2002) to illustrate the differences across word types. For rising 

sonority words (both CVC and OSC), sonority increases from the first to the second segment, 

crossing at least 2 ranks. In plateau sonority words, there is not a large sonority difference from 

C1 to C2. In falling sonority words, there is a large difference in sonority, but it decreases from 

C1 to C2. For the ratings task, we constructed Tashlhiyt-like tri-segmental nonwords varying in 

their structure. By investigating vowelless words that vary in their sonority profile, we can tease 

apart different theoretical accounts about their perception. On the one hand, as outlined above, it 

has been argued that the sonority hierarchy is an active mechanism in shaping the perception of 

sound sequences across languages (Berent et al., 2009). A prediction from such an account is that 

perceptual sensitivity within vowelless words decreases with decreasing sonority (rising > 

plateau > falling). On the other hand, sonority difference has been argued to be more relevant for 

perception (Ohala & Kawasaki-Fukumori, 1997). That prediction is that perceptual sensitivity 

will be higher when words contain greater sonority differences (e.g., rising & falling > plateau). 

Moreover, differences across tasks can speak to low-level auditory processes (discrimination) vs. 

higher-level phonological mechanisms (ratings) in the perception of vowelless words. 

 

 
Figure 1. Examples of Tashlhiyt words varying in their sonority profiles.  
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For our fourth manipulation, we elicited all the items for the perceptual experiments from a 

native Tashlhiyt speaker in both Clear and Casual speaking styles. The style manipulation allows 

us to explore the relationship between phonetic enhancement and phonological typology. Our 

predictions for how clear speech variation will influence the perception of vowelless words apply 

to the discrimination task most readily. One prediction is that vowelless words will receive less 

of a clear speech boost in perceptual sensitivity than words that contain vowels. Since vowels are 

the loudest, most sonorous segment, clear speech enhancement can make it even easier for 

listeners to discriminate words that have different vowels. On the other hand, if the phonetic 

implementation of vowelless words includes the articulation of salient cues to the internal 

phonological structure, we predict that the transitional cues that serve to carry information about 

the segment identities will be enhanced in clear speech. How might clear speech influence 

nonword acceptability ratings? To our knowledge, no prior study has examined the effect of 

speaking style on word-likeness judgements. The ratings task can reveal whether speaking style 

influences listeners’ acceptance of different types of nonwords.  

 

2. Experiment 1: 41AX (paired) discrimination  

 

In Experiment 1, listeners completed paired discrimination of tri-segmental word minimal pairs 

where the middle segment varies.  

 

2.1. Methods 

2.1.1. Target words  

 

We compiled a list of CCC and CVC items in Tashlhiyt and identified word pairs contrasting 

only in the middle segment. There were 23 minimal pairs of two vowelless words contrasting in 

the middle consonant (CCC vs. CCC), 18 minimal pairs where one was a vowelless word and 

one word contained a vowel (CVC vs. CCC), and 3 minimal pairs where there was a vowel 

contrast (CVC vs. CVC) (we additionally identified two additional words that contrasted in 

vowel quality containing a complex onset: e.g., lfal vs. lfil). Each minimal pair type could further 

be classified based on their C1-C2 sonority profile. For CCC vs. CCC, 9 pairs contained 

obstruents in both C1 and C2 position (plateau vs. plateau pairs), 8 pairs consisted of one word 

with C1 and C2 obstruents and one word with an obstruent as C1 and a sonorant as C2 (plateau 

vs. rising pairs), 5 pairs where both contained a sonorant in C1 and an obstruent in C2 (falling vs. 

falling pairs), and just 1 consisted of one of the pairs having a flat sonority profile containing a 

sonorant in C1 and C2. For CVC vs. CCC, 11 pairs contained a vowelless word with obstruents 

in C1 and C2 position (rising CVC vs. plateau sonority), 4 pairs contained a vowelless word with 

an obstruent as C1 and a sonorant as C2 (rising CVC vs. rising sonority), and 3 contained words 

with a falling sonority (rising CVC vs. falling sonority).  

For the discrimination task, we aimed to select 5 pairs from each of these sonority 

comparisons as critical trial types (for CVC vs. rising CCC and CVC vs. falling CCC, there were 

only 4 and 3 pairs, respectively). In addition, 5 sets of non-minimal pair words, containing 

vowels, were also selected. Selection of the pairs for the discrimination task generated a list of 62 

unique lexical items in Tashlhiyt.  

In addition to the items selected for the discrimination task, 14 picture-able nouns were 

selected (ajjis ‘horse’, tafukt ‘sun’, afullus ‘rooster’, azˤalim ‘onion’, ajdi ‘dog’, izi ‘fly’, ajjur 

‘moon’, aʁrˤum ‘bread’, anzˤar ‘rain’, idukan ‘slippers’, tafunast ‘cow’, ilm ‘skin’, tafruχt ‘girl’, 
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afruχ ‘boy’). These words were used in a pre-test language comprehension assessment for the 

native Tashlhiyt listeners (see section 2.1.6).  

 

2.1.2. Speech styles 

 

All selected words were produced in a randomized order by a native speaker of Tashlhiyt (one of 

the authors, ML) in two speaking styles. The recording took place in a sound-attenuated booth 

using an AT 8010 Audio-technica microphone and USB audio mixer (M-Audio Fast Track), 

digitized at a 44.1 kHz sampling rate. To elicit Clear Speech, the speaker was given instructions 

similar to those used to elicit clear speech in prior work (e.g., Bradlow, 2002 and Zellou et al., 

2022): “In this condition, speak the words clearly to someone who is having a hard time 

understanding you.” The speaker produced each word in two different frame sentences: ini ___ 

jat tklit ‘say ___ once’, inna ___ baɦra ‘he said ___ a lot’.  

Following the Clear Speech style elicitation, the speaker produced the words in a fast, 

casual speaking style with the following instructions also modeled after those used in prior work 

(e.g., Bradlow, 2002): “now, speak the list as if you are talking to a friend or family member you 

have known for a long time who has no trouble understanding you, and speak quickly”. The 

speaker also produced the words in each of the two frame sentences. 

 

2.1.3. Acoustic assessment of the stimuli 

 

Since prior work has shown that clear speech contains longer word durations (Krause & Braida, 

2004), we measured the durations of target words across speaking styles. Table 1 shows the 

mean and standard deviation of word durations for CVC and CCC items across styles. A two-

tailed, unpaired t-test revealed that words are longer in Clear speech than in Casual speech 

(t(227) = 19.7, p < 0.001). We also asked whether vowelless words are overall shorter in 

duration since they do not contain vowels. A t-test indicated that CCC and CVC items are not 

different lengths (t(227) = 0.3, p = 0.76). 

 

Table 1. Word durations in milliseconds (and standard deviations) for CVC and CCC items 

produced in clear and casual speech. 

 Clear Casual 

CVC 437 (89) 245 (57) 

CCC 428 (78) 257 (47) 

 

Ridouane & Fougeron (2011) analyzed the acoustic properties of vowelless words in Tashlhiyt, 

focusing mainly on sequences of obstruents, and report that a vocoid-like element is often 

produced between consonants, ranging in quality from a release burst to a full epenthetic vowel. 

We coded each vowelless word production for whether there was any inter-consonantal release 

or vocoid-like element either between C1 and C2 or between C2 and C3 (if there were two, we 

measured the duration of the longer element). We additionally coded whether that element was a 

full schwa vowel, characterized by higher-level formant structure. We also measured the 

duration of any vocoid element as the temporal interval between consonants. Table 2 provides 

the percentage of vowelless words that contain a vocoid-like element, by sonority profile and 
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across speaking styles. The percentages of those elements that are full schwas across conditions, 

are also provided, as well as the duration of the element when present. 

 

Table 2. Percentage of tokens with vocoid-like elements, percentage of tokens produced with a 

full schwa vowel, and durations in milliseconds (and standard deviations) of the element when 

present, in vowelless words across speaking style. 

 % tokens with an 

inter-consonantal 

release or vocoid-like 

element  

% tokens with full 

vowel  

Intrusive element 

duration (when 

present) 

 Clear Casual Clear Casual Clear Casual 

Falling 50% 50% 33% 33% 60 (30) 46 (22) 

Plateau 75% 75% 44% 34% 45 (26) 31 (15) 

Rising 50% 25% 50% 25% 81 (12) 30 (7) 

 

We ran two chi-square tests to examine whether the rates of either any vocoid or the full schwa 

differs across speaking styles. The tests revealed that the proportion of vowelless tokens with a 

vocoid-like element is not different across clear and casual productions (X2(1, N = 132) = 1.1, p 

= 0.6) and also that the proportion vowelless words with full vowels produced on vowelless 

words is not different across clear and casual productions (X2(1, N = 132) = 0.71, p = 0.7). 

However, a two-tailed t-test demonstrated that durations of the vocoid-like element, when 

present, is longer in clear speech productions (t(71) = 2.1, p < 0.05). Thus, vocoid-like elements, 

or full epenthetic schwas, are often produced in vowelless words (consistent with Ridouane & 

Fougeron, 2011). While vocoid elements occur at the same rate in clear and casual speech, they 

are more likely to be longer in clear speech when they are present.  

 

2.1.4. Stimuli preparation 

  

All items were segmented and excised from their frame sentences and amplitude normalized to 

65 dB. Tokens for each trial were concatenated into a single sound file with a within-pair inter-

stimulus interval of 300 ms and a pair-medial ISI of 500 ms. Typically, discrimination paradigms 

present speech embedded in noise in order to increase the difficulty of the task. Therefore, all 

stimuli were mixed with white noise (which has been shown to mask consonants more uniformly 

than other types of noise, Phatak & Allen, 2007) at a signal-to-noise ratio (SNR) of 0 dB (Miller 

& Nicely, 1955). 

 

2.1.5. Listener participants 

 

36 native Tashlhiyt speakers (11 female, 0 non-binary/other, 23 male (2 did not report their 

gender); mean age = 40.2 years old) and 36 English speakers (21 female, 2 non-binary/gender-

fluid, 13 male; mean age = 20.2 years old) completed the online experiment. All participants 

completed informed consent before participating. None of the listeners reported having a hearing 

or language impairment. 
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The Tashlhiyt participants were recruited through email flyers. All the Tashlhiyt 

participants reported that Tashlhiyt was their first language and that both parents speak 

Tashlhiyt. Participants also reported that they spoke French (all instructions were provided in 

French), and Arabic (Moroccan and Standard). Some reported to also speak additional languages 

(English, n = 22; Spanish, n = 1; Italian, n = 1; German, n = 1; Turkish, n = 1). Participants 

reported growing up in cities such as Agadir (n = 16), Marrakech (n = 1), Essaouira (n = 2), 

Tiznit (n = 4), or other towns and villages in Southern Morocco. The English-speaking 

participants were recruited from the [redacted for anonymity] subjects’ pool. All of the 

participants reported being native speakers of American English. Four participants reported that 

they speak a language other than English in the home (Swahili, n = 1; Estonian, n = 1; 

Vietnamese, n = 1; Punjabi, n = 1). We asked the English-speaking participants if they spoke or 

had studied Tashlhiyt or any of the languages of North Africa; none reported that this was the 

case. 

  

2.1.6. Paired discrimination (41AX) task and procedure 

 

The experiment was conducted online using Qualtrics. Participants were instructed to complete 

the experiment in a quiet room without distractions or noise, to silence their phones, and to wear 

headphones. As most computer-literate Tashlhiyt speakers are fluent in French, all instructions in 

the experiment were presented in French to the Tashlhiyt participants. All instructions were 

provided in English to the English-speaking participants.  

For the Tashlhiyt participants, the experiment began with a pre-test word identification 

task in order to assess that they were speakers of Tashlhiyt. On each pre-test trial, listeners heard 

one of 14 lexical comprehension nouns and were presented with two black and white images on 

the screen - one depicted the target word. Participants selected the image corresponding to the 

word they heard. Participants heard each of the nouns once, randomly presented, completing 14 

of these trials. All of the Tashlhiyt participants correctly identified all the nouns in these 

comprehension trials. 

For the English-speaking participants, the study began with a pre-test of their audio: 

participants heard one sentence presented auditorily (“She asked about the host”) and were asked 

to identify the sentence from three multiple choice options, each containing a phonologically 

close target word (host, toast, coast). Participants were also presented with six trials of a tone-

identification task (Woods et al., 2017). All participants passed these tasks.  

After the pre-test procedure, all participants completed a paired (41AX; binary forced-

choice) discrimination task. In each trial, two pairs of words are played. One pair contains 

different words (e.g., tuf vs. tlf), and the other pair contains different productions of the same 

word (e.g., tlf vs. tlf). Participants were asked which pair contains different words (for the 

Tashlhiyt participants: “Quelle paire est constituée de deux mots différents?”; for the English-

speaking participants: “Select which pair of words sound most different”), and identify either the 

first pair (“la première paire” | “First Pair”) or the second pair (“la deuxième paire” | “Second 

Pair”) via a mouse click. The Tashlhiyt listeners were told they would hear words in Tashlhiyt. 

The English-speaking participants were told that they would be hearing utterances produced in a 

language they have never heard before and that it is fine that they don’t understand the words. 

The stimuli in each trial were presented once only, with no possibility to repeat the sound file in 

a trial. Before starting the task, participants were given written instructions for this task and they 
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completed two practice trials, one where the first pair contained different words and one where 

the second pair contained different words, with feedback on the correct responses for those trials. 

Table 3 lists the different trial types used in the paired discrimination task and provides 

examples of each (a full list of all of the word pairs is provided in the Appendix). Across trials, 

speech style varied: each of the 37 trial types were randomly presented to the listeners in both 

clear and casual speech conditions (74 total discrimination trials). The ordering of words within 

different pairs, identity of same pair words, and ordering of different and same pairs varied 

equally across trial types within-subject and were counterbalanced across four experiment lists. 

The order of trials was randomized for each participant. Following the discrimination task, 

participants also completed a nonword acceptability task (described in Section 3.1). In total, the 

entire study took approximately 30 minutes to complete. 

 

Table 3. Examples of the different paired discrimination trial types (the full list of words used in 

trials, with their glosses is provided in the Appendix).  

minimal pair 

type 

Sonority Comparison  

(n of types) 

Different Pair 

example Same Pair example 

non-MPs non-minimal pairs (5) rˤuħ vs. sir  sir vs. sir 

CVC vs. CVC risingCVC vs. risingCVC (5) fan vs. fin  fin vs. fin 

CCC vs. CVC 

 

risingCVC vs. rising (4) tuf vs. tlf tlf vs. tlf  

risingCVC vs. plateau (5) fat vs. fkt  fkt vs. fkt 

risingCVC vs. falling (3) rˤuħ vs. rbħ  rbħ vs. rbħ  

CCC vs. CCC 

 

rising vs. plateau (5) zlm vs. zdm  zdm vs. zdm 

falling vs. falling (5) nsˤħ vs. nʒħ nʒħ vs. nʒħ 

plateau vs. plateau (5) ʁbr vs. ʁdr ʁdr vs. ʁdr 

 

2.2. Results 

 

The data from the 72 listener responses were coded for correctly (=1) or incorrectly (=0) 

selecting the pair that contained different words in each trial and modeled using a mixed effects 

logistic regression with the glmer() function in the lmer package (Bates et al., 2015) in R (R core 

team). The model included three fixed effects (all treatment coded): Language Background 

(Tashlhiyt, English [reference level]), Speech Style (Clear, Casual [reference level]), and 

Minimal Pair Type (Non-minimal pair [reference level], CVC vs. CVC, CVC vs. CCC, CCC vs. 

CCC). The random effects included random intercepts for each participant, word pair type, and 

word pair ordering, as well as by-participant random slopes for Speech Style (including by-

participant random slopes for Minimal Pair Type resulted in a singularity error indicating over 

fitting).  

The addition of 2- and 3-way interactions between predictors was evaluated via model 

comparison using the anova() function based on the Akaike Information Criterion (AIC), 

measuring model goodness of fit while penalizing over-parameterization. The model that results 

in the lowest AIC is best supported by the data (Akaike, 1974). The model with two-way 

interactions between Minimal Pair Type and Style as well as Language Background and Style 

had the lowest AIC (AIC = 4254.1, model ANOVA Chisq = 7.3, df = 1, p < .01) and was thus 
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retained. Inclusion of the three-way interaction did not improve model fit. Prior work has used a 

predictor-releveling procedure for interpreting lmer models that contain a factor with more than 

two levels. In this method, the summary statistics for a model run on the same data set is output 

with different reference levels for the factor of comparison (Clopper, 2013; Tremblay et al., 

2017). We followed this procedure: the model was run with the reference level for Minimal Pair 

Type re-leveled to produce estimates for multiple pairwise contrasts. (Output 1 reference level = 

Non-minimal pairs, Output 2 reference level = CVC vs. CVC; Output 3 reference level = CCC 

vs. CCC) The summary statistics from the model (and releveled outputs) is provided in a table in 

the Appendix. 

 Figure 2 shows the mean discrimination for each Minimal Pair Type by Speaking Style, 

across listener groups. The model revealed a main effect of Minimal Pair Type. Discrimination 

performance is highest in trials where the different pair contained a non-minimal pair (91% 

accuracy) compared to trials with minimal pairs, which are not overall different from one another 

(CCC vs. CCC: 79%; CVC vs. CVC: 77%; CVC vs. CCC: 81%). In the models where minimal 

pairs were the reference level, there was a main effect of style wherein discrimination 

performance is higher for items produced in Clear speech than in Casual speech.  

 There was also an interaction between Minimal Pair Type and Speech Style. As seen in 

Figure 2, the difference between discrimination performance for Clear and Casual speech styles 

was largest for the CVC vs. CVC comparison. As seen in Figure 2, this is realized as the lowest 

discrimination performance for CVC vs. CVC trials in Casual speech, while performance is more 

similar across minimal pair types in Clear speech.   

Language Background of the listener also predicted overall discrimination performance: 

Tashlhiyt listeners (87%) are better at discrimination of Tashlhiyt words than English-speaking 

listeners (76%). There was also an interaction between Language Background and Style: the 

positive coefficient value indicates that Tashlhiyt listeners perform better in Clear speech than 

the naive listeners. 

As mentioned above, the inclusion of the three-way interactions with Language 

Background and the other predictors did not significantly improve model fit. This indicates that, 

while English listeners overall perform lower on discrimination of Tashlhiyt words than native 

listeners, they do not display even lower performance of a function of any of the word or speech 

style types in the experiment. 
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Figure 2. Experiment 1. Performance on paired discrimination trials across Minimal Pair and 

Speech Style conditions for native Tashlhiyt and English listeners.  

 

We also explore the extent to which sonority patterns within vowelless words lead to differences 

in perceptual sensitivity. To that end, two post-hoc logistic regression models were run 

separately on the CVC vs. CCC trials subset and the CCC vs. CCC trials subset. Both models 

contained three fixed effects. The first two effects were the same across the two post-hoc models 

and coded identically as in the main model: Language Background (Tashlhiyt, English) and Style 

(Clear, Casual). The third fixed effect, Minimal Pair Type, was coded differently across the two 

models. In the CVC vs. CCC model, Minimal Pair Type contained 3 levels: CVC vs. CCC-

Falling, CVC vs. CCC-Plateau, and CVC vs. CCC-Rising. In the CCC vs. CCC model, the three 

levels of the predictor Minimal Pair Type were CCC-Falling vs. CCC-Falling, CCC-Plateau vs. 

CCC-Plateau, and CCC-Rising vs. CCC-Rising. The random effects structure of both models 

was identical to that for the main model. As with the main model, we performed model 

comparisons to evaluate the inclusion of each fixed effect and all two- and three-way 

interactions. For the CVC vs. CCC model, only inclusion of the two-way interaction between 

Minimal Pair Type and Style was computed as the best fit and thus retained (model ANOVA 

Chisq = 6.8, df = 2, p = .03). For the CCC vs. CCC model, inclusion of interactions between 

Minimal Pair Type and Style and Language Background and Style resulted in the best fit (model 

ANOVA Chisq = 4.5, df = 1, p = .03).  

The summary statistics for both models are provided in the Appendix. Figure 3.A shows 

the mean proportion of correct discrimination for CVC vs. CCC trials. The model revealed an 

interaction between Speech Style and Minimal Pair Type: the difference in accuracy between 

Clear and Casual items is larger for the CVC vs. CCC-Falling trials than for the CVC vs. CCC-
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rising trials. This interaction can be seen in Figure 3.A: clear speech boosts the discrimination 

between CVC vs. CCC-Falling trials to the greatest extent.  

Fig. 3.B shows the mean proportion of discriminated trials containing only vowelless 

words. For the CCC vs. CCC model, there was a main effect of Minimal Pair Type wherein trials 

containing vowelless words with falling sonority profiles are the hardest to discriminate. There 

was also a significant interaction between Minimal Pair Type and Speech Style. As seen in Fig 

3.B, the size of the increase in discrimination performance from casual to clear speech is larger 

for trials with plateauing sonority vowelless words, compared to trials containing a plateau and 

rising sonority vowelless words.  

  

 
Figure 3. Experiment 1. Performance on paired discrimination trials with voweled and vowelless 

items (Panel A) and vowelless words only (Panel B) across Sonority Profile and Speech Style 

conditions for native Tashlhiyt and English listeners. 

 

2.3. Interim discussion 

 

In Experiment 1, native Tashlhiyt and Tashlhiyt-naive (English-speaking) listeners show 

variation in discrimination performance for different types of minimal pair contrasts. As 

expected, minimal pairs are harder to discriminate between than non-minimal pairs. However, 

within minimal pair trials, perceptual sensitivity to vowelless minimal pairs (contrasting in the 
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center segment) is not different overall than for words containing vowels, as well as voweled-

vowelless word pairs. Thus, our results indicate that vowelless words are not harder to 

discriminate between than words with vowels.  

 We also found that vowelless word pairs containing falling sonority profiles (e.g., nsˤħ 

vs. nʒħ) are harder to discriminate than pairs containing plateaued sonority (e.g., ʁbr vs. ʁdr). 

This result is surprising considering proposals that consonant sequences containing larger 

sonority differences will be easier to discriminate than those with smaller sonority differences 

(Ohala & Kawasaki-Fukumori, 1997). However, the lowest performance for falling sonority 

contrasts is consistent with the observation that falling sonority clusters are the least common 

cross-linguistically and prior findings that they are most perceptually dispreferred by listeners 

from a range of language backgrounds (Berent et al., 2009).  

 Notably, while non-native listeners performed overall lower than native Tashlhiyt 

listeners, the perceptual discrimination patterns within each contrast was parallel across listener 

groups. Thus, the lack of native language experience with Tashlhiyt does not make vowelless 

words less discriminable relative to other Tashlhiyt words. Relative perceptual sensitivity to 

vowelless words varying in sonority patterns was also similar across native and non-native 

listeners, further supporting that cross-language principles influence discriminability of 

vowelless words.  

 Additionally, vowelless words produced in Clear speech are better discriminated than 

when those words are produced in a more reduced speaking style. The biggest clear speech 

perceptual boost is for minimal pairs contrasting in vowels. This is not surprising since vowels 

are more informative than consonants. However, it is unexpected that trials containing CVC 

pairs in reduced speech had the lowest discrimination performance (hence, clear speech is 

actually enhancing the discriminability of voweled words to be equal to other minimal pair trial 

types). In the general discussion, we explore possible explanations for this finding. We also 

observe that, within vowelless words, clear speech boosts discriminability of the harder sonority 

contrasts to a greater extent. In particular, falling and plateau sonority vowelless words are 

perceptually enhanced. Moreover, enhancement is observed for both listener groups. This adds to 

growing empirical work about how listener-oriented speaking styles can impact the perceptibility 

of a range of cross-linguistic phonological patterns (Kang & Guion, 2008; Smiljanić & Bradlow, 

2005).  

 

3. Experiment 2: Nonword Acceptability Ratings 

 

Experiment 2 is a nonword acceptability judgment task with three-segment nonwords where the 

sonority value of the second segment varies.  

 

3.1. Methods 

3.1.1. Nonwords 

 

In Tashlhiyt, any consonant can occupy C2 in a CCC word (with the exception of glides, for 

which only one real word was identified, rwl). Thus, the non-words were constructed to be 

possible Tashlhiyt nonce words containing the most common C1s (f, n, r) and C3s (l, r, n, m) 

found in Tashlhiyt, but varying in the sonority value of C2. The nonwords created for 

Experiment 2 are provided in Table 4. 
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Table 4: Nonwords for Word Acceptability Ratings Task. 

Nucleus 

Nonword 

frame: /f_r/ 

Nonword 

frame: /n_l/ 

Nonword 

frame: /r_n,m/ 

vowel fur nul run 

liquid flr nrl rln 

nasal fnr nml rmn 

voiced fricative fzr nʁl rʁm 

voiceless fricative fχr nχl rχn 

voiced stop fdr ndl rdn 

voiceless stop fqr nkl rtm 

 

3.1.2. Speech styles and stimuli preparation 

 

The same speaker from Experiment 1 also produced the nonword items. A trained linguist, the 

speaker read a list of the nonwords transcribed in IPA. The speaker produced all the nonwords in 

clear and casual speaking styles following the same instructions and procedures from Experiment 

1. The nonwords were extracted from their frame sentences and amplitude normalized to 65 dB. 

The first repetition of each nonword in each speaking style was selected as the stimuli.  

 

3.1.3. Participants and procedure 

 

The same 36 Tashlhiyt and 36 English-speaking participants from Experiment 1 also completed 

Experiment 2. Each trial consisted of the auditory presentation of a nonword, once only with no 

option to repeat. Listeners were instructed to rate how likely the word they heard could become a 

word in their language in the future (either Tashlhiyt for the Tashlhiyt participants, or English for 

the English participants: “Évaluez chaque mot et marquer sur l'échelle de 0 à 100 dans quelle 

mesure il peut être un mot possible du tachelhit dans l'avenir proche” | “Rate how likely you 

think this word could become a new word in English in the future”) (Daland et al., 2011). 

Participants marked their rating on a sliding scale from 0 (“impossible” | “not at all likely”) to 

100 (“tout à fait possible” | “very likely”) (the default position of the marker was reset to the 

midpoint (50) at the start of each trial).  

 Two experimental lists were constructed. In the first list, half of the nonwords were 

presented in the clear speaking style, while the other half of the nonwords were presented in the 

casual style. Style assignment was counterbalanced across words in the second list. Thus, 

participants heard each nonword only once (21 trials total), presented in either the clear or casual 

styles. Trial order was randomized for each participant. 

 

3.2. Results 

 

We modeled nonword acceptability ratings as a continuous dependent variable (0-100; centered 

and scaled prior to model fitting) with a linear mixed effects model using the lme4 R package. 

The model included three fixed effects: Language Background (Tashlhiyt, English [reference 
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level]; treatment coded), Speech Style (Clear, Casual [reference level]; treatment coded), and 

Sonority value of the middle segment. We adopt the sonority scale of Parker (2002) where 

integers are assigned to sounds based on their sonority ranking (vowel = 8, glide = 7, liquid = 6, 

nasal = 5, voiced fricative = 4, voiceless fricative = 3, voiced stop = 2, voiceless stop = 1). 

Sonority value of the middle segment was a continuous predictor, centered and scaled prior to 

model fitting. The random effects included by-participant and by-item random intercepts, as well 

as by-participant random slopes for Sonority Value and Speech Style (including by-participant 

random slopes for the interaction between Sonority Value and Speech Style resulted in a 

singularity error indicating over fitting).  

Just as we did for Experiment 1, the addition of 2- and 3-way interactions between 

predictors was evaluated via model comparisons. The model with all two- and three-way 

interactions had the lowest AIC (model ANOVA Chisq = 20.4, df = 1, p < 0.01) and was thus 

retained.  

A Table with the model output is provided in the Appendix. The model revealed a main 

effect of Language Background wherein Tashlhiyt listeners provide higher acceptability ratings 

of the nonwords than English listeners (Tashlhiyt mean = 54.8, English mean = 36.6). There was 

also an effect of Speech Style: nonwords produced in Clear speech have higher ratings (Clear = 

49.8, Casual = 41.6). There was also an interaction between Sonority value of the middle 

segment and Speech Style. In general, nonwords with a higher sonority middle segment are rated 

as more word-like if they are produced in Clear speech.  

However, there was also a three-way interaction between listener Language Background, 

Sonority Value, and Speech Style. This interaction is depicted in Figure 4, which displays the 

mean nonword acceptability ratings by middle segment and Speaking Style, across Tashlhiyt and 

English-speaking listeners. As seen, English listeners are more likely to provide higher nonword 

acceptability ratings as the middle segment increases in Sonority - but the increase is only for 

items produced in Clear speech; acceptability ratings are low for phonetically reduced items 

across the board for the Tashlhiyt-naive listeners. Meanwhile, Tashlhiyt listeners display the 

reverse sonority-based acceptability pattern: nonwords containing middle segments that decrease 

in sonority are more likely to receive higher word-like judgements, especially when they are 

produced in Clear speech. Figure 5 provides the mean nonword acceptability ratings across 

speech styles and listener groups, but classifying the middle segment as either a vowel, sonorant, 

or obstruent. The interaction is more visually apparent in Figure 5: while English listeners give 

higher ratings to vowel and sonorant-nuclei items produced in Clear speech, Tashlhiyt listeners 

show preference for obstruent-centered words when they are produced in Clear speech.  
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Figure 4: Nonword acceptability ratings by Middle Segment Type, by Speech Style for 

Tashlhiyt and English listeners. 
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Figure 5: Nonword acceptability ratings where the middle segment is classified as a vowel, 

sonorant, or obstruent, by Speech Style for Tashlhiyt and English listeners. 

 

 

4. General discussion 

 

Discrimination responses reveal that both native and non-native listeners are generally able to 

identify Tashlhiyt vowelless words contrasting in the middle consonant. There is variation in 

perceptual sensitivity within vowelless words, however, based on the sonority patterns of the 

initial consonants: words with falling sonority sequences (e.g., nkr vs. ngr) are harder to 

discriminate than plateauing (obstruent-obstruent) sonority words (e.g., ʁbr vs. ʁdr). However, 

Tashlhiyt- and English-speaking listeners display distinct rating patterns of Tashlhiyt-like 

nonwords: native listeners are more likely to prefer obstruent-centered vowelless words, while 

non-native listeners prefer words with vowels. Across experiments, perceptual patterns are 

influenced by speaking style: in some cases, clear speech increases discriminability of and 

nonword acceptability ratings for vowelless words. In this discussion, we examine our results 

and consider their implications for phonological theory and phonotactic typology.   

 

4.1. Perception of vowelless words in Tashlhiyt 

 

Vowelless words are rare in languages of the world. However, we find that they are not more 

difficult to discriminate in Tashlhiyt. This is surprising given that vowels provide robust 

transitional coarticulatory cues about the identity of adjacent sounds (Liberman et al., 1954) and 

that consonant clusters are harder to perceive than single consonant onsets (Foss & Gernsbacher, 

1983; Cutler et al., 1987). On the other hand, since Tashlhiyt has a large consonant inventory, 
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there is pressure to enhance acoustic cues to segment identity in vowelless words, even in casual 

speech where consonant cues are more likely to be obscured. Indeed, articulatory work shows 

that consonant sequences are non-overlapping in Tashlhiyt and produced with transitional vocoid 

elements that could provide acoustic cues to the segmental composition of vowelless words 

(Ridouane & Fougeron, 2011). Moreover, the acoustic analysis of our stimuli revealed that 

vocoid-like elements, and even full schwas, are frequent in the vowelless items and occur at 

similar rates across casual and clear speech. Thus, it appears that speakers do provide cues about 

the internal structure of vowelless words in Tashlhiyt even when producing reduced speech. This 

parallels findings that word-initial stop+stop sequences in Tsou are produced with audible 

release bursts frequently and at similar rates across slow, normal, and fast speaking rates 

(Wright, 1996). Our present findings are consistent with a cue enhancement view that vowelless 

words in Tashlhiyt are produced in such a way to provide salient acoustic cues that help listeners 

recover segmental differences within them.  

Furthermore, within vowelless words in Tashlhiyt, we found variation in perceptual 

patterns based on the sonority profile of consonant sequences. We find that when there is 

matching word-onset sonority across vowelless pairs (here, falling vs. falling or plateau vs. 

plateau), discrimination is harder than when sonority varies (rising vs. plateau). In other words, 

greater acoustic similarity across vowelless words makes discrimination more difficult (Ohala & 

Kawasaki-Fukumori, 1997). Discrimination performance for sonority-matching pairs is even 

lower in casual speech. Thus, reduced speech makes it even harder to perceive acoustically 

similar vowelless words. However, in clear speech, matching plateau sonority items are not 

harder to discriminate than when vowelless pairs that contain different sonority profiles. There is 

also a boost for the matching falling sonority items. Thus, clear speech does provide a boost to 

the harder-to-discriminate vowelless contrasts. Our acoustic analysis suggests that the length of 

the transitional elements is enhanced in clear speech. This adds to cross-linguistic evidence that 

clear speech provides more auditorily robust phonetic variants of words (e.g., Smiljanić & 

Bradow, 2005), extending this to vowelless words in Tashlhiyt.  

 

4.2. Perception of words with vowels in Tashlhiyt 

 

We also observed that Tashlhiyt words containing vowels receive the lowest discrimination 

performance in reduced speech. Why are voweled words more difficult to perceive than 

vowelless words? One possibility is that strong consonant-to-vowel coarticulatory influences in 

Tashlhiyt lead to substantial variation across vowels in CVC words in reduced speech such that 

discriminating between different vowels is difficult. There is some work suggesting that 

consonant-to-vowel coarticulation leads to a large amount of phonetic variation in vowels for 

languages with a high consonant-to-vowel ratio, like Tashlhiyt. For example, it has been shown 

that there is substantial acoustic variation in vowels based on consonantal context in Arabic (also 

a language with a 3-vowel vs. many consonant inventory) (e.g., Embarki et al., 2007; 

Bouferroum & Boudraa, 2015). High vowel variability due to consonant-to-vowel coarticulation 

is reported for other languages with larger consonant-to-vowel ratios (e.g., Salish in Bessell 

(1998), Yanyuwa and Yindjibarndi in Tabain & Butcher (1999)).  

Notably, the difference in perceptual performance across voweled and vowelless words in 

Tashlhiyt indicates greater consonant contrast preservation than vowel phoneme preservation. 

This can be explained by the gestural coordination patterns in the language: consonant-to-

consonant coarticulation is minimal, but there is extensive consonant-to-vowel coarticulation. In 
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effect, then, vowels in Tashlhiyt are not as acoustically informative as consonants. Note, 

however, that the discrimination conditions containing voweled-vowelless minimal pairs (CVC 

vs. CCC) are equivalent in performance with vowelless trials. Within those trial types, words 

with similar acoustic profiles (CVC vs. CCC-rising) are more difficult to discriminate in both 

reduced and clear speech, and those with the greatest acoustic difference in their sonority profile 

(CVC vs. CCC-plateau) have the highest performance across speech styles. Accordingly, 

Tashlhiyt vowels contrasting with a (obstruent) consonant are easier to discriminate, as opposed 

to vowels contrasting with sonorants and other vowels, which are hard to discriminate. Work 

exploring the production and perception of vowel variation in languages with high consonant-to-

vowel ratios is a ripe avenue for future research. 

 

4.3. Comparison of native and naive listeners 

 

We also compared native and naive groups of listeners. Tashlhiyt listeners display overall higher 

discrimination performance than English listeners; however, the relative patterns across word 

types are basically the same for the two listeners groups. Thus, discrimination of vowelless 

words in Tashlhiyt, in particular, does not appear to be modulated by experience with the 

language. In contrast, there are robust differences in Tashlhiyt nonword acceptability ratings 

across listener groups. Tashlhiyt listeners are more accepting of vowelless nonwords with an 

obstruent center, while English listeners prefer nonwords with vowel nuclei. These cross-

language differences can be related to listener native language-experience: vowelless words with 

obstruent centers are the most common structure in Tashlhiyt CCC words (around 32% of tri-

segmental verbs in Lahrouchi, 2010), and English does not allow vowelless words (a preference 

for sonorant-centered over obstruent-centered nonwords by English listeners perhaps also 

reflects the allowance of syllabic sonorants in English, even though this is permitted only in 

unstressed syllables).  

 We also found that the clear speech benefit in the discrimination task is larger for 

Tashlhiyt listeners than for English-speaking participants. This aligns with prior findings that 

clear speech enhances intelligibility for native speakers to a greater extent than non-native 

listeners (Bradlow & Bent, 2002). Also notable is that the largest cross-group differences in the 

ratings task are for clear speech. This is the first study to our knowledge comparing wordlikeness 

ratings across items produced in different speaking styles. The clear speech forms are easier to 

parse, phonologically, and provide more intelligible words that allow for phonotactic preferences 

to emerge. In this way, while some paradigms might make clear speech appear to be “native-

listener oriented” (cf. Bradlow & Bent, 2002), we find there are some tasks where the perceptual 

benefit of clear speech is greater for non-native listeners; here, for the rating of voweled 

nonwords as being more like a word of English.  

More broadly, that we observe overall qualitative differences in the native and naive 

listeners’ performance across perception tasks can also speak to the phonological processing of 

vowelless words. Discrimination relies more on low-level, auditory mechanisms and differences 

within vowelless words are paralleled across the listener groups. Thus, besides the overall greater 

perceptual sensitivity by native listeners, experience with Tashlhiyt does not qualitatively change 

a listeners’ ability to discriminate when the word pairs are acoustically distinct enough. 

However, for the wordlikeness task, performance recruits higher-level phonological processing 

mechanisms, and native-language-specific phonotactic patterns influence the patterns across 

listener groups. Thus, the perception of vowelless words has both a cross-linguistic, auditorily-
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based processing mechanism and a phonological component that recruits native-language-

specific phonotactic patterns.  

 

4.4. Implications for phonological typology 

 

If vowelless words are not categorically difficult to discriminate, why are they so cross-

linguistically rare? Articulatory and acquisitional influences are also argued to shape the 

evolution of consonant sequencing preferences (Ohala & Kawasaki-Fukumori, 1997; Blevins, 

2004). For example, children’s first words are typically CV(C), despite hearing words that 

contain more complex structures (de Boysson-Bardies, 1999; McLeod, Doorn, & Reed, 2001). 

For articulation, speech production models propose that CV sequences have a unique 

coordination relationship with one another, which makes that structure particularly stable 

(Saltzman & Byrd, 2000; Tilsen, 2016). Also, adjacent consonants with very different places of 

articulation, for instance, might be articulatorily difficult because the tongue configurations 

might be incompatible (Ohala, 1983). Therefore, articulatory biases could explain why vowelless 

words are not more common cross-linguistically.  

Moreover, as mentioned above, Tashlhiyt has a unique phonetic profile - particularly 

wide, non-overlapping consonant sequences with frequent audible, vocoid-like elements - which 

make consonant sequences recoverable to listeners. “Noncoarticulating” consonant clusters don’t 

appear to be uncommon, but complex clusters with heavy overlap appear to be more frequent 

across languages where the articulatory dynamics of consonant sequences has been studied 

(Hermes et al., 2017). It is possible that the phonetic pre-conditions of non-overlapping 

consonants with audible transitions permit the maintenance of vowelless words. These 

speculations open lines of inquiry that can be explored in future work.  

 Notably, given the phonetic implementation of consonants in Tashlhiyt, plateauing 

sonority vowelless words (containing obstruent-obstruent sequences) are easier to discriminate 

than words with falling sonority, even though the latter contain larger sonority differences 

between segments. This finding is inconsistent with claims that universal sonority constraints 

actively govern the structure of words (Berent et al., 2009). Rather, as we see in Tashlhiyt, 

language-specific phonetic implementation of sound sequences influences the synchronic 

stability of complex phonotactic structures. Future work directly comparing the perception of 

consonant clusters across languages that are more coarticulating (e.g., English) vs. less 

coarticulating (like Tashlhiyt) can provide further insight into how cross-linguistic differences in 

articulatory dynamics might make some sound contrasts more or less stable. Moreover, while we 

used only naturally-produced tokens in the present study, manipulation of the phonetic properties 

of the vocoid elements within Tashlhiyt can be a further testing ground for understanding the 

relationship between phonetic variation and perceptual sensitivity of vowelless words.  

 

5. Conclusion 

 

The present study examined the perception of vowelless words in Tashlhiyt. We found that due 

to their phonetic implementation of systematic transitional vocoid elements, listeners can 

discriminate between vowelless words. Our results from a wordlikeness task reveal the influence 

of native-language experience on the acceptance of Tashlhiyt-like words varying in sonority 

profiles. Thus, there are both low-level, auditory and higher-level, memory-based processes 

involved in the perception of vowelless words. This observation contributes to understanding the 
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relationship between language-specific phonetic/phonological patterns and the perceptual 

processing of different types of word forms.  
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APPENDIX 

 

Table X. 

Word Type Sonority Comparison Word 1 Word 2 Word 1 Word 2 

non-mps non-mps rˤuħ (go home) sir (go!) c-v-c c-v-c 

non-mps non-mps luħ (throw) ran (they want) c-v-c c-v-c 

non-mps non-mps zˤurˤ (visit) sak (pass through) c-v-c c-v-c 

non-mps non-mps sul (stay alive) mit (what) c-v-c c-v-c 

non-mps non-mps zud (like, as) liʁ (I married) c-v-c c-v-c 

CVC-CVC risingCVC v risingCVC fan (they gave) fin (they suppurated) c-v-c c-v-c 

CVC-CVC risingCVC v risingCVC man (which) mun (accompany someone) c-v-c c-v-c 

CVC-CVC risingCVC v risingCVC ʁar (only) ʁir (only) c-v-c c-v-c 

CVC-CVC risingCVC v risingCVC lʒdid (new) lʒdud (ancestors) c-v-c c-v-c 

CVC-CVC risingCVC v risingCVC lfal (omen) lfil (elephant) c-v-c c-v-c 

CCC-CVC risingCVC v rising frˤħ (be happy) fuħ (to revel in) o-s-o o-v-o 

CCC-CVC risingCVC v rising ʕlf (feed) ʕif (to get tired of) o-s-o o-v-o 

CCC-CVC risingCVC v rising tlf (get mixed up) tuf (she’s better) o-s-o o-v-o 

CCC-CVC risingCVC v rising slt (leave on the sly) sut (drink it) o-s-o o-v-o 

CCC-CVC risingCVC v plateau ʁdr (betray) ʁar (only) o-o-s o-v-s 

CCC-CVC risingCVC v plateau ʁbr (disappear) ʁar (only) o-o-s o-v-s 

CCC-CVC risingCVC v plateau fkt (give it) fat (give-2MS.PL) o-o-o o-v-o 

CCC-CVC risingCVC v plateau ftħ (to operate) fuħ (to revel in) o-o-o o-v-o 

CCC-CVC risingCVC v plateau dbʁ (tan) daʁ (again) o-o-o o-v-o 
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CCC-CVC risingCVC v falling mnʕ (prohibit/forbid) muʕ (swim) s-s-o s-v-o 

CCC-CVC risingCVC v falling rbħ (win) rˤuħ (go home) s-o-o s-v-o 

CCC-CVC risingCVC v falling nʃf (scrape) nuf (we are better) s-o-s s-v-s 

CCC-CCC rising v plateau ʒhd (be strong) ʒld (leather) o-o-o o-s-o 

CCC-CCC rising v plateau kʃf (be faded) krf (tie) o-o-o o-s-o 

CCC-CCC rising v plateau ftħ (to operate) frˤħ (be happy) o-o-o o-s-o 

CCC-CCC rising v plateau zdm (collect wood) zlm (glance) o-o-s o-s-s 

CCC-CCC rising v plateau ħkm (govern/judge) ħrˤm (deprive) o-o-s o-s-s 

CCC-CCC falling v falling nsˤħ (advise) nʒħ (pass a test) s-o-o s-o-o 

CCC-CCC falling v falling rdˤl (borrow/lend) rgl (lock) s-o-s s-o-s 

CCC-CCC falling v falling nkr (to wake) ngr (between) s-o-s s-o-s 

CCC-CCC falling v falling rdˤl (borrow/lend) rˤħl (leave the city) s-o-s s-o-s 

CCC-CCC falling v falling rgl (lock) rˤħl (leave the city) s-o-s s-o-s 

CCC-CCC plateau v plateau zˤbr (prune) zgr (cross) o-o-s o-o-s 

CCC-CCC plateau v plateau ʒbd (to pull) ʒɦd (be strong) o-o-o o-o-o 

CCC-CCC plateau v plateau fkt (give it) fst (feed on) o-o-o o-o-o 

CCC-CCC plateau v plateau ʁbr (disappear) ʁdr (betray) o-o-s o-o-s 

CCC-CCC plateau v plateau bdr (to mention) bsr (spread) o-o-s o-o-s 

 

Table X. Summary statistics for the glmer on discrimination responses from Experiment 1.  

Output 1: MP Type Reference level = Non-MPs Est SE z p 

(Intercept) 2.09 0.45 4.61 <0.001 

MP Type (CVC vs. CVC) -1.67 0.55 -3.03 0.002 

MP Type (CVC vs. CCC) -0.96 0.47 -2.03 0.04 

MP Type (CCC vs. CCC) -1.10 0.46 -2.39 0.02 

Style (Clear) 0.39 0.29 1.34 0.18 

Lang (Tashlhiyt) 0.78 0.18 4.37 <0.001 

MP Type (CVC vs. CVC)*Style (Clear) 0.96 0.34 2.79 0.005 

MP Type (CVC vs. CCC)*Style (Clear) 0.13 0.30 0.42 0.67 

MP Type (CCC vs. CCC)*Style (Clear) 0.38 0.30 1.28 0.20 

Style (Clear) * Lang (Tashlhiyt) 0.59 0.21 2.75 .006 

Output 2: MP Type Reference level = CVC vs. CVC     

(Intercept) 0.42 0.43 0.96 0.234 

MP Type (CVC vs. CCC) 0.71 0.45 1.57 0.12 
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MP Type (CCC vs. CCC) 0.58 0.44 1.31 0.19 

MP Type (Non-MPs) 1.67 0.55 3.03 0.002 

Style (Clear) 1.35 0.24 5.72 <0.001 

Lang (Tashlhiyt) 0.78 0.18 4.37 <0.001 

MP Type (CVC vs. CCC)*Style (Clear) -0.83 0.25 -3.31 <0.001 

MP Type (CCC vs. CCC)*Style (Clear) -0.57 0.24 -2.35 0.02 

MP Type (Non-MPs)*Style (Clear) -0.96 0.34 -2.79 0.01 

Style (Clear) * Lang (Tashlhiyt) 0.59 0.21 2.75 0.01 

Output 3: MP Type Reference level = CCC vs. CCC     

(Intercept) 0.99 0.31 3.24 0.001 

MP Type (CVC vs. CVC) -0.58 0.44 -1.31 0.19 

MP Type (CVC vs. CCC) 0.14 0.33 0.41 0.68 

MP Type (Non-MPs) 1.10 0.46 2.39 0.02 

Style (Clear) 0.78 0.17 4.67 <0.001 

Lang (Tashlhiyt) 0.78 0.18 4.37 <0.001 

MP Type (CVC vs. CVC)*Style (Clear) 0.57 0.24 2.35 0.02 

MP Type (CVC vs. CCC)*Style (Clear) -0.25 0.19 -1.36 0.17 

MP Type (Non-MPs)*Style (Clear) -0.38 0.30 -1.28 0.20 

Style (Clear) * Lang (Tashlhiyt) 0.59 0.21 2.75 0.01 

Num. observations = 5,328, Num. subjects = 72, Num. trial types = 37, Num. orderings = 4 

Retained model syntax: MP Type * Style + Style * Language Background (1+ Style | Listener) + (1|Trial Type)+ 

(1|Order) 

 

 

Table X. Summary statistics for the post-hoc glmer on discrimination responses for trials 

containing CVC vs. CCC minimal pair comparisons from Experiment 1.  

 Est SE z p 

(Intercept) 0.70 0.40 1.75 0.08 
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MP Type (CVC vs. CCC-Plateau) 0.84 0.47 1.78 0.08 

MP Type (CVC vs. CCC-Falling) 0.11 0.53 0.21 0.84 

Style (Clear) 0.52 0.22 2.30 0.02 

Lang (Tashlhiyt) 0.87 0.22 4.05 <0.001 

MP Type (CVC vs. CCC-Plateau) * Style (Clear) -0.01 0.31 -0.05 0.96 

MP Type (CVC vs. CCC-Falling) * Style (Clear) 0.84 0.35 2.38 0.02 

Num. observations = 1,728, Num. subjects = 72, Num. trial types = 12, Num. orderings = 4 

Retained model syntax: MP Type * Style + Language Background (1 + Style | Listener) + (1|Trial Type)+ 

(1|Order) 

 

 

Table X. Summary statistics for the post-hoc glmer on discrimination responses for trials 

containing CCC vs. CCC minimal pair comparisons from Experiment 1.  

 Est SE z p 

(Intercept) 1.82 0.50 3.66 <0.001 

MP Type (CCC-Plateau vs. CCC-Plateau) -0.94 0.62 -1.52 0.13 

MP Type (CCC-Falling vs. CCC-Falling) -1.36 0.62 -2.20 0.03 

Style (Clear) 0.25 0.27 0.93 0.35 

Lang (Tashlhiyt) 0.73 0.22 3.30 <0.011 

MP Type (CCC-Plateau vs. CCC-Plateau) * Style (Clear) 0.84 0.33 2.55 0.01 

MP Type (CCC-Falling vs. CCC-Falling) * Style (Clear) 0.51 0.31 1.61 0.11 

Style (Clear) * Lang (Tashlhiyt) 0.59 0.28 2.11 0.03 

Num. observations = 2,160, Num. subjects = 72, Num. trial types = 15, Num. orderings = 4 

Retained model syntax: MP Type * Style + Style * Language Background (1 + Style | Listener) + (1|Trial Type)+ 

(1|Order) 

 

 

Table X. Summary statistics for the lmer on nonword acceptability ratings from Experiment 2.  

 Est SE df t p 

(Intercept) -0.41 0.09 79.72 -4.78 <0.001 

Sonority Value (centered) 0.07 0.05 63.45 1.29 0.20 

Style (Clear) 0.26 0.07 67.56 3.72 <0.001 

Lang (Tashlhiyt) 0.56 0.11 70.25 5.07 <0.001 

Sonority * Style (Clear) 0.18 0.06 1319.91 2.95 0.003 

Sonority * Lang (Tashlhiyt) 0.01 0.06 244.73 0.12 0.90 
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Style (Clear) * Lang (Tashlhiyt) 0.00 0.10 67.57 -0.05 0.96 

Sonority * Style (Clear) * Lang (Tashlhiyt) -0.39 0.09 1320.09 -4.53 <0.001 

Num. observations = 1,512, Num. subjects = 72, Num. items = 21 

Retained model syntax: Sonority Value * Style * Language Background (1+Style + Sonority Value | Listener) 
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