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Abstract

Numerical analysis for linear constant-coefficient multi-step Finite Difference schemes is a longstanding topic, developed
approximately fifty years ago. It relies on the stability of the scheme, and thus—within the 𝐿2 setting—on the absence
of multiple roots of the amplification polynomial on the unit circle. This allows for the decoupling, while discussing the
convergence of the method, of the study of the consistency of the scheme from the precise knowledge of its parasitic/spurious
modes, so that the methods can be essentially studied as if they had only one step. Furthermore, stability alleviates the need
to delve into the complexities of floating-point arithmetic on computers, which can be challenging topics to address. In
this paper, we demonstrate that in the case of “weakly” unstable Finite Difference schemes with multiple roots on the unit
circle, although the schemes may remain stable, considering parasitic modes is essential in studying their consistency and,
consequently, their convergence. This research was prompted by unexpected numerical results on stable lattice Boltzmann
schemes, which can be rewritten in terms of multi-step Finite Difference schemes. Unlike Finite Difference schemes, rigorous
numerical analysis for lattice Boltzmann schemes is a contemporary topic with much left for future discoveries. Initial
expectations suggested that third-order initialization schemes would suffice to maintain the accuracy of fourth-order schemes.
However, this assumption proved incorrect for weakly unstable Finite Difference schemes and for stable lattice Boltzmann
methods. This borderline scenario underscores that particular care must be adopted for lattice Boltzmann schemes, and the
significance of genuine stability in facilitating the construction of Lax-Richtmyer-like theorems and in mastering the impact
of round-off errors concerning Finite Difference schemes. Despite the simplicity and apparent lack of practical usage of
the linear transport equation at constant velocity considered throughout the paper, we demonstrate that high-order lattice
Boltzmann schemes for this equation can be used to tackle nonlinear systems of conservation laws relying on a Jin-Xin
approximation and high-order splitting formulæ.

Keywords— lattice Boltzmann, Finite Difference, multi-step, weak instabilities, order of convergence, relaxation system
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Introduction
Multi-step constant-coefficients Finite Difference schemes feature several modes [25, Chapter 2]—each one associated with
one root of the amplification polynomial of the scheme. For scalar problems involving one wave, whom we shall be concerned
with in this paper, one physical mode and possibly several parasitic modes are therefore mixed together in the discrete solution.
As long as the scheme is stable for the 𝐿2 norm, namely the roots are in the closed unit disk and those on the unit circle are
simple, stability rules out any potential influence of the—indeed present—parasitic modes, as far as consistency is concerned.
This can be understood in the following way: let 𝑄 + 1 ≤ 𝑛 ≤ ⌊𝑇/𝛿𝑡⌋, where 𝑄 + 1 is the number of steps of the multi-step
scheme, 𝑇 > 0 is the final time-horizon of the simulation, and 𝛿𝑡 is the time step. Denote u𝑛 the solution of the multi-step
scheme, obtained by1 û𝑛 (𝜉) = ĝ[𝑛] (𝜉Δ𝑥)û0 (𝜉) with |𝜉Δ𝑥 | ≤ 𝜋, where the amplification factors ĝ[𝑛] are determined by the
multi-step scheme itself as well as by the initialization schemes, and Δ𝑥 is the space step. Let ĝ1 be the physical root of the
amplification polynomial: the only one such that ĝ1 (0) = 1, and construct ŵ𝑛 (𝜉) = ĝ1 (𝜉Δ𝑥)𝑛û0 (𝜉), called “pseudo-scheme”.
The crucial estimate to study the order of the overall method (i.e. taking the initialization into account) is

∥u𝑛 − w𝑛∥ℓ2 ,Δ𝑥 ≤ 𝐶𝑇

𝑄∑︁
𝑝=0

∥u𝑝 − w𝑝 ∥ℓ2 ,Δ𝑥 , (1)

thanks to stability. The right-hand side of (1) solely depends on ĝ1—through w𝑄, . . . ,w0—and on the initializations
u𝑄, . . . , u0 via ĝ[𝑄] , . . . , ĝ[0] : no influence of the parasitic roots ĝ2, . . . , ĝ𝑄+1 of the amplification polynomial. An important
consequence of this, in the context where 𝛿𝑡 ∝ Δ𝑥 as Δ𝑥 → 0 and the target equation is the linear transport equation, is that a
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1Throughout the paper, we shall use a hat to denote a Fourier transform.
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scheme of order 𝜔 can be initialized with methods of order 𝜔 − 1 without lowering the overall order of the method, see [39,
Theorem 10.6.2]. For concreteness, a leap-frog scheme (i.e. 𝜔 = 2) can be started using a Lax-Friedrichs scheme, or even
an unstable forward-Euler centered scheme. Different terminologies have been employed to designate this situation, ranging
from “fully stable” schemes [38] to stability in the “Lax-Richtmyer sense” [23, Section 5], [35].

The situation turns out to be radically different when multiple roots lay on the unit circle. Historically, these schemes
have been called “weakly unstable” [38], [24] within the theory of S-stability; “algebraically stable” [23]; “stable in the sense
of Forsythe-Wasow” [35]. These schemes, which we call “weakly” unstable, can be stable in practice, especially when the
frequency at which multiple roots belong to the unit circle is the frequency 𝜉 = 0 only. Therefore, provided that the underlying
floating point arithmetic is accurate enough, these schemes can be suitable for computations [36], [23]. Genuine stability—i.e.
(1)—requires control for arbitrary initial data u𝑄, . . . , u0 and thus cannot be established in these circumstances, due to the
potential polynomial growth of the numerical solution in 𝑛. Despite this, any “reasonable” initialization scheme—which
yields a specific choice of initial data—renders a stable computation [23] as long as it avoids exciting the unstable frequency.
Constraining the choice of initialization routines to well-chosen ones in order to achieve desired numerical properties—which
we would otherwise unlikely obtain—has been studied in the context of linear multi-step schemes for ordinary differential
equations [26].

• The first main finding we try to elucidate in the present paper is the following. In the weakly unstable framework, a
multi-step Finite Difference scheme of order 𝜔 might need to be initialized with some methods of the same order 𝜔
to preserve the overall order, contrarily to genuinely stable schemes, as predicted by [35, Theorem 4] without explicit
examples. This is due to the entangled role of the several modes allowed by the multi-step scheme—both physical and
parasitic—in the consistency of the method, since the lack of stability forbids from synthesizing consistency merely in
terms of the physical root and the dominant part of the numerical error can be carried by the parasitic modes. To the
best of our knowledge, this observation is new in the available literature.

This conclusion has been accidentally drawn while trying to construct a fourth-order lattice Boltzmann scheme [32] for the
linear transport equation. Several recent works on lattice Boltzmann schemes, for example [22] and [4], have demonstrated
that these are indeed an unfading source of multi-step Finite Difference schemes. Therefore the (still imperfect) rigorous
understanding of lattice Boltzmann schemes is likely to pass from that of multi-step Finite Difference schemes [2]. For the
lattice Boltzmann scheme we consider is genuinely stable, unlike its corresponding Finite Difference scheme, we reasonably
conjectured that it would have needed third-order initializations in order to preserve its overall fourth-order. Surprisingly,
despite the fact of having third-order initializations ready to use, numerical results featured orders of convergence stuck at
three instead of the expected order four, without any trace of explosion of the numerical solution whatsoever.

• Therefore, the second main finding this paper discusses is the fact that the initialization of stable lattice Boltzmann
schemes must be handled with particular care, for the situation can be quite different from that of stable Finite Difference
schemes. Again, this is due to the presence of parasitic modes and—to the best of our knowledge—new in the literature.

The majority of the content in the present paper concerning Finite Difference schemes belatedly tweaks subjects that have
been studied a long time ago, at the beginning of the 1970s [5], and uses classical Fourier analysis and a well-understood
Lax-Richtmyer approach. Still, this discussion is totally new for lattice Boltzmann schemes and, as far as Finite Difference
schemes are concerned, emphasizes the key role of stability in making the study of consistency simple, i.e. based just
on the local truncation error of the bulk multi-step scheme, plus the independent study of the initialization routines (cf.
(1)). The authors of [24] have warned that in the weakly unstable framework, one is unable to bound the global truncation
error from the local truncation error. Therefore, our contribution should also be valued for its pedagogical role. From a
different perspective, developing high-order lattice Boltzmann schemes for the linear transport equation can be of interest in
applications. Indeed, these explicit methods are praised for their computational efficiency and can be used to approximate
the solution of non-linear systems of conservation laws by embedding them into approximations [1] of the Jin-Xin relaxation
system [27], using high-order symmetric operator splittings [31], in the spirit of [8].

The paper is structured as follows. Section 1 presents the origin of the study from an empirical observation, where we
found unexpected orders of convergence. Theory is developed in Section 2 to understand these results. Section 3 brings the
numerical schemes back on the “battlefield” by investigating the role of floating-point arithmetic and thus of round-off errors.
Finally, Section 4 presents an application of the fourth-order solver for the linear transport equation to the approximation of
non-linear equations. To ease the readers’ task, we have gathered most of the highly recurrent notations used in the paper into
Table 1.
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Table 1: Frequently-used notations, meaning, and where to find them.
Symbol Meaning First appears in

𝑛 Index of the time step Introduction
ˆ Fourier-transformed quantity Introduction
𝜉 Frequency Introduction
C Courant number Section 1
E Scheme matrix of the lattice Boltzmann scheme Section 1.1.1

ĝ[1] , ĝ[2] Amplification factors of the initialization schemes Introduction
ĝ[3] , ĝ[4] , . . . Amplification factors of the bulk schemes Introduction
Φ̂( 𝜉Δ𝑥, z) Amplification polynomial of the Finite Difference scheme Section 1.2.1
ĝ1, ĝ2, ĝ3 Roots of the amplification polynomial / eigenvalues of Ê Introduction
𝜔2, 𝜔1 Order of the second and first initialization scheme Section 1.2.3

Ĉ Companion matrix of the amplification polynomial Section 2.3.1
Ĝ[𝑛]
ℓ

Green function of the 𝑛-th time-step for the ℓ-th stage Section 2.3.1

1 The numerical experiments behind this study
The toy model we consider in the paper is the Cauchy problem associated with the linear transport equation at velocity𝑉 ∈ R,
which reads

𝜕𝑡𝑢(𝑡, 𝑥) +𝑉𝜕𝑥𝑢(𝑡, 𝑥) = 0, 𝑡 ∈ (0, 𝑇], 𝑥 ∈ R, (2)
𝑢(0, 𝑥) = 𝑢◦ (𝑥), 𝑥 ∈ R. (3)

The initial datum 𝑢◦ is a given smooth function, unless otherwise said. For the problem is linear, we conveniently consider the
Fourier transform of (2), obtaining 𝜕𝑡 �̂�(𝑡, 𝜉) = −𝑖𝑉𝜉�̂�(𝑡, 𝜉) for 𝜉 ∈ R. The explicit solution hence reads �̂�(𝑡, 𝜉) = 𝑒−𝑖𝑉 𝜉 𝑡 �̂�◦ (𝜉).

For the sake of approximating the solution of (2) and (3), we consider a uniform time-space discretization with steps 𝛿𝑡
and Δ𝑥, so that the discrete grid points in time will be 𝑡𝑛 := 𝑛𝛿𝑡 with 𝑛 ∈ N and those in space 𝑥𝑘 := 𝑘Δ𝑥 with 𝑘 ∈ Z. For we
consider explicit numerical methods for the hyperbolic equation (2), we naturally fix the ratio2 𝜆 := Δ𝑥/𝛿𝑡 to some positive
real number as the spatial grid shrinks, i.e. Δ𝑥 → 0, and so we shall be allowed to use Δ𝑥 as unique discretization parameter.

As extensively stressed in the introduction, this study has been stimulated by the following example of multi-step scheme
with 𝑄 + 1 = 3 steps, which origin will be clarified in a moment. Let 𝑛 ≥ 2, 𝑘 ∈ Z, and consider:

u𝑛+1
𝑘 = 1

3 (1 − 4C2 + 2(C2 − 1) (D2 + 2) − 6CD0)u𝑛
𝑘 − 1

3 (1 − 4C2 + 2(C2 − 1) (D2 + 2) + 6CD0)u𝑛−1
𝑘 + u𝑛−2

𝑘 , (4)

where the centered first-order finite difference D0 is defined by D0u
𝑘

:= (u
𝑘+1 − u

𝑘−1)/2, and the centered second-order finite
difference D2 is given by D2u

𝑘
:= u

𝑘+1 − 2u
𝑘
+ u

𝑘−1. For it will play an important role in what follows, we define the Courant
number C := 𝑉/𝜆. In (4), we have to interpret u𝑛

𝑘
≈ 𝑢(𝑡𝑛, 𝑥𝑘).

1.1 Lattice Boltzmann scheme and a surprising numerical experiment
1.1.1 Lattice Boltzmann algorithm: collide-and-stream

Without entering into the details on the origin of lattice Boltzmann schemes, we just see them as given collide-and-stream
procedures on more unknowns than the target problem (2) that one wants to approximate. We consider a scheme in one
space dimension featuring three unknowns, that we shall indicate by u, v, and w and call “moments”—see for example [17],
commonly known as D1Q3. Here, 𝑛 ∈ N and the algorithm is made up of the two steps presented here.

• A local collision phase, giving the post-collision values

u𝑛★
𝑘 = u𝑛

𝑘 , v𝑛★𝑘 = (1 − 𝑠𝑣)v𝑛𝑘 + 𝑠𝑣𝑣
eq (u𝑛

𝑘), w𝑛★
𝑘 = (1 − 𝑠𝑤)w𝑛

𝑘 + 𝑠𝑤𝑤
eq (u𝑛

𝑘), (5)

for 𝑘 ∈ Z. In these expressions, 𝑠𝑣 , 𝑠𝑤 ∈ (0, 2] are the relaxation parameters of the non-conserved moments v and w,
whereas 𝑣eq and 𝑤eq are their equilibria: possibly non-linear functions of the conserved (since u★ = u) moment u. For
the problem we aim at solving is linear, we consider linear equilibria and thus take 𝜖𝑣 , 𝜖𝑤 ∈ R such that 𝑣eq (u) = 𝜖𝑣u
and 𝑤eq (u) = 𝜖𝑤u.

• A non-local stream phase is written using another basis induced by M−1. We take

M =


𝑀11 1 1

0 1 −1
𝑀31 1 1

 ,
2We acknowledge that this notation is customary in the lattice Boltzmann community, while the Finite Difference community mostly employs the

reciprocal 𝜆 = 𝛿𝑡/Δ𝑥. We shall stick with the former notation.
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where 𝑀11, 𝑀31 ∈ R remain free parameters that could be tuned to change some features of the scheme. To keep the
matrix M invertible, we have to enforce 𝑀11 ≠ 𝑀31. The usual choice [17], [21], [19] is to take 𝑀11 = 1, whereas
typical values for 𝑀31 are zero [21] (for simplicity) and -2 [19] (to have orthogonal rows in M with respect to the
Euclidean scalar product of vectors). The post-collisional distribution functions associated with the discrete velocities
0, 1, and −1 are recovered point-by-point by (f𝑛★◦,𝑘 , f

𝑛★
+,𝑘 , f

𝑛★
−,𝑘)

T = M−1 (u𝑛★
𝑘
, v𝑛★

𝑘
,w𝑛★

𝑘
)T, where 𝑘 ∈ Z. The stream reads,

for 𝑘 ∈ Z
f𝑛+1
◦,𝑘 = f𝑛★◦,𝑘 , f𝑛+1

+,𝑘 = f𝑛★+,𝑘−1, f𝑛+1
−,𝑘 = f𝑛★−,𝑘+1. (6)

After this phase, one can recover the moments by setting (u𝑛+1
𝑘

, v𝑛+1
𝑘

,w𝑛+1
𝑘

)T = M(f𝑛+1
◦,𝑘 , f

𝑛+1
+,𝑘 , f

𝑛+1
−,𝑘 )

T.

Finally, notice that the overall lattice Boltzmann scheme can be written on the moments u, v, and w using E, a 3-by-3 matrix
with entries in the ring of spatial Finite Difference operators on Cartesian grids, so that (u𝑛+1

𝑘
, v𝑛+1

𝑘
,w𝑛+1

𝑘
)T = E(u𝑛

𝑘
, v𝑛

𝑘
,w𝑛

𝑘
)T.

1.1.2 Tuning of the free parameters

Looking at the algorithm proposed in Section 1.1.1, we see that it features numerous free parameters to be tuned, namely 𝑠𝑣 ,
𝑠𝑤 , 𝜖𝑣 , 𝜖𝑤 , 𝑀11, and 𝑀31. We now select them according to the order of accuracy that we want to achieve with respect to the
target equation (2), by computing the modified equations on the original lattice Boltzmann scheme following the procedure
proposed in [18], where they are called “equivalent equations”.3 We assume that all the parameters remain fixed as Δ𝑥—and
a fortiori 𝛿𝑡—go to zero. The obtained modified equation reads 𝜕𝑡𝜓 + Γ (1) (𝜓) +∑ℎ=+∞

ℎ=2 𝛿𝑡ℎ−1Γ (ℎ) (𝜓) = 0, see [20, Equation
(38)], where a generic function 𝜓 = 𝜓(𝑡, 𝑥) appears to stress the fact that this is not the solution 𝑢 of the target problem (2)
and (3). Enforcing that Γ (1) (𝜓) = 𝑉𝜕𝑥𝜓 secures first-order consistency with (2). Obtaining Γ (2) (𝜓) = · · · = Γ (𝜔) (𝜓) = 0
ensures accuracy up to order 𝜔. We proceed iteratively order-by-order and progressively incorporate any previous choice on
the parameters until reaching order 𝜔 = 4.

• We obtain Γ (1) (𝜓) = 𝜆𝜖𝑣𝜕𝑥𝜓. To achieve consistency, we have to enforce 𝜖𝑣 = C.

• We have
Γ (2) (𝜓) = 𝜆2

( 1
𝑠𝑣

− 1
2

) (
− 𝑀31
𝑀31 − 𝑀11

+ C2 + 𝑀11
𝑀31 − 𝑀11

𝜖𝑤

)
𝜕𝑥𝑥𝜓.

There are two ways of having Γ (2) (𝜓) = 0 by making each term into parentheses vanish. We adopt 𝑠𝑣 = 2.

• We obtain
Γ (3) (𝜓) = 𝜆3C

12

(
−2C2 + (1 − 3𝜖𝑤)𝑀11 + 𝑀31

𝑀31 − 𝑀11

)
𝜕3
𝑥𝜓.

We achieve Γ (3) (𝜓) = 0 through 𝜖𝑤 = 1
3

(
1 + 2𝑀31

𝑀11
− 2 𝑀31−𝑀11

𝑀11
C2

)
.

• We have
Γ (4) =

𝜆4C2 (C2 − 1)
6

( 1
𝑠𝑤

− 1
2

)
𝜕4
𝑥𝜓,

hence achieve fourth-order accuracy by selecting 𝑠𝑤 = 2.

After this procedure, the coefficients 𝑀11 and 𝑀31 are still free. Nevertheless, we are about to see that they do not play
any major role in the rest of the paper, and we can therefore fix them at our convenience.

1.1.3 Initialization

We fix 𝑀11 = 1 and 𝑀31 = −2 for simplicity. Since the bulk lattice Boltzmann scheme is fourth-order accurate, it needs to be
initialized with at least third-order accurate schemes dictated by the choice of v0 and w0. The classical choice of taking them
locally at equilibrium, namely selecting v0

𝑘
= 𝜖𝑣u0

𝑘
= Cu0

𝑘
and w0

𝑘
= 𝜖𝑤u0

𝑘
= (2C2 − 1)u0

𝑘
is not enough, because it yields

first-order accurate schemes, see [3]. Considering

v0
𝑘 = Cu0

𝑘 +
C2 − 1

6
D0u0

𝑘︸         ︷︷         ︸
perturb. of the equil.

, w0
𝑘 = (2C2 − 1)u0

𝑘 + C(C2 − 1)D0u0
𝑘 + 𝛿D2u0

𝑘︸                          ︷︷                          ︸
perturb. of the equil.

(7)

gives a third-order initialization scheme for the first stage (i.e. yielding u1) and a third-order, for 𝛿 ≠ 0, or fourth-
order, for 𝛿 = 0, initialization scheme for the second stage (i.e. yielding u2), obtained by slightly perturbing the local

3This could also be obtained by turning the lattice Boltzmann scheme—originally on u, v , and w—into a multi-step Finite Difference scheme solely on
u, see Section 1.2.1, and then computing the modified equations [43] or expanding the roots of the amplification polynomial in the small wave-number limit.
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equilibrium. The amplification factors ĝ[1] and ĝ[2] , such that û1 (𝜉) = ĝ[1] (𝜉Δ𝑥)û0 (𝜉) and û2 (𝜉) = ĝ[2] (𝜉Δ𝑥)û0 (𝜉), will
be given by ĝ[1] (𝜉Δ𝑥) = eT

1 Ê(𝜉Δ𝑥) (1, C + 𝑖 (C2−1)
6 sin(𝜉Δ𝑥), (2C2 − 1) + 𝑖C(C2 − 1) sin(𝜉Δ𝑥) + 2𝛿(cos(𝜉Δ𝑥) − 1))T and

ĝ[2] (𝜉Δ𝑥) = eT
1 Ê(𝜉Δ𝑥)2 (1, C + 𝑖 (C2−1)

6 sin(𝜉Δ𝑥), (2C2 − 1) + 𝑖C(C2 − 1) sin(𝜉Δ𝑥) + 2𝛿(cos(𝜉Δ𝑥) − 1))T and feature quite
involved expressions that we do not provide here. Still, we have the expansions ĝ[1] (𝜉Δ𝑥) = 𝑒−𝑖C 𝜉Δ𝑥 (1+𝑂 ( | 𝜉Δ𝑥 |3 ) ) and
ĝ[2] (𝜉Δ𝑥) = 𝑒−2𝑖C 𝜉Δ𝑥 (1+(𝛿−1)𝑂 ( | 𝜉Δ𝑥 |3 )+𝑂 ( | 𝜉Δ𝑥 |4 ) ) in the limit |𝜉Δ𝑥 | ≪ 1, confirming the previously given orders.

1.1.4 A surprising numerical experiment
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Figure 1: Error for the lattice Boltzmann scheme with initialization (7) with 𝛿 = 1 at final time 𝑇 = 0.2

We now test the order of convergence of the lattice Boltzmann scheme with respect to Δ𝑥. We simulate on a bounded
domain [−1, 1], enforcing periodic boundary conditions. We employ the original lattice Boltzmann scheme (5)/(6) with (7)
using 𝛿 = 1, hence having third-order initializations. The initial datum is 𝑢◦ (𝑥) = exp(−1/(1− (2𝑥)2))𝜒(−1,1) (2𝑥), which is a
smooth function of class 𝐶∞

c ( [−1, 1]) fulfilling the periodic boundary conditions. We simulate using C = 1/4. Surprisingly,
the result in Figure 1 shows third-order convergence instead of the expected fourth-order. We will come back to this fact in a
few moments.

1.2 Finite Difference scheme and an (even more) surprising numerical experiment
1.2.1 Corresponding Finite Difference scheme

Having a fourth-order lattice Boltzmann scheme at our disposal, we now describe how to temporarily forget about it and obtain
(4). In our previous contributions [4], [2], and [3], we have shown how to recast any lattice Boltzmann scheme—whether it
tackles linear or non-linear equations—under the form of a multi-step Finite Difference scheme on the conserved moments.
In the present context, the corresponding Finite Difference scheme will be on u only. The amplification polynomial of the
corresponding Finite Difference scheme (4) reads

Φ̂(𝜉Δ𝑥, z) := det(zI − Ê(𝜉Δ𝑥)) = z3 + 𝜂(𝜉Δ𝑥) z2 − 𝜂(𝜉Δ𝑥)z − 1, (8)

where the bar denotes complex conjugation, 𝜂(𝜉Δ𝑥) = − 1
3 (1 − 4C2 + 4(C2 − 1) cos(𝜉Δ𝑥) − 6𝑖C sin(𝜉Δ𝑥)), and |𝜉Δ𝑥 | ≤ 𝜋.

Observe that (8) does not depend on the specific choice of 𝑀11 and 𝑀31, as previously claimed.

1.2.2 Equivalence of the lattice Boltzmann scheme and its corresponding Finite Difference scheme

Upon taking the initialization procedures into account, the unknowns u𝑛 computed using the original lattice Boltzmann
method (5)/(6) or its corresponding Finite Difference scheme (4) are mathematically the same. Of course, since the operations
implemented on computers can be different, this is actually true up to machine precision. To demonstrate this fact, we follow
the illustration by [16] and adopt the same setting of Section 1.1.4 with a grid made up of 𝑁𝑥 = 200 points, using both the
original lattice Boltzmann scheme and its corresponding Finite Difference scheme with different machine precision. The
results in Figure 2 confirm our claim: the difference is of the order of the machine epsilon and accumulates in time.
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Figure 2: Difference between the solution u𝑛 obtained by lattice Boltzmann and Finite Difference scheme with 𝑁𝑥 = 200
mesh points as time goes on for different floating point arithmetics.

1.2.3 An (even more) surprising numerical experiment

We now test the order of convergence of the corresponding Finite Difference scheme (4) with respect to Δ𝑥. The setting is
the same as in Section 1.1.4. We utilize several initialization schemes. In particular, we shall use the Lax-Friedrichs scheme
as prototype of first-order initialization scheme, the Lax-Wendroff scheme for second-order, the OS3 scheme for third-order,
and the OS4 scheme for fourth order, see [14]. Test cases will be numbered as follows: since we deal with a bulk scheme
featuring 𝑄 + 1 = 3 steps, we need 𝑄 = 2 initialization schemes. The test case ⟨𝜔2, 𝜔1⟩ corresponds to a 𝜔2-order scheme
(applied twice) for the second initialization and a 𝜔1-order scheme for the first initialization. In the results given in Figure 3
for the 𝐿2 error at 𝑇 , we observe an unexpected result:

overall order = min(4, 𝜔2, 𝜔1 + 1), in lieu of the expected overall order = min(4, 𝜔2 + 1, 𝜔1 + 1)

from [39, Theorem 10.6.2]. This means that we have to feed the second time step 𝑛 = 2 with an initialization of the same
order of accuracy as the bulk scheme to preserve the overall order. Observe that the computations shown in Figure 3 remain
stable (and converge).

2 Understanding the numerical experiments
We now try to investigate the reasons behind all these unexpected results given in Section 1.1.4 and 1.2.3. To this end, we
first show that while the lattice Boltzmann scheme is stable, the Finite Difference scheme is weakly unstable and features—
along with the original lattice Boltzmann scheme—two travelling parasitic modes whose speed of propagation sets a specific
Courant–Friedrichs–Lewy (CFL) constraint different from the usual |C| ≤ 1. Then, we focus on the Finite Difference scheme,
and theoretically study the order of convergence by proving that thanks to the initialization, the scheme remains stable, and
that the global truncation error is shaped by the parasitic modes. They also allow to study the qualitative behavior of the error
in time and explain supra-convergent results in simulations run under periodic boundary conditions. Finally, we numerically
analyze the case where the initial datum 𝑢◦ is not smooth.

2.1 Stability of the lattice Boltzmann scheme
Recalling that we had (u𝑛+1

𝑘
, v𝑛+1

𝑘
,w𝑛+1

𝑘
)T = E(u𝑛

𝑘
, v𝑛

𝑘
,w𝑛

𝑘
)T, we can write (u𝑛

𝑘
, v𝑛

𝑘
,w𝑛

𝑘
)T = E𝑛 (u0

𝑘
, v0

𝑘
,w0

𝑘
)T and by the

Parseval’s identity, we naturally introduce the following definition of stability.

Definition 1 (Stability of a lattice Boltzmann scheme). A lattice Boltzmann scheme, such as (5)/ (6), is said to be “stable” if
and only if Ê(𝜉Δ𝑥)𝑛 is bounded for every |𝜉Δ𝑥 | ≤ 𝜋 and for every 𝑛 ∈ N.

Stability can be characterized using the minimal polynomial of E.
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Figure 3: Error for (4) at final time 𝑇 = 0.2 with different initialization schemes.

Proposition 1 (Stability of a lattice Boltzmann scheme). A lattice Boltzmann scheme, such as (5)/ (6), is stable if and only
if, for every |𝜉Δ𝑥 | ≤ 𝜋, the minimal polynomial of Ê(𝜉Δ𝑥) is a simple von Neumann polynomial, namely none of its roots is
outside the closed unit disk and those on the unit circle are simple.

Proof. This is a consequence of the Jordan canonical form for complex matrices. If the minimal polynomial of Ê(𝜉Δ𝑥) is a
simple von Neumann polynomial, then the maximal size of the Jordan blocks associated to each eigenvalue on the unit circle
is one, which prevents polynomial growths of Ê(𝜉Δ𝑥)𝑛 in 𝑛. Exponential growths are not possible since all the roots are in
the closed unit disk. □

We finish on the stability of the lattice Boltzmann scheme we have constructed.

Proposition 2 (Stability of the lattice Boltzmann scheme (5)/(6)). The lattice Boltzmann scheme (5)/ (6) with the previously
selected parameters is stable under the CFL condition |C| < 1/2.

Proof. For 𝜉Δ𝑥 ≠ 0, Proposition 3 to come ensures that the characteristic polynomial of Ê(𝜉Δ𝑥) is a simple Von Neumann
polynomial, thus this is also true for the minimal polynomial. For 𝜉Δ𝑥 = 0, we have

Ê(0) =

1 0 0
★ −1 0
★ 0 −1

 , hence Ê(0)𝑛 =


1 0 0

★(1 − (−1)𝑛) (−1)𝑛 0
★(1 − (−1)𝑛) 0 (−1)𝑛

 ,
where the ★ entries are terms depending on C and the choice of 𝑀11 and 𝑀31. They are independent of 𝑛, thus Ê(0) is
power bounded and the lattice Boltzmann scheme stable. Observe that Ê(0)2 = I, thus the polynomial z2 − 1 is the minimal
polynomial of Ê(0). It has two roots on the unit circle which are distinct. □
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2.2 Weak instability of the Finite Difference scheme for general data
The stability of (4) needs to be studied using the roots of its amplification polynomial (8).

Definition 2 (Stability/weak instability of a Finite Difference scheme). Consider a Finite Difference scheme explicitly
independent of 𝛿𝑡 and Δ𝑥 with amplification polynomial Φ̂(𝜉Δ𝑥, z).

• We say that the scheme is “stable” if, for every |𝜉Δ𝑥 | ≤ 𝜋, Φ̂(𝜉Δ𝑥, z) is a simple von Neumann polynomial.

• We say that the scheme is “weakly unstable” if for every |𝜉Δ𝑥 | ≤ 𝜋, Φ̂(𝜉Δ𝑥, z) is a von Neumann polynomial, namely
all the roots are inside the closed unit disk, and for some |𝜉Δ𝑥 | ≤ 𝜋, Φ̂(𝜉Δ𝑥, z) has multiple roots on the unit circle.

If we compute its conjugate reciprocal polynomial (or inversive polynomial) [42] given by Φ̂† (𝜉Δ𝑥, z) := z𝑄+1Φ̂(−𝜉Δ𝑥, 1/z),
we obtain

Φ̂† (𝜉Δ𝑥, z) = −z3 − 𝜂(𝜉Δ𝑥)z2 + 𝜂(𝜉Δ𝑥) z + 1.

We observe that since Φ̂(𝜉Δ𝑥, z) = −Φ̂† (𝜉Δ𝑥, z), the polynomial Φ̂(𝜉Δ𝑥, z) is self-inversive [30, Chapter 10], [34, Chapter
1], and [42]. From [42, Theorem 1], since Φ̂(𝜉Δ𝑥, z) is of odd degree, we deduce that it has at least one root over
the unit circle. Moreover, if ĝ is a root of Φ̂(𝜉Δ𝑥, z), then also 1/ĝ is a root of Φ̂(𝜉Δ𝑥, z). The zeros of this kind
of polynomial either belong to unit circle or occur in pairs conjugate with respect to the unit circle [28]. Moreover,
z−1 (Φ̂† (𝜉Δ𝑥, 0)Φ̂(𝜉Δ𝑥, z) − Φ̂† (𝜉Δ𝑥, z)Φ̂(𝜉Δ𝑥, 0)) ≡ 0, hence—see [39, Chapter 4]—all the roots of the amplification
polynomial lie on the unit circle for every wave-number.

Proposition 3 (Weak instability of the Finite Difference scheme (4)). Assume that the CFL condition |C| < 1/2 holds. Then,
(4) is weakly unstable. More precisely:

• For |𝜉Δ𝑥 | ∈ (0, 𝜋], the amplification polynomial Φ̂(𝜉Δ𝑥, z) given by (8) has distinct roots on the unit circle.

• For |𝜉Δ𝑥 | = 0, the amplification polynomial Φ̂(0, z) given by (8) has roots 1 (single) and −1 (double).

Proposition 3—proved in Appendix A—means that (4) is stable for the 𝐿2-norm except for the frequency zero, which
could cause a linear growth of the solution in time.

Remark 1 (Link with linear multi-step methods for ODEs). Indeed, using the language of linear multi-step schemes for
ODEs, the scheme is not zero-stable for 𝜉 = 0 and in this case resembles to [40, Example 12.5 (d)]. If we have not had the
spatial direction 𝑥, we could not expect convergence. Still, the presence of the spatial extension helps us in having an overall
stable procedure.

One legitimate question concerns the meaning of the CFL condition |C| < 1/2. This can be seen by explicitly computing
the roots ĝ1, ĝ2, and ĝ3 of the amplification polynomial and perform Taylor expansions in the low-frequency limit |𝜉Δ𝑥 | ≪ 1.
This is

ĝ1 (𝜉Δ𝑥) = 1 − 𝑖C𝜉Δ𝑥 − 1
2C

2𝜉2Δ𝑥2 + 𝑖
6C

3𝜉3Δ𝑥3 + 1
24C

4𝜉4Δ𝑥4 + 𝑖C
360

(
5C4 − 10C2 + 2

)
𝜉5Δ𝑥5 +𝑂 ( |𝜉Δ𝑥 |6)

= 𝑒−𝑖C 𝜉Δ𝑥 (1+𝑂 ( | 𝜉Δ𝑥 |4 ) ) , (9)

which proves that—as already emphasized—the method is fourth-order accurate. Even more precisely, cf. [39] and [12]: it
exists a constant 𝐶 > 0 such that 1

𝛿𝑡
|𝑒−𝑖C 𝜉Δ𝑥 − ĝ1 (𝜉Δ𝑥) | ≤ 𝐶Δ𝑥4 |𝜉 |5 for |𝜉Δ𝑥 | ≤ 𝜋. For the parasitic eigenvalues:

ĝ2 (𝜉Δ𝑥) = −𝑒
𝑖
√

3
6 (

√
3C+

√
8−5C2 ) 𝜉Δ𝑥 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

, ĝ3 (𝜉Δ𝑥) = −𝑒
𝑖
√

3
6 (

√
3C−

√
8−5C2 ) 𝜉Δ𝑥 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

. (10)

The exponential form in (10) is inspired by [31, Theorem 19] and emphasizes that the parasitic eigenvalues essentially behave
like pseudo-schemes of order two for a different flow compared to the target equation (2). Remark that 8 − 5C2 > 0 by the
constraint |C| ≤ 1 that must naturally hold for an explicit method with spatial stencil of one, see [37]. The first parasitic
mode—brought by ĝ2—propagates backward, whatever the sign of C, whereas the second mode—carried by ĝ3—always
propagates forward. Both produce rapid checkerboard-like oscillating solutions since ĝ2 (0) = ĝ3 (0) = −1. We would like
the parasitic waves to propagate slower than the speed of information of the scheme, which is equal to 𝜆 = Δ𝑥/𝛿𝑡. This can
be stated as {√

3
6 (

√
3C +

√
8 − 5C2) < 1, → C ∈ (−1, 1/2),√

3
6 (

√
3C −

√
8 − 5C2) > −1, → C ∈ (−1/2, 1),

→ |C| < 1/2,

which is indeed the CFL condition by Proposition 3. This demonstrates that in this case, the CFL constraint is a condition
on the speed of propagation of information by the parasitic modes. By studying

√
3

6 (
√

3C +
√

8 − 5C2) > C, we see that the
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velocity of the parasitic waves is always larger than the one of the physical wave, as expected, because otherwise the CFL
constraint would have been |C| < 1.

We now understand why the numerical simulations in Section 1.2.3 go against [39, Theorem 10.6.2]. This result needs
the numerical scheme to be genuinely stable. . . and (4) is not—according to Proposition 3. The aim of the sections to come
is to understand why the numerical scheme still behaves in a stable fashion and converges, though with unexpected rates.
Remark 2 (A simpler numerical scheme with the similar features). We can construct a simpler multi-step scheme with
features analogous to (4), building an ad hoc amplification polynomial. We would like it to have a stable method for all
wave-numbers except for the frequency zero, where a double root −1 is present. We do not request all the roots to be on the
unit circle for all |𝜉Δ𝑥 | ≤ 𝜋. We thus consider

Φ̂(𝜉Δ𝑥, z) = (z − ĝOS4 (𝜉Δ𝑥)) (z + cos(𝜉Δ𝑥)) (z + 1), (11)

where ĝOS4 (𝜉Δ𝑥) is the amplification factor of the OS4 scheme.4 This type of scheme gives the same surprising results as
in Section 1.2.3, which are not included in the paper. This is both paradoxical and instructive: if we had taken the fourth-
order one-step scheme associated with ĝOS4 and made a finite number of iterations at the very beginning with a third-order
scheme, we would have preserved an overall fourth-order. Similarly, if we had considered parasitic roots in of the amplification
polynomial ĝ2 and ĝ3 fulfilling the stability condition also at 𝜉Δ𝑥 = 0, for example Φ̂(𝜉Δ𝑥, z) = (z− ĝOS4 (𝜉Δ𝑥)) (z+ 1

2 ) (z+
1
3 ),

third-order initializations would have been enough to preserve fourth order. These two observations confirm that in this weakly
unstable framework, the parasitic roots that we have artificially put along ĝOS4 start playing a role as far as consistency (and
thus the order of accuracy) is concerned.

Remark 3 (Trying to re-establish stability). Since, if we do not set 𝑠𝑣 = 𝑠𝑤 = 2 as we did in Section 1.1.2 to enforce fourth-order
consistency, we have that sp(Ê(0)) = {1, 1−𝑠𝑣 , 1−𝑠𝑤}, or equivalently Φ̂(0, z) = det(zI−Ê(0)) = (z−1) (z+𝑠𝑣−1) (z+𝑠𝑤−1),
we could hope to solve the “collision” between the second and the third root lying on the unit disk and coinciding by considering
𝑠𝑣 = 2 and 𝑠𝑤 = 2 − Δ𝑥𝛼 with 𝛼 ∈ R. Here, 𝛼 would be chosen large enough not to perturb the fourth order of the scheme.
This setting does not provide the expected result and gives the same result as in Section 1.2.3. This comes from the fact that
now [39, Theorem 4.2.2] applies and stability requires that ĝ2 (0) and ĝ3 (0) are apart by a positive quantity independent of
Δ𝑥 when the space step is small, i.e. |ĝ2 (0) − ĝ3 (0) | ≥ 𝑐1. However, in our case |ĝ2 (0) − ĝ3 (0) | = Δ𝑥𝛼, hence the scheme
has not been stabilized.

2.3 Understanding convergence
As observed at the very beginning and through Remark 2, the consistency analysis of the whole scheme does no longer boil
down to consider the behavior of the scheme as determined only by ĝ1, but we have to take all the roots into account and
clarify how these different modes are excited and interact by the choice of initialization schemes.

2.3.1 Several kinds of decomposition of the discrete scheme

This is achieved using several kinds of decomposition of the discrete solution. Given the amplification polynomial Φ̂(𝜉Δ𝑥, z) =
z𝑄+1 +∑𝑛=𝑄

𝑛=0 ĉ𝑛 (𝜉Δ𝑥)z𝑛 of an explicit scheme, we introduce its companion matrix (or amplification matrix [9])

Ĉ(𝜉Δ𝑥) =



−ĉ𝑄 (𝜉Δ𝑥) · · · −ĉ1 (𝜉Δ𝑥) −ĉ0 (𝜉Δ𝑥)
1 · · · 0 0
...

. . .
...

...

0 · · · 0 0
0 · · · 1 0


.

We form the amplification factors, given, for 𝑛 ≥ 𝑄 + 1 by

ĝ[𝑛] (𝜉Δ𝑥) = eT
1 Ĉ(𝜉Δ𝑥)𝑛−𝑄 (ĝ[𝑄] (𝜉Δ𝑥), . . . , ĝ[1] (𝜉Δ𝑥), 1)T, (12)

so that we have û𝑛 (𝜉) = ĝ[𝑛] (𝜉Δ𝑥)û0 (𝜉). Here ĝ[𝑄] (𝜉Δ𝑥), . . . , ĝ[1] (𝜉Δ𝑥) are the amplification factors of the initialization
schemes. Let us point out a feature concerning the companion matrix of a weakly unstable scheme.
Proposition 4. Let Ĉ(𝜉Δ𝑥) for |𝜉Δ𝑥 | ≤ 𝜋 be the companion matrix of a weakly unstable Finite Difference scheme. Then
Ĉ(𝜉Δ𝑥)𝑛, for some |𝜉Δ𝑥 | ≤ 𝜋, grows (polynomially) with 𝑛 ∈ N.

Proof. Let |𝜉Δ𝑥 | ≤ 𝜋 be one of the frequencies where multiple roots of the amplification polynomial happen to be on the
unit circle. The companion matrix has coinciding characteristic (i.e. the amplification polynomial) and minimal polynomial.
Therefore, for this frequency, its Jordan canonical form inferred from the minimal polynomial features a block for the multiple
eigenvalue on the unit circle having size larger than one, giving the claimed growth. □

4It could indeed be replaced by the one of any dissipative one-step scheme (this constraint would exclude the Lax-Friedrichs scheme since we would have
a double root −1 at 𝜉Δ𝑥 = 𝜋).
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Green decomposition A tool to understand the different role of the initialization ĝ[2] compared to ĝ[1] in (4) can be found
using Green functions [7], [11], and [10]. We remark that the phenomenon observed in Section 1.2.3 corresponds to the fact that
the minimal requirement to preserve the overall order four is that the vector (ĝ[2] , ĝ[1] , 1) be equal to the eigenvector (ĝ2

1, ĝ1, 1)
of the companion matrix Ĉ associated with ĝ1 at order four for the first and third component, and order three for the second one,
in the limit |𝜉Δ𝑥 | ≪ 1. Said differently, one wants at least (ĝ[2] , ĝ[1] , 1) = (ĝ2

1 +𝑂 ( |𝜉Δ𝑥 |5), ĝ1 +𝑂 ( |𝜉Δ𝑥 |4), 1 +𝑂 ( |𝜉Δ𝑥 |5)).
We therefore isolate the role of each initialization scheme by considering the ℓ-th Green functions Ĝ[𝑛]

ℓ
(𝜉Δ𝑥)—for ℓ ∈ [0, 𝑄]—

defined by 
Ĝ[𝑛+1]
ℓ

= −
𝑄∑
𝑝=0

ĉ𝑝Ĝ[𝑛+𝑝−𝑄]
ℓ

= eT
1 Ĉ(Ĝ[𝑛]

ℓ
, . . . , Ĝ[𝑛−𝑄]

ℓ
)T, for 𝑛 ≥ 𝑄,

Ĝ[𝑛]
ℓ

= 𝛿𝑛,ℓ , for 𝑛 ∈ [0, 𝑄] .

Then, for 𝑛 ≥ 𝑄 + 1, we have that Ĝ[𝑛]
ℓ

= eT
1 Ĉ𝑛−𝑄e𝑄−ℓ+1 and, by adding and subtracting well-selected quantities:

ĝ[𝑛] (𝜉Δ𝑥) =
𝑄∑︁
ℓ=0

Ĝ[𝑛]
ℓ

(𝜉Δ𝑥)ĝ[ℓ ] (𝜉Δ𝑥) =
𝑄∑︁
ℓ=0

Ĝ[𝑛]
ℓ

(𝜉Δ𝑥)ĝ1 (𝜉Δ𝑥)ℓ +
𝑄∑︁
ℓ=1

Ĝ[𝑛]
ℓ

(𝜉Δ𝑥) (ĝ[ℓ ] (𝜉Δ𝑥) − ĝ1 (𝜉Δ𝑥)ℓ)

= ĝ1 (𝜉Δ𝑥)𝑛 +
𝑄∑︁
ℓ=1

Ĝ[𝑛]
ℓ

(𝜉Δ𝑥) (ĝ[ℓ ] (𝜉Δ𝑥) − ĝ1 (𝜉Δ𝑥)ℓ), (13)

where the last equality is obtained using the fact that (ĝ1 (𝜉Δ𝑥)𝑄, . . . , ĝ1 (𝜉Δ𝑥), 1)T is the eigenvector of Ĉ relative to the
eigenvalue ĝ1.

Modal decomposition Another decomposition of ĝ[𝑛] can be found as follows. If we assume that for a given wave-number
𝜉 such that |𝜉Δ𝑥 | ≤ 𝜋, all the roots ĝ1 (𝜉Δ𝑥), . . . , ĝ𝑄+1 (𝜉Δ𝑥) are distinct, we have the so-called “modal” decomposition,
directly inspired from the theory of linear recurrences, which reads

ĝ[𝑛] (𝜉Δ𝑥) =
𝑄+1∑︁
ℓ=1

�̂�ℓ (𝜉Δ𝑥)ĝℓ (𝜉Δ𝑥)𝑛, (14)

and where the coefficients �̂�ℓ are determined by the initialization schemes ĝ[𝑄] , . . . , ĝ[1] . In particular, introducing the
Vandermonde matrix

V̂(𝜉Δ𝑥) =


ĝ1 (𝜉Δ𝑥)𝑄 · · · ĝ𝑄+1 (𝜉Δ𝑥)𝑄

...
...

ĝ1 (𝜉Δ𝑥) · · · ĝ𝑄+1 (𝜉Δ𝑥)
1 1


,

gives that �̂�1, . . . �̂�𝑄+1 satisfy the linear system V̂(𝜉Δ𝑥) (�̂�1 (𝜉Δ𝑥), . . . , �̂�𝑄+1 (𝜉Δ𝑥))T = (ĝ[𝑄] (𝜉Δ𝑥), ĝ[𝑄−1] (𝜉Δ𝑥), . . . , 1)T.
The fact that the Vandermonde matrix can be inverted comes from the assumption of dealing with distinct roots.

Comparison between kinds of decomposition Let us comment on the different properties of the Green decomposition
(13) vs. the modal decomposition (14).

• Green decomposition (13). It focuses on the consistency eigenvalue ĝ1: one sees the overall scheme after 𝑛 time-steps
as the application of the pseudo-scheme associated with ĝ1 𝑛-times, plus some perturbation induced by the initialization
schemes ĝ[𝑄] , . . . , ĝ[1] and their deviation from ĝ𝑄

1 , . . . , ĝ1. These deviations are weighted by the Green functions.
This decomposition is therefore used to understand consistency and the fact that the overall scheme reacts differently
according to the step fed by a given initialization scheme. Its main drawback is that it mixes the parasitic modes
ĝ2, . . . , ĝ𝑄+1 and thus hides their role of rapidly oscillating transport modes at different velocities (see (10)) compared
to the physical mode.

• Modal decomposition (14). It can be informally described by the sentence “All modes are created equal”, for it does not
emphasize any root between ĝ1, ĝ2, . . . , ĝ𝑄+1. It aims at alleviating the drawback of the Green decomposition, allowing
to see the discrete solution as the superposition of 𝑄 + 1 modes, each one having its own propagation pattern. This
helps the study of qualitative properties of the discrete solution. However, this approach is less suitable (at least without
explicit computation of the coefficients at hand) to proceed to a rigorous study of the consistency of the scheme.
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2.3.2 Stability

In the cases where the amplification polynomials are given by (8) and (11), Ĉ(𝜉Δ𝑥)𝑛−𝑄 is not uniformly power bounded [29],
because the schemes are weakly unstable, cf. Proposition 4. In both cases, we have

eT
1 Ĉ(0)𝑛−2 = ( 1

4 (−1)𝑛 (2𝑛 − 1) + 1
4 ,

1
2 (−1)𝑛+1 + 1

2 ,
1
4 (−1)𝑛+1 (2𝑛 − 3) + 1

4 ), (15)

where the first and last entries diverge linearly with 𝑛. However, the reason why the simulations remain stable is that this
instability is not excited.

• For any frequency 𝜉 ≠ 0, simulations are stable (i.e. eT
1 Ĉ(𝜉Δ𝑥)𝑛−2 is bounded with 𝑛) thanks to Proposition 3.

• For 𝜉 = 0, any reasonable—meaning at least zero-order accurate—initialization scheme that one can consider is such
that ĝ[2] (0) = ĝ[1] (0) = 1, hence we obtain from (12) that ĝ[𝑛] (0) = 1 for any 𝑛 ∈ N, which is bounded as 𝑛 grows,
and thus keeps the simulation stable, cf. Section 1.2.3.

This indeed shows that there exists 𝐶s > 0 independent of 𝑛 ∈ N and |𝜉Δ𝑥 | ≤ 𝜋 such that

|ĝ[𝑛] (𝜉Δ𝑥) | ≤ 𝐶s, (16)

where the constant 𝐶s can be—for the considered tests—slightly larger than one, without any issues. This constant does not
depend on the final time 𝑇 . Notice that (16) exactly coincides—for the considered class of initializations—with the notion of
stability stated in [25, Theorem 2.1.1].

2.3.3 Consistency

Since initializations must be seriously taken into account due to instabilities, we cannot use the notion of local truncation
error to derive an estimate on the global truncation error—the quantity one is eventually interested in. We therefore have to
propose estimates directly on the global truncation error, as in [25, Section 2.2], using the Green decomposition (13).

Remark 4 (Smoothness). We remark that ĝ[𝑛] (𝜉Δ𝑥) and the Green functions Ĝ[𝑛]
2 (𝜉Δ𝑥), Ĝ[𝑛]

1 (𝜉Δ𝑥), and Ĝ[𝑛]
0 (𝜉Δ𝑥) are

smooth functions of their argument since they are products of smooth functions of the form 𝑒±𝑖 𝜉Δ𝑥 . This is distinct from the
difficulties that can arise in the explicit determination of formulæ or of their Taylor expansions as |𝜉Δ𝑥 | ≪ 1, due to the fact
that the multiplicity of the roots of the amplification polynomial changes with 𝜉Δ𝑥, cf. Proposition 3. Since these quantities
are smooth functions, their Taylor expansions for |𝜉Δ𝑥 | ≪ 1 will be determined using their explicit expressions for the case
|𝜉Δ𝑥 | ≠ 0.

For every |𝜉Δ𝑥 | ≤ 𝜋 (arguments are sometimes omitted for the sake of compactness), (13) provides

ĝ[𝑛] (𝜉Δ𝑥) = ĝ1 (𝜉Δ𝑥)𝑛 + Ĝ[𝑛]
2 (𝜉Δ𝑥) (ĝ[2] (𝜉Δ𝑥) − ĝ1 (𝜉Δ𝑥)2) + Ĝ[𝑛]

1 (𝜉Δ𝑥) (ĝ[1] (𝜉Δ𝑥) − ĝ1 (𝜉Δ𝑥)). (17)

The explicit formulæ in terms of the roots are

Ĝ[𝑛]
2 (𝜉Δ𝑥) =

{ ĝ𝑛
1 (ĝ2−ĝ3 )−ĝ𝑛

2 (ĝ1−ĝ3 )+ĝ𝑛
3 (ĝ1−ĝ2 )

ĝ2
1 (ĝ2−ĝ3 )−ĝ2

2 (ĝ1−ĝ3 )+ĝ2
3 (ĝ1−ĝ2 )

, |𝜉Δ𝑥 | ≠ 0,
1
4 (2(−1)𝑛𝑛 + (−1)𝑛+1 + 1), |𝜉Δ𝑥 | = 0.

(18)

We observe that this Green function is the potentially explosive one: still it is sufficient to have a zero-order scheme for ĝ[2]

in order to disengage this term. Since Ĝ[𝑛]
2 (𝜉Δ𝑥) is smooth, we can obtain higher order terms for the limit |𝜉Δ𝑥 | ≪ 1 using

(18) for |𝜉Δ𝑥 | ≠ 0. This yields

Ĝ[𝑛]
2 (𝜉Δ𝑥) = (−1)𝑛

⌊
𝑛
2
⌋
+ (−1)𝑛

⌊
𝑛−1

2
⌋ ( ⌊

𝑛−1
2
⌋
+ 1

)
𝑖C𝜉Δ𝑥 +𝑂 (𝑛3) (𝜉Δ𝑥)2 +𝑂 ( |𝜉Δ𝑥 |3).

The growth of this Green function with 𝑛 shows why we need—besides stability—one order more for the initialization ĝ[2] ,
the error coming from this choice is amplified (we might say that it resonates) and accumulates in time analogously to the
consistency mode ĝ𝑛

1 . Thus, it needs to be of the same order as ĝ1 not to lower the overall order. For the other Green function:

Ĝ[𝑛]
1 (𝜉Δ𝑥) =


− ĝ𝑛

1 (ĝ
2
2−ĝ2

3 )−ĝ𝑛
2 (ĝ

2
1−ĝ2

3 )+ĝ𝑛
3 (ĝ

2
1−ĝ2

2 )
ĝ2

1 (ĝ2−ĝ3 )−ĝ2
2 (ĝ1−ĝ3 )+ĝ2

3 (ĝ1−ĝ2 )
, |𝜉Δ𝑥 | ≠ 0,

− 1
2 ((−1)𝑛 − 1), |𝜉Δ𝑥 | = 0.

As before
Ĝ[𝑛]

1 (𝜉Δ𝑥) = 1−(−1)𝑛
2 + ((−1)𝑛 − 1)

⌊
𝑛
2
⌋
𝑖C𝜉Δ𝑥 +𝑂 (𝑛2) (𝜉Δ𝑥)2 +𝑂 ( |𝜉Δ𝑥 |3).

Remark that the first two terms in this expansion are zero whenever 𝑛 is even. This means that the solution at even time steps
experiences—in the low frequency limit—a very reduced influence of the first initialization scheme.

To finish this part, the previous arguments show that there exist constants 𝐶1, 𝐶2 > 0 and 𝐶3 > 0 such that, for every
|𝜉Δ𝑥 | ≤ 𝜋 and 𝑛 ≥ 2

|Ĝ[𝑛]
2 (𝜉Δ𝑥) | ≤ 𝐶1𝑛 + 𝐶2, |Ĝ[𝑛]

1 (𝜉Δ𝑥) | ≤ 𝐶3. (19)
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2.3.4 Convergence

Theorem 1 (Convergence of (4)). Let the CFL condition |C| < 1/2 be satisfied. Let 𝑢◦ ∈ 𝐻5 (R) and 𝜔2, 𝜔1 ≥ 0 be
the orders of accuracy of the second and first initialization schemes. Start the discrete scheme using u0 = E𝑢◦, where
E : 𝐿2 (R) → ℓ2 (Δ𝑥Z) such that (E𝑢)𝑘 = 𝑢(𝑥𝑘) for 𝑘 ∈ Z. Then, there exists 𝐶 (𝑡𝑛, 𝑢◦, 𝜔2, 𝜔1) > 0 such that, for Δ𝑥 small
enough, the leading-order error estimate for (4) reads:

∥E𝑢(𝑡𝑛) − u𝑛∥ℓ2 ,Δ𝑥 ≤ 𝐶 (𝑡𝑛, 𝑢◦, 𝜔2, 𝜔1)Δ𝑥min(4,𝜔2 ,𝜔1+1) ,

where

𝜎 =



𝜔2 + 1, if min(4, 𝜔2) < min(4, 𝜔1) + 1, 𝜔2 < 4, (I),
5, if min(4, 𝜔2) < min(4, 𝜔1) + 1, 𝜔2 ≥ 4, (II),
𝜔2 + 1, if min(4, 𝜔2) = min(4, 𝜔1) + 1, 𝜔2 < 4, (III),
5, if min(4, 𝜔2) = min(4, 𝜔1) + 1, 𝜔2 ≥ 4, (IV),
𝜔1 + 1, if min(4, 𝜔2) > min(4, 𝜔1) + 1, 𝜔1 < 3, (V),

and

𝐶 (𝑡𝑛, 𝑢◦, 𝜔2, 𝜔1) =



(𝐶𝑡𝑛 + 𝐶) |𝑢◦ |𝐻𝜎 , (I),
(𝐶𝑡𝑛 + 𝐶) |𝑢◦ |𝐻𝜎 , (II),
(𝐶 (𝑡𝑛)2 |𝑢◦ |2

𝐻𝜎
+ 𝐶𝑡𝑛 |𝑢◦ |2

𝐻𝜎−1/2 + 𝐶 |𝑢◦ |2
𝐻𝜎−1 )1/2, (III),

(𝐶 (𝑡𝑛)2 |𝑢◦ |2
𝐻𝜎

+ 𝐶𝑡𝑛 |𝑢◦ |2
𝐻𝜎−1/2 + 𝐶 |𝑢◦ |2

𝐻𝜎−1 )1/2, (IV),
𝐶 |𝑢◦ |𝐻𝜎 , (V),

and 𝐶 > 0 indicates unknown constants that can change at each occurrence.

Remark 5 (On Theorem 1). We remark the following facts:

• The assumption 𝑢◦ ∈ 𝐻5 (R) may be suboptimal. Especially when the overall order is low due to bad initialization
schemes, this order can be observed for initial data which are less than 𝐻5, cf. Section 2.5.

• The error constants generally trend like 𝐶 (𝑡𝑛, . . . ) ∼ 𝑡𝑛 except for (V). When they depend on 𝑡𝑛, this means that the
error accumulates at most linearly in time. For (V), the leading-order contribution comes into play at the beginning of
the process due to the initialization schemes and cannot be reduced, for none of the modes of the scheme is dissipated.

Proof of Theorem 1. The proof is extremely similar to the ones given in [39, Chapter 10]: we provide it for the interested
reader. Knowing that 𝑢◦ ∈ 𝐻5 (R), the initial function and the exact solution are continuous and their point-wise values are
well defined at any time. Using the triangle inequality

∥E𝑢(𝑡𝑛) − u𝑛∥ℓ2 ,Δ𝑥 ≤ ∥E𝑢(𝑡𝑛) − T𝑢(𝑡𝑛)∥ℓ2 ,Δ𝑥 + ∥T𝑢(𝑡𝑛) − w𝑛∥ℓ2 ,Δ𝑥 + ∥w𝑛 − u𝑛∥ℓ2 ,Δ𝑥 ,

where the solution w𝑛 is obtained by applying the multi-step scheme and its initializations on the initial datum w0
𝑘
= (T𝑢◦) (𝑥𝑘).

Here, the truncation operator T : 𝐿2 (R) → ℓ2 (Δ𝑥Z) is given by T𝑢
∧

(𝜉) = �̂�(𝜉)𝜒[0, 𝜋/Δ𝑥 ] ( |𝜉 |). The interpolation operator
S : ℓ2 (Δ𝑥Z) → 𝐿2 (R) is given by Su

∧
(𝜉) = û(𝜉)𝜒[0, 𝜋/Δ𝑥 ] ( |𝜉 |). For the first term, by [39, Theorem 10.1.3]

∥E𝑢(𝑡𝑛) − T𝑢(𝑡𝑛)∥ℓ2 ,Δ𝑥 ≤ 𝐶Δ𝑥5 |𝑢◦ |𝐻5 . (20)

For the last term, we have

∥w𝑛−u𝑛∥2
ℓ2 ,Δ𝑥

=

∫
| 𝜉Δ𝑥 | ≤𝜋

|ĝ[𝑛] (𝜉Δ𝑥) (T𝑢◦
∧

(𝜉)−E𝑢◦
∧

(𝜉)) |2d𝜉 ≤ 𝐶2
s

∫
| 𝜉Δ𝑥 | ≤𝜋

|T𝑢◦
∧

(𝜉)−E𝑢◦
∧

(𝜉) |2d𝜉 ≤ 𝐶2
s 𝐶Δ𝑥

5 |𝑢◦ |2
𝐻5 , (21)

where the stability (16) and [39, Theorem 10.1.3] have been used. For the central term:

∥T𝑢(𝑡𝑛) − w𝑛∥2
ℓ2 ,Δ𝑥

=

∫
| 𝜉Δ𝑥 | ≤𝜋

|�̂�(𝑡𝑛, 𝜉) − ŵ𝑛 (𝜉) |2d𝜉 =

∫
R
|�̂�(𝑡𝑛, 𝜉) − Sw𝑛

∧
(𝜉) |2d𝜉 −

∫
| 𝜉Δ𝑥 |>𝜋

|�̂�(𝑡𝑛, 𝜉) |2d𝜉

≤ ∥𝑢(𝑡𝑛, ·) − Sw𝑛∥2
𝐿2 (R) =

∫
| 𝜉Δ𝑥 | ≤𝜋

|𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] (𝜉Δ𝑥) |2 |�̂�◦ (𝜉) |2d𝜉 +
∫
| 𝜉Δ𝑥 |>𝜋

|𝑒−𝑖𝑛C 𝜉Δ𝑥 |2 |�̂�◦ (𝜉) |2d𝜉,
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thanks to the Parseval’s identity. We have

|𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] | ≤ |𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ𝑛
1 | + |Ĝ[𝑛]

2 | |ĝ[2] − ĝ2
1 | + |Ĝ[𝑛]

1 | |ĝ[1] − ĝ1 |
≤ 𝑛|𝑒−𝑖C 𝜉Δ𝑥 − ĝ1 | + (𝐶1𝑛 + 𝐶2) |ĝ[2] − ĝ2

1 | + 𝐶3 |ĝ[1] − ĝ1 |
≤ 𝐶4𝑛|𝜉Δ𝑥 |5 + 𝐶5 (𝐶1𝑛 + 𝐶2) |𝜉Δ𝑥 |min(4,𝜔2 )+1 + 𝐶3𝐶6 |𝜉Δ𝑥 |min(4,𝜔1 )+1

=
𝐶5
𝜆
𝑡𝑛Δ𝑥4 |𝜉 |5︸         ︷︷         ︸

bulk scheme

+𝐶6 (𝐶2
𝑡𝑛

𝜆
Δ𝑥min(4,𝜔2 ) + 𝐶3Δ𝑥

min(4,𝜔2 )+1) |𝜉 |min(4,𝜔2 )+1︸                                                                 ︷︷                                                                 ︸
2nd initialization scheme

+𝐶4𝐶7Δ𝑥
min(4,𝜔1 )+1 |𝜉 |min(4,𝜔1 )+1︸                                    ︷︷                                    ︸

1st initialization scheme

. (22)

The first inequality comes from the triangle inequality applied using (17). The second one uses [39, Equation (10.1.7)] and
the found dependence of the Green functions in 𝑛, see (19). The third inequality comes from the order of the schemes, cf.
[12]. When taking the square of the previous inequality back into the integral, all the stemming Sobolev semi-norms exist
thanks to the smoothness assumption on the initial datum. It is therefore time to let Δ𝑥 → 0 and identify which term is the
leading order term. This can be done directly on the global truncation error term |𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] |. We distinguish all the
cases

• min(4, 𝜔2) < min(4, 𝜔1) + 1: the second initialization scheme is the limiting one.

(I) min(4, 𝜔2) < 4, equivalently 𝜔2 < 4. In this case, which covers ⟨1, 1⟩, the leading order term in terms of Δ𝑥 will
be

|𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] | ≤ 𝐶2𝐶6
𝑡𝑛

𝜆
Δ𝑥min(4,𝜔2 ) |𝜉 |min(4,𝜔2 )+1 = 𝐶2𝐶6

𝑡𝑛

𝜆
Δ𝑥𝜔2 |𝜉 |𝜔2+1.

(II) min(4, 𝜔2) = 4, equivalently 𝜔2 ≥ 4, covering the case ⟨4, 4⟩:
|𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] | ≤ 𝐶5+𝐶2𝐶6

𝜆
𝑡𝑛Δ𝑥4 |𝜉 |5.

• min(4, 𝜔2) = min(4, 𝜔1) + 1: both initialization scheme contribute equally.

(III) min(4, 𝜔2) = min(4, 𝜔1) + 1 < 4, i.e. 𝜔2 < 4 and 𝜔1 < 3 (this latter condition is redundant), which covers ⟨1, 2⟩.
We have

|𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] | ≤ (𝐶2𝐶6
𝑡𝑛

𝜆
|𝜉 |min(4,𝜔2 )+1 + 𝐶4𝐶7 |𝜉 |min(4,𝜔2 ) )Δ𝑥min(4,𝜔2 )

= (𝐶2𝐶6
𝑡𝑛

𝜆
|𝜉 |𝜔2+1 + 𝐶4𝐶7 |𝜉 |𝜔2 )Δ𝑥𝜔2 .

(IV) min(4, 𝜔2) = min(4, 𝜔1) + 1 = 4, i.e. 𝜔2 ≥ 4 and 𝜔1 ≥ 3 (this latter condition is redundant), which covers ⟨3, 4⟩.
We have

|𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] | ≤ (𝐶5+𝐶2𝐶6
𝜆

𝑡𝑛 |𝜉 |5 + 𝐶4𝐶7 |𝜉 |4)Δ𝑥4.

• min(4, 𝜔2) > min(4, 𝜔1)+1: the first initialization scheme is the limiting one. The only possible case is min(4, 𝜔1)+1 <

4, equivalently 𝜔1 < 3, indicated by (V). In this case, which covers ⟨1, 3⟩:
|𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] | ≤ 𝐶4𝐶7Δ𝑥

min(4,𝜔1 )+1 |𝜉 |min(4,𝜔1 )+1 = 𝐶4𝐶7Δ𝑥
𝜔1+1 |𝜉 |𝜔1+1.

This shows that the order in Δ𝑥 is given by Δ𝑥min(4,𝜔2 ,𝜔1+1) . We introduce

𝜎 =



𝜔2 + 1, if min(4, 𝜔2) < min(4, 𝜔1) + 1, 𝜔2 < 4, (I),
5, if min(4, 𝜔2) < min(4, 𝜔1) + 1, 𝜔2 ≥ 4, (II),
𝜔2 + 1, if min(4, 𝜔2) = min(4, 𝜔1) + 1, 𝜔2 < 4, (III),
5, if min(4, 𝜔2) = min(4, 𝜔1) + 1, 𝜔2 ≥ 4, (IV),
𝜔1 + 1, if min(4, 𝜔2) > min(4, 𝜔1) + 1, 𝜔1 < 3, (V).

Observe that 𝜎 ≥ min(4, 𝜔2, 𝜔1 + 1). By [39, Equation (10.1.10)], we have that
∫
| 𝜉Δ𝑥 |>𝜋

|𝑒−𝑖𝑛C 𝜉Δ𝑥 |2 |�̂�◦ (𝜉) |2d𝜉 ≤
𝐶Δ𝑥5 |𝑢◦ |2

𝐻5 . We gain
∥T𝑢(𝑡𝑛) − w𝑛∥ℓ2 ,Δ𝑥 ≤ 𝐶 (𝑡𝑛, 𝑢◦, 𝜔2, 𝜔1)Δ𝑥min(4,𝜔2 ,𝜔1+1) ,

where, by indicating all the constants by 𝐶 > 0 (each one is different):

𝐶 (𝑡𝑛, 𝑢◦, 𝜔2, 𝜔1) =



𝐶𝑡𝑛 |𝑢◦ |𝐻𝜎 , (I),
𝐶𝑡𝑛 |𝑢◦ |𝐻𝜎 , (II),
(𝐶 (𝑡𝑛)2 |𝑢◦ |2

𝐻𝜎
+ 𝐶𝑡𝑛 |𝑢◦ |2

𝐻𝜎−1/2 + 𝐶 |𝑢◦ |2
𝐻𝜎−1 )1/2, (III),

(𝐶 (𝑡𝑛)2 |𝑢◦ |2
𝐻𝜎

+ 𝐶𝑡𝑛 |𝑢◦ |2
𝐻𝜎−1/2 + 𝐶 |𝑢◦ |2

𝐻𝜎−1 )1/2, (IV),
𝐶 |𝑢◦ |𝐻𝜎 , (V).

The overall claim comes adding (20) and (21), which are nevertheless negligible. □
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2.4 Role of the parasitic modes: behavior of the error in time
The behavior of the error of actual numerical computations as time goes on can be studied using the modal decomposition
(14): for every |𝜉Δ𝑥 | ≤ 𝜋, we have that

ĝ[𝑛] (𝜉Δ𝑥) =
{
�̂�1 (𝜉Δ𝑥)ĝ1 (𝜉Δ𝑥)𝑛 + �̂�2 (𝜉Δ𝑥)ĝ2 (𝜉Δ𝑥)𝑛 + �̂�3 (𝜉Δ𝑥)ĝ3 (𝜉Δ𝑥)𝑛, |𝜉Δ𝑥 | ≠ 0,
�̃�1 + �̃�2 (−1)𝑛 + �̃�3 (−1)𝑛𝑛, |𝜉Δ𝑥 | = 0.

(23)

Here, the coefficients �̂�1, �̂�2, �̂�3, and �̃�1, �̃�2, �̃�3 ∈ R are determined using the initialization schemes ĝ[2] and ĝ[1] . For the
initialization schemes that we have considered, �̃�1 = 1 and �̃�2 = �̃�3 = 0, cf. (16). For Remark 4 guarantees that ĝ[𝑛] (𝜉Δ𝑥) is
a smooth function, we can find its Taylor expansion for |𝜉Δ𝑥 | ≪ 1 relying on its explicit representation for |𝜉Δ𝑥 | ≠ 0. This
gives the system, for |𝜉Δ𝑥 | ≠ 0: V̂(𝜉Δ𝑥) (�̂�1 (𝜉Δ𝑥), �̂�2 (𝜉Δ𝑥), �̂�3 (𝜉Δ𝑥))T = (ĝ[2] (𝜉Δ𝑥), ĝ[1] (𝜉Δ𝑥), 1)T. We can invert the
Vandermonde matrix to give �̂�1, �̂�2, and �̂�3. Let us study some given choice of initialization scheme.

∝ Δ𝑥2

∝ Δ𝑥

∝ Δ𝑥

Initial profile

Profile carried by ĝ1

Profile carried by ĝ3

Profile carried by ĝ2

-1 − 1
2

1
2 1

Figure 4: Packets propagated by different modes for the case ⟨1, 2⟩. For the ones carried by ĝ2 and ĝ3, we draw an envelope-like
shape to highlight the rapidly oscillating nature between odd and even time-steps.

• Initialization ⟨1, 2⟩. We obtain, in the limit |𝜉Δ𝑥 | ≪ 1, �̂�1 (𝜉Δ𝑥) = 1 + 𝑂 ( |𝜉Δ𝑥 |2), �̂�2 (𝜉Δ𝑥) = 𝑂 ( |𝜉Δ𝑥 |), and
�̂�3 (𝜉Δ𝑥) = 𝑂 ( |𝜉Δ𝑥 |). This results in the decomposition of the discrete solution—see also Figure 4—as

ĝ[𝑛] (𝜉Δ𝑥) = (1 +𝑂 ( |𝜉Δ𝑥 |2))𝑒−𝑖𝑉𝑡𝑛 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |4 ) )

+
( 𝑖√3(1 − C2)

2
√

8 − 5C2
𝜉Δ𝑥 +𝑂 ( |𝜉Δ𝑥 |2)

)
(−1)𝑛𝑒

𝑖
√

3𝑡𝑛
6 (

√
3𝑉+

√
8𝜆2−5𝑉2 ) 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

+
(
− 𝑖

√
3(1 − C2)

2
√

8 − 5C2
𝜉Δ𝑥 +𝑂 ( |𝜉Δ𝑥 |2)

)
(−1)𝑛𝑒

𝑖
√

3𝑡𝑛
6 (

√
3𝑉−

√
8𝜆2−5𝑉2 ) 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

.

The physical mode—which is accurate at order four—is present with a distortion of order two, see first row. What
lowers the overall order to one are the rapidly oscillating spurious modes which have opposite amplitude of order
𝑂 ( |𝜉Δ𝑥 |) (second and third rows).
Looking at the error in time, see Figure 5, we see that for fixed times, the error is proportional to Δ𝑥. However, for a
specific time around 𝑡𝑛 = 1.25, we see that the error seems to be practically zero. Looking at the magnification in this
area, we see that here convergence seems quadratic. We explain this spectacular decrease of the error—and enhanced
convergence rate—by a destructive interference between the mode brought by ĝ2 and the one by ĝ3, which are those
carrying the leading 𝑂 (Δ𝑥) part of the error, see Figure 4. At C = 1/4, the dimensionless velocities for each mode are

ĝ1 ↔ C1 = C = 0.25, ĝ2 ↔ C2 = −
√

3
6 (

√
3C +

√︁
8 − 5C2) ≈ −0.93,

ĝ3 ↔ C3 = −
√

3
6 (

√
3C −

√︁
8 − 5C2) ≈ 0.68.

The initial envelope has support supp(𝑢◦) = [−1/2, 1/2]. We consider that the maximal interference between this
envelope transported by the mode ĝ2 and the one transported by ĝ3 takes place when the peaks, located at 𝑥 = 0 at
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Figure 5: 𝐿2 error in time for ⟨1, 2⟩ using 𝑁𝑥 grid points. A zoom around 1.25 is proposed on the right.

𝑡 = 0, meet again due to the periodic boundary conditions. In this case, the two symmetric packets coincide. The first
peak to reach the boundary (𝑥 = −1) is the one transported by ĝ2, since |C2 | > |C3 |. The peaks meet again at time
2/(|C2 | + |C3 |) ≈ 1.25, which is—unsurprisingly—the one where the error had its minimum in time. If we repeat the
convergence test for different initializations selecting precisely 𝑇 = 1.25, we obtain the result in Figure 6. Now we
observe overall order = min(4, 𝜔2 + 1, 𝜔1 + 1), as in the genuinely stable framework, thanks to the fact that the parasitic
modes, carrying the dominant part of the error, cancel out thanks to periodicity and the fact that they are present with
opposite leading-order amplitude. When the packets are located at the same place thanks to periodicity, the sum of
the modes yields a term 𝑂 ( |𝜉Δ𝑥 |2)û0 (𝜉), which is second-order in Δ𝑥, giving the destructive interference. In order to
interpret the time behavior of the error more closely, we observe that the time when the leftmost point of supp(𝑢◦),
namely −1/2, transported by ĝ2, and the rightmost point of supp(𝑢◦), namely 1/2, transported by ĝ3 merge is at time
𝑡 = 1/(|C2 | + |C3 |) ≈ 0.62, which is another remarkable time on Figure 5. In this figure, the articulate pattern of the
error is made up of the interactions of the different waves/modes sustained by the numerical scheme also due to the
periodic boundary conditions.

• Initialization ⟨2, 1⟩. The modal decomposition for |𝜉Δ𝑥 | ≪ 1 is:

ĝ[𝑛] (𝜉Δ𝑥) = (1 + 1
4 (C

2 − 1) (𝜉Δ𝑥)2 +𝑂 ( |𝜉Δ𝑥 |3))𝑒−𝑖𝑉𝑡𝑛 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |4 ) )

+ (−𝑖
√

3(C2 − 1) (19C +
√

3
√︁

8 − 5C2) (𝜉Δ𝑥)2 +𝑂 ( |𝜉Δ𝑥 |3)) (−1)𝑛𝑒
𝑖
√

3𝑡𝑛
6 (

√
3𝑉+

√
8𝜆2−5𝑉2 ) 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

+ (−𝑖
√

3(C2 − 1) (−19C +
√

3
√︁

8 − 5C2) (𝜉Δ𝑥)2 +𝑂 ( |𝜉Δ𝑥 |3)) (−1)𝑛𝑒
𝑖
√

3𝑡𝑛
6 (

√
3𝑉−

√
8𝜆2−5𝑉2 ) 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

.

The physical mode and the parasitic modes are all present with a distortion of order two. Now, the coefficients of the
𝑂 ( |𝜉Δ𝑥 |2) perturbation of the parasitic modes are not one the opposite of the other, hence do not totally cancel out
when the modes meet again when periodic boundary conditions are imposed, see Figure 7 for 𝑡𝑛 ≈ 1.25. We also have

|𝑒−𝑖𝑛C 𝜉Δ𝑥 − ĝ[𝑛] (𝜉Δ𝑥) |2 =

{
𝑛2

36C
2 (C2 − 1)2 (𝜉Δ𝑥)6 +𝑂 ( |𝜉Δ𝑥 |8), 𝑛 even,

1
4 (C

2 − 1)2 (𝜉Δ𝑥)4 + 𝛼C (𝑛) (𝜉Δ𝑥)6 +𝑂 ( |𝜉Δ𝑥 |8), 𝑛 odd,

where 𝛼C (𝑛) = 𝑂 (𝑛2). Only the odd steps carry the fixed term being the remaining trace of the Lax-Friedrichs scheme
for 𝑛 = 1. Moreover, we see that the behavior of the error is radically different, as visible in Figure 7, between even and
odd steps. The former typically carry smaller errors. The initial decreasing behavior of the error for odd steps can be
understood by noticing that the function 𝛼1/4 (𝑛) decreases in 𝑛.

• Initialization ⟨3, 4⟩. The modal decomposition is, for |𝜉Δ𝑥 | ≪ 1:
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Figure 6: Error for (4) at final time 𝑇 = 2
| C2 |+| C3 | ≈ 1.25 with different initialization schemes.

ĝ[𝑛] (𝜉Δ𝑥) = (1 − C(C2−1) (C−2)
48 (𝜉Δ𝑥)4 +𝑂 ( |𝜉Δ𝑥 |5))𝑒−𝑖𝑉𝑡𝑛 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |4 ) )

+ ( 𝑖C(C2−1) (C−2)
24
√

8−5C2 (𝜉Δ𝑥)3 +𝑂 ( |𝜉Δ𝑥 |4)) (−1)𝑛𝑒
𝑖
√

3𝑡𝑛
6 (

√
3𝑉+

√
8𝜆2−5𝑉2 ) 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

+ (− 𝑖C(C2−1) (C−2)
24
√

8−5C2 (𝜉Δ𝑥)3 +𝑂 ( |𝜉Δ𝑥 |4)) (−1)𝑛𝑒
𝑖
√

3𝑡𝑛
6 (

√
3𝑉−

√
8𝜆2−5𝑉2 ) 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

.

The physical mode is present with a distortion of order four: this is not what limits the order. What lowers the overall
order to three is are the rapidly oscillating spurious modes which have amplitude 𝑂 ( |𝜉Δ𝑥 |3). However, for periodic
boundary conditions, we see that the scheme converges at order four for a final time𝑇 ≈ 1.25 (small basins on Figure 8),
thanks to the cancellation of spurious modes.

• Initialization ⟨4, 3⟩. The modal decomposition is

ĝ[𝑛] (𝜉Δ𝑥) = (1 − C(C2−1) (C−2)
48 (𝜉Δ𝑥)4 +𝑂 ( |𝜉Δ𝑥 |5))𝑒−𝑖𝑉𝑡𝑛 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |4 ) )

+𝑂 ( |𝜉Δ𝑥 |4) (−1)𝑛𝑒
𝑖
√

3𝑡𝑛
6 (

√
3𝑉+

√
8𝜆2−5𝑉2 ) 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

+𝑂 ( |𝜉Δ𝑥 |4) (−1)𝑛𝑒
𝑖
√

3𝑡𝑛
6 (

√
3𝑉−

√
8𝜆2−5𝑉2 ) 𝜉 (1+𝑂 ( | 𝜉Δ𝑥 |2 ) )

,

where the coefficients of the spurious waves (not given for the sake of compactness) are not one the opposite of the
other even at leading order.
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Figure 7: 𝐿2 error in time for ⟨2, 1⟩ (left) and ⟨3, 1⟩ (right) using 𝑁𝑥 grid points.
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Figure 8: 𝐿2 error in time for ⟨3, 4⟩ (left) and ⟨4, 3⟩ (right) using 𝑁𝑥 grid points.

2.5 Convergence with non-smooth initial data
In the past, orders of convergence for non-smooth initial data were investigated in [5], [6], [39], and [13] for genuinely stable
schemes. As previously pointed out, the assumption that 𝑢◦ ∈ 𝐻5 (R) is often too strong compared to the actually-observed
order—especially when the overall order min(4, 𝜔2, 𝜔1 + 1) is way smaller than 4. Indeed, this order can be observed for
non-smooth initial data being less that 𝐻5. We now perform a numerical simulation to verify this fact. The conditions are, as
usual, domain [−1, 1] endowed with periodic boundary conditions, C = 1/4, and 𝑇 = 0.2. We consider the initial functions
𝑢◦ (𝑥) = cos(𝜋𝑥)𝜎−1/2𝜒(−1,1) (2𝑥) for 𝜎 ≥ 1, inspired by [6, Example II, Section 2.4]. These are such that 𝑢◦ ∈ 𝐵

𝜎,2
∞ (R) in

terms of Besov spaces or 𝑢◦ ∈ 𝐻𝜎− (R) in terms of Sobolev spaces. We measure the convergence rate in Δ𝑥 with respect to
the 𝐿2 norm of the error at final time, obtaining the results in Figure 9. When the overall scheme is less than fourth-order
accurate (maximal order), the order saturates before the smoothness 𝑢◦ ∈ 𝐻5 (R) for the initial datum is reached. The value
of 𝜎 from which the order saturates can be estimated using [39, Corollary 10.3.2] (notice that the error estimates in this
result contain rarely observed logarithmic terms in Δ𝑥) by 𝜎 ≈ 5

4 min(4, 𝜔2, 𝜔1 + 1). This is obtained by intersecting the line
𝜎 ↦→ 4

5𝜎, associated with a fourth-order (bulk) scheme, with the fact that the order is limited by min(4, 𝜔2, 𝜔1 + 1). This is
the intuitive best approximation of the minimal smoothness that we were able to find. Slight deviations from this behavior
can be understood by looking at (17) or (22). For the selected final time, there might still be an important (yet difficult to
describe) effect of the part of the solution associated with Ĝ[𝑛]

2 and Ĝ[𝑛]
1 . If we take larger 𝑇 (simulations not presented
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Figure 9: Convergence rates in Δ𝑥 for the 𝐿2 error at final time 𝑇 = 0.2, as function of 𝜎 when 𝑢◦ ∈ 𝐻𝜎− (R). The black
vertical line corresponds to 𝜎 = 5

4 min(4, 𝜔2, 𝜔1 + 1).

in the paper), the term brought by ĝ𝑛
1 becomes dominant and the observed behavior adhere better and better to the estimate

according to which the order is min(min(4, 𝜔2, 𝜔1 + 1), 4
5𝜎) for 𝑢◦ ∈ 𝐻𝜎− (R).

3 Role of the round-off errors
The discussion that has been developed hitherto has been conducted as if actual numerical simulations were done at
arbitrary machine precision, without being affected by round-off errors. However, the instability cancellation elucidated in
Section 2.3.2 could not actually take place in floating-point arithmetic, due to round-off errors, and lattice Boltzmann schemes
can behave differently from their corresponding Finite Difference schemes. As pointed out by [41], this does however not
question the interest of the previous discussions. Quite the opposite, this gives one more reason why, besides the order of
consistency/convergence, one generally avoids weakly unstable schemes: they could lead unpredictable behaviors in presence
of floating point numbers.

We perform the same test as we did in Section 1.2.3 except for the fact that we use a longer final time of 𝑇 = 16 and
fix the number of points in the domain to 𝑁𝑥 = 200. Computations are carried out using unusually low floating-point
precision, ranging from 10 to 13 bits, to be compared with the usual 64 bits double precision in Python. We employ the
stable lattice Boltzmann scheme (5)/(6) with (7) using 𝛿 = 0, its weakly unstable corresponding Finite Difference scheme (4)
with initialization (7) using 𝛿 = 0, and the one-step stable OS4 scheme. Notice that the first two procedures are perfectly
equivalent “on paper”. In Figure 10, we show the solution both at the final and penultimate time step, and its 𝐿2 norm as
function of time, which we take as a measure of the instability when applicable.
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Figure 10: Test varying the floating point precision.

We observe that for the weakly unstable scheme (4) with initialization (7) with 𝛿 = 0, especially for very low floating point
accuracy, the solution is totally shifted either upward or downward, according to the parity of the time step 𝑛. This is the reason
why we decided to show both the solution at the final and penultimate time step. The fact that the solution is approximately
shifted by a constant proportional to (−1)𝑛𝑛 stems from the following features of the scheme. The constant nature of the
shift is dictated by the unstable mode corresponding to the frequency zero, and thus corresponding to an unstable mode in the
physical space under the form of a constant function: by inverse Fourier transform (2𝜋)−1/2

∫
| 𝜉 | ≤𝜋

𝑒𝑖𝑘 𝜉 𝛿0 (𝜉)d𝜉 = (2𝜋)−1/2

for every 𝑘 ∈ Z. The oscillation trending like (−1)𝑛 comes from the fact that the unstable modes are associated with the
spurious roots, which are such that ĝ2 (0)𝑛 = ĝ3 (0)𝑛 = (−1)𝑛. The growth behaving roughly proportionally to 𝑛 comes from
the instability due to the multiple nature of the roots at frequency zero. For the stable OS4 scheme, the simulation remains
perfectly controlled and the norm of the solution does not increase even using a very rough floating point arithmetic. The
solution for the lattice Boltzmann scheme (5)/(6) with (7) and 𝛿 = 0 is completely different from the one of its corresponding
Finite Difference scheme and remains totally stable, as it should be. This indicates that the former implementation has a better
backward stability compared to the latter. Small oscillations, compared to the OS4 scheme, come from the lack of dissipation
of the lattice Boltzmann scheme on the whole spectrum of frequencies.

Remark 6 (On the enhanced stability of the lattice Boltzmann algorithm). To understand the enhanced stability of (5)/ (6)/ (7)
compared to (4)/ (7), we come back to the way of turning lattice Boltzmann schemes into Finite Difference ones. In the entire
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paper, the problematic frequency has been 𝜉 = 0, where the matrix giving the lattice Boltzmann scheme becomes

Ê(0) =


1 0 0
2C −1 0

2(C2 − 1) 0 −1

 , hence Ê(0)𝑛 =


1 0 0

C(1 − (−1)𝑛) (−1)𝑛 0
(C2 − 1) (1 − (−1)𝑛) 0 (−1)𝑛

 ,
thus is uniformly power bounded and thus the original lattice Boltzmann scheme genuinely stable, since

û𝑛 (0) = eT
1 Ê(0)𝑛 (û0 (0), v̂0 (0), ŵ0 (0))T = û0 (0). (24)

Observe that Ê(0)2 = I, thus the polynomial z2−1 dividing det(zI− Ê(0)) annihilates Ê(0): it is its minimal polynomial. This
difference between characteristic and minimal polynomials is coherent with the fact that Ê(0) is not similar to its companion
matrix Ĉ(0), with the former being diagonalisable and the latter no. As pointed out in [4], the fact that a polynomial
annihilates the scheme matrix allows to recover the corresponding Finite Difference scheme through it. However, this should
be true for all frequency 𝜉, which is not the case here for z2 − 1. Nevertheless, for the sole unstable frequency 𝜉 = 0 (or
equivalently, constant solutions), the dynamics of the lattice Boltzmann scheme (5)/ (6), as far as u is concerned, can be
rewritten using something simpler (and more stable) than (4), which reads û𝑛+1 (0) = û𝑛−1 (0). This scheme is genuinely
stable, since it has two eigenvalues ±1 on the unit circle being distinct. It has to be interpreted as a constraint fulfilled by the
solution u of (5)/ (6). The constraint given by (4) is also satisfied, but it yields an overconstrained mechanism, more prone to
instabilities when the exact compensation resulting in overall stability could not take place, due to floating-point numbers.
Pushing this way of rasoning even further, we have observed in [4] that if a polynomial annihilates (again for all 𝜉) the first
row of the scheme matrix, hence it divides its minimal polynomial, it yields a corresponding Finite Difference scheme as well.
In our case, for Ê(0), the polynomial is simply z − 1, resulting in û𝑛+1 (0) = û𝑛 (0), which is nicely compatible with (24) and
extremely stable.

4 Application: “nested” kinetic schemes for non-linear systems
We finish by showcasing how a fourth-order scheme for the linear transport equation can be used, utilizing a Jin-Xin relaxation
system [27], as the basic brick to approximate the solution of a non-linear system of conservation laws [1]. This application
is strongly inspired by the work of [8]. We call the schemes “nested” because we use an external kinetic scheme based on the
Jin-Xin relaxation system to deal with the non-linearity and then inner lattice Boltzmann schemes—a special type of kinetic
schemes—to solve the transport equations appearing in the Jin-Xin system.

4.1 Jin-Xin relaxation system
We tackle the solution of the system on w : R × R → R𝑀 which reads

𝜕𝑡w + 𝜕𝑥𝜑(w) = 0, (25)

where 𝜑 : R𝑀 → R𝑀 is a smooth and possibly non-linear flux. To give a simple example, taking 𝑀 = 1 and 𝜑(𝑤) = 1
2𝑤

2

gives the inviscid Burgers equation. In order to isolate the non-linearity of the problem into a local relaxation term which is
easily tractable, we consider the associated Jin-Xin relaxation system [27]{

𝜕𝑡w + 𝜕𝑥z = 0,
𝜕𝑡z +𝑉2𝜕𝑥w = − 1

𝜖
(z − 𝜑(w)),

(26)

with 𝑉 > 0 a kinetic velocity and 𝜖 > 0 a relaxation time, whose formal limit for 𝜖 → 0 gives back (25). Using the change of
basis w = f+ + f− and z = 𝑉 (f+ − f−), the relaxation system (26) can be recast into its kinetic form

𝜕𝑡 f± ±𝑉𝜕𝑥f± = −1
𝜖
(f± − f±,eq (w)), where f±,eq (w) = 1

2
w ± 1

2𝑉
𝜑(w). (27)

4.2 Splitting and numerical schemes
Notice that the left-hand side of (27) is nothing but a linear transport equation at velocities ±𝑉 , which can therefore be
approximated using the scheme (4) introduced in the first part of the paper or, for efficient and stable computations taking
advantage of the peculiar structure of lattice Boltzmann methods, using (5) and (6). We then split (27) into its transport
(T) part 𝜕𝑡 f± ± 𝑉𝜕𝑥f± = 0, and relaxation part (R) 𝜕𝑡 f± = − 1

𝜖
(f± − f±,eq (w)). The transport part (T) shall be solved using

�̃� ≥ 3 steps of the fourth-order lattice Boltzmann scheme for the transport equation or its corresponding Finite Difference
scheme. The reason to perform more than three steps to reach the desired final time Δ𝑡 > 0 is dictated by the fact that we
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want the multi-step method to produce fourth-order accurate approximations. Therefore, the time-step 𝛿𝑡 for this sub-routine
will be given by 𝛿𝑡 = Δ𝑡/�̃� . The associated discrete operator is denoted T�̃� (Δ𝑡). The relaxation part (R) is solved using the
following trapezoidal quadrature for the non-linear relaxation term, see [15]:∫ Δ𝑡

0
𝜕𝑡 f±d𝑡 = f± (Δ𝑡) − f± (0) = −1

𝜖

∫ Δ𝑡

0
𝜕𝑡 (f± − f±,eq (w))d𝑡 = −Δ𝑡

2𝜖
((f± − f±,eq (w)) (Δ𝑡) + (f± − f±,eq (w)) (0)) +𝑂 (Δ𝑡2).

Using the fact that the relaxation phase conserves w and thus f±,eq (w(Δ𝑡)) = f±,eq (w(0)), the algorithm can be kept explicit
and thus reads

f± (Δ𝑡) = 2𝜖 − Δ𝑡

2𝜖 + Δ𝑡
f± (0) + 2Δ𝑡

2𝜖 + Δ𝑡
f±,eq (w(0)) −−−−→

𝜖→0
−f± (0) + 2f±,eq (w(0)).

This relaxation limit 𝜖 → 0 is unsurprisingly similar to (5) for the non-conserved moments when the relaxation parameters 𝑠𝑣
and 𝑠𝑤 equal two. Notice that the operator associated with this relaxation step in the relaxation limit 𝜖 → 0 does not depend
on Δ𝑡. It shall be denoted by R and is an involution, meaning that R2 = I. Following [8], we construct the basic brick of a
splitting procedure, called B�̃� , given by

B�̃� (Δ𝑡) = T�̃�

(Δ𝑡
4

)
RT�̃�

(Δ𝑡
2

)
RT�̃�

(Δ𝑡
4

)
. (28)

This operator is time-symmetric up to order four: the transformation Δ𝑡 ↦→ −Δ𝑡 makes it its own inverse operator and
B�̃� (0) = I up to order four. The final operator to be applied is constructed using a fourth-order five-stages symmetric Suzuki
splitting [31] given by

O�̃� (Δ𝑡) = B�̃�

( 1
4 − 41/3Δ𝑡

)2
B�̃�

(
− 41/3

4 − 41/3Δ𝑡
)
B�̃�

( 1
4 − 41/3Δ𝑡

)2
.

Notice that the central stage features a negative time-step. We handle this point using the fact that the relaxation R appearing
in (28) does not depend on the time-step and that the linear transport equation solved by T�̃� is reversible in time, hence we
just switch ±𝑉 ↦→ ∓𝑉 .

4.3 Numerical experiments
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Figure 11: Left: solution of the Burgers equation at final time 𝑇 = 0.2 using 𝑁𝑥 = 100 grid points for different choices
of initialization using the lattice Boltzmann algorithm and the corresponding Finite Difference scheme. The notation ⟨4̃, 3̃⟩
indicates (7) with 𝛿 = 0. Curves are shifted in order to distinguish between them. Right: convergence of the 𝐿2 error at final
time for the Burgers equation.

To test the previously described numerical procedure and—in particular—the fact that it ensures an overall fourth-order
method for non-linear PDEs, we consider the inviscid Burgers equation using the same setting of Section 1.2.3 as far
computational domain, initial datum 𝑢◦, and final time 𝑇 are concerned. We perform numerical simulations considering
Δ𝑡 = Δ𝑥, �̃� = 6, and 𝑉 = 1. This choice respects the CFL condition, cf. Proposition 3, for the splitting stage with the largest
step, given by

|𝑉 |41/3

2�̃� (4 − 41/3)
<

1
2
.
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The results are presented in Figure 11. We simulate using the original lattice Boltzmann scheme (5)/(6) with initialization
(7) and 𝛿 = 0, its corresponding Finite Difference scheme (4) with initialization (7) and 𝛿 = 0 (which are indeed equivalent),
and (4) with initialization ⟨3, 4⟩. We observe supra-convergent results with order five (instead of order four) when using (7)
with 𝛿 = 0 and order three when using ⟨3, 4⟩, as expected from the previously conducted analyses. However, we see that
⟨3, 4⟩ eventually leads to instabilities when Δ𝑥 decreases. This is probably due to the fact that (4) is non-dissipative for every
mode (all its eigenvalue are on the unit circle for every frequency), both physical and parasitic, and that performing a large
number of operations, due to the quite complex splitting procedure, triggers the instability of (4) due to round-off errors.
Moreover, we have previously observed that the choice ⟨3, 4⟩ excites the unstable parasitic modes more (i.e. at order 𝑂 (Δ𝑥3))
than ⟨4, 3⟩, ⟨4, 4⟩ or (7) (i.e. at order 𝑂 (Δ𝑥4)).

These numerical experiments make the interest of developing high-order lattice Boltzmann schemes for the linear
transport equation clear, for this allows to tackle non-linear equations efficiently, thanks to a Jin-Xin relaxation. However,
these experiments also show that genuine stability, and possibly some dissipation, are highly desirable properties when
working with floating point arithmetic.

5 Conclusions
In this paper, we have investigated both weakly unstable Finite Difference schemes and stable lattice Boltzmann schemes that
are equivalent up to machine precision. The former can be practically stable, especially in a short-time limit, but particular
care must be used not to lower the overall order of the computations. This comes from the fact that we cannot control the
global truncation error using the local truncation error. Even for the stable lattice Boltzmann scheme, the behavior is different
from genuinely stable Finite Difference schemes as far as the overall order of the method is concerned, and particular care
must be adopted. Both for weakly unstable Finite Difference and stable lattice Boltzmann schemes, this scenario is fostered
by the “numerical physics” brought by parasitic modes, which can no longer be ignored and transport the leading terms of
the numerical error in the domain without dissipating them.

Even if our study has been set in a very simplified 1D framework, solving a linear scalar equation, we have shown
how fourth-order solvers can be employed to construct fourth-order solvers for non-linear systems. This makes our study
concerning stability and order meaningful in a more applied and hopefully useful framework. Therefore, future works will
focus on constructing high-order stable lattice Boltzmann schemes for the linear transport equation in the 2D/3D setting.
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Paris 11 (2014)
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A Proof of Proposition 3
We use the iterative procedure by [33] to determine if Φ̂(𝜉Δ𝑥, z) is a simple von Neumann polynomial, namely it has roots
inside the closed unit disk and those on the unit circle are simple. Let us set 𝜑3 (z) = Φ̂(𝜉Δ𝑥, z) by (8). We obtain that
𝜑
†
3 (z) = −z3 − 𝜂(𝜉Δ𝑥)z2 + 𝜂(𝜉Δ𝑥)z + 1. This results in 𝜑2 (z) = z−1 (𝜑†

3 (0)𝜑3 (z) − 𝜑3 (0)𝜑†
3 (z)) ≡ 0, hence we have to show

that
𝜓2 (z) := dz𝜑3 (z) = 3z2 + 2𝜂(𝜉Δ𝑥)z − 𝜂(𝜉Δ𝑥) (29)

is a Schur polynomial, namely its roots belong to the open unit disk. We have 𝜓
†
2 (z) = −𝜂(𝜉Δ𝑥)z2 + 2𝜂(𝜉Δ𝑥)z + 3. A first

condition to check is |𝜓2 (z) | < |𝜓†
2 (0) |, giving |𝜂(𝜉Δ𝑥) | < 3. It is simpler to work with the square of the modulus, which

provides
(4C4 − 17C2 + 4) cos2 (𝜉Δ𝑥) + 2(−4C4 + 5C2 − 1) cos(𝜉Δ𝑥) + (4C4 + 7C2 − 20) < 0. (30)

Calling 𝜇 := cos(𝜉Δ𝑥) ∈ [−1, 1], the previous equation gives a quadratic inequality on 𝜇 to be satisfied on [−1, 1]. Let us
study it according to the sign of the leading term.
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• 4C4 − 17C2 + 4 = (2C − 1) (2C + 1) (C − 2) (C + 2) > 0, which is equivalent to |C| < 1/2 or |C| > 2. Under this
condition, the maximum of the left-hand side in (30) is reached on the boundary of [−1, 1]. Taking 𝜇 = −1 provides
16C4 − 20C2 − 14 < 0, which solution is |C| <

√
7/2 ≈ 1.3229. Considering 𝜇 = 1 trivially gives −18 < 0. In this

case, the overall condition is |C| < 1/2.

• 4C4 − 17C2 + 4 = (2C − 1) (2C + 1) (C − 2) (C + 2) ≤ 0, which is equivalent to 1/2 ≤ |C| ≤ 2. In this case, the
maximum of the left-hand side of (30) is reached inside [−1, 1]. The value of the inequality (30) on the maximum is
given by 4(−4C4+5C2−1)2−4(4C4−17C2+4) (4C4+7C2−20) < 0. The solutions are 1/2 < |C| <

√︁
3/2 ≈ 1.2247.

Overall, we the condition is 1/2 < |C| <
√︁

3/2.

We see that for |C| = 1/2, the inequality (30) is also verified. Therefore, from the previous discussion, the condition we
obtain is |C| <

√︁
3/2. The next step in the process is to check that 𝜓1 (z) = (9− |𝜂(𝜉Δ𝑥) |2)z+ 6𝜂(𝜉Δ𝑥) + 2𝜂(𝜉Δ𝑥)2 is a Schur

polynomial as well. This condition reads |6𝜂(𝜉Δ𝑥) + 2𝜂(𝜉Δ𝑥)2 |2 − (9 − |𝜂(𝜉Δ𝑥) |2)2 < 0. Observe that this does not hold for
𝜉 = 0 (or 𝜇 = 1), because here we have multiple roots on the unit circle. For −1 ≤ 𝜇 < 1:

(16C8 − 136C6 + 321C4 − 136C2 + 16)𝜇4 − 4(16C8 − 64C6 + 195C4 − 127C2 − 20)𝜇3

+ 3(32C8 + 16C6 + 30C4 − 137C2 + 32)𝜇2 − 4(16C8 + 80C6 − 219C4 + 107C2 + 16)𝜇
+ 16C8 + 152C6 − 507C4 + 467C2 − 128 < 0.

As previously discussed, 𝜇 = 1 is a zero of the left-hand side, thus we can factorize it out to yield

(16C8 − 136C6 + 321C4 − 136C2 + 16)𝜇3 − 3(16C8 − 40C6 + 153C4 − 124C2 − 32)𝜇2

+ 3(16C8 + 56C6 − 123C4 − 13C2 + 64)𝜇 − 16C8 − 152C6 + 507C4 − 467C2 + 128 > 0. (31)

Assume, without loss of generality, that 0 ≤ C ≤ 1. Differentiating the left-hand side in 𝜇, we obtain a second-order equation
for the extremal point of this expression. The one we are interested in is a minimum explicitly given by

𝜇min =
−32 − 124C2 + 153C4 − 40C6 + 16C8 + 3

√
1872C2 − 1640C4 − 4459C6 + 8484C8 − 5392C10 + 1216C12

16 − 136C2 + 321C4 − 136C6 + 16C8 .

By symbolic computations, this point 𝜇min is in [−1, 1] for C > 0.206.... Below this threshold, the extremal point is on the
boundary of [−1, 1]: for 𝜇 = −1, (31) becomes −16(C2 − 1) (2C3 + 1)3 > 0, which is fulfilled. For 𝜇 = 1, which indeed we
do not care about, (31) reads 432− 270C2 > 0, so |C| <

√︁
8/5, which is true. Whenever C > 0.206..., we plug 𝜇min into (31)

and solving the associated inequality in C using computer algebra provides the condition |C| < 1/2. This achieves the proof.
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