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Regions of genomic plasticity

Modularizing regions and detecting co-localized 
and co-occurring gene sets

Pangenomics

Regions of genomic plasticity (RGP) are areas of the genome that encompass most of the strain 
variabilities within a genome including Genomic Islands (GI) such as pathogenicity islands, antibiotic 
resistance genes, environmental adaptations and secondary metabolites. For this reason they have 
raised a lot of attention from the scientific community, and numerous tools have been created to find them 
[1]. Most of them use sequence composition only and expect to differentiate them from the ‘core’ genome 
as they tend to not be fully adapted to the genome’s nucleotide composition. With the advent of Next 
Generation Sequencing and the increase of available genomes, methods based on comparative 
genomics were developed to further improve RGP detection as those approaches can detect actual 
variations between genomes. However, as of today, no method is truly scalable to cope with the massive 
increase of available genomic data.
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For the last decade, pangenomics has provided new tools for researchers to estimate genomic diversity 
by partitioning gene families in terms of core and accessory genome [2]. The core genome consists in 
ubiquitous genes within the taxonomic group being studied and the accessory genome are the genes 
present in one or some individuals but not all. However, the content of the core genome is highly 
dependent on the number of genomes included in a study limiting the relevance of comparisons between 
studies. Moreover, the concept of accessory genome lacks subtlety as it gathers genes with a large range 
of frequencies.
Recently, a new tool named PPanGGOLiN (Gautreau et al., in preparation) was developed to exploit 
gene neighborhood, gene frequency and population structure to classify gene families using a 
graph-based approach. 3 classes are obtained : persistent, which is a relaxed definition of the core 
genome, shell which corresponds to genes belonging to some individuals of the population and 
associated to environmental adaptations, and cloud which are genes present at very low frequencies.

Detecting RGP through pangenomics
RGP have a high turnover in terms of gene content. At the scale of the pangenome, we expect them to be 
made in majority of shell and cloud gene families. Thus, we can easily extract RGP by searching through 
the genomes for regions mostly variable. We detect them by projecting the pangenome partition on a 
genome and annotating genes with the partition of their corresponding gene families. Then we use a 
global scoring approach named panRGP where we try to maximize a score penalized by persistent 
genes and improved by variable genes to extract potential RGP in each genomes. Its simplicity makes it 
easily scalable to thousands of genomes as long as the pangenomic analysis scales as well.

To evaluate this approach, we tested it on a curated literature-based dataset from [1]. We built the 
pangenome of each of the involved species using all the genomes from genbank that have less than 
1000 contigs and L90 < 100. We used the GI predictions available from [1] for the other tools.

Genes involved in the same function tend to be co-localized in genomes [3]. Functions encoded by 
colocalized genes can be transferred in a single horizontal gene transfer event. If the function provides a 
fitness advantage it will remain active in the genomes and the genes will be kept by the organisms. 
Therefore we expect gene families that are in co-localized RGP and co-occurrent in the pangenome to be 
functionally linked. We use a cover Itemset Mining algorithm [4] using a Jaccard distance to extract gene 
sets that match defined criteria.

Tool MCC F1-score Accuracy Precision Recall

panRGP 0.833 0.912 0.909 1.0 0.839

IslandViewer 4 0.71 0.826 0.832 0.996 0.705

IslandPath-DIMOB 0.573 0.696 0.736 0.995 0.535

Islander 0.383 0.442 0.595 1.0 0.284

SIGI-HMM 0.332 0.372 0.55 1.0 0.228

Figure 2: RGP predictions in  Salmonella enterica subsp. enterica serovar Typhi str. CT18 (NC_003198.1) 
From inside out the different circles are : Literature dataset, IslandViewer 4, IslandPath-Dimob, Islander, 
SIGI-HMM, panRGP, PPanGGOLiN partitions, forward strand CDS, reverse strand CDS. Made with [5]

Figure 1: Example of PPanGGOLIN’s partition and projection on genomes

Figure 3: Example of Module predictions in RGP of Escherichia coli K-12. From up to down : gene 
annotation, forward strand CDS, reverse strand CDS, PPanGGOLiN partitions, panRGP predictions, 
module predictions. Made using [5]
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Table 1: Quality metrics for each tool on a literature dataset

A Pangenomic Workflow: From 
GenBank to module prediction
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