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 2 

Standfirst 21 

Based on both the use of real-world data and a simulation approach, this tutorial 22 

article looks at how overlooking right censoring, left truncation, competing events and 23 

recurrent event methods in analyses of time-to-event data can lead to suboptimal or biased 24 

estimations. The simulation approach enables a comparison with the truth and thus 25 

concrete estimations of bias for methods that (i) do not consider right censoring (leading to 26 

underestimation of survival), (ii) do not consider left truncation (leading to overestimation of 27 

survival), (iii) treat competing risks as right-censoring (leading to overestimation of survival), 28 

and (iv) consider only the first of a series of recurrent events for a given individual. 29 

  30 
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Key messages box 65 

When comparing naïve approaches and the proper methodology, we show that: 66 

 Not considering right censoring leads to underestimation of survival 67 

 Not considering left truncation leads to overestimation of survival 68 

 Treating competing risks as right-censoring leads to overestimation of survival 69 

 Appropriate recurrent event methods allow to study all events for each patient and 70 

not only account for the first event. 71 
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ABSTRACT 77 

Survival analysis (also referred to as time-to-event analysis) is the study of the time 78 

elapsed from a starting date to some event of interest. In practice, these analyses can be 79 

challenging and, if methodological errors are to be avoided, require the application of 80 

appropriate techniques. By using simulations and real-life data based on the French national 81 

registry of patients with primary immunodeficiencies (CEREDIH), we sought to highlight the 82 

basic elements that need to be handled correctly when performing the initial steps in a 83 

survival analysis. We focused on right censoring, left truncation, competing risks, and 84 

recurrent events. Our simulations show that ignoring these aspects induces a bias in the 85 

results; we then explain how to analyze the data correctly in these situations. Rare disease 86 

registries are extremely valuable in medical research. We discuss the application of 87 

appropriate methods for the analysis of time-to-event from the CEREDIH registry. The 88 

objective of this tutorial article is to provide clinicians and healthcare professionals with 89 

better knowledge of the issues facing them when analyzing time-to-event data. 90 

  91 



 7 

1.INTRODUCTION 92 

The collection of patient data in academic- and/or industry-led registries is one of the 93 

key elements of medical and translational research. The advent of many disease registries 94 

(including registries for rare diseases) in the early 2000s helped to improve our knowledge of 95 

disease occurrence (incidence and prevalence being the key epidemiological factors most 96 

frequently assessed), the natural history of those diseases, and the effectiveness and safety 97 

of various procedures and therapies (such as stem cell therapy) at the national and 98 

international levels (1,2). Furthermore, registry data is of value in (i) designing national or 99 

international orphan drug trials, (ii) standardizing patient management, and thus (iii) 100 

improving the patients’ health-related outcomes and quality of life (3). 101 

In France, the creation of a series of five-year national rare disease plans and national 102 

reference centers for rare diseases in 2004 prompted the creation of registries for single 103 

diseases or groups of diseases. The CEREDIH French national reference center for children 104 

and adult patients with primary immunodeficiencies (PIDs) created France’s first national 105 

registry for these conditions. The registry complied with the official criteria: the continuous, 106 

exhaustive registration of cases (defined as a condition, disease, health issue or healthcare 107 

procedure such as surgery, hematopoietic stem cell transplantation [HSCT], etc.) in a defined 108 

geographical area by a team of trained professionals (4,5). 109 

PIDs constitute a large, heterogeneous group of more than 500 mostly inherited 110 

diseases that expose patients to a greater risk of infections, severe allergies, 111 

autoimmune/inflammatory manifestations, and/or malignancies (6,7). Furthermore, PIDs 112 

can be classified as deficiencies of the adaptive immune system (subdivided into T-cell 113 

deficiencies and B-cell deficiencies) and deficiencies of the innate immune system. The T-cell 114 
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deficiency group includes severe combined immunodeficiencies (SCIDs, also known as “boy-115 

in-a-bubble diseases”) and other combined immunodeficiencies (CID). The B-cell deficiency 116 

group can be subdivided into common variable immunodeficiencies (CVIDs) and 117 

hypogammaglobulinemias (also referred to as “non-CVIDs”, which also include 118 

agammaglobulinemia). 119 

 Since the CEREDIH registry’s inception in 2005, we have sought to include all patients 120 

diagnosed with a PID in France (8,9). As of June 2nd, 2022, more than 8,500 patients had 121 

been registered. 1,563 of these patients are now deceased. 122 

CEREDIH uses the European Society for ImmunoDeficiencies platform to enter data. 123 

All European Society for ImmunoDeficiencies registry documenting centers share a common 124 

dataset, and CEREDIH has a complementary, specific dataset. Overall, the collected data 125 

encompass several medical variables recorded at one or more timepoints in the patient’s 126 

life: the symptoms that led to the diagnosis of PID, the main PID-related clinical 127 

manifestations (malignancies, autoimmune/inflammatory manifestations, allergies, and 128 

infections), the main PID-related therapies (mainstay therapies like immunoglobulin 129 

replacement therapy and curative therapies like HSCT, thymus transplant, and gene 130 

therapy), and the cause of death. After inclusion, all the patient files are updated every two 131 

years or more frequently. Since the dates of these main events are recorded, it is possible to 132 

construct time-to-event variables for a given event. 133 

Alongside data completeness, data quality is essential at all stages: at registration and 134 

through follow-up documentations as well as through the implementation of relevant and 135 

efficient quality control and data management procedures. Furthermore, the entry of 136 

multiple time points per patient ensures that information is as up to date as possible and (ii) 137 
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the quality of the indicators produced by the statistical analyses (especially survival data 138 

indicators) is as high. 139 

Underfunding is a concern because it leads to issues of registry sustainability, which 140 

include (but are not limited to) understaffing, impairing collaboration with statisticians who 141 

have relevant expertise in this field. As a result, some studies may include a suboptimal or 142 

even biased statistical methodology, which in turn can lead to incorrect results. One of the 143 

primary roles of a registry is to highlight overall trends and relationships in data (10). 144 

Research groups can then use specific methods to validate or reject medical hypotheses (e.g. 145 

with regard to disease mechanisms, survival, covariates leading to one or more 146 

comorbidities of interest, etc.). Therefore, the use of incorrect statistical methods that do 147 

not consider potential bias in the data might lead to unreliable estimations and harmful 148 

medical decisions. Improving patient management is one of the main goals of patient 149 

registries and involves the analysis of time-related data. In the field of health, survival 150 

analyses are among those that suffer the most from statistical bias; this is primarily due to 151 

the use of inappropriate approaches that do not consider censoring. 152 

Famous examples of incorrect statistical analysis often involve immortal bias. One 153 

study (11) found that Academy-Award–winning actors and actresses lived almost 4 154 

years longer than their less successful peers. However, a subsequent reanalysis of the study 155 

data failed to find a significant difference in survival between the winners and non-winners 156 

and showed that the first analysis suffered from immortality bias: the “winners had to 157 

survive long enough to win”, while “performers who did not win had no minimum survival 158 

requirement, and some died before some winners had won, that is, before some “longevity 159 

contests” could begin.” Queen Elisabeth II even joked about immortality bias during her 80th 160 
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birthday celebration in 2006: “As Groucho Marx once said, `Getting older is no problem. You 161 

just have to live long enough.’ ”. However, the issue can be more serious when it affects 162 

medical research. Using skin cancer as a marker of sun exposure, researchers had concluded 163 

that “having a diagnosis of skin cancer was associated with less myocardial infarction, less 164 

hip fracture in those below age 90 years and less death from any cause.” (12) Following this 165 

study, two other researchers – both specialists in the analysis of time-to-event data – 166 

pointed out the presence of immortality bias in the first analysis: “in order to get a skin 167 

cancer diagnosis, and thus become a member of the skin cancer group, it is at least necessary 168 

to survive until age of diagnosis. For those in the skin cancer group it is impossible to die until 169 

the age of diagnosis of the cancer, the so-called immortal person-time.” Another pitfall 170 

pertaining to the study of time-to-event data involves competing risks: if the event of 171 

interest is non-lethal (such as disease relapse, an infection, or the occurrence of cancer) and 172 

death can also occur, the latter must be treated as a competing event (i.e. an event that 173 

precludes the occurrence of the event of interest). A common mistake then consists in 174 

treating death as censoring, which amounts to assuming that deceased patients are still at 175 

risk of experiencing the event of interest. For example, researchers have compared the risk 176 

of relapse among HSCT recipients, using the European Group for Blood and Marrow 177 

Transplantation (EBMT) dataset (13). They reported that treating death as a censoring 178 

variable resulted in a significant overestimation of the probability of relapse: the estimated 179 

5-year probability of relapse was 0.515 in the flawed analysis and 0.316 when death was 180 

correctly taken into account as a competing risk. 181 

Here, we describe the classical methods used to deal with right-censoring, left 182 

truncation, competing events, and recurrent events. We first apply a simulation-based 183 

approach and then refer to CEREDIH registry data. Our objective is to make clinicians and 184 
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healthcare professionals more aware of the issues facing them in analyses of time-to-event 185 

data. 186 

All analyses were conducted with R software and its {survival} library. All the codes 187 

and a randomized version of the CEREDIH dataset are available on GitHub 188 

(https://github.com/Malligon/Pitfalls-in-Time-to-Event-Analysis-for-Registry-Data). 189 

  190 
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2. HOW TO PLAN YOUR SURVIVAL ANALYSIS CAREFULLY 191 

 192 

Survival analysis (also called time-to-event analysis) is the study of the time elapsed 193 

from a starting date to an event of interest.  194 

Firstly, it is important to precisely define the event of interest, the time scale, the 195 

study entry point, and the risk set. The event of interest can be death, recovery, occurrence 196 

of a disease, relapse or any medically relevant event. The time scale refers to the time unit 197 

used (usually years or months). Study entry is the starting point of the study (birth, 198 

treatment initiation, enrolment, etc.). If, for example, a study is designed to analyze survival 199 

(in days) after treatment, study entry will be the time at which the patient took his/her 200 

treatment, and the time scale will be days. Lastly, the risk set is defined as the pool of 201 

patients at risk of experiencing the event of interest. A patient is included in the risk set at a 202 

specific time if he/she can experience the event of interest at that time; this means 203 

particularly that a patient can enter and leave the risk set at any time. 204 

A classical phenomenon in time-to-event analysis is the presence of incomplete data. 205 

This can be caused by right-censoring, left truncation, or both. These data might also include 206 

recurrent and/or competing events. Failure to take these concepts into account may lead to 207 

incorrect estimations and misleading conclusions. Below, we present these four statistical 208 

concepts and we explain how they can be handled by properly adjusting the risk set in each 209 

case. 210 

For some individuals, the exact time of occurrence of the event of interest is not 211 

known; instead, an earlier time is observed, and it is only known that the event of interest 212 

will occur after this observed time. This is right-censoring, which is classically taken into 213 

account with the Kaplan-Meier estimator. 214 
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 215 

Left truncation is a phenomenon that often occurs in time-to-event analysis in which 216 

individuals are followed up only from a time after study entry (called the truncation time) 217 

and not from study entry onwards. In such a case, individuals are observed conditionally on 218 

having not experienced the event of interest before the truncation time. In order to avoid 219 

biased estimates, those data need to be appropriately taken into account by modifying the 220 

risk set in the Kaplan-Meier estimator. 221 

Competing risks methods are involved in a situation that occurs when another event  222 

may preclude the observation of the event of interest. This is typically the case when the 223 

competing risk is death and the event of interest is the occurrence of a disease, remission, 224 

the onset of cancer, etc... While censored data indicates that the true event of interest will 225 

occur after the censoring time, the true event of interest can no longer occur after a 226 

competing risk. A common error consists in treating competing events as censored data in 227 

the calculation of the survival function of the event of interest. This leads to overestimation 228 

of the distribution of the event time. The correct approach consists in estimating the 229 

cumulative incidence function (CIF), using specific methods. 230 

Recurrent event data occur when an individual can experience the event of interest 231 

several times during his/her lifetime. This can happen for the study of recurrent infections, 232 

hospital admissions, cancer relapses, etc... Furthermore, recurrent event data often include 233 

a competing event (referred to as the terminal event), which is typically death. For these 234 

data, a different quantity may be of interest, such as the expected cumulative number of 235 

recurrent events experienced by a patient up to a given time point. 236 

 237 
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 238 

 239 

 240 

 241 

 242 

 243 

 244 

  245 

TOOLBOX 1: How to plan your survival analysis carefully. 

 Focus on data completeness during a chosen time period, rather than focusing 
on its length. 

 Always start by defining the event of interest, the time scale, study entry, and the 
risk set. 

 Assess right-censoring, left truncation, and competing risks in advance and use 
dedicated methods to analyze those data. 

 Consider a recurrent event analysis if patients can encounter the event of inter-
est more than once during the study. 

 In general: always consider what might occur, rather than what has been ob-
served. 
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3. A SIMULATION-BASED APPROACH 246 

 247 

A-Right-censoring 248 

As mentioned above, a time-to-event analysis will usually include right-censored 249 

data. Right-censoring can mainly occur for two reasons: (i) the patient has not yet 250 

experienced the event of interest by the time the study ends, or (ii) the patient is lost to 251 

follow-up during the study period (i.e. drop-out). Because such censored times are smaller 252 

than the true event times, treating the censored observations as completely observed data 253 

will underestimate the distribution of the true event times. In contrast, larger and smaller 254 

times of interests will respectively tend to be more or less subject to right-censoring. As a 255 

result, keeping only the uncensored observations will result in underestimation of the true 256 

event time distribution. These two naïve approaches (treating censored data as completely 257 

observed, or removing censored data) show that dedicated methods (namely the Kaplan-258 

Meier estimator, in the case of right-censoring) are needed in this context. 259 

When dealing with time-to-event data with right-censoring, the observations for an 260 

individual consist of two variables: the observed time and the censoring status (or censoring 261 

indicator). The latter variable is binary and indicates whether the observed time is the time 262 

of interest or the censored time - a time that is known to be smaller than the time of 263 

interest. In order to simulate these types of data for each individual, one needs to: (i) 264 

simulate the time of interest; (ii) simulate a censoring time; (iii) measure the minimum 265 

between the two times, which is the observed time; and (iv) determine whether the time of 266 

interest is smaller than the censoring; if so, the censoring status is equal to 1; if not, the 267 

censoring status is equal to 0. 268 
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In the Appendix, we present a simple code that simulates these data as described above. We 269 

chose a Weibull distribution for the true event time (with a shape of 2 and a scale of 30) and 270 

a uniform distribution over the interval [0;85] for the censoring variable. On average, this 271 

choice of parameters will result in 31.24% of censored data. A sample of size 1000 is 272 

simulated. It should be noted that a seed was arbitrarily chosen, so that the data can be 273 

reproduced easily (see the Appendix for more details). Table 1 shows the first 10 individuals 274 

simulated using this code. 275 

In the absence of covariates, the standard quantity of interest in survival analysis is 276 

the survival function which represents the probability that the event of interest has not yet 277 

occurred at any given time point. The survival function is classically estimated using the 278 

Kaplan-Meier estimator (14). Starting from the grid of time points t1, …, tK consisting of all 279 

the uncensored times, the estimator is computed recursively. For a given tk, the Kaplan-280 

Meier estimator is equal to its value at the previous time point t(k-1) times (1-dk/Rk), where dk 281 

is the number of uncensored events that occurred at time tk, and Rk is the number of “at 282 

risk” individuals at time tk (defined as the number of individuals that have not yet 283 

experienced the event of interest or who have not yet been censored). In this formula, the 284 

estimator is initialized at the value 1 for time equal to 0. In survival analysis, the notion of 285 

individuals being “at risk” at a given time is essential. It is only through this risk set that 286 

censoring is accounted for, and it is crucial that this set does not include periods of time 287 

during which the event of interest cannot occur. The dk/Rk ratio is called the hazard rate or 288 

hazard risk estimator and represents the estimation for the risk of experiencing the event of 289 

interest at time tk, given that this event has not yet occurred. By using the survfit function in 290 

the R package ‘survival’, one can compute the Kaplan-Meier estimator for the previously 291 

generated dataset. This estimator can be compared with the naïve approach described in 292 
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the second section, which consisting in removing the censored observations and computing 293 

1 minus the empirical distribution function for this subsample (Figure 1; see the Appendix 294 

for more details). Clearly, the Kaplan-Meier estimator produces a very accurate estimation, 295 

whereas the naïve approach gives a biased estimation. As expected, the survival function is 296 

underestimated when censoring is ignored. For example, the true quantiles (Q1, Q2 and Q3) 297 

for the variable of interest are 16.14, 25 and 35.37, respectively. The three quantiles 298 

estimated from the Kaplan-Meier estimator are 16.12, 25.09 and 35.95, respectively, while 299 

those given by the naïve estimator are 13.95, 22.06 and 30.42, respectively. By way of an 300 

example, one can consider a study in which the event of interest is death: including only 301 

observed deaths in the analysis (and thus ignoring censored data due to the end of study or 302 

drop-out) will result in underestimation of the survival function. This is because at all time 303 

points, the risk set needs to include the censored observations that have not yet occurred. 304 

Whereas the number of observed events of interest is the same (dk in the Kaplan-Meier 305 

estimator), the number of individuals at risk (Rk in the Kaplan-Meier estimator) should be 306 

increased. 307 

  308 
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 309 

  310 
TOOLBOX 2: Right censoring 

 Right censoring is extremely common in time-to-event analyses. 

 The Kaplan-Meier method is the standard approach for estimating the survival 
function for right censored data. 

 Ignoring right censoring leads to underestimation of the survival function. 

 When observations are censored, the event of interest will happen at a later, 
non-observed time. 
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B. Left truncation 311 

Another frequent phenomenon in time-to-event analysis is left truncation (delayed 312 

entry), when individuals are followed from a later time (the truncation time) and not from 313 

the starting point. In such a case, individuals are observed conditionally on having not yet 314 

experienced the event of interest before the truncation time. Again, in order to avoid biased 315 

estimates, those data need to be taken into account appropriately by modifying the risk set 316 

in the Kaplan-Meier estimator. While right-censoring is often correctly taken into account in 317 

the analysis of time-to-event data, left truncation is more difficult to apprehend and is 318 

therefore sometimes overlooked. Not taking into account left truncation results in an 319 

immortality bias because individuals are considered to be at risk before the truncation time 320 

but cannot die – if death is the event of interest – before the truncation time. This is typically 321 

the case when the time scale is age since, very often, patients cannot be followed up from 322 

birth. In that case, it is important to take into account the data observation scheme: 323 

depending on the study, an individual will start to be followed up at the time of diagnosis, at 324 

the date when the treatment started, or at some other time. Individuals having experienced 325 

the event before they started to be followed up will never be observed. If the time scale is 326 

age and the patient enters the study at a specific time, then he/she should not be part of the 327 

risk calculation for earlier times.    328 

Left truncation can be easily taken into account by modifying the risk set in the 329 

Kaplan-Meier estimator. At a given time point, an individual should be in the risk set if 330 

he/she (i) has not yet experienced the event, (ii) has not yet been censored, and (iii) the 331 

truncation time occurred earlier than the time point. 332 
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It is important to stress that ignoring left truncation would result in overestimation of 333 

the survival function because the risk set would be too large at time points where all 334 

patients have not yet entered the study. Since the Kaplan-Meier estimator is computed in a 335 

recursive way, this bias for initial time points will have an impact on all later times, and this 336 

incorrect survival function will be overestimated. 337 

Using the same simulation scheme as before, we generated a truncation variable 338 

with a uniform distribution over the interval [0;50]. As a result, 42.4% of the observations 339 

are not observed because the event of interest occurred before the truncation time. We 340 

then estimated the survival function by applying two approaches based on the Kaplan-Meier 341 

estimator: the correct one that modifies the risk set according to the truncation variable, 342 

and a naïve approach in which left truncation is ignored. Modifying the risk set in the Kaplan-343 

Meier method is easily achieved in the survival library by using the start and stop variables 344 

instead of the usual observed time variable. The start and stop variables correspond 345 

respectively to the truncation time and the observed time (Figure 2; see the Appendix for 346 

more details). 347 

One can see clearly that the naïve approach overestimates the survival function. For 348 

example, the true quantiles of order 0.25, 0.5, 0.75 for the variable of interest are equal to 349 

16.14, 25, and 35.37, respectively. The estimated quantiles from the  Kaplan-Meier 350 

estimator when left truncation is taken into account are equal to 15.14, 24.44, and 35.43, 351 

respectively, while the estimated quantiles from the naive estimator are equal to 22.58, 352 

31.25 and 42.14,  respectively. 353 

 In summary, it is important to check that a survival analysis’ risk set is well defined. In 354 

other words, the researcher should ask him/herself “Is there a period of time during which 355 
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the individuals cannot experience the event of interest?”. If so, then the risk set needs to be 356 

modified accordingly by using the start and stop variables. Similarly, it is important to choose 357 

an appropriate time scale for use in practice. Most of the time, this choice will be based on 358 

medical considerations. Does it make more sense to study the risk of death on the age time 359 

scale? Or should the scale be the time elapsed since treatment allocation? In the second 360 

scenario, a wide age range might make it necessary to also adjust for age. In the first scenar-361 

io, it is very likely that the data will suffer from left truncation. Lastly, it should be noted that 362 

left truncation might deteriorate the performance of the Kaplan-Meier estimator when the 363 

risk set is too small for short time periods. A small risk set will result in a high hazard rate and 364 

a high variance of the hazard rate. Given that errors at early times will have an impact on all 365 

future time points, this issue can be problematic. Some other options for managing this 366 

problem can be found in the literature (15).  367 

 368 

  369 

TOOLBOX 3 : Left truncation 

 Left truncation is very common in registry analyses - especially when patients are 
followed up from birth. 

 Left truncation is a specific type of immortal time bias. 

 The Kaplan-Meier estimator accommodates with left truncation by adjusting the 
risk set (adding patients or removing them) at a given time point. 

 Ignoring left truncation will lead to overestimation of the survival function. 

 Early events may impact and bias the survival function if the risk set is too small at 
early time points. 
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C. Competing risks 370 

As mentioned above, competing risks occur when another event may preclude the 371 

observation of the event of interest. This is typically the case when the event of interest is 372 

not terminal, e.g. the occurrence of an infection or a diagnosis of cancer. Death is then a 373 

competing event and if it occurs in the dataset, it must be properly taken into account. A 374 

common mistake is to treat death as a censoring variable. The major difference between a 375 

competing event and censoring is that the event of interest may occur after the censoring 376 

timepoint (even though it is not observed) but will never occur after a competing event. If 377 

the competing event is death and the event of interest is cancer, then it is clear that a 378 

patient can no longer develop a cancer after he/she had died. The Kaplan-Meier estimator 379 

treats censoring as a variable that stops the observation of future events for the patient but 380 

includes the information that the event of interest will occur after the censoring variable. 381 

Consequently, computing a survival curve using the Kaplan-Meier estimator in a competing 382 

risk situation where death is treated as a censoring variable will give a biased estimation. 383 

Since dead individuals will remain “at risk” in the computation of the survival function, the 384 

estimate will be biased upwards and the survival curve will be overestimated. 385 

Competing events are often not correctly analyzed because they can be treated as a 386 

censoring variable when estimating the hazard rate. This is a computational trick that works 387 

well because the hazard rate is a quantity defined for an infinitesimally short period of time. 388 

In other words, studies that use the Cox model to evaluate the effect of one or more 389 

covariates on the event of interest might treat the competing event as a censored variable 390 

(16). This approach will provide correct estimates of hazard ratios. However, this practice is 391 

no longer appropriate for estimating cumulative quantities, such as the cumulative hazard 392 
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function or the survival function. Since the Cox model is beyond the scope of this paper, we 393 

shall not discuss this issue further. 394 

It should also be noted that the last example when cancer is the event of interest and 395 

death is the competing event is more precisely an illness-death situation. Strictly speaking, 396 

competing event situations encompass data for which the events of interest are mutually 397 

exclusive (17). A typical example is when different causes of death are recorded and 398 

analyzed. Again, one cause of death can only occur if the other cause of death has not yet 399 

occurred, and this has to be properly taken into account in both scenarios. In the 400 

cancer/death example, the death event might be studied simply by computing the Kaplan-401 

Meier estimator because cancer does not preclude the occurrence of death. We 402 

nevertheless chose to simplify the presentation by considering this example with cancer and 403 

death, because the illness-death model (a particular example of a multistate model (MSM)) 404 

is beyond the scope of this article (17). Furthermore, situations in which cancer is of interest 405 

and individuals are also at risk of death are frequently encountered in registry data. This will 406 

be illustrated below on the CEREDIH dataset. 407 

In the presence of competing risks, the quantity of interest is usually the CIF. For the 408 

cancer example, the CIF is simply the probability of experiencing a cancer before any time 409 

point.  For a given time t it is computed by cumulating for all time points tk occurring before 410 

t, the product of the hazard risk for the event of interest (computed as the ratio dk/Rk at tk, 411 

where the risk set Rk includes individuals that have not yet experienced any of the different 412 

types of events and have not yet been censored) and the probability to have “survived” up 413 

until time tk. This last quantity is basically the Kaplan-Meier estimator for the compound 414 

event composed of all the types of event; in other words, it is the Kaplan-Meier estimator 415 
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where the event of interest is the first event among all competing events). This estimator 416 

can be calculated from the survival library by simply considering the status variable as a 417 

factor with more than two levels: one level (always the first) for censoring and the other 418 

levels for the competing events (18). 419 

Lastly, given that the competing event precludes the occurrence of the other event, it 420 

is good practice to always displaythe CIFs of all the competing events as well as the CIF of the 421 

quantity of interest (19). This is important because otherwise, the CIF of the quantity of 422 

interest might be misleading. A low risk of experiencing an event might simply be due to the 423 

fact that the patients are at high risk of experiencing the competing event. Taking again the 424 

cancer/death example, individuals might be at a low risk of cancer only because they are at 425 

high risk of dying. Another illustrative example (from the CEREDIH dataset) will be given 426 

later. 427 

We generated two competing events, along with a censoring variable (Figure 3; see 428 

the Appendix for more details). The CIF was calculated in two different ways: the correct 429 

way, by considering the other event as a competing risk (as described above), and the naïve 430 

approach based on a Kaplan-Meier estimator where the other event is treated as a censoring 431 

variable (in the latter case, the curve is obtained by computing one minus the Kaplan-Meier 432 

estimator). One can see clearly how important it is to analyze competing risks correctly: the 433 

naïve approach clearly overestimates the CIFs. Again, this is because the naïve approach 434 

considers individuals to be at risk after they have died, as illustrated by the fact that both 435 

curves tend to 1 as time goes to infinity. In contrast, with the correct method, the sum of the 436 

two probabilities tends to 1 as time goes to infinity; each individual will experience one (and 437 

only one) of the two events with probability one in the future. 438 
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In the Appendix, we present some simple code that simulates a competing risk 439 

situation. We chose a Weibull distribution for the true event time of interest (shape: 2; scale: 440 

30) and for the competing event (shape: 2; scale: 40). This choice of parameters will result in 441 

24.98% of censoring, 48% of observed events of interest and 27.01% of observed competing 442 

events on average. The true curve was implemented based on calculations from the 443 

Supplementary Data 1. 444 

The true quantiles of order 0.1, 0.2, 0.3 for the competing event are equal to 13.69, 445 

21.61 and 32.12 respectively. The estimated quantiles from the competing risk method 446 

estimator are equal to 14.19, 22.28 and 35.15, respectively, while the estimated quantiles 447 

from the naive estimator are equal to 13.57, 19.88 and 25.10, respectively.  448 

TOOLBOX 4: Competing risks 

 Competing risks are often present in analyses of a non-terminal event. 

 The quantity of interest is usually the cumulative incidence function (CIF).  

 Competing risks and right censoring are different: the event of interest cannot 
occur after the competing event has occurred. 

 Treating competing events as right-censored observations leads to overestima-
tion of the CIF. 

 Always give the CIF for the competing risks as well as the CIF for the event of in-
terest. 

 If the competing events are not of interest, they can be grouped together as a 
single competing event. 
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D. Recurrent events 449 

Recurrent events arise when the event of interest can be experienced several times 450 

for each individual. In this case, a classical quantity of interest is the average number of 451 

recurrent events that a patient will experience up to a given time point, which is usually 452 

referred to as the cumulative mean number of recurrent events. Recurrent events occur 453 

when the event of interest is (for example) cancer recurrence, an infection, or hospital 454 

admission and when the objective is to estimate the average number of such events that a 455 

patient will experience up to any time point. Since censoring often occurs in this type of 456 

study, dedicated methods again have to be used to estimate such quantity of interest – 457 

typically, by appropriately estimating the hazard rate. In particular, ignoring censoring will 458 

clearly result in underestimation of the true number of recurrent events since censored 459 

patients will be followed-up on a shorter time period as compared to the situation where 460 

censoring did not occur. Furthermore, death is often observed as a competing event in 461 

medical studies (also called a terminal event in recurrent event studies) and must be 462 

accounted for; patients will not experience a recurrent event after death. 463 

An estimator for the cumulative mean number of recurrent events was first 464 

developed simultaneously by Nelson and Aalen in the context of right-censoring; it is 465 

therefore referred to as the Nelson-Aalen estimator (20). The estimator was subsequently 466 

extended by Ghosh et al. to the case in which a terminal event is also present (21). Ghosh et 467 

al. also developed formulas for confidence intervals. It is important to stress that those 468 

formulas are very general and do not make any assumptions about the dependence 469 

structure of the recurrent event increments. In particular, they do not assume that recurrent 470 

events have independent increments, which is very often not the case in practice. More 471 



 27 

precisely, the recurrent events that may occur between any two time points are not 472 

assumed to be independent. In practice, this means that having already experienced one or 473 

more recurrent events may or may not influence the risk of further occurrences. This is a 474 

remarkable feature of the confidence interval formula because in practice, patients that 475 

have already experienced an event are often more likely to experience future occurrences 476 

(22). 477 

We have developed code to generate recurrent events and have also implemented 478 

Ghosh et al.'s formulas for the estimator of the cumulative number of recurrent events in 479 

the presence of a terminal event (21). For the code, we refer the reader to the Appendix. In 480 

order to implement the estimator, the dataset needs to be arranged in a start, stop structure 481 

(also called a counting process data structure). Each patient needs to have one line one line 482 

per recurrent event and one line for the censoring or terminal event time. On each lines, the 483 

start time is the occurrence of the previous recurrent event and the stop time is the 484 

occurrence of the next recurrent event. On the first line, the start time will be equal to the 485 

time when the patient enters the risk set (generally 0) and the stop time will be the 486 

censoring or terminal event time. This structure can also take into account left truncation: in 487 

such a case, the truncation time will be the start time of the first line. An example of data 488 

generated using this structure is given in Table 2. 489 

Patient #1 developed an event three times (at the age of 13.4, 23 and 24.2 years) and died at 490 

the age of 26. Patient #2 did not experience any events and was censored at the age of 6.7 491 

years. 492 

Of note, the survSplit function from the survival library can also be used to create the 493 

counting process database. 494 
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The expected number of recurrent events is calculated using Ghosh et al.’s formula 495 

(21). We compared it with the naïve approach, which ignores censoring and the terminal 496 

event (Figure 4). The naïve estimator was implemented by simply counting the number of 497 

recurrent events that had occurred before a given time point, divided by the sample size. 498 

While the correct estimator only includes patients at risk of experiencing a recurrent event 499 

in the risk set, the naïve approach uses a fixed risk set that includes all the patients in the 500 

study. Since the risk set is too large in the naïve approach, the estimator underestimates the 501 

expected number of recurrent events. As recommended in the previous section, we 502 

advocate to also display the CIF of the terminal event because individuals at high risk of 503 

death will tend to experience fewer recurrent events. We computed it as one minus the 504 

Kaplan-Meier estimator (Figure 4, right-hand panel). As time goes on, the CIF moves closer 505 

to 1. This explains why the frequency of recurrent events appears to decrease slightly (on 506 

the left-hand panel); at late time points, the competing event is more likely to have 507 

occurred. 508 

Recurrent events often occur in medical registry dataset with often long follow-up 509 

periods and many repeated measurements of medical outcomes. Researchers are often not 510 

aware of the right method for handling recurrent events, and it is customary to analyze only 511 

the first event. This can lead to an important loss of information even though a recurrent 512 

analysis can be straightforwardly implemented using standard libraries for survival data. In 513 

order to compute the confidence intervals under the general dependence structure of the 514 

recurrent event increments, we implemented Ghosh et al.’s formula (21). Our code is 515 

available in the Appendix and can be applied to any recurrent event situation. At the time of 516 

writing, no packages were publicly available, and so we decided to implement the formula 517 

ourselves. Very recently, Klaus Holst and Thomas Scheike implemented a new function in the 518 
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{mets} R package, which computes Ghosh et al.’s estimator. Both approaches give the same 519 

estimations. 520 

  521 

TOOLBOX 5: Recurrent events 

 Recurrent events occur when patients may experience the same event repeatedly 
over time. 

 The cumulative mean number of recurrent events is an interesting summary 
measure of the frequency evolution of recurrent events over time. 

 Competing risks often occur in recurrent event analyses. 

 Ignoring right censoring will result in underestimation of the mean number of re-
current events. 

 Treating competing risks as right-censored observations will lead to overestima-
tion of recurrent events. 
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4. Use of the CEREDIH registry: a real case 522 

PIDs are a very heterogeneous group of rare immune system diseases cause by 523 

defects in 485 genes (according to the latest international classification (6)). From a medical 524 

point of view, it is not usually relevant to analyze all the patients’ data together; usually, 525 

appropriate statistical analyses are conducted on subgroups of PID patients. Indeed, the data 526 

include patients suffering from very different diseases, such as T-cell deficiencies (mainly 527 

SCIDs and CIDs), B-cell deficiencies, and innate immunodeficiencies (Figure 5). 528 

The data in the CEREDIH registry are typically right-censored because they are 529 

collected in real time; as a result, most patients are alive at the time of registration. The data 530 

are also retrospective in the sense that deceased patients can also be registered if they were 531 

diagnosed with a PID before death. In fact, the diagnosis of PID is a requirement for 532 

registration. This means that PID patients who die before being diagnosed are not included 533 

in the registry. This is a typical example of left truncation when studying the patient’s age at 534 

death and must be taken into account appropriately in the statistical analysis. 535 

When dealing with time-to-event data, one must define the starting point for the 536 

follow-up of each patient. Ideally, the choice of the starting point is guided by medical 537 

considerations, i.e. the time that makes the most sense for the patient. For the CEREDIH 538 

registry, one possibility is to set the “start of follow-up” at the date of the clinical diagnosis. 539 

In that case, the time-to-event variable will be the time elapsed since diagnosis. Another 540 

possibility is to set the “start of follow-up” at the date of birth, in which case the time-to-541 

event variable of interest will be age (i.e. age when the event of interest occurred). The 542 

latter option makes more sense from a medical point of view because PIDs are genetic 543 

diseases; even though a patient might be diagnosed at a later age, the disease might  have 544 
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affected him/her since birth or at least for some time before the diagnosis. As mentioned 545 

above, however, the date of diagnosis might be a truncation variable. In contrast, setting the 546 

start date to the date of diagnosis avoids the left truncation issue. 547 

For the sake of clarity, we first show the Kaplan-Meier analysis of the time to death of 548 

patients with CVID when the starting point is the date of diagnosis. Patients with CVID are 549 

diagnosed at different ages, ranging from early childhood to late adulthood. Our analyses 550 

were further stratified with respect to five age classes. When patients are diagnosed at a 551 

later age (40+), the risk of death differs significantly (Figure 6a). Twenty years after 552 

diagnosis, 45% of the patients diagnosed after the age of 40 were dead. For patients 553 

diagnosed between 0-4, 5-9, 10-19, and 20-39 years of age, the death rate was 8%, 4%, 15%, 554 

and 9%, respectively. However, the patients diagnosed earlier in life are more prone to die 555 

for a reason unrelated to their PID; this highlights the limitations of this method and its 556 

interpretation. The same analysis was conducted for six different PIDs but with birth as the 557 

start date (Figure 6b). This time, the left truncation induced by the date of diagnosis was 558 

taken into account by applying the above-described methodology. We can see that CVID and 559 

non-CVID B-cell deficiency patients have similar survival curves and have a better prognosis 560 

than patients with the other diseases. At 40 years of age, for example, 12% of the CVID 561 

patients and 13% of the non-CVID patients are estimated to have died. Patients with an 562 

innate immunodeficiency tend to have a higher survival that patients with a CID: the 563 

probabilities of dying before 20 years of age are estimated to 25% for patients with an innate 564 

immunodeficiency and to 45% for patients with a CID. A high proportion of patients with 565 

SCID are estimated to die at a young age: the probability of dying in the first two years is 566 

estimated 44%. For patients who have survived, the probability of death is low. In the 567 

following examples, we will always use birth as the start date. 568 
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Not taking left-truncation into account in registered patients with CVID leads to 569 

significant overestimation of the probability of survival (Figure 7). By using the correct 570 

methodology, we estimate that 30% of patients will die before the age of 62.3 years. When 571 

the naïve estimator is used, the equivalent age is 75.0. This comparison highlights the 572 

potential consequences for public health at the population level. 573 

We next studied the first occurrence of cancer in patients with PID. Here, the event 574 

of interest is cancer, and so death is an obvious competing risk that needs to be handled 575 

properly. Since we are interested in the occurrence of cancers associated with PIDs, we also 576 

considered all curative therapies (HSCT, gene therapy, and thymus transplantation) as 577 

competing risks. These curative therapies can be treated as a single composite event 578 

recorded at the age when the patient first encounters a competing risk. We computed the 579 

CIF for cancer in the six subgroups of PID patients and the CIF for the composite competing 580 

risk (Figure 8). 581 

CID patients are more likely to have experienced a first cancer before the age of 55 582 

(Figure 8a). For the patients that are still alive at that age and have not yet experienced 583 

cancer or a curative therapy, the CVID and non-CVID patients are the most at risk of 584 

developing cancer. Clearly, these findings are strongly linked to those shown in Figure 8b. 585 

Patients with SCID can undergo curative therapy or die very soon after they are born and so 586 

are no longer at risk of developing cancer. In contrast, the patients with a CVID or non-CVID 587 

B-cell deficiency have a much lower risk of death or curative therapy than the other patient 588 

groups; this is because of their greater risk of cancer at older ages. 589 

Lastly, we analyzed the recurrences of cancer, autoimmune disease episodes, and 590 

inflammatory events on the CID patient group (Figure 9). Any of these three types of event is 591 
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defined as a recurrent event. We sought to estimate the mean number of such events 592 

having occurred before any time point. As in the previous analysis, curative therapy and 593 

death are considered to be a composite competing event. The mean number of recurrences 594 

is low and increased slightly over time to a value of 0.74 before the age of 80. Again, this 595 

value must be compared with the risk of experiencing death or a curative therapy over time, 596 

which is high for these patients (0.98 before the age of 80). 597 

  598 



 34 

4. DISCUSSION 599 

In the present article, we discussed dedicated statistical methods for analyzing time-600 

to-event data in registries. Those types of data have the particularity that they are not 601 

completely observed, and various approaches must be used to avoid biased estimations. In 602 

particular, we discussed how to take into account right-censoring, left truncation, and 603 

competing events. We also considered recurrent event situations, in which individuals can 604 

experience the event of interest several times. If those particular mechanisms in the 605 

collection of the data are not properly taken into account, the application of standard 606 

methods for completely observed data will give rise to systematic biases. This fact was 607 

highlighted in a simulation study in which the true mechanism that generated the data was 608 

known in advance; and it was therefore possible to compare various methods with the truth. 609 

Lastly, we used the methods presented here to analyze data from the CEREDIH registry. 610 

In order to avoid bias in the analysis of time-to-event data, we refer to the three 611 

pillars stated by Andersen and Keiding (23). “First, do not condition on future”. In other 612 

words, no estimation should be carried out that uses events that will occur in the future . For 613 

example, when one wants to compute an estimation on the age scale, one should check 614 

whether all the patients have been followed up from birth. This is typically not the case 615 

when age is the time scale, and the data will probably suffer from delayed entry (i.e. left 616 

truncation). In the CEREDIH data, for instance, left truncation means that patients are 617 

included in the study because it is known that they will be diagnosed at some time in the 618 

future. Nevertheless, we have seen in this paper how left truncation can be taken into 619 

account by modifying the risk set using the age at diagnosis. The second principle is “do not 620 

regard individuals at risk after they have died”, and the third is “stick to this world.” In the 621 
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present article, these last two points apply to competing risks. Censoring a patient at the 622 

time of his/her death implies that he/she will experience the event of interest postmortem, 623 

which is impossible in the real world. 624 

Left truncation is a specific example of immortal time bias. Immortal time bias occurs 625 

when an individual is incorrectly considered to be at risk, i.e. during a period of time when 626 

they cannot experience the event of interest (24). As an illustration of immortal time bias, let 627 

us consider a cancer study in which the objective is to compare the risk of death for a group 628 

of patients with cancer and a group of patients without cancer. If the time scale is age, then 629 

cancer status will be a truncation variable. Furthermore, the cancer and non-cancer groups 630 

are not well defined because it is not possible to know in advance (i.e. at birth) whether the 631 

individual will remain cancer-free or will develop cancer at a later time. If one performs a 632 

survival analysis by defining the two groups (cancer and non-cancer) in advance using the 633 

Kaplan-Meier estimator, then the survival curve of the non-cancer group will be strongly 634 

biased downwards; the risk set will not include any of the patients in the cancer group, even 635 

though many of these patients will not have yet developed a cancer at some specific times 636 

and should therefore be included in the risk set. Since the non-cancer risk set will be much 637 

smaller than it should be at early time points, the corresponding survival curve will indicate 638 

that the prognosis for the non-cancer group is worse than it truly is. In contrast, the fact that 639 

the cancer group is defined prior to the onset of cancer introduces selection bias. As a result, 640 

the comparison of the two curves will largely attenuate the effect of cancer on death. It is 641 

important to note that with age as the time scale, the cancer group does not correspond to a 642 

real situation. Individuals are not born with a cancer status, and cancer may or may not oc-643 

cur during the lifetime of a patient. When cancer does occur, the individual is no longer at 644 

risk of developing cancer but might have an elevated risk of death. In fact, this is a multi-645 
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state situation in which different events with different risks must be taken into account in 646 

the survival analysis. 647 

It was not possible for us to cover all the types of incomplete observation that can 648 

arise in analyses of time-to-event data. Furthermore, we did not discuss how to analyze the 649 

effect of covariates on a time-to-event response variable through regression modelling. In 650 

the context of right-censoring and/or left truncation, this is usually performed with the Cox 651 

model (16). The Cox model can also be applied to competing events and recurrent events, 652 

notably via the survival package in R. Lastly, MSMs constitute a major topic of interest but 653 

are not covered here (17). This situation arises when (i) an individual can experience differ-654 

ent events (referred to as states) during his/her lifetime and (ii) the risk of experiencing any 655 

of these events varies. This is a natural extension of the competing risk situation; instead of 656 

studying only two possible events (one of which is terminal), one looks at multiple events 657 

between which transitions may or may not be allowed in the model. In the CEREDIH registry 658 

data, for instance, patients may experience various events: severe infections, cancer, auto-659 

immune disease episodes, death, etc. By using MSMs, one can describe all the different 660 

states associated with the disease and the changes from one state to another. This approach 661 

can also be incorporated into a regression model in which covariates affect some states and 662 

not others. These regression models can be implemented using the {msm} or {mstate} pack-663 

ages in R. 664 

In this article, we presented various methods and highlighted a number of pitfalls in 665 

the analysis of time-to-event data. As a consequence, we strongly encourage medical 666 

researchers who study time-to-event data to collaborate closely with statisticians. Firstly, 667 

registry data (especially rare disease registries) are essential for understanding a disease 668 

(10). Secondly, funds for rare disease research are often limited, and it is therefore crucial to 669 
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use appropriate statistical methods and derive correct conclusions. Robust, high-quality 670 

health data are critical for (i) enhancing healthcare delivery, medical R&D, and our 671 

knowledge of disease, (ii) supporting policy and regulatory decisions, and (iii) ultimately 672 

benefiting patients in particular and society more widely. Data can change lives by speeding 673 

up diagnosis, improving patient care, and fostering the development of new treatments. In 674 

rare diseases like PIDs, health data is even more vital for the provision of more effective, 675 

high-quality, safe and personalized care. Worldwide, efforts are growing to strengthen the 676 

collection and use of data through patient registries and the shaping of collaborative health 677 

data ecosystems. 678 

  679 
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Supplementary data 1: True cumulative incidence function in a  competing risk situation, 835 

using two Weibull distributions for the simulation 836 

The two competing risks are simulated by two Weibull distributions. k1 and k2 are shape 837 

parameters, and λ1 and λ2 are scale parameters. 838 
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