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Figure 1: 3D scene augmented with stereoscopic laser projection

ABSTRACT
Stereoscopic video projection using active shutter glasses is a ma-
ture technology employed in multi-person immersive virtual re-
ality environments such as CAVE systems. On the other hand,
non-stereoscopic laser projectors are popular in the entertainment
industry because they can display graphics at greater distances and
cover larger areas. However, stereoscopic-capable laser-based vec-
tor graphics could enhance video-based immersive 3D experiences,
due to their unique visual characteristics including extremely high
contrast and arbitrarily extended gamut through the use of multiple
laser sources. Their virtually infinite depth of field also allows for
easy installation compared with video projectors, regardless of the
size of the augmented space. In this work, we demonstrate a system
integrating 3D laser-based vector graphics into a dynamic scene
generated by a conventional stereoscopic video projection system.
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• Computing methodologies → Graphics systems and inter-
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1 INTRODUCTION
Stereoscopic video projection using active shutter glasses has a long
history of development [11]. However, to the extent of our knowl-
edge, no research exists on stereoscopic laser-based vector graphics
using time-multiplexing techniques. In this work, we demonstrate
a system overlaying 3D stereoscopic laser graphics onto a video-
projected 3D scene. Laser graphics possess an extreme dynamic
range, perfect color purity and line smoothness (no pixels), not
achievable by conventional video projectors. Besides the potential
use of 3D laser graphics alone (including outdoors use due to their
extreme brightness) this technology can be exploited to add inter-
esting special effects and detail into video-based 3D environments.

We synchronized a DLP projector and a (custom) laser projection
system using the DLP Link protocol [7]. DLP Link synchronisation
relies on the insertion of a brief white flash between consecutive
left and right video frames. This brief flash is picked by an optical
sensor on the LCD-shutter [7][8] and act as a synchronization clock.
Given the relative simplicity of the laser graphics, and thanks to
persistence of vision, a unique galvano-mirror suffices to produce
both right and left-eye views.

2 BACKGROUND
While there has been previous research [9] describing the combina-
tion of laser vector graphics with raster graphics, these systems do
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not generate stereoscopic imagery. There are several methods to
generate stereoscopic scenes [5]. These include passive methods, i.e.
strategies not relying on temporal multiplexing of views including
polarised light and anaglyphs. However, active shutter glasses rely
on alternatively blocking the light to left or right eye in a rapid
sequence, in sync the video projector. This synchronisation can
be done by broadcasting an IR or RF signal, or using the light of
the projector itself, as is the case with the DLP Link technology
described above.

3 METHOD AND EXPERIMENT
In our system an ESP32 micro-controller processes the signal gen-
erated by the opto-electronic demodulator circuit taken from a pair
of shutter-glasses and produces an adequately time shifted signal
to synchronise our custom laser controller [6]. It is important to
note that although we developed the system around the DLP Link
technology, other synchronisation protocols can be used without
modification of the system.

Figure 2: System overview
In our demonstration, an application written in OpenFrame-

works renders a 3D wireframe landscape while at the same time
sending simple geometry (in the form of a vertex array) to the cus-
tom laser controller via a high speed serial interface. The right and
left eye perspective projections are calculated only when necessary
on the micro-controller side, and optimal trajectories for drawing
are stored in the controller memory for fast access and continu-
ous steering of the galvano-mirrors [6]. As the background scene
evolves, changes in pose of the overlaid 3D laser geometry only
require the update and sending of model-view matrices.

In Figure 1, the bright ellipse and the green beam are produced
by the laser, with the the remaining wireframe background gen-
erated by a video projector (the picture doesn’t do justice to their
very distinct perceptual characteristics). Calibrating our laser pro-
jector with a conventional DLP projector resembles the process of
calibrating a multi-projector CAVE system [10], assuming that the
laser-projector system can be treated as a pinhole camera. Obtain-
ing the intrinsics and extrinsics parameters of a galvano-mirror
based projector requires a special procedure though, explored and
automated in [3]. However, in this preliminary work we verified
that without precise calibration, both the video and laser display
are matched and exhibited 3D stereoscopic properties.

4 DISCUSSION AND FUTUREWORK
The complexity of the laser content is limited by the frame-rate of
the system and the speed of the galvo-mirrors. Currently the fastest
available galvo-mirrors can generate 50 kilo-points per second, and
since the laser switches between left and right images at 120Hz, we

are left with approximately 8 ms to draw each frame. This limits
the graphic primitives to relatively simple geometry [1]. Future
automation of the calibration process will facilitate the integration
of multiple laser projectors dedicated to the left or right frames or
even to different parts of the scene, thus allowing for an increase
in the complexity of the graphic primitives.

This research paves the way to novel creative uses of lasers
projection in virtual reality environments such as the CAVE, lever-
aging the unique characteristics of laser light. For example, laser
projection can be used to render very bright elements such as explo-
sions, lighting bolts, or laser beams that contrast strongly against
the video projections while the video projection can render more
nuanced, textured and complex backgrounds. Other interesting
uses include annotation, highlighting of geometry and contours,
or rendering 3D user interfaces, including navigation grids, 3D
menus or pointers such as described by Daschelt and Hübner [4] or
projecting lines extending from the user’s hand and into the scene,
similar to those used for menu selection in commercial Virtual
Reality headsets.

Future work will also involve the integration of the "Laser Sens-
ing Display" technology developed in previous works by the authors
[6]. This technology uses a visible LIDAR for projection, and is thus
capable of measuring distance and surface reflectance along the
projection path. This enables real-time compensation for variations
in the geometry or spectral reflectance of the surface [1][2], but
also direct interaction with the stereoscopic content without using
markers or tracking cameras [6].
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