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Figure 1: a) An acoustic signature suffices for simultaneously recognizing the surface and the gesture performed over it. b)
Presentation slides change by a hand swiping on a shirt; c) When the microphone is close to the fabric, recognition is possible
even in a noisy environment. d) Textile patches can be exploited opportunistically. e) Interaction between certain types of
fabric produce unmistakable acoustic signatures even if the signal travels over the air (here a hook-and-loop fastener).

ABSTRACT
We demonstrate a method capable of turning textured surfaces (in
particular textile patches) into opportunistic input interfaces thanks
to a machine learning model pre-trained on acoustic signals gener-
ated by scratching different fabrics. A single short audio recording
is then sufficient to characterize both a gesture and the textures
substrate. The sensing method does not require intervention on the
fabric (no special coating, additional sensors or wires). It is passive
(no acoustic or RF signal injected) and works well using regular mi-
crophones, such as those embedded in smartphones. Our prototype
yields 93.86% accuracy on simultaneous texture/gesture recogni-
tion on a test matrix formed by eight textures and eight gestures
as long as the microphone is close enough (e.g. under the fabric),
or when the patch is attached to a solid body transmitting sound
waves. Preliminary results also show that the system recognizes the
manipulation of Velcro straps, zippers, or the taping or scratching
of plastic cloth buttons over the air when the microphone is in per-
sonal space. This research paves the way for a fruitful collaboration
between wearables researchers and fashion designers that could
lead to an interaction dictionary for common textile patterns or
guidelines for the design of signature-robust stitched patches not
compromising aesthetic elements.
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1 INTRODUCTION
Since microphones are ubiquitous today, it make sense to consider
passive acoustic sensing for activity recognition, including ges-
tures while scratching textured surfaces. Leaving aside gesture
recognition over everyday objects, we focus here on textiles, as
these present an opportunity for design. A textile patch or a screen
printed shirt generate a recognizable "acoustic signature" when
scratched that can be mapped to simple commands for smartphones
or home appliances (complementing voice-based smart home as-
sistants). One can also envision an augmented wardrobe, giving
a functional meaning to dressing codes: for instance recruiting a
button-down shirt or a textured tie of formal business attires to
generate workplace-specific commands.

2 PREVIOUS WORKS
There are various ways to make daily objects interactive but most
are invasive (e.g., attaching widgets [Poupyrev et al. 2016] , over-
laying printed electronic , integrating inertial sensors [Laput et al.
2016], or using the speaker-microphone pair as an active sonar
[Nandakumar et al. 2016]). Passive acoustic sensing does not re-
quires any modification of the object as it relies on its naturally
generated sounds. Recent advances in machine learning has opened
wide this avenue. Among many others, Becker et al. [Xu et al. 2020]
and Xu et al.[Becker et al. 2019] show 95% and 97% recognition
of on-face gesture and sound-emitting gestures respectively using
Convolutional Neural Net (CNN). Previous efforts relying on pas-
sive audio signatures mainly focus on input on planar surfaces (e.g.
table and wall). We complement and extend this line of research by
investigating the simultaneous recognition of gestures and substrate
on patterned or non-patterned textiles.
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Figure 2: Classification pipeline

3 EXPERIMENTAL EVALUATION
3.1 Algorithmic pipeline
Figure 2 shows our classification pipeline. First, the Mel-frequency
cepstral coefficients (MFCC) image is extracted from the sample
audio signal (16-bit depth, 48kHz, 1.4 seconds). To reduce training
time and possible over-fitting for small data sets, we use a pre-
trained VGG-19 model [Simonyan and Zisserman 2014] to then
extract abstract features of MFCC images, that become the feature
vector to classify. Our data samples are split 70/30 into a training
and testing sets to train a support vector machine (SVM) for clas-
sification. We explore three conditions: 1) texture recognition, 2)
texture-gesture recognition, 3) interaction recognition on an object.

3.2 Data collection and augmentation.
With the microphone placed at close range ( 10cm) or under the
surface, we collected 60 samples per condition. For texture recog-
nition, we collected signals generated by sliding the index finger
over tcotton, linen, nylon and polyester, as well as some materials
resembling parts of an attire (foam, tin, polyethylene bubble wrap,
wood, cardboard, and paper). For texture/gesture recognition, we
collected signals generated by performing eight gestures (swipe,
circle, triangle, rectangle, tick, cross, rub, and star) on eight tex-
tures. We also trained the system on ten interactions with a waist
bag (opening and closing the lid and zippers, tapping and swiping
on the lid surface and interaction with the buckle and waist clip).
To improve generalization, we perform time shifting and noise
augmentation before converting samples to MFCC images. Time
shifting creates new synthetic training samples and increases data
size by 50%. To simulate real-world scenarios, street and office noise
were injected into the samples with a 50% probability.

3.3 Experiment Results.
We trained the models and tested accuracy with data collected
under the three conditions described above, obtaining respectively:
97.22% for texture recognition alone; an overall test accuracy of
93.86% for texture/gesture recognition; and 93.89% for interaction
recognition on a waist bag. Figure 3 shows the associated confusion
matrices.

4 DISCUSSION AND FUTUREWORKS
Despite artificial noise injection, our system has been trained on
a relatively quiet environment and may be too environment spe-
cific. To which extent one can leverage on classic noise cancellation
algorithms for speech processing is an open question since the

Figure 3: Confusion matrices for (a) textures and (b) waist
bag interaction.

power spectrum of the scratching sound is much more similar to
environmental noise than voice). Site-specific training (which in
our preliminary study shows an accuracy surpassing 90%) would
be too cumbersome. An interesting solution worth exploring is to
pre-train the model in a noiseless environment, and then rely on
transfer learning to reduce to a minimum the site-specific train-
ing phase [Carney et al. 2020]. Interestingly, this would also allow
users to re-calibrate the system or even reconfigure their “textile
functions” on the flight, recording site-specific models (workplace,
home, street, etc) that they can invoke later, or be selected automat-
ically by recognizing the environment from noise or by any other
classic context aware computing strategy. Informed by textile de-
sign techniques, future work will explore ways to modify or create
robust patterns for recognizing a set of standard gestures (direc-
tional swipes, taps, etc). These can be integral to the clothing, or
presented as stitchable ornaments for T-shirts, cushions, tablecloth,
etc. Such strategy for interactive cloth design will respect aesthetics
while at the same time supporting ubiquitous computing.
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