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1 Organization of this accompanying note

This document is the accompanying note of the main paper (Sportisse et al., 2023).
We assume the data missing not at random (MNAR) values (Rubin, 1976; Ibrahim
et al., 2001; Mohan et al., 2018), i.e. the effect of missingness depends on on the
missing values themselves. An example includes clinical data collected in emer-
gency situations, where doctors may choose to treat patients before measuring heart
rate: the missingness of heart rate depends on the missing heart rate itself. For such
a setting, the observed data are therefore not representative of the population. The
main paper focuses on the specific MNARz setting, for which the only effect of
missingness is on the class membership; in this document, we give some details
for other MNAR settings.

1.1 Contributions

In Section 2, we present and illustrate a relevant inventory of distributions for the
MNAR missingness process in the context of unsupervised classification based
on mixture models for different types of data (continuous, count, categorical and
mixed). In Section 3, we provide the identifiability of the mixture model param-
eters and missingness process parameters under certain conditions (including the
data type and the link functions governing the missingness mechanism distribu-
tion). This is a real issue in the context of MNAR data, as models often lead to
unidentifiable parameters. When all variables are continuous or count, all models
lead to identifiable parameters. In the categorical and mixed cases, only the mod-
els for which missingness depends uniquely on the class membership have identi-
fiable parameters. These identifiability results represent a substantial extension of
the work of Miao et al. (2016) to more complex missing scenario and to the mul-
tivariate case. For each model or submodel, an EM or Stochastic EM algorithm
is proposed in Section 4, implemented, and made available for reproducibility1.
Finally, we propose a numerical experiment in Section 5 to assess the clustering
performance in each proposed MNAR setting.

1.2 Notations

Set the dataset Y = (y1| . . . |yn)T consisting of n individuals, where each observa-
tion yi = (yi1, . . . , yid)

T belongs to a space Y , depending on the type of data, de-
fined by d features. The pattern of missing data is denoted by C = (c1| . . . |cn)T ∈
{0, 1}n×d, with ci = (ci1, . . . , cid)

T ∈ {0, 1}d: cij = 1 indicates that the value
yij is missing and cij = 0 otherwise. The values of the observed (resp. missing)
variables for individual i are denoted by yobs

i (resp. ymis
i ). The objective of clus-

tering is to estimate an unknown partition Z = (z1| . . . |zn)T ∈ {0, 1}n×K that
groups the full dataset Y into K classes, with zi = (zi1, . . . , ziK)T ∈ {0, 1}K

1The code is available on https://anonymous.4open.science/r/
Clustering-MNAR-7E29.
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and where zik = 1 if yi belongs to cluster k, zik = 0 otherwise. Consequently,
in a clustering context, the missing data are not only the values ymis

i but also the
partition labels zi.

Mixture models allow for clustering by modeling the distribution of the ob-
served data (yobs

i , ci). Assuming an underlying mixture model with K compo-
nents, the probability distribution function (pdf) of the couple (yi, ci) reads as

f(yi, ci; θ) =
K∑
k=1

πkfk(yi;λk)fk(ci | yi;ψk), (1)

where θ = (γ, ψ) gathers all the model parameters, γ = (π, λ) groups the pa-
rameters related to the marginal distribution of yi, π = (π1, . . . , πK) is the vector
of proportions with

∑K
k=1 πk = 1 and πk > 0 for all k ∈ {1, . . . ,K}. Given

λ = (λ1, . . . , λK), fk(· ;λk) is the pdf of the k-th component parameterized by
λk, ψ = (ψ1, . . . , ψK) groups the parameters of the missingness mechanisms and
fk(ci | yi;ψk) is the pdf related to the missingness mechanism under component
k (i.e., fk(ci | yi;ψk) = f(ci | yi, zik = 1;ψk)). In many cases, the parameter
ψ is interpreted as a nuisance parameter. However, when the mechanism is not
ignorable, we need to consider the whole parameter θ to achieve clustering since
the pdf of the observed data is

f(yobs
i , ci; θ) =

∫
f(yi, ci; θ)dy

miss
i . (2)

Different types of pdf fk(· ;λk) can be considered, depending on the types
of features at hand. Thus, if yi is a vector of continuous variables, the pdf of a d-
variate Gaussian distribution (McLachlan and Basford, 1988; Banfield and Raftery,
1993) can be considered for fk(yi;λk) and thus λk groups the mean vector and the
covariance matrix. Moreover, if some components of yi are discrete or categorical,
the latent class model (see Geweke et al. (1994); McParland and Gormley (2016))
defining fk(yi;λk) =

∏d
j=1 fkj(yij ;λkj) can be used, with λk = (λk1, . . . , λkd).

In such case, fkj could be the pdf of a Poisson (resp. multinomial) distribution
with parameter λkj if yij is an integer (resp. categorical) variable. The next sub-
section discusses the choice of the modeling for the missingness mechanism (i.e.,
the distribution fk(ci | yi;ψk)).

2 Variant MNAR modeling

2.1 Rationale for MNAR assumptions

To handle MNAR data in selection models, the distribution of the missing-data pat-
tern given the data and the partition should be specified. We consider the following
assumptions:

1. The elements of ci are conditionally independent given (yi, zi).
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2. The element cij is conditionally independent given (yi, zi) from yij′ for j 6=
j′.

By the categorical nature of the mask ci, the independence assumption 1. is a quite
natural hypothesis in the context of clustering (Du Roy De Chaumaray and Marbac,
2020; Chi et al., 2016). The independence assumption 2. of the variables amounts
to considering self-masked class-wise MNAR mechanisms for each variable: the
missingness of the variable j may depend on its value itself (self-masked) and on
the class membership (class-wise). Note that the self-masked feature, apart from
limiting the number of parameters to be estimated, is now commonly met in the
literature (Mohan, 2018; Sportisse et al., 2020; Le Morvan et al., 2020), and is
able to retrieve some existing ad hoc MNAR procedures already used in machine
learning community (see more details in (Sportisse et al., 2023, Theorem 1)).

More specifically, the conditional distribution of cij given (yi, zi) is assumed
to be a (classical) generalized linear model with link function ρ, so that finally

fk(ci | yi;ψk) =
d∏
j=1

(ρ(αkj + βkjyij))
cij (1− ρ(αkj + βkjyij))

1−cij , (3)

where ψk = (αk1, βk1, . . . , αkK , βkK).
The parameter αkj represents a mean effect of missingness on the k-th class

membership for the variable j (note that within a same class k, αkj is not neces-
sarily equal to αkj′ for j 6= j′). The parameter βkj represents the direct effect of
missingness on the variable j which depends on the class k as well. This model is
called MNARykzj in the following.

Some variations include fk(cij = 1 | yi;ψk) = ρ(αkj + γkj′yij′), where the
j′-th variable is always observed. In such a case, the missing values are missing at
random (MAR) as only depending on observed variables. Identifiability guarantees
and estimation are still valid in such a setting.

2.2 Models

Simpler models can be derived from (3) by imposing equal parameters either across
the class membership, or across the variables likely to be missing. First, we intro-
duce three models, with a lower complexity than (3), that still allow the probability
of being missing to depend on both the variable itself and the class membership.
For the so-called MNARyzj model, the effect of missingness on a variable is the
same regardless of the class (while keeping different mean effects αkj on the class
membership), so that

MNARyzj : β1j = . . . = βKj , ∀j. (4)

For the MNARykz model, the missingness has a same mean effect on class mem-
bership shared by all variables (while allowing different self-masked and class-wise
parameters βkj):

MNARykz: αk1 = . . . = αkd, ∀k. (5)
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The effects on a particular variable and on the class membership can be respec-
tively the same for all the classes and for all the variables, entailing the so-called
MNARyz model:

MNARyz: β1j = . . . = βKj , ∀j and αk1 = . . . = αkd, ∀k. (6)

Secondly, the probability to be missing can also depend only on the variable
itself. This is actually a particular case of MNAR mechanims, widely used in
practice (Mohan, 2018), that we call MNARy here. The only effect of missingness
is thus on the variable j, being the same regardless of the class membership,

MNARy: α11 = . . . = α1d = α21 = . . . = αKd and β1j = . . . = βKj ∀j.
(7)

A slightly more general case can be considered by allowing the effect of miss-
ingness on the variable j to depend on the class k, as in the following MNARyk

model,
MNARyk: α11 = . . . = α1d = α21 = . . . = αKd. (8)

Thirdly, the probability to be missing can also depend only on the class mem-
bership, so that the missingness is class-wise only. In the MNARz model, we
consider that the only effect of missingness is on the class membership k, being
the same for all variables,

MNARz: βkj = 0, ∀(k, j) and αk1 = . . . = αkd, ∀k. (9)

The MNARzj model is a slightly more general case than the MNARz model, be-
cause the effect of missingness on the class membership k is not the same for all
the variables,

MNARzj : βkj = 0, ∀(k, j). (10)

Finally, the simplest model is the missing completely at random (MCAR) one,
characterized by no dependence on variables, neither on class membership, i.e.,
each variable has the same probability of missing,

MCAR: βkj = 0, ∀(k, j) and α1j = . . . = αKj , ∀j. (11)

3 Identifiability of the model parameters

The generic identifiability (Allman et al., 2009) of parameters for continuous,
count, categorical, and mixed data (i.e., when the set of unidentifiable parameters
has a zero Lebesgue measure) is ensured by the following theorem. We consider
the following assumptions:

A1. The parameters (π, λ) of the marginal mixture defined by the density
∑K

k=1 πkfk(yi;λk)
are identifiable;

5



A2. There exists a total ordering� ofFj×R, for j ∈ {1, . . . , d} fixed, whereFj
is the family of the data densities {f1j , . . . , fKj} and R is the family of the
mechanism densities {ρ1, . . . , ρK} = {ρ(.;ψ1), . . . , ρ(.;ψK)}, where ρ is
the cumulative distribution function of any continuous distribution function
and (ψk)k∈{1,...,K} its parameter. The total ordering is such that ∀k < ` ∈
{1, . . . ,K}, ∀j ∈ {1, . . . , d}, Fkj � F`j (denoting Fkj = ρkfkj and F`j =

ρ`f`j) implies limu→+∞
ρ`(u)f`j(u)
ρk(u)fkj(u)

= 0;

A3. The missing-data distribution ρ is assumed to be strictly monotone.

A4. The feature are independently drawn conditionally to the group membership,
i.e.,

fk(·;λk) =

d∏
j=1

fkj(· ;λkj); (12)

A5. The dimension d of the observations is related to the number K of clusters
so that

d ≥ 2dlog2Ke+ 1,

with dxe the least integer greater than or equal to x.

Assumption A1. means that the identifiability of the parameters (π, λ, ψ) of
the model (2) requires the identifiability of the parameters (π, λ) of the marginal
mixture of (Y,Z) (i.e., considering the case without missing values). Some authors
have already studied the identifiability of the mixture models, when no missing val-
ues in Y occur, especially Teicher (1963) for Gaussian mixtures (continuous vari-
ables) and Yakowitz and Spragins (1968) for Poisson mixtures (count variables).
Assumption A2. is the core ingredient to prove the identifiability of the parame-
ters, requiring that a total ordering of the mixture densities holds. We illustrate it
by considering concrete examples in Appendix A. Note that under Assumption A3.
requires that the link function of the missing data mechanism is strictly monotone,
but no assumption about its form (e.g. logit, probit) is made. Assumption A4.
requires the conditional independence of the features given the group membership
and Assumption A5. links the dimension of the observations and the logarithm
of the number of clusters. Both assumptions A4. and A5. are classical in the
categorical case, even without missing values (Allman et al., 2009).

Theorem 3.1. Define the conditions:

C1 The variables correspond to continuous or count data, A1. and A2. hold
true,

C2 All the variables are categorical, A4. and A5. hold true and the mechanism
is stated by (9), (10) or (11),

C3 At least one variable is continuous or count data and has a marginal distri-
bution that satisfies A1. and A2., A4. holds true,
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C4 At least one variable is categorical and its associated mechanism is stated
by (9), (10) or (11), A4. and A5. hold true.

Assume that Assumption A3. holds and that at least one of conditions C1-C4 is
satisfied, then the parameters of the model in (2) are generically identifiable, up to
label swapping.

The proof is given in Appendix A. In the case of continuous and count vari-
ables, the proof follows the reasoning used by Teicher (1963, Theorem 2) which
proves the identifiability of univariate finite mixtures. For categorical variables,
the generic identifiability holds only for the MCAR, MNARz and MNARzj mech-
anisms. The idea of the proof is to rewrite the observed likelihood as the finite
mixture of K multinomial distributions, for which the identifiability is given by
Corollary 5 of Allman et al. (2009). For MNARy? mechanisms, the rewriting is
impossible, because of the dependency on y of the mechanism. The identifiability
of mixed data directly follows from the identifiability of continuous and categorical
components.

4 Estimation of the proposed MNAR models

Assuming identifiability, we estimate parameters via likelihood maximization us-
ing EM and SEM algorithms specifically designed for Gaussian, Poisson, multino-
mial and mixed data with MNAR data.

For the MNARz mechanism, an EM algorithm an be derived (see the main pa-
per (Sportisse et al., 2023)), because the effect of the missingness does not depend
on yi. As the MNARzj mechanism has the same property, an EM algorithm can
also be derived (see Appendix B). However, the EM algorithm becomes untractable
when the missingness depends on variables y, such models being generically de-
noted by MNARy? in the sequel. In particular, some distributions entail untractable
integrals at the E-step (e.g., Gaussian components with MNARy? mechanism de-
fined with logit link, see Appendix B for more details).

The stochastic EM algorithm (Celeux and Diebolt, 1985) can overpass the
EM’s intractability, by imputing missing values using Gibbs sampling instead of
integrating over them. In addition, it has another advantage, unlike the EM algo-
rithm, not to be necessarily trapped by the first encountered local maximum of the
likelihood function in play (Celeux and Diebolt, 1985). The principle of the SEM
algorithm is to involve a stochastic-E step (SE-step) instead of the traditional E-
step of the EM algorihtm. Details of the algorithm is given in Appendix C. The
iteration [r] then becomes:
SE-step: Draw the missing data (z

[r]
i ,y

mis [r]
i ) according to their conditional dis-

tribution given the observed data (yobs
i , ci) and the current parameter θ[r−1]. As

simulating according to this conditional distribution may be difficult, we simulate
instead according to the following two conditional probabilities using a Gibbs sam-
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pler, by noting y
[r]
i = (yobs

i ,y
mis[r]
i ),

z
[r]
i ∼ zi | y[r−1]

i , ci; θ
[r−1] and y

mis [r]
i ∼ ymis

i | yobs
i , z

[r]
i , ci; θ

[r−1]. (13)

M-step: Let Y [r] = (y
[r]
1 | . . . |y

[r]
n ) be the imputed matrix and let Z [r] = (z

[r]
1 | . . . |

z
[r]
n ) be the current and corresponding partition. The parameter θ[r] is computed us-

ing the maximum likelihood estimate in the complete case. For all k ∈ {1, . . . ,K},
the parameter π[r]k is the proportion of rows of Y [r] belonging to class k. The pa-
rameter λ[r]k is updated in a standard way, depending on the parametric mixture
family in play. Finally, the parameter ψ[r]

k is the resulting coefficients of a GLM
with a binomial link function, cf Appendix C for details.

In the SE-step, note that the sampling of z[r]i is performed by a multinomial
distribution. The conditional distribution of ymis

i given (yobs
i , z

[r]
ik = 1, ci) param-

eterized by θ[r−1] is

fk(y
mis
i | yobs

i , ci; θ
[r−1])

=
fk(y

mis
i | yobs

i ; θ[r−1])fk(ci | ymis
i ,yobs

i ;ψ[r−1])∫
fk(y

mis
i | yobs

i ; θ[r−1])fk(ci | ymis
i ,yobs

i ;ψ[r−1])dymis
i

.

This distribution may not be classical in general. For example, for MNARy? mod-
els, it is not explicit if the components are Gaussian and if the missing data distri-
bution ρ is logistic (since the product of logistic and Gaussian distributions is not
a standard law). Therefore, the SEM algorithm cannot be easily applied. However,
if ρ is the probit function, we can make the distribution of interest explicit (it is
a truncated Gaussian distribution when the variables are Gaussian). For MNARz
and MNARzj models, all the computations remain feasible. Table 1 summarizes
the cases for which the EM or SEM algorithm is feasible.

EM SEM
Gaussian Categorical Gaussian Categorical

MNARz
MNARzj

X X X X

Probit Logit Probit Logit

MNARy?
no closed
form

no closed
form,
optim. pb

not identifiable X

require
algorithms
as SIR
(costly)

not identifiable

Table 1: Summary of the cases for which the EM and the SEM lead to feasible
(or not feasible) computations. The symbol X means that the computations are
feasible (derived in Appendix B).
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5 Implementation and numerical experiments

The SEM algorithm has been implemented for each MNAR setting for Gaus-
sian data and is available on https://anonymous.4open.science/r/
Clustering-MNAR-7E29.

For each MNAR setting, we assess the clustering performance through the con-
sistency of the partition, by computing the ARI between the true partition Z and
the estimated one, given by ẐMAP = {zMAP

ik (θ̂)}i,k ∈ Rn×K as follows

with zMAP
ik (θ) = argmax

k∈{1,...,K}
P(zik = 1|yobs

i , ci; θ).

We consider thus the following methods:

• the EM algorithm (for MCAR (11), MNARz (9) and MNARzj (10)),

• the SEM algorithm (for MNARy (7), MNARyk (8), MNARykzj (3), MNARyz
(6))

The data are generated using a Gaussian mixture with three components having
unequal proportions (π1 = 0.5, π2 = π3 = 0.25) and independent variables:

∀j ∈ {1, . . . , d}, yij = δ
3∑

k=1

ϕkjzik + εij , (14)

with εij ∼ N (0, 1) the noise term, ϕk ∈ {0, 1}d and δ > 0. We consider d = 6
variables and we vary the number of observations n = 100, 250, 500. In Figure
1, as expected, considering the mechanism always gives better results than using
the MCAR model, especially for models with many parameters and larger sample
sizes (as the MNARyz, MNARykzj , MNARykz, MNARyzj settings for n = 250
and n = 500). Finally, consistency seems satisfactory in each scenario, indicating
that our tuning parameters for the algorithm (starting values, stopping rules) are
quite suitable.

In the main paper (Sportisse et al., 2023), we compare the MNARz setting with
other ones, and discuss the computational cost of the estimation for the different
MNAR settings.
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MNARz MNARzj MNARy MNARyz
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Figure 1: Boxplot of the ARI obtained for 50 samples composed of d = 6 variables.
The sample size varies by {100,250,500}. The boxplots in green (True) correspond
to the performance of the algorithm considering the MNAR setting matching the
one that has been used for the missing value generation. The red dashed line in-
dicates the theoretical ARI. This experiment been performed for a theoretical rate
of misclassification of 10% and a theoretical missing rate in the whole dataset of
30%.
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Supplementary material

This file is a supplementary material. In Appendix A, the proof for Proposition 3.1 is given. Some complements on the
EM algorithm are given in Appendix B. The SEM algorithm presented in Section 4 is detailed in Appendix C. . Appendix
D gives the values of hyperparameters for the numerical experiments on synthetic data.

A Appendix 1: Identifiability

A.1 Continuous and count data

Proof of Proposition 3.1, continuous case. Suppose there exists two sets of parameters {γ, ψ} and {γ′, ψ′} which have
the same observed distribution, i.e., f(yobs

i , ci; γ, ψ) = f(yobs
i , ci; γ

′, ψ′). More precisely, one has

∀yi ∈ Rd,∀ci ∈ {0, 1}d,
K∑
k=1

∫
Ymis
i

πkfk(yi;λk)
d∏
j=1

ρ(αkj + βkjyij)
cij [1− ρ(αkj + βkjyij)]

1−cijdymis

=
K′∑
k=1

∫
Ymis
i

π′kfk(yi;λ
′
k)

d∏
j=1

ρ((α′)kj + (β′)kjyij)
cij [1− ρ((α′)kj + (β′)kjyij)]

1−cijdymis

Let us consider the case when cij = 0 for all j = 1, . . . , d. One has

K∑
k=1

πkfk(yi;λk)

d∏
j=1

(1− ρ(αkj + βkjyij)) =

K′∑
k=1

π′kfk(yi;λ
′
k)

d∏
j=1

(1− ρ((α′)kj + (β′)kjyij)).

By using the identifiability of the marginal mixture, one obtains λk = λ′k and πk
∏d
j=1(1 − ρ(αkj + βkjyij)) =

π′k
∏d
j=1(1− ρ((α′)kj + (β′)kjyij)).

In the sequel, we use the same reasoning of Theorem 2 in (Teicher, 1963). Let us denoteFk(yij) = fkj(yij ;λkj)
∏d
j=1(1−

ρ(αkj + βkjyij)) and F ′k(yij) = fkj(yij ;λkj)
∏d
j=1(1 − ρ((α′)kj + (β′)kjyij)). Without loss of generality, assume that

Fk ≺ Fl and F ′k ≺ F ′l for k < l. If F1 6= F ′1, we assume also without loss of generality that F1 � F ′1. Then, F1 ≺ F ′k
for 1 ≤ k ≤ K ′. For u ∈ T1, where T1 = SF1 ∩ {u : F1(u) 6= 0} is the domain of definition of F1 such that
f1j(u;λ1j)

∏d
j=1(1− ρ(α1j + β1ju)) 6= 0, one has

π1 +
K∑
k=1

πk
Fk(u)

F1(u)
=

K′∑
k=1

π′k
F ′k(u)

F1(u)
.

Letting u → +∞, π1 = 0 which is in contradiction with the mixture model (where πk > 0, ∀k = 1, . . . ,K. It implies
that F1 = F ′1. For any u ∈ T1, one has

π1 +

K∑
k=2

πk
Fk(u)

F1(u)
= π′1 +

K′∑
k=2

π′k
F ′k(u)

F1(u)
.

Letting again u→ +∞, one obtains π1 = π′1 and
∑K

k=2 πk
Fk(u)
F1(u)

=
∑K′

k=2 π
′
k
F ′k(u)
F1(u)

. We repeat this argument to conclude

that Fk = F ′k and πk = π′k for k = 1, . . . ,min{K,K ′}. Finally, if K 6= K ′, say K > K ′,
∑K

k=K′+1 πkFk(u) = 0
implies πk = 0 for K ′ + 1 ≤ k ≤ K which is in contradiction with the definition of the mixture model. Thus K = K ′.
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Finally, Fk = F ′k implies that
∏d
j=1(1−ρ(αkj +βkjyij)) =

∏d
j=1(1−ρ((α′)kj +(β′)kjyij)). By integrating out over

all the elements but the j-th element, one has for all yij ∈ R, ρ(αkj + βkjyij) = ρ((α′)kj + (β′)kjyij). and αkj = (α′)kj
and βkj = (β′)kj , since ρ is an injective function. Indeed, ρ is assumed to be strictly monotone.

A.2 On identifiability of the Gaussian mixture

Finite Gaussian mixtures are identifiable and, for any variable j, there is a total ordering defined by σ2kj > σ2(k+1)j and
µkj > µ(k+1)j if σ2kj = σ2(k+1)j , where µkj and σ2kj are respectively the mean and the variance of variable j under
component k. Example A.1 shows that the identifiability holds for Gaussian mixtures when there are missing values and
that the distribution of the MNAR mechanism is a probit one.

Example A.1 (Gaussian + Probit). Let us consider that ρ is the probit function and fk (respectively fk+1) the Gaussian
density with parameters (µk, σk) (respectively (µk+1, σk+1)). Suppose without loss of generality that βk ≥ βk+1. One
want to prove that

lim
u→+∞

Eu := lim
u→+∞

∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

σk exp− (u−µk+1)
2

2σ2
k+1

σk+1 exp− (u−µk)2
2σ2
k

= 0

Let us denote φ(u) = 1√
2π

∫ u
−∞ e

−t2/2dt. One has

lim
u→+∞

φ(u) =


1 if u > 0
1/2 if u = 0
0 if u < 0

(15)

• If βk+1 > 0 (and βk > 0):

lim
u→+∞

Eu = lim
u→+∞

exp−

(
u2

(
1

2σ2k+1

− 1

2σ2k

)
+ u

(
µk
σk
− µk+1

σk+1

))
= 0.

assuming without loss of generality that σ2k > σ2k+1 or µk > µk+1 if σ2k = σ2k+1.

• If βk+1 ≤ 0 (and βk ≥ 0):
lim

u→+∞
Eu = 0

since

lim
u→+∞

exp−

(
u2

(
1

2σ2k+1

− 1

2σ2k

)
+ u

(
µk
σk
− µk+1

σk+1

))
= 0

and

lim
u→+∞

∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

=


0 if βk+1 < 0
1/2 if βk+1 = 0 and βk > 0
1 if βk+1 = 0 and βk = 0.

(16)

• If βk+1 < 0 and βk < 0: One uses the upper and lower bounds for the probit function.

1

−t+
√
t2 + 4

<

√
π

2
exp

t2

2
φ(t) <

1

−t+
√
t2 + 8/π

,

13



i.e., φ(t) <
√

2
π

1

−t+
√
t2+8/π

exp− t2

2 and 1
φ(t) < (−t+

√
t2 + 4)

√
π
2 exp t2

2 Thus, noting that limu→+∞ φ(αk+1 +

βk+1u) = limu→+∞ φ(βk+1u),∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

=
u→+∞

φ(βk+1u)

φ(βku)
<

u→+∞
exp

((
β2k
2
−
β2k+1

2

)
u2

)
. (17)

As βk+1 ≤ βk < 0, one has β2k/2− β2k+1/2 < 0 and it implies

lim
u→+∞

∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

= 0.

Given that

lim
u→+∞

exp−

(
u2

(
1

2σ2k+1

− 1

2σ2k

)
+ u

(
µk
σk
− µk+1

σk+1

))
= 0,

assuming without loss of generality that σ2k > σ2k+1 or µk > µk+1 if σ2k = σ2k+1, one has

lim
u→+∞

Eu = 0.

This result has been already stated, in the case of univariate distributions, by Miao et al. (2016). In particular, the
identifiability conditions in Miao et al. (2016) (conditions 1 and 2 of their paper) imply the existence of the total ordering
defined in Assumption A2.. However, these conditions exclude the case of Gaussian mixture with a logistic missing-data
distribution, which is very used in practice. In Corollary A.2, we therefore extend this result to the multivariate case with
a logistic missing-data distribution.

Note first that with a logistic distribution, a total ordering cannot be defined. Indeed, for variable j, such an ordering
cannot be defined if the two univariate variances are equal (i.e., σ2kj = σ2(k+1)j) and µkj − βkj − µ(k+1)j + β(k+1)j = 0.
However, for the specific case of Gaussian mixture where all the univariate variances are different between the components,
then conditions of Proposition 3.1 hold true with a logistic missing-data distribution and so does its identifiability. In
addition, for more parsimonious MNAR models for which the effect on the variable j does not depend on the class
membership k (i.e., βkj = β(k+1)j), the conditions of Proposition 3.1 hold true with a logistic missing-data distribution.
Finally, as stated by Corollary A.2 below, the condition on the covariance matrices (including the case of homoscedastic
Gaussian mixture) can be relaxed to obtain the generic identifiability of the model (i.e., all not-identifiable parameter
choices lie within a proper submanifold, and thus form a set of Lebesgue zero measure; Allman et al. (2009)).

Corollary A.2. Assume that
∑K

k=1 πkfk(yi;λk) is a multivariate Gaussian mixture, ρ is the logistic function and that
the missingness scenario is defined by (3), (5) or (8), then, the parameters (π, λ, ψ) of the model given by (2) are
generically identifiable up to label swapping, i.e., all not-identifiable parameter choices lie within a proper submanifold,
and thus form a set of Lebesgue zero measure.

For the other MNAR models given in (4), (6), (7), (9) and (10), the parameters (π, λ, ψ) of the model given by (2) are
identifiable up to label swapping.

Proof of Corollary A.2. We use Proposition 3.1. We fix j. By abuse of notation, αk, βk, µk and σk correspond to the
parameters αkj , βkj , µkj and Σkj of the variable j. Let us first consider the missing scenarios (3), (5) and (8) for which

14



βk 6= βk+1. To obtain the total ordering, we need to prove that

lim
u→+∞

Eu =
(1 + e−αk−βku)e

−
(u−µk+1)

2

2σ2
k+1

(1 + e−αk+1−βk+1u)e
− (u−µk)2

2σ2
k

σk
σk+1

= 0.

• If σ2k > σ2k+1, limu→+∞ Eu = limu→+∞ exp−1
2( 1
σ2
k+1
− 1

σ2
k
)u2 = 0.

• If σ2k = σ2k+1, one has limu→+∞ Eu = limu→+∞ exp ((µk − βk)− (µk+1 − βk+1))u = 0 discarding the case
where (µk − βk) − (µk+1 − βk+1) = 0 and assuming without loss of generality that (µk − βk) > (µk+1 − βk+1).
The set of nonidenfiable parameters is {µk, βk, µk+1, βk+1 s.t.(µk − βk) − (µk+1 − βk+1) = 0}k=1,...,K and is of
Lebesque zero measure.

Finally, for the missing scenarios (9) and (10), note that βk = βk+1 = 0. For the missing scenarios (4), (6) and (7),
one has βk = βk+1. Following the same reasoning as above, in the case where σ2k+1 = σ2k+1, one obtains the set of
nonindentifiable parameters such that µk = µk+1, which is empty since µk 6= µk+1 if σ2k = σ2k+1.

A.3 On identifiability of the Poisson mixture

Proposition A.2 can also be applied for variables with integer value (i.e., count data), as shown below in Examples A.3
and A.4 for the Poisson mixture with probit or logistic missing-data distributions.

Example A.3 (Poisson + Probit). Considering that ρ is the probit function and fk (respectively fk+1) the Poisson distri-
bution with parameters λk (respectively λk+1). Suppose without loss of generality that βk > βk+1 and λk > λk+1. One
want to prove

lim
u→+∞

Eu := lim
u→+∞

∫ αk+1+βk+1u
−∞ e−t

2/2dt∫ αk+βku
−∞ e−t2/2dt

λuk+1e
−λk+1

λuke
−λk

= 0.

• If βk+1 > 0 (and βk > 0): using (15), one has

lim
u→+∞

Eu = lim
u→+∞

expu log
λk+1

λk
= 0.

• If βk+1 ≤ 0 (and βk ≥ 0): one has
lim

u→+∞
Eu = 0.

using

lim
u→+∞

expu log
λk+1

λk
= 0

and (16) for the missing distribution part.

• If βk+1 < 0 and βk < 0: using (17), one obtains

lim
u→+∞

Eu < lim
u→+∞

exp

((
β2k
2
−
β2k+1

2

)
u2

)
expu log

λk+1

λk
= 0,

because β2k/2− β2k+1/2 < 0.
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Example A.4 (Poisson + Logistic). Considering that ρ is the logistic function and fk (respectively fk+1) the Poisson
distribution with parameters λk (respectively λk+1). One want to prove that

lim
u→+∞

Eu = lim
u→+∞

1 + e−αk−βku

1 + e−αk+1−βk+1u
expu log

λk+1

λk
= 0.

Assume that λk > λk+1 without loss of generality.

• For the missing scenarios (3), (5) and (8) for which βk 6= βk+1, one obtains the generic identifiability where the set
of non-identifiable parameters is {αk, βk, λk s.t.(log λk−βk)− (log λk+1−βk+1) = 0}k=1,...,K and is of Lebesque
zero measure.

• For the missing scenarios (9) and (10), note that βk = βk+1 = 0. For the missing scenarios (4), (6) and (7), one has
βk = βk+1. It implies that idenfiability holds since

lim
u→+∞

Eu = lim
u→+∞

expu log
λk+1

λk
= 0.

A.4 Categorical data

Proposition 3.1 states that generic identifiability holds only for the MNARz and the MNARzj missing scenarios and that
the other missing scenarios lead to non-identifiable models. The proof uses Corollary 5 of Allman et al. (2009) which
gives the identifiability of finite mixtures of Bernoulli products.

Proof of Proposition 3.1, categorical case. Let us first consider the case where βkj = (0, . . . , 0) ∈ R`j ,∀k = 1, . . . ,K, ∀j =
1, . . . , d. Suppose there exists two sets of parameters {γ, ψ} and {γ′, ψ′} which have the same observed distribution.

∀yi ∈ Rd,∀ci ∈ {0, 1}d,
K∑
k=1

∫
Ymis
i

πkfk(yi;λk)

d∏
j=1

ρ(αkj)
cij [1− ρ(αkj)]

1−cijdymis

=

K′∑
k=1

∫
Ymis
i

π′kfk(yi;λ
′
k)

d∏
j=1

ρ((α′)kj)
cij [1− ρ(α′kj)]

1−cijdymis.

Let us consider the case where all the elements of yi are observed, i.e., cij = 0,∀j = 1, . . . , d. One has

K∑
k=1

πkfk(yi;λk)

d∏
j=1

(1− ρ(αkj)) =

K′∑
k=1

π′kfk(yi;λ
′
k)

d∏
j=1

(1− ρ(α′kj)),

i.e., by independence to the group membership,

K∑
k=1

πk

d∏
j=1

fkj(yij ;λkj)(1− ρ(αkj)) =

K′∑
k=1

π′k

d∏
j=1

fkj(yij ;λ
′
kj)(1− ρ(α′kj)),

⇔
K∑
k=1

πk

d∏
j=1

(1− ρ(αkj))
1−cij

`j∏
h=1

(λhkj)
yhij =

K′∑
k=1

π′k

d∏
j=1

(1− ρ(αkj))
1−cij

`j∏
h=1

((λ′kj)
h)y

h
ij .
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We recognize the finite mixture of K multinomial distributions with d components for wij = ((1 − cij), yij), j =

1, . . . , d with paramaters (λkj) = ((1 − ρ(αkj)), λ
1
kj , . . . , λ

`j
kj), j = 1, . . . , d and proportions πk. We can thus apply

Theorem 4 (Allman et al., 2009) with the model M(K; `1, . . . , `d) which gives the generic identifiability of the model
paramaters up to a label swapping, i.e.,

∀k, ∀j, λhkj = (λ′kj)
h

∀k, ∀j, ρ(αkj) = ρ(α′kj)

∀k, πk = π′k

As the function ρ is strictly monotone, the equality ρ(αkj) = ρ(α′kj) implies αkj = α′kj . In addition, if K 6= K ′, say

K > K ′,
∑K

k=K′+1 πk
∏d
j=1(1− ρ(αkj))

∏`j
h=1(λ

h
kj)

yhij = 0 implies πk = 0 for K ′ + 1 ≤ k ≤ K.
We consider now the missing scenarios for which βkj 6= 0. The identifiability does not hold. We can present a

counter-example. The set of parameters ψ = {α = (1, . . . , 1), β = (1, . . . , 1)} has the same observed distribution
than another set of parameters ψ′ = {α′ = (0, . . . , 0), β′ = (2, . . . , 2)}. Indeed, in the case where yij = (1, . . . , 1),
ρ(αkj + βkjyij) = ρ(α′kj + β′kjyij).

B Appendix 2: Details on EM algorithm

The EM algorithm consists on two steps iteratively proceeded: the E-step and M-step. For the E-step, one has

Q(θ; θ[r−1]) = E[`comp(θ;y, z, c)|yobsi , ci; θ
[r−1]],

where

`comp(θ;Y,Z,C) =

n∑
i=1

K∑
k=1

zik log (πkfk(yi;λk)fk(ci | yi;ψk)) .

It leads to the decomposition

Q(θ; θ[r−1]) =

n∑
i=1

K∑
k=1

tik(θ
[r−1])

[
log(πk) + τy(λk;y

obs
i , ci, θ

[r−1]) + τc(ψk;y
obs
i , ci, θ

[r−1])
]
,

with tik(θ[r−1]) = f(zik = 1 | yobs
i , ci; θ

[r−1]). The terms involved in this decomposition are now detailed.

(a) the expectation of the data mixture part over the missing values given the available information (i.e., the observed
data and the indicator pattern), the class membership and the current value of the parameters:

τy(λk;y
obs
i , ci, θ

[r−1]) = Eθ[r−1]

[
log fk(yi;λk) | yobs

i , zik = 1, ci

]
,

(b) the expectation of the missing mechanism part over the missing values given the available information, the class
membership and the current value of the parameters:

τc(ψk;y
obs
i , ci, θ

[r−1]) = Eθ[r−1]

[
log fk(ci | yi;ψk) | yobs

i , zik = 1, ci

]
.
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(c) the conditional probability for an observation i to belong to the class k given the available information and the current
value of the parameters:

tik(θ
[r−1]) = f(zik = 1 | yobs

i , ci; θ
[r−1]).

Terms (a) and (b) require to integrate over the distribution f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]). Term (c) corresponds to the

conditional probability for an observation i to arise from the kth mixture component with the current values of the model
parameter. More particularly, one has

tik(θ
[r−1]) =

f(zik = 1,yobs
i , ci; θ

[r−1])

f(yobs
i , ci; θ[r−1])

=
π
[r−1]
k fk(y

obs
i ;λ

[r−1]
k )f(ci | yobs

i , zik = 1; θ[r−1])∑K
h=1 π

[r−1]
h fh(yobs

i ;λ
[r−1]
h )f(ci | yobs

i , zih = 1; θ[r−1])
(18)

The quantity that can cause numerical difficulties is the probability f(ci | yobs
i , zik = 1; θ[r−1]).

Computations for the MNARzj model For the MNARz and MNARzj models, the effect of the missingness is only due
to the class membership. The EM algorithm for the MNARz model is detailed in the main paper (Sportisse et al., 2023).
Term (a) is the same for both MNARz and MNARzj models but (b) and (c) differ. For Term (b), f(ci | yi, zik = 1;ψ) is
independent of yi, which implies

log(f(ci | zik = 1;ψ)) =
d∑
j=1

cij log ρ(αkj) + (1− cij) log(1− ρ(αkj)). (19)

For Term (c), one remark that

P(ci | yobs
i , zik = 1; θ[r−1]) =

d∏
j=1

P(cij = 1 | yobs
i , zik = 1; θ[r−1])cijP(cij = 0 | yobsi , zik = 1; θ[r−1])1−cij (MNARzj).

and that, by independence of yi, one has

P(cij = 1 | yobs
i , zik = 1; θ[r−1]) = P(cij = 1 | zik = 1; θ[r−1]) = ρ(αkj).

Using (18), one obtains

t
[r−1]
ik (θ[r−1]) =

π
[r−1]
k φ(yobs

i ; (µobsik )[r−1], (Σobs,obs
ik )[r−1])

∏d
j=1 ρ(α

[r−1]
kj )cij (1− ρ(α

[r−1]
kj ))1−cij∑K

h=1 π
[r−1]
h φ(yobs

i ; (µobsih )[r−1], (Σobs,obs
ih )[r−1])

∏d
j=1 ρ(α

[r−1]
hj )cij (1− ρ(α

[r−1]
hj ))1−cij

(MNARzj).

(20)
The E-step is derived in the same way as for the MNARz model with these terms. The M-step for ψ consists of performing
a GLM with a binomial link for the matrices (JMNARzj

kj )
[r]
j=1,...,d and by giving tik(θ[r−1]) as prior weights to fit the process.

(JMNARzj
kj )[r] = c.j 1 (21)
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Intractability of the EM algorithm for MNARy? models For missing scenarios which model the effect of the miss-
ingness depending on the variable, the computations are more difficult.

• Because of the dependence of y, f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1]) = f(ymis

i | yobs
i , zik = 1; θ[r−1]) does not hold

anymore. Here, one has

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1])

=

∏d
h=1 ρ(α

[r−1]
kh + β

[r−1]
kh ymis

ih )cih(1− ρ(α
[r−1]
kh + β

[r−1]
kh yobsih ))1−cihf(ymis

i ,yobs
i , zik = 1; θ[r−1])∫

Ymis
i

∏d
h=1 ρ(α

[r−1]
kh + β

[r−1]
kh ymis

ih )cih(1− ρ(α
[r−1]
kh + β

[r−1]
kh yobsih ))1−cihf(ymis

i ,yobs
i , zik = 1; θ[r−1])dymis

i

=

∏
h,cih=1 ρ(α

[r−1]
kh + β

[r−1]
kh ymis

ih )f(ymis
i | yobs

i , zik = 1; θ[r−1])∫
Ymis
i

∏
h,cih=1 ρ(α

[r−1]
kh + β

[r−1]
kh ymis

ih )f(ymis
i | yobs

i , zik = 1; θ[r−1])dymis
i

. (22)

which implies that Term (a) requires difficult computations if this distribution is not classical.
• For Term (b), it is the same problem, since f(ci | yi, zik = 1;ψ) is no longer independent of y, then it requires a

specific numerical integration. Using (22),

τc(ψk;yobs
i , ci, θ

[r−1]) =E

[
log

(
d∏
j=1

ρ(αkj + βkjyij)
cij (1− ρ(αkj + βkjyij))

1−cij

)
|yobs
i , zik = 1, ci; θ

[r−1]

]

=

d∑
j=1

cij

∫
Ymis
ij

log(ρ(αkj + βkjy
mis
ij ))f(ymis

ij | yobs
i , zik = 1, ci; θ

[r−1])dymis
ij

+ (1− cij) log(1− ρ(αkj + βkjy
obs
ij ))

where

f(ymis
ij | yobsi , zik = 1, ci; θ

[r−1])

=
ρ(α

[r−1]
kj + β

[r−1]
kj ymis

ij )cij (1− ρ(α
[r−1]
kj + β

[r−1]
kj ymis

ij ))1−cijf(ymis
ij | yobsi , zik = 1; θ[r−1])∫

Ymis
ij

ρ(α
[r−1]
kj + β

[r−1]
kj ymis

ij )cij (1− ρ(α
[r−1]
kj + β

[r−1]
kj ymis

ij ))1−cijf(ymis
ij | yobsi , zik = 1; θ[r−1])dymis

ij

.

Therefore,

τc(ψk;y
obs
i , ci, θ

[r−1])

=
d∑
j=1

cij

∫
Ymis
ij

log(ρ(αkj + βkjy
mis
ij ))

ρ(α
[r−1]
kj + β

[r−1]
kj ymis

ij )cijf(ymis
ij | yobsi , zik = 1; θ[r−1])∫

Ymis
ij

ρ(α
[r−1]
kj + β

[r−1]
kj x)cijf(x | yobsi , zik = 1; θ[r−1])dx

dymis
ij

+ (1− cij) log(1− ρ(αkj + βkjy
obs
ij )).

• There is no closed-form expression for Term (c).

f(cij | yobs
i , zik = 1; θ[r−1])

=

∫
Ymis
ij

f(cij | yobs
i , ymis

ij , zik = 1;ψ[r−1])f(ymis
ij | yobs

i , zik = 1; θ[r−1])dymis
ij

= cij

∫ +∞

−∞
ρ(α

[r−1]
kj + β

[r−1]
kj ymis

ij )φ(ymis
ij ; (µ̃mis

ik )
[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij + (1− cij)(1− ρ(α
[r−1]
kj + β

[r−1]
kj yobs

ij )). (23)

Using (18), the probabilities tik(θ[r−1]) can be deduced from Equation (23).

Let us detail the difficulties for two particular cases, if ρ is logistic or probit.
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• ρ is logistic: Equation (22) leads to none classical distribution because

f(ymis
i | yobs

i , zik = 1, ci; θ
[r−1])

∝
∏

h,cih=1

1

exp(−(α
[r−1]
kh + β

[r−1]
kh ymis

ih ))
φ(ymis

i ; (µ̃mis
ik )[r−1], (Σ̃mis

ik )[r−1]).

Term (b) is

τc(ψk;yobs
i , ci, θ

[r−1])

∝
d∑

j=1

cij

∫
Ymis

ij

−
log(1 + exp(−(αkj + βkjy

mis
ij )))

1 + exp(−(α
[r−1]
kj + β

[r−1]
kj ymis

ij ))
φ(ymis

ij ; (µ̃mis
ik )

[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij

− (1− cij) log(1 + exp(αkj + βkjy
obs
ij )),

which amounts to compute the Gaussian moment of log(1+exp(−u))
1+exp(−u) , but it has no closed form to our knowledge.

Finally, Equation (23) does not have a closed form either because it requires the computation of∫ +∞

−∞

1

1 + exp(−(α
[r−1]
kj + β

[r−1]
kj ymis

ij ))
φ(ymis

ij ; (µ̃mis
ik )

[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij ,

i.e., the computation of the Gaussian moment of 1
1+exp(−u) .

• ρ is Probit: One can prove (presented in Appended C) that the conditional distribution (ymis
i | yobs

i , zik = 1, ci)
is a truncated Gaussian, which makes possible the computation of Term (a). Term (b) has no closed form to our
knowledge

τc(ψk;y
obs
i , ci, θ

[r−1])

∝
d∑
j=1

cij

∫
Ymis
ij

log

(∫ αkj+βkjymis
ij

−∞ e−t
2
dt

)
1 + exp(α

[r−1]
kj + β

[r−1]
kj ymis

ij )
φ(ymis

ij ; (µ̃mis
ik )

[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij

− (1− cij) log

(
1−

∫ αkj+βkjy
obs
ij

−∞
e−t

2
dt

)
,

Equation (23) does not have a closed form either because it requires the computation of∫ +∞

−∞

(∫ αkj+βkjy
mis
ij

−∞
e−t

2
dt

)
φ(ymis

ij ; (µ̃mis
ik )

[r−1]
j , (Σ̃mis

ik )
[r−1]
jj )dymis

ij .

C Appendix 3: Details on SEM algorithm

The SEM algorithm consists on two steps iteratively proceeded as presented in Section 4. The key issue is to draw the
missing data (ymis

i )r and zri according to their current conditional distribution f(ymis
i , zi | yobs

i , ci;π
[r−1], λ[r−1], ψ[r−1]).

By convenience, we use a Gibbs sampling and simulate two easier probabilities recalled here

z
[r]
i ∼ f(· | y[r−1]

i , ci;π
[r−1], λ[r−1], ψ[r−1]) and (ymis

i )[r] ∼ f(· | yobs
i , zri , ci;λ

[r−1], ψ[r−1]),
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where y
[r−1]
i = (yobs

i , (ymis
i )[r−1]). For the latter distribution, the membership k of z[r]i is drawn from the multinomial

distribution with probabilities (P(zik = 1 | y[r−1]
i , ci;λ

[r−1], ψ[r−1]))k=1,...,K detailed as follows

P(zik = 1 | y[r−1]
i , ci; θ

[r−1])

=
P(zik = 1,y

[r−1]
i , ci;π

[r−1], λ[r−1], ψ[r−1])

P(y
[r−1]
i , ci;π[r−1], λ[r−1], ψ[r−1])

(24)

=
P(ci | y[r−1]

i , zik = 1;ψ[r−1])P(y
[r−1]
i | zik = 1;λ[r−1])P(zik = 1;π[r−1])∑K

h=1 P(ci | y[r−1]
i , zih = 1;ψ[r−1])P(y

[r−1]
i | zih = 1;λ[r−1])P(zih = 1;π[r−1])

=
P(ci | y[r−1]

i , zik = 1;ψ[r−1])P(y
[r−1]
i | zik = 1;λ[r−1])π

[r−1]
k∑K

h=1 P(ci | y[r−1]
i , zih = 1;ψ[r−1])P(y

[r−1]
i | zih = 1;λ[r−1])π

[r−1]
h

. (25)

The conditional distribution of ((ymis
i )[r] | yobs

i , z
[r]
ik = 1, ci) has already been detailed in Equation (22) and recalled

here

f(ymis
i | yobs

i , z
[r]
ik = 1, ci; θ

[r−1])

=

∏
j,cij=1 f(cij = 1 | ymis

i ,yobs
i , z

[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1;λ[r−1])∫

Ymis
i

∏
j,cij=1 f(cij = 1 | ymis

i ,yobs
i , z

[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1;λ[r−1])dymis

i

. (26)

Gaussian mixture for continuous data First note that the probabilities of the multinomial distribution for drawing z[r]i
given in (25) can be easily computed for all cases.

P(zik = 1 | y[r−1]
i , ci; θ

[r−1])

=

∏d
j=1 f(cij = 1 | y[r−1]

i , z
[r−1]
ik = 1;ψ[r−1])cijf(cij = 0 | y[r−1]

i , z
[r−1]
ik = 1;ψ[r−1])1−cijφ(y

[r−1]
i ;λ

[r−1]
k )π

[r−1]
k∑K

h=1

∏d
j=1 f(cij = 1 | y[r−1]

i , z
[r−1]
ih = 1;ψ[r−1])cijf(cij = 0 | y[r−1]

i , z
[r−1]
ih = 1;ψ[r−1])1−cijφ(y

[r−1]
i ;λ

[r−1]
h )π

[r−1]
h

,

where φ(yi;λk) = φ(yi;µk,Σk) is assumed to be a Gaussian distribution with mean vector µk and covariance matrix
Σk, and f(cij = 1 | y[r−1]

i , z
[r−1]
ih = 1;ψ[r−1]) is specified depending the MNAR model and the distribution ρ. The only

difficulty of the SE-step is thus to draw from the distribution (ymis
i | yobs

i , z
[r]
ik = 1, ci).

In the sequel, we detail the distribution (ymis
i | yobs

i , z
[r]
ik = 1, ci) and the M-step for ψ depending the MNAR model.

For MNARy? models, the conditional distribution (ymis
i | yobsi , z

[r]
ik = 1, ci) depends on the distribution ρ at hand. For

the MNARy? models, we will consider two classical distributions for ρ: the logistic function and probit one.
Logistic distribution: For the logistic function, the distribution given in (26) is not classical and drawing ymis

i from it
seems complicated. Indeed, one has

f(ymis
i | yobs

i , z
[r]
ik = 1, ci; θ

[r−1])

∝
∏

j=1,cij=1

1

1 + exp(α
[r−1]
kj + β

[r−1]
kj ymis

ij )
φ(ymis

i ; (µ̃mis
ik )[r−1], (Σ̃mis

ik )[r−1]),

where (µ̃mis
ik )[r−1] and (Σ̃mis

ik )[r−1] are given in (33) and (34). We could use the Sampling Importance Resampling (SIR)
algorithm which simulates a realization of (ymis

i | yobs
i , z

[r]
ik = 1, ci) with a known instrumental distribution (for example:

(ymis
i | yobs

i , z
[r]
ik = 1)) and includes a re-sampling step. However, this algorithm may be computationnaly costly.
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Probit distribution: For the probit function, the distribution in (26) can be made explicit by using a latent variable
Li.

More particularly, let Li such that Li = α
[r−1]
k + β

[r−1]
k yi + εi, with εi ∼ N (0d, Id×d). Then, ci can be viewed as an

indicator for whether this latent variable is positive, i.e., for all j = 1, . . . , d,

cij =

{
1 if Lij > 0
0 otherwise.

(27)

Thus, indeed to draw (ymis
i )[r] and z

[r]
i according to f(ymis

i , zi | yobs
i , ci; θ

[r−1]), we draw L
[r]
i , (ymis

i )[r] and z
[r]
i according

to f(Li,y
mis
i , zi | yobs

i , ci; θ
[r−1] by using a Gibbs sampling.

First, we have to draw L
[r]
i according to f(. | y[r−1]

i , z
[r−1]
ik = 1, ci;ψ

[r−1]). One has

f(Li | y[r−1]
i , z

[r−1]
ik = 1, ci)

∝ f(Li, ci | y[r−1]
i , z

[r−1]
ik = 1;ψ[r−1])

∝ f(ci | L[r]
i ,y

[r−1]
i , z

[r−1]
ik = 1;ψ[r−1])f(L

[r]
i | y

mis
i ,yobs

i , z
[r−1]
ik = 1;ψ[r−1])

(i)
∝ f(ci | L[r]

i ;ψ[r−1])f(L
[r]
i | y

[r−1]
i , z

[r−1]
ik = 1;ψ[r−1])

(ii)
= 1{ci=1}∩{L[r]

i >0}f(L
[r]
i | y

mis
i ,yobs

i , z
[r−1]
ik = 1;ψ[r−1])

where we use that L[r]
i is a function of ymis

i ,yobs
i , zik = 1 in step (i). Step (ii) is obtained by using (27). By abuse of

notation, {ci = 1} ∩ {L[r]
i > 0} means that for all j = 1, . . . , d, {cij = 1} ∩ {L[r]

ij > 0}. Finally the conditional

distribution (Li | y[r−1]
i , z

[r−1]
ik = 1, ci) is a multivariate truncated Gaussian distribution denoted as Nt, as detailed here

(Li | y[r−1]
i , z

[r−1]
ik = 1, ci) ∼ Nt(α[r−1]

k + β
[r−1]
k yi, Id×d; a, b), (28)

with a ∈ Rd and b ∈ Rd the lower and upper bounds such that for all j = 1, . . . , d,

aj =

{
0 if cij = 1,
−∞ otherwise.

bj =

{
+∞ if cij = 1,
0 otherwise.

Secondly, we draw the membership k of z[r]i from the multinomial distribution with probabilities, for all k = 1, . . . ,K
detailed as follows

P(zik = 1 | L[r]
i ,y

[r−1]
i , ci; θ

[r−1]) =
P(zik = 1,L

[r]
i ,y

[r−1]
i , ci; θ

[r−1])∑K
k=1 P(zik = 1,L

[r]
i ,y

[r−1]
i , ci; θ[r−1])

(29)

=
f(L

[r]
i |zik = 1,y

[r−1]
i , ci;ψ

[r−1])f(zik = 1,y
[r−1]
i , ci; θ

[r−1])∑K
k=1 f(L

[r]
i |zik = 1,y

[r−1]
i , ci;ψ[r−1])f(zik = 1,y

[r−1]
i , ci; θ[r−1])

.

The part involving f(zik = 1,y
[r−1]
i , ci; θ

[r−1]) is given in (25) and f(L
[r]
i |zik = 1,y

[r−1]
i , ci;ψ

[r−1]) is only the
density of the multivariate truncated Gaussian distribution described in (28) evaluated in L[r]

i .
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Finally, y[r]
i is drawn according to f(.|L[r]

i , z
[r]
ik = 1,yobs

i , ci; θ
[r−1]). One has

f(ymis
i | L[r]

i , z
[r]
ik = 1,yobs

i , ci; θ
[r−1])

∝ f(ci,L
[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1])

∝ f(ci | L[r]
i ,y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(L

[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1])

∝ f(ci | L[r]
i ;ψ[r−1])f(L

[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1])

∝ f(L
[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1])f(ymis

i | yobs
i , z

[r]
ik = 1; θ[r−1]).

Yet, one has

f(L
[r]
i | y

mis
i ,yobs

i , z
[r]
ik = 1;ψ[r−1]) ∝ exp

(
−1

2

[
(L

[r]
i − (α

[r−1]
k + β

[r−1]
k yi))

T (L
[r]
i − (α

[r−1]
k + β

[r−1]
k yi))

])
(30)

f(ymis
i | yobs

i , z
[r]
ik = 1; θ[r−1]) ∝ exp

(
−1

2

[
(ymis
i − (µ̃mis

ik )[r])T ((Σ̃mis
ik )[r−1])−1(ymis

i − (µ̃mis
ik )[r])

])
, (31)

with (µ̃mis
ik )[r−1] and (Σ̃mis

ik )[r−1] the standard expression of the mean vector and covariance matrix of a conditional
Gaussian distribution (see for instance Anderson (2003)). In particular, one has in this case:(

ymis
i | yobs

i , zik = 1;λ[r−1]
)
∼ N

(
(µ̃mis
ik )[r−1], (Σ̃mis

ik )[r−1]
)
. (32)

with:

(µ̃mis
ik )[r−1] = (µmis

ik )[r−1] + (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1 (

yobs
i − (µobsik )[r−1]

)
, (33)

(Σ̃mis
ik )[r−1] = (Σmis,mis

ik )[r−1] − (Σmis,obs
ik )[r−1]

(
(Σobs,obs

ik )[r−1]
)−1

(Σobs,mis
ik )[r−1]. (34)

Finally combining the two equations (30) and (31) one obtains(
ymis
i | L[r]

i , z
[r]
ik = 1,yobs

i , ci

)
∼ N

(
µSEMik ,ΣSEM

ik

)
, (35)

where
ΣSEM
ik =

(
((Σ̃mis

ik )[r−1])−1 + ((βmis
k )[r−1])T (βmis

k )[r−1]
)−1

,

µSEMik = ΣSEM
ik

[
((Σ̃mis

ik )[r−1])−1µ̃mis
ik + ((βmis

k )[r−1])T (Lmis
i )[r] − ((βmis

k )[r−1])T (αmis
k )[r−1]

]
,

with (βmis
k )[r−1] (resp. (Lmis

i )[r] and (αmis
k )[r−1]) the vector βk (resp. (Li)

[r] and (αk)
[r−1]) restricted to the coordinates

j ∈ Ymis
i .

Finally, for fully describing the SEM-algorithm, in the M-step, ψ[r−1] is computed using a GLM with a binomial link
function for a matrix depending on the MNAR model. In particular,

• For MNARy, the coefficient obtained with a GLM for the matrix (HMNARy
j )[r] are α0 and β[r]1 , . . . , β

[r]
d , with

(HMNARy)[r] =

c.1 1 y
[r]
.1 0 . . . 0

c.2 1 0 y
[r]
.2 . . . 0

...
...

. . . . . .

c.d 1 0 0 . . . y
[r]
.d

. (36)
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• For MNARyk, the coefficient obtained with a GLM for the matrix (HMNARyk
kj )[r] is α0 and β[r]11 , . . . , β

[r]
K1, . . . , β

[r]
Kd

with

(HMNARyk
k )[r] =

(cu1)u,z[r]u1=1
1 (y

[r]
u1)u,z[r]u1=1

0 . . . 0

...
...

. . .
...

(cu1)u,z[r]uK=1
1 0 (y

[r]
u1)u,z[r]uK=1

0

...
...

...
. . .

(cud)u,z[r]uK=1
1 0 0 (y

[r]
ud)u,z[r]uK=1

. (37)

• For MNARyz, the coefficients obtained with a GLM for the matrix (HMNARyz)[r] are β[r]1 , . . . , β
[r]
d and α[r]

1 , . . . , α
[r]
K ,

with

(HMNARyz)[r] =

c.1 y
[r]
.1 0 . . . 0 z

[r]
.1 . . . z

[r]
.K

c.2 0 y
[r]
.2 . . . 0 z

[r]
.1 . . . z

[r]
.K

...
. . . . . .

...
...

...
c.d 0 0 . . . y

[r]
.d z

[r]
.1 . . . z

[r]
.K

. (38)

• For MNARyzj , the coefficients obtained with a GLM for the matrix (HMNARyzj
j )[r] are β[r]j , α

[r]
1j , . . . , α

[r]
Kj , with

(HMNARyzj
j )[r] = c.j y

[r]
.j z

[r]
.1 . . . z

[r]
.K

. (39)

• For MNARykz, the coefficients obtained with a GLM for the matrix (HMNARykz
k )[r] are β[r]k1 , . . . , β

[r]
kd, α

[r]
k , with

(HMNARykz
k )[r] =

(cu1)u,z[r]uk=1
(y

[r]
u1)u,z[r]uk=1

0 . . . 0 1

(cu2)u,z[r]uk=1
0 (y

[r]
u2)u,z[r]uk=1

. . . 0 1

...
. . . . . . 1

(cud)u,z[r]uk=1
0 0 . . . (y

[r]
ud)u,z[r]uk=1

1

. (40)

• For MNARykzj , the coefficients obtained with a GLM for the matrix (HMNARykzj
kj )[r] are βkj , αkj , with

(HMNARykzj
kj )[r] = (cuj)u,z[r]uk=1

(y
[r]
uj )u,z[r]uk=1

1 (41)

When ρ is the probit function, the SEM algorithm can be derived, see Algorithm 1.

Remark C.1 (SEM for MNARz and MNARzj mechanisms). A SEM algorithm can also be derived for these two mech-
anisms. For continuous data, we can prove that

f(ymis
i | yobs

i , z
[r−1]
i , ci; θ

[r−1]) = f(ymis
i | yobs

i , z
[r−1]
i ;λ[r−1]),

and that this conditional distribution is Gaussian (the SE step is then just a draw from this law). The M-step for ψ are
given in the following.
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Algorithm 1 SEM algorithm for Gaussian mixture, MNARy? models, ρ is probit

Input: Y ∈ Rn×d (matrix containing missing values), K ≥ 1, rmax.
Initialize Z0, π0k, µ0k,Σ

0
k and ψ0

k, for k ∈ {1, . . . ,K}.
for r = 0 to rmax do

SE-step:
for i = 1 to n do

Draw (Li)
[r] from the multivariate truncated Gaussian distribution given in

(28).
Draw z

[r]
i from the multinomial distribution with probabilities detailed in

(29).
Draw (ymis

i )[r] from the multivariate Gaussian distribution given in (35).
end for
Let Y [r] = (y

[r]
1 | . . . |y

[r]
n ) be the imputed matrix.

Let Z [r] = (z
[r]
1 | . . . |z

[r]
n ) be the partition.

M-step:
for k = 1 to K do

Let π[r]k be the proportion of rows of Y [r] belonging class k.
Let µ[r]k ,Σ

[r]
k be the mean and covariance matrix of rows of Y [r] belonging

to class k.
Let ψ[r]

k be the resulted coefficients of a GLM with a binomial link function,
i.e., the optimization problem is ∀j ∈ {1, . . . , d},

Mkjψ
[r]
k = log

(
1− E[c.j |Mkj ])

E[c.j |Mkj ]

)
,

for a matrix Mkj depending on the MNAR model (see (36), (37), (38),
(43), (41) and (42)) and c.j the missing data pattern for the variable j.

end for
end for
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• For MNARz, the coefficients obtained with a GLM for the matrix (HMNARz)[r] are α1, . . . , αK , with

(HMNARz)[r] =

c.1 z.1 . . . z.K
...

...
...

...
c.d z.1 . . . z.K

=

c11 z
[r]
11 . . . z

[r]
1K

...
...

...
...

cn1 z
[r]
n1 . . . z

[r]
nK

...
...

...
...

c1d z
[r]
11 . . . z

[r]
1K

...
...

...
...

cnd z
[r]
n1 . . . z

[r]
nK

. (42)

• For MNARzj , the coefficients obtained with a GLM for the matrix (HMNARzj
j )[r] are α1j , . . . , αKj , with

(HMNARzj
j )[r] = c.j z

[r]
.1 . . . z

[r]
.K

(43)

For categorical data, we have φ(yi;λk) =
∏d
j=1 φ(yij ;λkj) =

∏d
j=1

∏`j
`=1(λ

`
kj)

y`ij . For drawing from the conditional

distribution (ymis
i | yobs

i , z
[r]
ik = 1), by independence of the features conditionally to the membership, we can draw for

j = 1, . . . , d ymis
ij = ((ymis

ij )1, . . . , (ymis
ij )lj ) from the conditional distribution (ymis

ij | yobs
i , z

[r]
ik = 1). This latter is a

multinomial distribution with probabilities (λ`kj)`=1,...,`j .

D Appendix 4: Complements on the numerical experiment

This section gives the values of δ (see (14)) ψ (see (3)) and ϕ (see (14)) used during the numerical experiments. For most
MNAR models, he values of these parameters are available in the main paper (Sportisse et al., 2023).

d δ α β

6 1.92 -0.75

−3 0.3 −3 −3 −2 1
0.5 −2 1 1 1 0.5
1 1 0.5 0.5 0.5 2


Table 2: Choice of the values of δ, α and β for all the experiments of Section 5 for
the MNARyk mechanism.

d δ α β

6 1.91
(
−0.9 −0.15 0

) −3 0.3 −3 −3 −2 1
0.3 −3 0.3 −0.3 −2 0.2
−3 0.3 −3 −3 −2 1


Table 3: Choice of the values of δ, α and β for all the experiments of Section 5 for
the MNARykz mechanism.
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d δ α β

6 2.15

−1.4 −1.4 −1.2 −1.1 −1 −0.9
−0.6 0.4 0.4 0.3 0.1 0.1
−0.8 −0.8 0.8 −0.8 −0.8 0.8

 (
−3 0.3 −3 −3 −2 1

)
Table 4: Choice of the values of δ, α and β for all the experiments of Section 5 for
the MNARyzj mechanism.
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