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Introduction

Let Ω ⊂ R 2 be a domain (a connected open set). We consider the two classical eigenvalue problems:

Dirichlet-Laplacian

-∆u = λu in Ω, u = 0 on ∂Ω,

Neumann-Laplacian -∆u = µu in Ω, ∂nu = 0 on ∂Ω,
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where ∂n denotes the directional derivative with respect to n, the outward unit normal vector to ∂Ω. We recall that no smoothness assumption on ∂Ω is actually needed for the Dirichlet problem [START_REF] Antunes | Parametric shape optimization using the support function[END_REF], stated in the weak form Find u ∈ H 1 0 (Ω) : ˆΩ ∇u • ∇φ = λ ˆΩ uφ for all φ ∈ H 1 0 (Ω).

On the other hand, some mild regularity (e.g. Lipschitz) is required for the Neumann problem [START_REF] Ashbaugh | Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions[END_REF] to ensure the compactness embedding from H 1 (Ω) into L 2 (Ω), leading to the variational problem:

Find u ∈ H 1 (Ω) : ˆΩ ∇u • ∇φ = µ ˆΩ uφ for all φ ∈ H 1 (Ω).

In this paper, we will be concerned with planar convex domains, therefore this regularity of the boundary holds. Here, the eigenvalues of problems ( 1)-( 2) will be counted with multiplicity as follows:

0 < λ1(Ω) < λ2(Ω) ≤ λ3(Ω) ≤ . . . λ k (Ω) ≤ λ k+1 (Ω) ≤ • • • → ∞, 0 = µ0(Ω) < µ1(Ω) ≤ µ2(Ω) ≤ . . . µ k (Ω) ≤ µ k+1 (Ω) ≤ • • • → ∞.
On the monotonicity property of eigenvalues: Dirichlet and Neumann eigenvalues share the same homogeneity, but not the same monotonicity. Indeed, on the one hand we have λ k (tΩ) = t -2 λ k (Ω) and µ k (tΩ) = t -2 µ k (Ω) for every t > 0 and every k. On the other hand, as it is well known, Dirichlet eigenvalues are monotonic with respect to set inclusion:

Ω1 ⊂ Ω2 =⇒ λ k (Ω1) ≥ λ k (Ω2). This is due to the embedding between Sobolev spaces H 1 0 (Ω1) → H 1 0 (Ω2) (together with the fact that the Rayleigh quotient is unchanged by extending functions by zero outside Ω1) . Now this monotonicity property is false for Neumann eigenvalues as shown by the following elementary example: taking a thin rectangle Ω1 close (from the inside) to the diagonal of a square Ω2, it is immediate to check that µ1(Ω1) < µ1(Ω2). This example is represented in Fig. 1. 

Ω2 Ω1 Figure 1. Example of Ω 1 ⊂ Ω 2 with µ 1 (Ω 1 ) < µ 1 (Ω 2 ).
I k (D) := inf {µ k (Ω) : Ω ⊂ D, Ω is a convex domain} , (3) 
and for any bounded convex domain ω we also introduce Îk (ω) := sup {µ k (D) : ω ⊂ D, D is a convex domain} .

We will see below, see Theorem 2.10, that the above supremum is actually a maximum while it is not necessarily true for the infimum in [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF]. In any cases when the minimum or the maximum is achieved, we will denote respectively by Ω * k and D * k the minimizer (for Problem (IN T P ) k ) and the maximizer (for Problem (EXT P ) k ).

The aim of this paper is to study these two shape optimization problems. In Section 2 we discuss the question of existence. As already mentioned, we prove that we always have existence for the exterior problem, while for the interior one we prove that we never have existence for k = 1 and we give a practical criterion ensuring existence for k ≥ 2 and give several examples. Then in Section 3, we give some qualitative properties of the optimal domains. In particular we will be interested in those convex domains that are themselves the solution for some k, i.e. they verify either I k (D) = µ k (D) or Îk (ω) = µ k (ω). Such convex domains will be referred to as k-interior self-domains or k-exterior self-domains. It is not easy to prove that a given domain is a self-domain while it is much more easy to prove that it is not. In Section 4 we will consider the particular cases of the square and the disk. We will prove that, for these two examples, we always have existence of an optimal domain (for the interior problem and k ≥ 2) and moreover we will give values of the index k for which they can or they cannot be self-domains.

In some sense, one can say that, concerning the minimization problem for the kth Neumann eigenvalue, k self-domains are "better" competitors than any of their convex subdomains, and thus, they satisfy some kind of "inner monotonicity property". One can also quantify the lack of said "inner monotonicity property" by the value of the following shape functional:

J k (D) := I k (D) µ k (D) ,
defined for all bounded convex domains D ⊂ R 2 . By definition, 0 ≤ J k (D) ≤ 1, with J k (D) = 1 holding if and only if D is a k-interior self-domain. Note that we can also compute the quantity Ĵk (ω) := µ k (ω) Îk (ω) .

We will study in Section 5 the shape minimization problem of finding those convex domains which exhibit the greatest lack of "inner monotonicity property":

M k := inf J k (D) : D is a convex domain of R 2 .
It is clear that it is equivalent to minimize the functional Ĵk . We suspect the non-existence of a minimizer, namely that minimizing sequences converge to a segment and in that case, we can describe the precise behavior of such a minimizing sequence. In any case, we will give bounds for the infimum M k of J k . At last, in Section 6 we give some simple numerical examples in the case of the square or the disk that illustrate some properties of the optimal domains.

Let us mention that, while completing the writing of this paper, Pedro Freitas sent us his preprint [START_REF] Freitas | On domain monotonicity of Neumann eigenvalues for convex domains[END_REF] where the authors are interested in the same question. In particular, they study (with our notations) the functional J k and obtain bounds similar to the ones we present in Section 5.

Existence of optimal domains

In several places in this paper we will use the following result that is an adaptation of a Lemma we can find in Buser's book, [START_REF] Buser | Geometry and spectra of compact Riemann surfaces[END_REF]Section 8.2.1]. The original proof is for Riemann surfaces. For the benefit of the reader, we rewrite the proof at the end of the paper (Appendix A), by adapting the original one in our setting. Let us precise that by j-partition of Ω we mean a collection of sets Ω1, . . . , Ωj such that Ω = Ω1 ∪ Ω2 . . . ∪ Ωj and Ωj 1 ∩ Ωj 2 = ∅ for any pair j1 ̸ = j2.

Lemma 2.1 (Generalized Buser Lemma). For any bounded domain Ω that is decomposed into a j-partition Ω1, . . . , Ωj and for any decomposition of the integer k as the sum of j positive integers: k = k1 + . . . + kj, we have

µ k (Ω) ≥ min i µ k i (Ωi). ( 4 
)
Moreover, if the inequality (4) is an equality, then µ k i (Ωi) = µ k (Ω) for all i and there exists an eigenfunction φ ∈ H 1 (Ω) associated with µ k (Ω) whose restriction to each Ωi is also a Neumann eigenfunction for µ k i (Ωi).

The following immediate corollary is also useful.

Corollary 2.2 (Buser Bound). For any bounded domain Ω that is decomposed into a k-partition Ω1, . . . , Ω k in such a way that each Ωi is convex, then we have

µ k (Ω) ≥ π 2 maxi diam 2 (Ωi)
where diam(Di) denotes the diameter of Di.

Proof. We apply Lemma 2.1 with ki = 1 for all i, yielding

µ k (Ω) ≥ min 1≤i≤k (µ1(Ωi)).
Now we use the Payne-Weinberger inequality, see [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF], which provides a lower bound for µ1 on convex sets, in terms of the diameter. More precisely, it says that

µ1(Ωi) > π 2 diam 2 (Ωi)
.

This allows us to conclude that

µ k (Ω) ≥ π 2 max 1≤i≤k diam 2 (Ωi) . □ 2.
1. The interior problem. We start with a non-existence result that is actually inspired by the counterexample we gave at the beginning.

Theorem 2.3. The infimum

I1(D) = inf {µ1(Ω) : Ω ⊂ D, Ω is a convex domain}
is not attained. Moreover, it is given by

I1(D) = π 2 diam 2 (D)
where diam(D) denotes the diameter of D.

Proof. First of all, by Payne-Weinberger inequality, see [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF], for any convex subdomain Ω of D we have

µ1(Ω) > π 2 diam 2 (Ω) ≥ π 2 diam 2 (D)
.

For the converse inequality let [AB] a segment realizing the diameter of the closure D. By the convexity of D, for any ε > 0 it is possible to construct a thin rectangle of length diam(D) -ε contained into D. Since its first eigenvalue is π 2 /(diam(D) -ε) 2 the result follows. □ Now, in the general case, k ≥ 2, we give a useful criterion to prove existence.

Theorem 2.4. Let D be a planar bounded convex domain. There exists a minimizer for the interior problem (3) if and only if there exists a subdomain Ω ⊂ D such that

µ k (Ω) ≤ k 2 π 2 diam 2 (D) (5) 
where diam(D) denotes the diameter of D.

Remark 2.5. Note that for a sequence of thin rectangles Rε approaching the diameter of D, we have indeed µ k (Rε) -→ k 2 π 2 diam 2 (D) , the convergence being from above.

Proof of Theorem 2.4. According to the previous remark, if there exists a minimizer Ω * k necessarily

µ k (Ω * k ) ≤ lim inf ε→0 µ k (Rε) = k 2 π 2 diam 2 (D)
.

Conversely, let us assume that there exists a subdomain Ω such that

µ k (Ω) ≤ k 2 π 2 /diam 2 (D).
Let us consider a minimizing sequence Ωn for the minimization problem (3). Our aim is to prove that Ωn converges to a bounded (convex) open set Ω * both for Hausdorff convergence and convergence of characteristic functions. This will imply that µ k (Ωn) -→ µ k (Ω * ), see [START_REF] Henrot | Shape variation and optimization. A geometrical analysis[END_REF]Section 3.7] and therefore Ω * is a minimizer. Now, assume that the minimizing sequence of convex sets does not converge to a convex open set. Necessarily, it has to "collapse" to a segment Σ. Let us denote by L the length of Σ: L ≤ diam(D). In other words, up to a subsequence, Ωn will be contained in a rectangle Rn of base Σn of length L + 1/n and height wn -→ 0. We cut the rectangle Rn in k equal pieces Rj,n, each cut being done parallel to the shortest side of length wn, and denote Ωj,n = Ωn ∩ Rj,n. Each Ωj,n being convex, we have by the Payne-Weinberger inequality

µ1(Ωj,n) ≥ π 2 diam 2 (Ωj,n) ≥ π 2 diam 2 (Rj,n) = π 2 (L+1/n) 2 k 2 + w 2 n .
Therefore, using Lemma 2.1, we finally get

lim inf n→∞ µ k (Ωn) ≥ lim n→∞ π 2 (L+1/n) 2 k 2 + w 2 n = k 2 π 2 L 2 ≥ k 2 π 2 diam 2 (D)
.

This shows that L = diam(D) and Ω itself must be a minimizer such that µ k (Ω) = k 2 π 2 /diam 2 (D). □ Example 2.6. A family of convex shapes for which we have existence of a solution to I2 is that of constant width bodies. Let D be a convex body of constant width 1. In particular diam(D) = 1. In order to check condition (5), we consider as Ω ⊂ D an inscribed disk with radius ρ, being ρ the inradius of D. Using the homogeneity of µ2 and the exact value of µ2 at disks, we obtain

µ2(Ω) = µ2(B1) ρ 2 = (j ′ 1,1 ) 2 ρ 2 .
The right-hand side is below 4π 2 (we recall that here diam(D) = 1) provided that

ρ > j ′ 1,1 2π .
This is true since j ′ 1,1 /(2π) ∼ 0.293 and since the minimal inradius of a constant width body is that of the Reuleaux triangle, which here (taking the width to be 1) is equal to 1 -1/ √ 3 ∼ 0.4226.

We now use the criterion [START_REF] Freitas | On domain monotonicity of Neumann eigenvalues for convex domains[END_REF] to prove that, for every domain D there exists a minimizer for k large enough (and we give a quantitative value for this "large enough").

Corollary 2.7. Given a planar bounded convex domain D, there exists k0 = k0(D) ∈ N such that the minimization problem (IN T P ) k has a solution for every k ≥ k0.

Moreover we have

k0(D) ≤ 8 diam(D) πw ⊥ , (6) 
where w ⊥ denotes the width of D in the direction orthogonal to that of the diameter.

Proof. Let D be a planar convex domain. Without loss of generality, we may assume that the diameter is horizontal. Let Q1 and Q2 be two boundary points, aligned horizontally, satisfying Q1Q2 = diam(D). Let w ⊥ denote the vertical thickness (that is, the width of D in the direction orthogonal to that of the diameter). Therefore, D is contained into a horizontal strip of thickness w ⊥ , that without loss of generality is R × [0, w ⊥ ]. Let Q3 and Q4 be two boundary points lying on the supporting lines y = 0 and y = w ⊥ . The quadrilateral Ω := Q1Q3Q2Q4 is contained into D and satisfies

diam(Ω) = diam(D), |Ω| = diam(D)w ⊥ 2 .
Since quadrilaterals are tiling (or plane-covering) domains, Pólya's inequality holds true (we recall that it is one of the most famous conjectures in spectral geometry for general domains), see [START_REF] Pólya | On the eigenvalues of vibrating membranes[END_REF] and we obtain

µ k (Ω) ≤ 4πk |Ω| = 8πk diam(D)w ⊥ .
If this upper bound is below k 2 π 2 /diam 2 (D), in view of Proposition 2.4, we have existence of a minimizer for I k (D). This is true for

k ≥ 8diam(D) πw ⊥ .
This concludes the proof. □ Example 2.8. For the square, for the disk and for the equilateral triangle, we have k0(D) = 2 meaning that the interior problem always has a solution (for k ≥ 1). Indeed, formula (6) provides k0 ≤ 3 for the square and the equilateral triangle while the inequality (5) is directly verified for k = 2. For the disk, the fact that the inscribed square has the same diameter allows to conclude directly using the inequalities for the square.

Remark 2.9. Excepted for the special case of k = 1, we have not yet found an example of a domain D for which we have no existence of a minimizer for some index k ≥ 2. According to the characterization (5), we should find a domain D for which, for any subdomain Ω, we have µ k (Ω) > k 2 π 2 /diam 2 (D).

2.2.

The exterior problem. The exterior problem (EXT P ) k shares some common features with the interior problem, but it has also important differences. The first one is Theorem 2.10. For any convex domain ω, and any k ≥ 1 the maximization problem (EXT P ) k has a solution.

Proof. Since the inclusion constraint prevents a maximizing sequence to collapse to a segment, the only point that remains to prove is that this maximizing sequence has a diameter uniformly bounded (then we use the Blaschke selection theorem and the continuity of Neumann eigenvalues for the Hausdorff convergence of convex sets). Now, by the upper bound proved in [START_REF] Kröger | Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space[END_REF], [START_REF] Henrot | Optimal bounds for Neumann eigenvalues in terms of the diameter[END_REF] for any planar convex domain:

µ k (Ω) ≤ (2j0,1 + (k -1)π) 2 diam 2 (Ω)
(here j0,1 is the first zero of the Bessel function J0) this shows clearly that the diameter of a maximizing sequence cannot go to +∞. □ Remark 2.11.

• Even for k = 1, the exterior problem has a solution: this is an important difference with the interior problem.

• Actually, since a maximizer D * k is a better (or equal) competitor than ω, we have proved the following bound for the diameter of

D * k : diam(D * k ) ≤ (2j0,1 + (k -1)π) µ k (ω) .
• We can also define the notion of k-exterior self-domain : it is a domain ω that is itself the solution of the exterior problem for some k. We refer to Section 4 where we prove that the disk and the square are 1-exterior self domains (i.e. for µ1).

Qualitative properties of optimal domains

3.1. Touching points. In what follows, when no ambiguity may arise, we will denote a generic minimizer of an interior problem as Ω * and a generic maximizer of an exterior problem as D * , omitting the subscript k. Among the immediate properties that these optimal shapes must satisfy, let us mention:

• Ω * must touch the boundary of D in at least two points. Indeed, otherwise we can certainly translate and then expand the domain Ω * : by -2-homogeneity, this operation strictly decreases the eigenvalue; • D * must touch the boundary of ω in at least two points. Indeed, otherwise we can certainly translate and then shrink the domain D * : by -2-homogeneity, this operation strictly increases the eigenvalue. In many situations we can say more about the number of "touching points", by using the following stretching lemma showing the domain monotonicity for Neumann eigenvalues under one dimensional stretching. It can be found for example in [START_REF] Laugesen | Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality[END_REF]Proposition 8.1] or [START_REF] Siudeja | Nearly radial Neumann eigenfunctions on symmetric domains[END_REF]Lemma 6.6], the proof being straightforward using the variational characterization of eigenvalues and a change of variable. For the convenience of the reader, we have provided a proof in the appendix (see Lemma B.1).

Lemma 3.1 (Stretching).

Let Ω be a Lipschitz domain in the plane and write Ωt = {(x, ty) : (x, y) ∈ Ω} for t ≥ 1, so that Ωt is a vertically stretched copy of Ω. Then

µ k (Ω) ≥ µ k (Ωt) for each t ≥ 1.
This result allows us to deduce that, for the interior problem associated to the square, minimizers must touch the 4 boundary sides of the box, possibly at corners. It is enough to argue by contradiction: any convex subset of the square not touching the four sides can be translated and stretched horizontally or vertically, keeping the constraints (of convexity and inclusion) satisfied, but decreasing the eigenvalue (thanks to the stretching lemma).

For the exterior problem, the convexity constraint will also play an important role while determining the number of touching points. For example, if ω is the square and if we imagine only two touching points, those can only be two opposite vertexes of the square. One more time, the stretching lemma (considering now t < 1), shows that we can modify an optimal domain D * so that it touches the square in (at least) one other point: a third vertex.

Multiplicity. For the interior problem, we can prove

Theorem 3.2. Let Ω * be a minimizer for a given box D and an index k, then µ k (Ω * ) < µ k+1 (Ω * ).

Proof. Assume, for a contradiction, that µ k (Ω * ) = µ k+1 (Ω * ). Let us now cut a very small part of Ω * (for example a small triangle near a vertex if Ω * is (partly) a polygon or a small cap near a strictly convex part. Let us denote by Ω2 = T this small part and by Ω1 its complement into Ω * . By Lemma 2.1 applied to this decomposition and k + 1, we have

µ k (Ω * ) = µ k+1 (Ω * ) ≥ min{µ k (Ω1), µ1(Ω2)}.
But since we have chosen Ω2 to be very small (i.e. with a very small diameter), the classical Payne-Weinberger inequality µ1(Ω2) > π 2 /diam 2 (Ω2) shows that µ1(Ω2) is very large, so the minimum in the previous inequality is µ k (Ω1). Moreover, for T very small, we must have µ k (Ω1) ̸ = µ1(T ). This observation rules out the equality case in the statement of Lemma 2.1, which finally yields

µ k (Ω * ) > µ k (Ω1),
contradicting the minimality of Ω * . □

A consequence of this theorem is that we can now easily prove that the disk or the square are not (interior) self-domains when k is such that µ k = µ k+1 . We will come back to these examples in Section 4. Now, for the exterior problem, we have a similar property, but we need to add some assumptions on the optimal domain. 

then µ k-1 (D * ) < µ k (D * ).
Proof. As in the proof of the previous theorem, we start by assuming µ k-1 (D * ) = µ k (D * ) for a contradiction. Let us first assume that the boundary of D * contains a strictly convex part (it is not important whether this part is common with the boundary of ω or not). By strictly convex, here, we mean that we are able to add to D * a very small part preserving convexity. This is not possible for example for a polygon where the convexity constraint will lead us to involve two or three consecutive vertexes. Then, by applying the Generalised Buser Lemma 2.1 to Ω1 = D * , Ω2 the small part that we have added (see Fig. 2), and D = Ω1 ∪ Ω2, we have

µ k (D) ≥ min(µ k-1 (D * ), µ1(Ω2)).
Here, let us remark that Ω2 has two cusps and therefore, it is not a Lipschitz domain. Nevertheless, we can define µ1(Ω2) as the infimum of the usual Rayleigh quotient (among functions in H 1 (Ω2) orthogonal to constants) and one can check that Buser Lemma also applies with this definition (see the proof of the Lemma in Appendix A). Moreover, we can prove a Poincaré inequality for µ1(Ω2) showing that µ1(Ω2) is large when Ω2 is small (i.e. has small diameter), see Appendix C for more details (note that we cannot use here Payne-Weinberger lower bound involving the diameter since Ω2 is not convex). Therefore, we deduce

µ k (D) > min(µ k-1 (D * ), µ1(Ω2)) = µ k-1 (D * ) = µ k (D * )
being a contradiction with the maximality of D * . Now, if the boundary of D * has nowhere a strictly convex part, it should be a polygon. We can do the same construction as before, by adding to the side of length ℓ a small isosceles triangle: the one whose first eigenvalue will converge to 4j 2 0,1 ℓ 2 when the height goes to zero (see [START_REF] Henrot | Optimal bounds for Neumann eigenvalues in terms of the diameter[END_REF]). If we have 4j 2 0,1 ℓ 2 > µ k (D * ) as assumed, we can conclude exactly in the same way. This allows us to get the result for polygons with small enough sides. □ Corollary 3.4. Let D * be a maximizer for the exterior problem for a given obstacle ω and k = 2. Then µ1(D * ) < µ2(D * ).

Proof. Let us assume, for a contradiction, that µ1(D * ) = µ2(D * ). If the boundary of D * contains a strictly convex part, this is immediately ruled out by Theorem 3.3. Therefore, it remains to consider the case where D * is a polygon and see if we can apply the second assumption of the theorem in that case. Let ℓ be the length of any side of this polygon: by definition we have ℓ ≤ diam(D * ). Moreover, Cheng's inequality, see [START_REF] Cheng | Eigenvalue comparison theorems and its geometric applications[END_REF][START_REF] Henrot | Optimal bounds for Neumann eigenvalues in terms of the diameter[END_REF][START_REF] Kröger | Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space[END_REF], ensures that µ1(D * ) < (2j0,1) 2 /diam 2 (D * ) , therefore if we had µ1(D * ) = µ2(D * ), then it would follow that ℓ ≤ diam(D * ) < 2j0,1 µ1(D * ) = 2j0,1 µ2(D * ) allowing to apply Theorem 3.3: a contradiction. □

The square and the disk

In this section, we will apply the previous results (for small values of k) when the box or the obstacle are the unit disk or the unit square. First of all, we recall that we have proved that, in these two cases, we have existence of a minimizer for the interior problem for any k ≥ 2, thanks to Corollary 2.7, see Example 2.8.

An interesting question is to know whether the disk or the square could be or not be self-domains for both problems. Tables 1 and2 sum up what can be said in view of our previous result, notably Theorems 3.2 and 3.3. The first table is for the interior problem, the second for the exterior one, YES or NO mean that the disk or the square are or are not self-domains for that value of k, probably that they should be but we cannot prove it.

Domain k = 1 k = 2 k = 3 k = 4 Disk
no existence probably NO probably Square no existence probably probably NO Table 1. The interior problem: are disk and square self-domains?

Domain k = 1 k = 2 k = 3 k = 4 Disk YES NO probably NO Square YES NO probably probably
Table 2. The exterior problem: are disk and square self-domains?

Explanations: for the disk, we have µ1 = µ2 < µ3 = µ4, therefore it cannot be optimal for the interior problem for k = 3 according to Theorem 3.2. Moreover, since the disk is strictly convex, Theorem 3.3 applies and the disk cannot be optimal for the exterior problem for k = 2 and k = 4. For the square, we have µ1 = µ2 < µ3 < µ4 = µ5 therefore it cannot be optimal for the interior problem for k = 4 according to Theorem 3.2. Moreover, by Corollary 3.4 the square cannot be optimal for the exterior problem for k = 2. It remains to consider the case k = 1: Proposition 4.1. The disk and the square are self-domains for the exterior problem and k = 1.

Proof. Let us start with the the unit disk U: let Ω be any convex domain strictly containing the unit disk. On the one hand, the areas satisfy |U| < |Ω|. On the other hand, the Szegő-Weinberger inequality, see [START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF], provides the inequality |Ω|µ1(Ω) ≤ |U|µ1(U). Therefore

|U|µ1(Ω) < |Ω|µ1(Ω) ≤ |U|µ1(U),
proving µ1(Ω) < µ1(U) and the optimality of the disk. Now, let us look at the square Q = [0, 1] × [0, 1]: let Ω be any convex domain strictly containing the unit square and let us denote by N, W, S, E points on the boundary of Ω that are respectively at the North, the West, the South and the East (for example N is defined as a point on the boundary and on the horizontal supporting line above Q...), see Fig. 3. Two of these points might coincide. Let us denote respectively by hN , hW , hS, hE the distance between these points and the corresponding side of the square: for example hN is the difference between the ordinate of N and 1. Let us denote by wΩ the minimal width of the domain Ω. By definition, we have 

wΩ ≤ 1 + hN + hS, wΩ ≤ 1 + hW + hE
On the other hand, by convexity, the domain Ω contains the triangles joining each point N, W, S, E to the two corresponding vertexes of the square: e.g. for the point N these two vertexes are (0, 1) and (1, 1). Each such triangle having for area hN /2, hW /2, hS/2, hE/2 we deduce the following lower bounds for the area of Ω:

|Ω| ≥ 1 + (hN + hW + hS + hE)/2 ≥ wΩ, (8) 
where we used [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF] for the second inequality. Now, we use the following inequality for µ1 proved, for any planar domain Ω (not necessarily convex) in the paper [START_REF] Henrot | An isoperimetric problem with two distinct solutions[END_REF]:

µ1(Ω) ≤ π 2 w 2 Ω |Ω| 2
where equality holds only for rectangles. Combining, [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF], [START_REF] Hassannezhad | Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound[END_REF] and this last inequality, we have proved that µ1(Ω) ≤ π 2 = µ1(Q). This shows that the square is the maximizer. Moreover, it is the only maximizer since for any rectangle different from the square, the inequality [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF] or the inequality (8) must be strict. □ Remark 4.2. For the equilateral triangle we believe that the same property holds true. Indeed, it would follow from the following conjecture: for any planar convex domain Ω we have P 2 (Ω)µ1(Ω) ≤ 16π 2 with equality for the square and the equilateral triangle due to Laugesen-Polterovich-Siudeja, see the recent paper [START_REF] Henrot | An isoperimetric problem with two distinct solutions[END_REF] where this conjecture is proved assuming that Ω has two axis of symmetry. Assuming the conjecture is true, let Ω be a convex domain strictly containing the equilateral triangle T , we have P (T ) < P (Ω) therefore

P 2 (T )µ1(Ω) < P 2 (Ω)µ1(Ω) ≤ P 2 (T )µ1(T )
proving the maximality of the equilateral triangle.

Since the disk (and the square) are not self-domains for k = 2 for the exterior problem, one can wonder what the optimal domain looks like. For the disk for example, we would expect some symmetry, thus a rather surprising result is the following: Proposition 4.3. The optimal domain for the exterior problem with k = 2 when the obstacle is the disk has not j-fold symmetry with j ≥ 3

Proof. It is a classical property that a domain having j-fold symmetry with j ≥ 3 must satisfy µ1 = µ2, see for example [START_REF] Ashbaugh | Universal bounds for the low eigenvalues of Neumann Laplacians in n dimensions[END_REF]Lemma 4.1]. Therefore, applying Corollary 3.4 we immediately get the conclusion. □ 5. The functional J k 5.1. Bounds for inf J k . We recall that we can define, for any convex domain D and for any integer k, the "lack of monotonicity" by the formula

J k (D) := I k (D) µ k (D) ,
where I k (D) is defined by

I k (D) := inf {µ k (Ω) : Ω ⊂ D, Ω is a convex domain} .
We are interested in the infimum of J k among all planar convex domains. We will denote it by

M k = inf{J k (D) : D convex, D ⊂ R 2 }.
More precisely, if we can compute this infimum exactly for k = 1; we are just able to give bounds for M k in the general case. Let us mention that recently, in [START_REF] Freitas | On domain monotonicity of Neumann eigenvalues for convex domains[END_REF] P. Freitas and J. Kennedy introduced exactly the same number, but in any dimension d, they denote it by α k,d and then M k = α k,2 . In their paper, they also obtain the value of M1 as in our Theorem 5.1, they also obtain the same upper bound for M k as in our Proposition 5.2 but they do not give lower bounds for M k better than the trivial one (obtained by estimating µ k (D) from below by π 2 /diam 2 (D)). In that sense, our Theorem 5.8 based on a new lower bound for any Neumann eigenvalue given in Theorem 5.4 seems to be a real progress.

A first result, an easy consequence of Theorem 2.3 is the following:

Theorem 5.1. Let M k be defined as above. Then M1 = π 2 4(j0,1) 2 ≃ 0.427, and the infimum in the definition of M1 is not achieved.

Proof. We have already seen in Theorem 2.3 that

I1(D) := min Ω⊂D , convex µ1(Ω) = π 2 diam 2 (D)
.

Therefore the functional J1 reduces to a simple form that can be bounded from below as follows,

J1(D) = I1(D) µ1(D) = π 2 diam 2 (D)µ1(D) > π 2 4j 2 0,1
, the last inequality directly comes from [START_REF] Kröger | Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space[END_REF], [START_REF] Henrot | Optimal bounds for Neumann eigenvalues in terms of the diameter[END_REF], where it has been proved that for all convex domains D ⊂ R 2 it holds

diam 2 (D)µ k (D) ≤ (2j0,1 + (k -1)π) 2 .
Moreover, it is proved in the above-mentioned papers and also in [START_REF] Cheng | Eigenvalue comparison theorems and its geometric applications[END_REF] for µ1 that this inequality is sharp, by considering a certain sequence of domains shrinking to a segment. For µ1, this is a sequence of isosceles triangles shrinking to its basis. This gives the desired result. □

Let us now give an upper bound for M k .

Proposition 5.2. Let M k be defined as above. Then for all k we have

M k ≤ k 2 π 2 (2j0,1 + (k -1)π) 2 < 1.
Proof. We use the family of collapsing domains as defined in [START_REF] Henrot | Optimal bounds for Neumann eigenvalues in terms of the diameter[END_REF], normalized with diameter 1. For each η > 0 there exists one of such D (that is a very thin trapezoid) satisfying

µ k (D) ≥ (2j0,1 + (k -1)π) 2 (1 -η).
Now for this fixed D we consider as Ω a very thin rectangle Rε of length (1 -ε), and of width so small that it fits into D. In that case we have µ k (Rε) = k 2 π 2

(1-ε) 2 as soon as the width is small enough. Since M k and I k are infima we deduce that

M k ≤ I k (D) µ k (D) ≤ µ k (Rε) µ k (D) ≤ k 2 π 2 (1 -ε) 2 (2j0,1 + (k -1)π) 2 (1 -η) .
Finally, since ε and η are arbitrary, we get

M k ≤ k 2 π 2 (2j0,1 + (k -1)π) 2 ,
and the theorem is proved. □ Remark 5.3. We believe that the upper bound presented above is actually the true value of M k . If we can prove that there is no existence of a minimizer for M k , this will follow by analyzing the behavior of a sequence of collapsing domains as done in [START_REF] Henrot | Optimal bounds for Neumann eigenvalues in terms of the diameter[END_REF]. We present in the next subsection an iterative scheme that could also be used to check this property.

Now we want to get a lower bound for M k . This requires lower bounds for µ k (Ω) in terms of the diameter of Ω. Obviously, we have µ k (Ω) ≥ µ1(Ω) > π 2 /diam 2 (Ω) which is the lower bound used in [START_REF] Freitas | On domain monotonicity of Neumann eigenvalues for convex domains[END_REF], but we want to improve it. Here is our result stated in dimension 2 (just after the proof of the theorem, we give the analogous inequality in dimension d).

Theorem 5.4. Let Ω be a bounded convex domain in the plane. Then we have the following lower bounds:

µ k (Ω) ≥ C k diam 2 (Ω)
.

The constant C k is computable for every k, moreover

C2 > π 2 , C3 > C2,
and

C k = [ √ k] 2 π 2 2 ∀k ≥ 4
where [ √ k] is the integer part (or the floor) of √ k.

For the proof of this theorem, in the case k ≥ 4, we will need the following elementary geometric lemma. We will denote by w(Ω) the width of Ω in the direction orthogonal to the diameter (i.e. the minimal distance between two supporting planes that are parallel to a diameter) Lemma 5.5. For any bounded convex domain Ω ⊂ R 2 , there exists a rectangle of length diam(Ω) and width w(Ω) that contains Ω. In particular, there exists a square Q with side length diam(Ω) that contains Ω.

Proof. Let Ω be a convex domain and R := diam(Ω) < +∞ its diameter. Let a, b ∈ Ω two endpoints of the diameter. Then it is easily seen that, see Fig. 4:

Ω ⊂ B(a, R) ∩ B(b, R).
This means that Ω is contained in the strip delimited by two parallel lines: the tangent line to ∂B(a, R) at b and the tangent line to ∂B(b, R) at a as in Fig. 4. Moreover we see that Ω is inside the strip delimited by the two supporting lines parallel to the segment joining a and b. Then, by definition of the width w(Ω), our domain is contained in a rectangle of length diam(Ω) and width w(Ω). At last, since the width w(Ω) must be also smaller than diam(Ω). it follows that Ω lies inside a square of side diam(Ω). □ Remark 5.6. The result of Lemma 5.5 is optimal: indeed, if Ω is a Reuleaux triangle then it has constant width equal to its diameter in any direction. As a result, we can construct a square containing Ω with side of length exactly diam(Ω).

We are now in a position to prove Theorem 5.4.

Proof. We start with the case k ≥ 4. Let us set N = [ √ k], then N 2 ≤ k. We start by putting Ω inside a square Q with side equal to diam(Ω), as given by Lemma 5.5. Then we divide the square Q in a collection Qj of N 2 cubes of side length diam(Ω)/N . Now we consider the partition of Ω defined by this grid: Ωj = Ω ∩ Qj and we use the Generalized Buser Lemma 2.1:

µ N 2 (Ω) ≥ min j µ1(Ωj) ≥ min j π 2 /diam 2 (Ωj) . But diam(Ωj) ≤ diam(Qj) = √ 2diam ( 
Ω)/N , therefore we finally get

µ k (Ω) ≥ µ N 2 (Ω) > π 2 N 2 2diam 2 (Ω)
that is the desired result.

Let us now consider the case k = 2. Buser's lemma alone cannot work because when we cut a convex domain in two parts, it is possible that each part has the same diameter as Ω itself. This leads us to split the class of convex domains into two sub-classes A f (f for flat) and Ar (r for round) defined by (we denote the diameter of Ω by D(Ω) here)

A f := {Ω s.t. w(Ω)/D(Ω) ≤ ρ}, Ar := {Ω s.t. w(Ω)/D(Ω) > ρ} where ρ ∈ (0, 1) is a threshold that we will choose at the end.

If Ω ∈ A f , we consider the rectangle given by Lemma 5.5 of dimensions D(Ω) and w(Ω) and we cut it in two rectangles R1, R2 along the longer side: their length is now D(Ω)/2. Then we make a partition of Ω as Ω1 ∪ Ω2 where Ωi = Ω ∩ Ri and we use Buser's Lemma 2.1 that provides, since diam 2 (Ωi) ≤ w 2 (Ω) + D 2 (Ω)/4

µ2(Ω) ≥ min(µ1(Ω1), µ1(Ω2)) > π 2 w 2 (Ω) + D 2 (Ω)/4 .
Using the property defining A f , it follows that

D 2 (Ω)µ2(Ω) > π 2 ρ 2 + 1 4 . (9) 
If Ω ∈ Ar, we use a recent result of D. Bucur and V. Amato (to appear, private communication) that is a quantitative improvement of the Payne-Weinberger inequality. They prove that there exists a constant C, that is computable in dimension 2, such that for any convex domain it holds

D 2 (Ω)µ1(Ω) ≥ π 2 + C w 2 (Ω) D 2 (Ω) . ( 10 
)
Note that this constant C has a numerical value around 6. Therefore, using in (10) the property defining Ar, we get

D 2 (Ω)µ2(Ω) ≥ D 2 (Ω)µ1(Ω) > π 2 + Cρ 2 . ( 11 
)
Now we are interested in the minimum of the two values appearing in the right-hand side of Equations ( 9) and ( 11) and we want to choose ρ such that this minimal value is maximum. Since the two functions in ρ are respectively decreasing and increasing, we must choose ρ such that

π 2 ρ 2 + 1 4 = π 2 + Cρ 2 .
Solving this quadratic equation in ρ 2 , we immediately get

ρ 2 = -(π 2 + C 4 ) + (π 2 + C 4 ) 2 + 3Cπ 2 2C
that provides the universal lower bound

D 2 (Ω)µ2(Ω) > π 2 2 1 + 1 + 7C 2π 2 + C 2 16π 4 - C 8 =: C2 > π 2 .
Now, for µ3, we proceed exactly in the same way as for µ2. The only difference is that we cut now in three parts the rectangle (0, D(Ω)) × (0, w(Ω)) along its long side and we will choose another threshold ρ at the end. This leads us to the following estimates:

• if Ω ∈ A f , then D 2 (Ω)µ3(Ω) ≥ π 2 ρ 2 + 1 9 . ( 12 
)
• if Ω ∈ Ar, then D 2 (Ω)µ3(Ω) ≥ π 2 + Cρ 2 . ( 13 
)
Choosing a value of ρ making the two right-hand sides of ( 12) and ( 13) equal give, we finally obtain

D 2 (Ω)µ3(Ω) > π 2 2 1 + 1 + 34C 9π 2 + C 2 81π 4 - C 18 =: C3.
This concludes the proof. □ Remark 5.7. Previous lower bounds for Neumann eigenvalues of convex domains in terms of their diameter were already known in any dimension. For example, in References [START_REF] Gromov | Metric structures for Riemannian and non-Riemannian spaces[END_REF][START_REF] Schoen | Lectures on differential geometry[END_REF][START_REF] Hassannezhad | Eigenvalue inequalities on Riemannian manifolds with a lower Ricci curvature bound[END_REF] one can find bounds like

µ k ≥ c d k 2/d /(diam 2 (Ω))
where c d is a positive constant depending only on the dimension d. Although all of these papers prove the estimate in a quantitative way, they do not give the explicit value of c d (one can certainly deduce it by following their proof). See also [START_REF] Funano | Some universal inequalities of eigenvalues and upper bounds for the L ∞ norm of eigenfunctions of the Laplacian[END_REF] for a recent survey on these questions. In our Theorem 5.4 the constant c2 is completely explicit (and quite simple).

In higher dimension d ≥ 3, one can certainly follow the same strategy that we employed in Theorem 5.4. This would lead to the following lower bound

µ k (Ω) ≥ [ d √ k] 2 d π 2 diam 2 (Ω) where [ d √ k]
is the integer part (or the floor) of d √ k. This bound is comparable with the previous one µ k ≥ c d k 2/d /(diam 2 Ω) with, here, an explicit constant c d .

Using the lower bounds found in Theorem 5.4, and using the upper bound diam 2 (Ω)µ k (Ω) < (2j0,1 + (k -1)π) 2 found in [START_REF] Kröger | Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space[END_REF], [START_REF] Henrot | Optimal bounds for Neumann eigenvalues in terms of the diameter[END_REF], we immediately deduce Theorem 5.8. We have the following lower bound for M k :

M k ≥ C k π 2 (2j0,1 + (k -1)π) 2
where C k is the constant given in Theorem 5.4.

An iterative scheme.

Here we assume k to be fixed. Let D1 be a given box, and Ω1 a solution of the interior problem for D1. Then, let us introduce D2 a solution of the exterior problem for Ω1 and, by induction: Ωn a solution of the interior problem for Dn and Dn+1 a solution of the exterior problem for Ωn. Then, we claim Theorem 5.9. The sequence {µ k (Dn)} n∈N is increasing, the sequence {µ k (Ωn)} n∈N is decreasing, therefore the sequence {J k (Dn)} n∈N is decreasing. Moreover, up to some subsequences, the sequences of convex sets {Ωn} n∈N and {Dn} n∈N either converge in the Hausdorff sense to a pair (Ω * , D * ) that is stationary for this construction (i.e. Ω * is solution of the interior problem for D * and D * is solution of the exterior problem for Ω * ) or both converge to a segment. Therefore, if there exists a minimizing pair for J k , this scheme could be a good way to get it. We can qualify it as a descent algorithm since J k decreases along the sequence. On the other hand, if the sequences collapse to a segment, this would prove non-existence and give the value of inf J k as explained before.

Proof of Theorem 5.9. Let k be fixed. Let {Ωn}n and {Dn}n be the two sequences of convex sets defined by recursion as above. Exploiting the optimality of Ωn and Ωn+1, we infer that

J k (Dn) = I k (Dn) µ k (Dn) = µ k (Ωn) µ k (Dn) , J k (Dn+1) = I k (Dn+1) µ k (Dn+1) = µ k (Ωn+1) µ k (Dn+1) .
By construction, we have that both Dn and Dn+1 contain Ωn, and between the two, Dn+1 has greater µ k , in view of its optimality for the exterior problem on Ωn. In formulas, we have

µ k (Dn+1) ≥ µ k (Dn).
Similarly, both Ωn and Ωn+1 are contained into Dn+1, and between the two, Ωn+1 has lower µ k , in view of its optimality for interior problem on Dn+1. In formulas, we have

µ k (Ωn+1) ≤ µ k (Ωn).
By combining these inequalities with the expressions of J k (Dn) and J k (Dn+1), we deduce the desired monotonicity, namely J k (Dn) ≥ J k (Dn+1). Now, let us check that the two sequences Ωn and Dn have bounded diameters. Assume that (for a subsequence) the diameter of Dn is not bounded; by the inequality

µ k (Dn) ≤ (2j0,1 + (k -1)π) 2 /diam 2 (Dn)
this would imply that µ k (Dn) goes to zero; in contradiction with the fact that the sequence µ k (Dn) is increasing. Then the diameters of the Dn are uniformly bounded. Moreover, since Ωn ⊂ Dn this is also the case for the Ωn. Finally, the sequences having bounded diameter, the alternative on the convergence of these sequences of convex domains is classical. Now we show that

µ k (Ω * ) = inf{µ k (Ω), Ω ⊆ D * , Ω convex} ( 14 
)
For a domain Ω in R 2 , x ∈ R 2 , and r > 0 we set rΩ + x := {ry + x : y ∈ Ω}.

since Dn converges to D * for the Hausdorff convergence (of convex sets) we have, see [11, Chapter 2]

D * ⊆ (1 + ε)(Dn -xn) + xn
for some xn ∈ R 2 and for sufficiently large n. We thus get

1 1 + ε (Ω -xn) + xn ⊆ Dn, which gives µ k (Ωn) ≤ µ k 1 1 + ε (Ω -xn) + xn = (1 + ε) 2 µ k (Ω)
by the definition of Ωn. Letting n → ∞ and then ε → 0 we have µ k (Ω * ) ≤ µ k (Ω), which shows [START_REF] Laugesen | Minimizing Neumann fundamental tones of triangles: an optimal Poincaré inequality[END_REF].

Next we show the equality

µ k (D * ) = sup{µ k (D ′ ), Ω * ⊆ D ′ , D ′ convex}. ( 15 
)
Let D ′ be convex such that Ω * ⊆ D ′ . For any ε > 0 since Ωn converges to Ω * and each Ω * is not a segment we have

Ωn ⊆ (1 + ε)(Ω * -yn) + yn
for some yn ∈ R 2 and for sufficiently large n. This implies

Ωn ⊆ (1 + ε)(D ′ -yn) + yn
and by the definition of Dn+1 we obtain

µ k (Dn+1) ≥ µ k ((1 + ε)(D ′ -yn) + yn) = 1 (1 + ε) 2 µ k (D ′ ).
Letting n → ∞ and then ε → 0 we have µ k (D * ) ≥ µ k (D ′ ), which shows [START_REF] Levitin | Topics in Spectral Geometry[END_REF]. This completes the proof. □ Remark 5.10. If we can prove that a geometric quantity, like the minimal width, goes to zero under this algorithm, this would also a give a direct way to prove non-existence of a minimizer for inf J k .

Some numerical illustrations

In this section we present a numerical optimization scheme for the interior problem and the exterior problem.

Theoretical description of shapes. Here we briefly introduce the representation of admissible shapes based on support functions. For more details about this standard approach, we refer to [START_REF] Antunes | Parametric shape optimization using the support function[END_REF] and the references therein.

We identify a planar convex set Ω with its support function fΩ defined as follows:

fΩ : S 1 → R, fΩ(θ) := sup x∈Ω (x • (cos θ, sin θ)) ,
where, without loss of generality, we have assumed the origin to be an interior point of Ω.

The support function, in turn, being 2π-periodic, can be identified with the collection of Fourier coefficients a0, {a k , b k } k∈N :

fΩ(θ) = a0 + k≥1 [a k cos(kθ) + b k sin(kθ)].
Following our notation for the interior and exterior problem, we denote by fΩ the admissible support functions for the interior problem and by fD the admissible support functions for the exterior problem.

Let us now pass to the description of the constraints. Convexity is encoded by the following inequality, intended in the sense of distributions:

fΩ(θ) + f ′′ Ω (θ) ≥ 0, fD(θ) + f ′′ D (θ) ≥ 0. ( 16 
)
In terms of the Fourier coefficients (of fΩ or fD), this reads

a0 + k≥1 (1 -k 2 )[a k cos(kθ) + b k sin(kθ)] ≥ 0. (17) 
On the other hand, the set inclusion Ω1 ⊂ Ω2 is equivalent to the ordering fΩ 1 ≤ fΩ 2 between the support functions. Therefore, in the interior and exterior problem we will impose fΩ ≤ fD, fD ≥ fω,

where D is the bounding box and ω is the obstacle. In terms of the Fourier coefficients, we have: for the interior problem

a0 + k≥1 [a k cos(kθ) + b k sin(kθ)] ≤ a0 + k≥1 [ a k cos(kθ) + b k sin(kθ)], (19) 
and, for the exterior problem,

a0 + k≥1 [a k cos(kθ) + b k sin(kθ)] ≥ a0 + k≥1 [ a k cos(kθ) + b k sin(kθ)], (20) 
where a0, { a k , b k } k∈N denote, for the interior and exterior problem, the Fourier coefficients of fD or fω, respectively.

Numerical description of shapes. For the numerical optimization, we need to work in a finite dimensional space: to this aim, following [START_REF] Antunes | Parametric shape optimization using the support function[END_REF], we adopt two alternative strategies. For the benefit of the reader, we recall here the main ideas.

In the first strategy we approximate shapes by considering the truncated Fourier series of the support function at some index N . The unknown of the problem is then a vector F = (a0, a1, . . . , aN , b1, . . . , bN ) ∈ R 2N +1 .

The two constraints are imposed on a discrete set of points, instead of the whole interval [0, 2π]. We fix M ∈ N and we consider

θm := m 2π M , m = 1, . . . , M.
Imposing [START_REF] Pólya | On the eigenvalues of vibrating membranes[END_REF] on every θm, we get

a0 + N k=1 (1 -k 2 )[a k cos(kθm) + b k sin(kθm)] ≥ 0 ∀m = 1, . . . , M.
Similarly, imposing ( 19)-( 20) on every θm, we get

a0 + N k=1 [a k cos(kθm) + b k sin(kθm)] ≤ a0 + N k=1 [ a k cos(kθm) + b k sin(kθm)]
for the interior problem and the reverse inequality for the exterior problem. Here m runs from 1 to M . Now we notice that both inequalities are linear in F and can be rewritten in a more convenient way as

AF ≤ B,
where A is a 2M × (2N + 1)-matrix and B is a 2M -vector. Let us write the components of A and B. In the following, the indexes m and k run from 1 to M and from 1 to N , respectively. For the interior problem, we have

               Am,1 = -1 A m,1+k = -(1 -k 2 ) cos(kθm) A m,1+N +k = -(1 -k 2 ) sin(kθm) AM+m,1 = 1 A M +m,1+k
= cos(kθm) A M +m,1+N +k = sin(kθm) and Bm = 0

BM+m = a0 + N k=1 [ a k cos(kθm) + b k sin(kθm)].
For the exterior problem, we have

               Am,1 = -1 A m,1+k = -(1 -k 2 ) cos(kθm) A m,1+N +k = -(1 -k 2 ) sin(kθm) AM+m,1 = -1 A M +m,1+k = -cos(kθm) A M +m,1+N +k = -sin(kθm) and Bm = 0 BM+m = -a0 -N k=1 [ a k cos(kθm) + b k sin(kθm)].
The second strategy consists in considering a piece-wise affine approximation of fΩ (for the interior problem) or fD (for the exterior problem): given M ∈ N, the unknown is the vector F = (f1, . . . , fM

) ∈ R M ,
where fi represents fΩ(iτ ) (for the interior problem) or fD(iτ ) (for the exterior problem), with τ := 2π/M . Here and in the following lines, the index i will run from 1 to M . Taking the approximation of derivatives by finite differences, we write the convexity constraint [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF] as

∀i fi + fi+1 -2fi + fi-1 τ 2 ≥ 0,
where by periodicity we set f-1 := fM and fM+1 := f1. On the other hand, the constraint (18) simply reads fi ≤ fD(iτ ) or fi ≥ fω(iτ )

for the interior or exterior problem, respectively. As in the previous strategy, the two constraints can be rewritten in a more convenient way as AF ≤ B, where A is a 2M × M matrix and B is a 2M vector. The matrix A is made of 2 blocks M × M aligned vertically. The first sub-matrix (above) is "almost" tridiagonal, in the following sense: it has elements -1 + 2/τ 2 on the main diagonal, elements -1/τ 2 in the upper/lower diagonal and, due to the periodicity of the support function, also A1,M and AM,1 are equal to -1/τ 2 ; all the other elements are zero. The second (below) sub-matrix of A is the identity matrix for the interior problem and it is minus the identity matrix for the exterior problem. The vector B has two blocks, too: the former is the zero M-vector, namely Bi = 0; the latter is BM+i = fD(iτ ) for the interior problem and BM+i = -fω(iτ ) for the exterior problem.

Optimization scheme for the interior problem. Given k ∈ N, we perform the following optimization:

min{µ k (ΩF ) : F ∈ R d , AF ≤ B}.
Where F is either the vector representing the first d Fourier coefficients of fΩ or the discretization of fΩ at the points i2π/d, i = 1, . . . , d. The matrix A and the vector B are constructed accordingly, following the procedure described in the previous paragraph.

Here ΩF is the convex shape associated to fΩ. The computation of µ k is done using the Matlab function solvepdeeig. The optimization is run using the fmincon routine of Matlab, with linear inequality constraints, and taking a random starting point F0.

Let us now present some examples, in which we take D to be the square or the disk, and k = 1, 2, 3, 4. Our numerical optimization goes in the same direction of the theoretical study performed in Section 4, in the following sense:

• for k = 1, numerics suggest that the best shape is a segment realizing the diameter (see Fig. Let us present more in detail the two last items. We recall that when D is the unit disk, µ3(D) = j 2 2,1 ≃ 9.33. Following Strategy 1, we find a shape with µ3 = 8.86 (see Fig. 6-left), whereas following Strategy 2, we find a shape with µ3 = 8.516 (see Fig. 6-right). Both strategies allow to confirm that the disk is not a self-domain for the interior problem with k = 3. Numerics seem to suggest that the optimal shape should be the intersection of the disk D and a larger square. These shapes can be described by one parameter, the angle 2θ of each circular sector, with θ ∈ [0, π/4]. Let us denote by Ω θ the shape associated to θ. Then Ω0 is the square inscribed into the disk D, Ω π/4 = D (intersection of the disk and the circumscribed square). A numerical optimization gives θopt = 0.21 with µ3(Ω θ opt ) = 8.47, see Fig. 7. Let now D be the square [-1, 1] 2 and k = 4. We recall that µ4(D) = π 2 ≃ 9.86. As before, numerics suggest that the optimal shape should be a polygon inside D, more precisely, an octagon (see Fig. 8-left). When we restrict to octagons, numeric optimization provides many local minimizers, all of them have µ4 striclty less than the square D. In Fig. 8-right an example.

Optimization scheme for the exterior problem. We follow the same idea used for the interior problem, with the proper modifications: to maximize µ k we solve min{-µ k (DF ) :

F ∈ R d , AF ≤ B},
where A and B are the matrix and the vector defined above, and d is either the number of Fourier coefficients of fD that we are considering (Strategy 1), or the number of discretization points of the variable of fD (Strategy 2).

As in the previous paragraph, we consider two obstacles, the disk and the square, and the first 4 indexes k. Numerics seem to confirm the theoretical study performed in Section 4, in the following sense:

• for ω = disk and k = 1, 3 or ω = square and k = 1, 3, 4, numerics suggest that ω should be a self-domain; • for ω = disk and k = 2, 4 we find better domains than the disk; • for ω = square and k = 2 we find a better domain than the square.

Let us explain in more detail the two last items. Let us start with ω the unit disk, for which µ2(ω) = j 2 1,1 ≃ 3.39 and µ4(ω) = j 2 2,1 ≃ 9.33. Numerics allow to find better shapes, searched in a particular class of shapes: convex envelopes of the disk and 2 points for k = 2, and of the disk and 4 points for k = 4. The values are specified in Fig. 9 and Fig. 10. We conclude with the case of the square ω = [-1, 1] 2 and k = 2. Recalling that µ2(ω) = π 2 /4 ≃ 2.46, we show that the square is not a self-domain for the exterior problem: we first find a shape D ⊃ ω with µ2 = 2.84 by following Strategy 2 and then, working among hexagons which are convex envelopes of the square and a pair of points, we find another (better) candidate with µ2 = 2.88.
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Thus let us pick any subspace L in H 1 (Ωt) and let w ∈ L. Let us give a Poincaré inequality for our non-convex planar domain Ω2 appearing in the proof of Theorem 3.3. For this section, for brevity, we will simply write Ω and D instead of Ω2 and D * .

For the construction, we start with choosing a point P on the boundary ∂D of the convex domain D. Then we choose a supporting line L of ∂D at P and choose the y-axis as the exterior normal line of ∂D at P which is orthogonal to L. For convenience, corresponding to (25), we write

h(x) = h-(x) if -a ≤ x ≤ 0, h+(x) if 0 < x ≤ b.
Let us first prove a Poincaré inequality for E. Then, by virtue of T , we may get a Poincaré inequality for Ω.

Let (x1, z1), (x2, z2) ∈ E. Distinguish two cases: (i) z1 < z2, (ii) z1 ≥ z2. In case (i) (x2, z1) ∈ E and in case (ii) (x1, z2) ∈ E. Let u ∈ C 1 (E) ∩ H 1 (E).

In case (i), we have 

Here, the Schwarz inequality applied to ( 27) and (28) gives also the following: Observe that 

|∇u| 2 = u 2 x + u 2 z = (vx + vyf ′ (x)) 2 + v 2 y ≤ 2v 2 x + 2v



  Therefore, it makes sense to consider the two following problems for any integer k ≥ 1. The interior problem (IN T P ) k    Let D be an open convex domain (non-empty), we look for a convex domain Ω * k contained into D solution of µ k (Ω * k ) = min{µ k (Ω), Ω convex, Ω ⊂ D} and the exterior problem: (EXT P ) k   Let ω be a, open convex domain (non-empty) we look for a convex domain D * k containing ω solution of µ k (D * k ) = max{µ k (D), D convex, ω ⊂ D}. Thus, for any k ∈ N, k ≥ 1 and any bounded convex domain D we can introduce the following quantity:

Theorem 3 . 3 .

 33 Let D * be a maximizer for the exterior problem for a given obstacle ω and an integer k. Assume that • either the boundary of D * contains a strictly convex part • or D * is a polygon with at least one side having a length ℓ satisfying ℓ < 2j0,1/ µ k (D * )

Figure 2 .

 2 Figure 2. A small part Ω 2 added on a strictly convex part.

Figure 3 .

 3 Figure 3. Proof of Proposition 4.1.

  thereforewΩ ≤ min(1 + hN + hS, 1 + hW + hE).

Figure 4 .

 4 Figure 4. Proof of Lemma 5.5.

  5); • for D = disk and k = 2, 4 or D = square and k = 2, 3, numerics suggest that D should be a self-domain; • for D = disk and k = 3 we find a better domain than the disk; • for D = square and k = 4 we find a better domain than the square.

Figure 5 .

 5 Figure 5. Optimal shape for k = 1 in the unit disk with µ 1 = 2.468. Optimization algorithm: Strategy 2, with 50 points, and constraint on the minimal height of the mesh H min = 0.001.

Figure 6 .

 6 Figure 6. Left: shape with µ 3 = 8.86 obtained using Strategy 1 with 17 Fourier coefficients. Right: shape with µ 3 = 8.51 obtained using Strategy 2 with 50 points.

Figure 7 .

 7 Figure 7. Left: numerical optimizer associated to θ = 0.21. Right: plot of the function θ → µ 3 (Ω θ ).

Figure 8 .

 8 Figure 8. Left: shape with µ 4 = 8.95 obtained using Strategy 2 with 80 points. Right: a local minimizer with µ 4 = 8.74 among octagons.

Figure 9 .

 9 Figure 9. Left: shape with µ 2 = 3.59 obtained using Strategy 1, with 21 Fourier coefficients. Right: candidate optimizer with µ 2 = 3.61 searched among convex envelopes of the disk and 2 points, obtained with a pair of antipodal points with distance 1.93 from the origin.

Figure 10 .

 10 Figure 10. Left: shape with µ 4 = 9.87 obtained using Strategy 1, with 59 Fourier coefficients. Right: candidate maximizer with µ 4 = 9.94 searched among convex envelopes of the disk and 4 points, obtained with 2 pairs of antipodal points with distance 1.31 from the origin.

Figure 11 .Lemma B. 1 .

 111 Figure 11. Left: shape with µ 2 = 2.84, obtained using Strategy 2 with 50 points. Right: candidate maximizer with µ 2 = 2.88 searched among convex envelopes of the square and 2 points, obtained with a pair of antipodal points with distance 2.22 from the origin.

  Next we choose a point Q on the y-axis outside D and finally find the two tangent lines (or supporting lines) of D through Q. This construction allows us to locally express a portion of ∂D as the graph of a concave function f : [-a, b] → R, (a, b > 0) having its maximum value f (0) where f increases in [-a, 0] and decreases in [0, b]. By construction the two tangent lines of the curve y = f (x) at points (-a, f (-a)), (b, f (b)) intersect at the point Q on y-axis. Let

Figure 12 .

 12 Figure 12. Construction of the concave function f .

u

  (x1, z1) -u(x2, z2) = u(x1, z1) -u(x2, z1) + u(x2, z1) -u(x2, z2) , z)dz (= L1). (27)In case (ii), we haveu(x1, z1) -u(x2, z2) = u(x1, z1) -u(x1, z2) + u(x1, z2) -u(x2, z2) z2)dx (= L2).(28)For each (x1, z1) ∈ E, we integrate (27) in (x2, z2) ∈ E ∩ {z1 < z2} and (28) in (x2, z2) ∈ E ∩ {z1 ≥ z2} and then sum the resulting equations to have|E|(u(x1, z1) -uE) = ˆE∩{z 1 <z 2 } L1dx2dz2 + ˆE∩{z 1 ≥z 2 } L2dx2dz2,where we set uE = 1 |E| ´E u(x, z)dxdz. Then, the Schwarz inequality gives |u(x1, z1) -uE| 2 ≤ 2 |E| ˆE∩{z 1 <z 2 } (L1) 2 dx2dz2 + ˆE∩{z 1 ≥z 2 } (L2) 2 dx2dz2 .

1 + (z 1 ) h - 1 -(z 1 ) 1 + (z 2 ) h - 1 -(z 2 )

 11111212 |∂xu(x, z1)| 2 dx + c ˆh(x 2 ) 0 |∂zu(x2, z)| 2 dz (= M1), , z)| 2 dz + (a+b) ˆh-|∂xu(x, z2)| 2 dx (= M2). (31) Hence integrating (29) in (x1, z1) ∈ E and combining three inequalities (29), (30), (31) yield that ˆE |u(x1, z1) -uE| 2 dx1dz1 ≤ 4 |E| ˆE dx1dz1 ˆE dx2dz2 {M1 + M2} ≤ 8 (a+b) 2 ˆE(∂xu) 2 dxdz + c 2 ˆE(∂zu) 2 dxdz ≤ 8 max{(a+b) 2 , c 2 } ˆE |∇u| 2 dxdz.Thus we obtainProposition C.1 (Poincaré inequality for E). For every u ∈ H 1 (E), ˆE |u -uE| 2 dxdz ≤ 8 max{(a+b) 2 , c 2 } ˆE |∇u| 2 dxdz.Then, by virtue of T defined in (26), we may get the following Poincaré inequality for Ω.Proposition C.2 (Poincaré inequality for Ω). For everyv ∈ H 1 (Ω), ˆΩ |v -vΩ| 2 dxdy ≤ 16(L 2 + 1) max{(a+b) 2 , c 2 } ˆΩ |∇v| 2 dxdy,where L is the Lipschitz constant of the function f .Proof. Let v ∈ H 1 (Ω). Set u(x, z) = v(x, f (x) + z). Then u ∈ H 1 (E),since f is Lipschitz continuous. Since the Jacobian of the transformation T equals 1, we have |E| = |Ω|, uE = vΩ, ˆE |u -uE| 2 dxdz = ˆΩ |v -vΩ| 2 dxdy.

  Then the function u = w •ψt belongs to ψ -1 t (L) =: H and by the change of variables formula we have ´Ωt |∇w| 2 dx ´Ωt w 2 dx = ´Ω |∇w| 2 • ψt|Jψt| dx ´Ω w 2 • ψt|Jψt| dx . Now we wish to estimate the above quotient. First of all we remark that the Jacobian of ψt is simply t, in other words Now we want to compare |∇w| 2 • ψt with |∇(w • ψt)| 2 which of course are not the same. It is immediate to check that the function u := w • ψt defined in Ω satisfies |∇u| 2 = |∇w| 2 • ψt + (t 2 -1)|∂yw| 2 • ψt. Passing to the min in L yields µ k (Ωt) ≥ µ k (Ω), as desired. □ Appendix C. An explicit Poincaré inequality for planar domains with cusps

		|Jψt| = t	|Jψ -1 t | =	1 t
	so we deduce that ´Ωt |∇w| 2 dx ´Ωt w 2 dx	=	´Ω |∇w| 2 • ψt dx ´Ω w 2 • ψt dx	=	´Ω |∇w| 2 • ψt dx ´Ω(w • ψt) 2 dx	.
	Therefore v∈ψ -1 t (L)	´Ω |∇v| 2 dx ´Ω v 2 dx	.

we get ˆΩ |∇u| 2 dx = ˆΩ |∇w| 2 • ψt dx + (t 2 -1) ˆΩ |∂yw| 2 • ψt dx = 1 t ˆΩt |∇w| 2 dx + (t 2 -1) ˆΩ |∂yw| 2 • ψt dx. Returning back to the Rayleigh quotient, we obtain that for any w ∈ L, ´Ω |∇(w • ψt)| 2 dx ´Ω(w • ψt) 2 dx ≤ ´Ωt |∇w| 2 dx ´Ωt w 2 dx + (t 2 -1) ´Ω |∂yw • ψt| 2 dx 1 t ´Ωt w 2 dx ≤ ´Ωt |∇w| 2 dx ´Ωt w 2 dx , where we have used, in the last inequality, that t ∈ (0, 1). By taking now the maximum in the w variable we arrive at max w∈L ´Ωt |∇w| 2 dx ´Ωt w 2 dx ≥ max

  2 y (f ′ (x)) 2 + v 2 y ≤ 2(L 2 + 1)|∇v| 2 . Hence ˆE |∇u| 2 dxdz ≤ 2(L 2 + 1) ˆΩ |∇v| 2 dxdy.Therefore a Poincaré inequality for E yields a Poincaré inequality for Ω. □ + 1) max{(a+b) 2 , c 2 } .

	We conclude that		
	Corollary C.3.		
	µ1(Ω) ≥	16(L 2	1
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Appendix A. Proof of the generalized Buser's estimate For the sake of completeness, here is the proof in Buser's book [3, section 8.2.1], revisited in the Euclidean space R N and slightly generalized. We recall the statement here below.

Lemma A.1. (Generalized Buser Lemma) For any bounded domain Ω that is decomposed into a j-partition Ω1, . . . , Ωj and for any decomposition of the integer k as the sum of j positive integers: k = k1 + . . . + kj, we have

Moreover, if the inequality (21) is an equality, then µ k i (Ωi) = µ k (Ω) for all i and there exists an eigenfunction φ ∈ H 1 (Ω) associated with µ k (Ω) whose restriction to each Ωi is also a Neumann eigenfunction for µ k i (Ωi).

Remark A.2. The equality case in Lemma 2.1 occurs for instance when Ω is a square divided into two rectangles Ω1, Ω2 in such a way that µ1(Ω) = µ2(Ω) = µ1(Ω1) = µ1(Ω2).

Proof of Lemma A.1. Let us consider an L 2 -orthonormal basis

, where 1 ≤ i ≤ j, associated with the first ki eigenvalues in Ωi, denoted by

The main property that we will use in the sequel is that, whenever a function

This follows from the standard min-max principle which says that (see for instance Theorem 3.I.9. page 69 of [START_REF] Levitin | Topics in Spectral Geometry[END_REF]),

Now for each 0 ≤ ℓ ≤ k we consider a normalized eigenfunction φ ℓ associated to the eigenvalue µ ℓ in the big domain Ω. The space V ect{f i ℓ } ℓ=0,...,k i i=1,...,j is of dimension k in L 2 (Ω), and on the other hand the space V ect{φ0, . . . , φ k } is of dimension k + 1. Therefore, there exists a function φ ∈ V ect(φ ℓ ) that lies in the orthogonal of V ect(f i ℓ ). In other words we can find some coefficients α ℓ such that the function

Up to dividing φ by its L 2 norm we can also assume that ´Ω φ 2 dx = 1 or put differently,

On the other hand by orthogonality of {φj} in H 1 (Ω) we have

which proves that

Now if equality occurs, then we have equality in ( 22) which means that all the values of µ k i (Ωi) must be equal. Then there is equality also in (24) which means that µ k i (Ωi) = µ k (Ω), for all i. Then there is also equality in (23) which means that φ is an eigenfunction for µ k (Ω). Moreover the equality in (22) says that the value of the Rayleigh quotient of φ on Ωi is equal to µ k i (Ωi) thus according to [15, Theorem 3.I.9, page 69] we infer that the restriction of φ on Ωi must be a Neumann eigenfunction associated to µ k i (Ωi). □

Appendix B. Squeezing or stretching lemma

Let us now give a classical result that can be found for example in [14, Proof of Proposition 8.1] or [START_REF] Laugesen | Triangles and other special domains[END_REF]Lemma 6.20]. Let t ∈ (0, 1) and let ψt : R 2 → R 2 be the squeezing mapping defined by ψt(x, y) = (x, ty) (we can do exactly the same proof with t ≥ 1 and in that case where the eigenvalue decreases this would be a stretching lemma). For a domain Ω we denote by Ωt := ψt(Ω) the squeezed domain in the "vertical direction". Email address: sigersak@tohoku.ac.jp