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Instantaneous Frequency Estimation in

Multicomponent Signals in Case of Interference

Based on the Prony Method
B. Dubois-Bonnaire, S. Meignen, and K. Polisano

Abstract—In this paper, we develop a general method to
estimate the instantaneous frequencies of the modes making up
a multicomponent signal when the former exhibit interference
in the time-frequency plane. In particular, studying the repre-
sentation given by the spectrogram, we show that it is possible
to characterize the interference between the modes using the
Prony method, which enables us to build a novel instantaneous
frequency estimator for the mode. The relevance of the proposed
approach is demonstrated by comparing it with different state-
of-the art techniques based on ridge detection.

Index Terms—Time-frequency, AM/FM multicomponent sig-
nal, interference, finite rate of innovation, prony method, spec-
trogram ridges, synchrosqueezing technique.

I. INTRODUCTION

MANY non-stationary signals such as audio signals

(music, speech, bird songs, . . . ) [1], electrocardio-

gram [2] and thoracic and abdominal movement signals [3]

can be approximated as a superimposition of amplitude and

frequency-modulated (AM/FM) modes. Such a signal is called

multicomponent signal (MCS), and is defined as

f(t) =

P∑

p=1

fp(t), with fp(t) = Ap(t)e
2iπφp(t), (1)

where the instantaneous amplitudes (IAs) Ap(t) and the

instantaneous frequencies (IFs) φ′p(t) are supposed to be

positive. To capture frequency variations over time is essential

when dealing with MCSs [4], for which the short-time Fourier

transform (STFT)

V h
f (t, η) =

∫

R

f(x)h(x − t)ei2πη(x−t)dx, (2)

with h a real window, is commonly used. The spectrogram, the

squared absolute value of the STFT Sh
f (t, η) :=

∣∣∣V h
f (t, η)

∣∣∣
2

,

is often used for visualization purpose.

A component (or mode) of an MCS can usually be asso-

ciated with a spectrogram ridge, a curve essentially made of

local maxima along the frequency axis of the spectrogram,

which consists of an approximation of the IF of the mode [5].

However, the quality of that estimation is tightly related to how

well the modes are separated in the spectrogram; when two

modes get too close, ridge computation becomes challenging
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as certain interference patterns appear. To improve that aspect,

techniques based on the adaptive short-time Fourier transform

[6], [7], [8] were developed, unfortunately without any guar-

antee that the modes are well separated everywhere in the TF

plane. The computational cost of such a transform compared

with STFT is also considerably increased.

Here, we adopt a different strategy for IF estimation by

considering the spectrogram at each time instant as a finite rate

of innovation (FRI) signal [9], made of the sum of different

types of components, some associated with the modes of the

MCS, and some others associated with interference between

modes. As we will see, our goal will not be to remove the

interference, but to take them into account to improve IF

estimation. This paper is organized as follows: in Sec. II

we recall the basis of ridge detection on the spectrogram or

on the synchrosqueezing transform [10] in the context of IF

estimation. In Sec. III we introduce the main contribution of

the paper that is, how to account for interference in a way

that fits into the FRI model ; this then enables us to define a

new algorithm for IF estimation, based on Prony method [11],

[12]. In Sec. IV, we illustrate the relevance of the proposed

approach on different types of interference and carry out some

comparisons with state-of-the art techniques based on ridge

detection introduced in Sec. II.

II. IF ESTIMATION BASED ON RIDGE DETECTION

A very classical approach to estimate the IF of the modes of

a MCS is to consider ridge detection on the spectrogram. For

that purpose, one considers a discretized version of the STFT,

V
h
f [n, k] which approximates V h

f ( n
Fs
, k
K
Fs), with Fs the

sampling frequency, n = 0, . . . , N − 1 and k = 0, . . . ,K − 1,

K being the number of frequency bins. Though many different

adaptive techniques were recently defined to build these ridges

[13], [14], we here consider that they are made of local

maxima along the frequency axis (LMFs) connected together

assuming the modulation on the modes is bounded by some

user-defined value. Each ridge can be viewed as an estimate

of the IF of the modes, which we will refer to by IF-SR in the

following (for IF estimation based on spectrogram ridges). We

will also investigate IF estimation based on ridges associated

with the Fourier-based synchrosqueezing transform (FSST)

[15]. In a nutshell, the IF of each mode of f can be estimated

from the STFT using a so-called local instantaneous frequency
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(LIF) estimator defined as ω̂f(t, η) = ℜ{ω̃f (t, η)} with

ω̃f(t, η) =
∂tV

h
f (t, η)

2iπV h
f (t, η)

= η −
1

2iπ

V h′

f (t, η)

V h
f (t, η)

. (3)

The FSST then consists of reassigning the STFT through:

T h
f (t, ω) =

∫

|V h
f
(t,η)|>γ

V h
f (t, η)δ(ω − ω̂f (t, η))dη, (4)

where δ is the Dirac distribution, and γ some threshold. By

discretizing T h
f both in time and frequency, and then extracting

the ridges on the modulus of T h
f using the same procedure as

for the spectrogram, one obtains estimations of the IFs of the

modes, which we denote by IF-FSSTR (for IF based on FSST

ridges) in the following.

One of the major limitation of IF-SR and IF-FSSTR is that

the quality of estimation depends on the frequency resolution

K , the estimates being piecewise constant (the ordinates of

the ridges are on the frequency grid). To circumvent this

limitation, assuming (t, ψp(t)) is an estimate of (t, φ′p(t))
computed using IF-FSSTR, an IF estimate for the pth mode

is obtained, off the frequency grid, through (t, ω̂f (t, ψp(t))).
This new IF estimate will be denoted by IF-FSSTR-OG (OG

standing for off the frequency grid).

III. IF ESTIMATION IN INTERFERING MODES BASED ON

THE PRONY METHOD

When a signal is composed of pure tones, we show that its

spectrogram fits into a FRI model that is adaptable to other

types of MCSs (Sec. III-A). We then demonstrate how this

can be used to estimate the IF and IA of the modes making

up such signals (Sec. III-B).

A. Interference Description

In the spectrogram, the pth mode appears as a ribbon

centered around its instantaneous frequency φ′p(t), the width

of which is directly related to the spread of the window

used in the STFT (see Eq. (5) for example). When the

modes are sufficiently separated, their IF can be accurately

estimated by means of spectrogram ridges [16], introduced

in Sec. II, provided the frequency resolution is fine enough.

When this separability hypothesis is not satisfied, they become

inaccurate IF estimates. Indeed, the closer the IFs get in the

TF plane, the stronger the interference, up to a point where

specific TF structures, called time-frequency bubbles (TFB)

[5], [17] appear. In order to grasp the nature of interference,

let us consider the signal f made of two pure harmonics

f(t) = Aei2πω1t + ei2πω2t. Computing the STFT with the

window hσ(t) = e−π t2

σ2 , one gets the following spectrogram

Shσ

f (t, η) = σ2
[

Modes part︷ ︸︸ ︷
A2e−2πσ2(η−ω1)

2

+ e−2πσ2(η−ω2)
2

+2Ae−πσ2
(
(η−ω1)

2+(η−ω2)
2
)
cos(2π(ω2 − ω1)t)︸ ︷︷ ︸

Interference part

]
,

(5)

which splits into two parts, one corresponding to the modes,

constant in time, and the other to the interference which

oscillates at frequency 1
δω

, where δω := ω2 − ω1. Let us

consider the interference part

Ihσ

f (t, η) := 2Ae−πσ2
(
(η−ω1)

2+(η−ω2)
2
)
cos(2πδω t)

= Be−2πσ2(η−ω1+ω2
2 )

2

cos(2πδω t),
(6)

where B := 2Ae−πσ2 δω2

2 . In that case, the spectrogram can

be rewritten as a sum of three shifted and modulated version

of the same kernel Gσ(x) = e−2πσ2x2

.

More generally, when the signal contains P pure tones with

constant amplitudes, the different interferences between these

modes lead to a spectrogram composed of Q := P (P+1)
2

Gaussian functions:

Shσ

f (t, η) =

Q∑

q=1

aq(t)Gσ(η − ηq), (7)

where aq can be negative when associated with mode inter-

ference (otherwise it is the squared amplitude of a mode), and

ηq being either ωk for some k or the average of two such

frequencies.

When a mode is modulated in frequency, its spectrogram

at time t can still be expressed as a Gaussian function [15],

which only slightly differs from Gσ . The model (7) can thus

be adapted to the case of P modulated modes, using the

approximation

Shσ

f (t, η) ≈

Q∑

q=1

aq(t)Gσ (η − ηq(t)) , (8)

that accounts for potential changes in the IF of the modes.

B. IF Estimation Based On the Prony Method

1) Approximation of the spectrogram using Fourier series:

Our strategy for IF estimation is based on the Prony method

[11], [12]. Using Eq. (8), with the notations g := Gσ ,

aq,n := aq(
n
Fs

) and ηq,n := ηq(
n
Fs

), we discretize the

spectrogram to obtain sn,k ≈ Shσ

f ( n
Fs
, k
K
Fs) on the TF grid

for n = 0, . . . , N − 1 and k = 0, . . . ,K − 1. More precisely,

we have:

sn,k =

Q∑

q=1

aq,ng

(
k

K
Fs − ηq,n

)

=

Q∑

q=1

aq,n
∑

m∈Z

cm(gFs
)ei2π

m( k
K

Fs−ηq,n)
Fs

≈
∑

m∈Z

cm(g)

Q∑

q=1

aq,ne
−i2π

mηq,n
Fs

︸ ︷︷ ︸
ln,m

ei2π
mk
K ,

(9)

with cm(gFs
) the mth Fourier coefficient of the restriction of

g to [−Fs/2, Fs/2]. g(±Fs/2) being very small, cm(gFs
) can

be approximated by cm(g) = 1
Fs
ĝ( m

Fs
) = 1√

2σFs
e
−π m2

2σ2F2
s .

To avoid the use of an infinite sum, we approximate Eq. (9)

keeping only 2M0 + 1 Fourier series coefficients:

sn,k ≈

M0∑

m=−M0

cm(g)ln,mei2π
mk
K . (10)
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2) IF and IA computation using the Prony method: Equa-

tion (10) can be viewed as the approximation of sn,• in

the space VM0
= span

{
cm(g)ei2π

•m
K , m = −M0, . . . ,M0

}
,

which rewrites matrix-wise, for a fixed n as:

sn ≈ VDgln ⇔ ln = D
−1
g V

−1
sn, (11)

where V
−1 is the left inverse of V, Dg is a diagonal

matrix gathering the Fourier coefficients cm(g) for m =
−M0, . . . ,M0. Note that the value of ln,m does not depend

on the choice for M0 (as long as M0 ≥ m) as the left inverse

can be seen as the orthogonal projection on the space VM0

spanned by 2M0 + 1 orthogonal vectors (indeed for m 6= m′,

we have
∑K−1

k=0 cm(g)ei2π
km
K cm′(g)e−i2π km′

K = 0).

Once ln is computed, the Prony method is used to retrieve

ηq,n: let h be a filter of size Q+1 such that for all j, (ln∗h)j =
0, and remark that

(ln ∗ h)j =
∑

k∈Z

hk

Q∑

q=1

aq,ne
−i2π(j−k)

ηq,n
Fs

=

Q∑

q=1

aq,ne
−i2πj

ηq,n
Fs H

(
e−i2π

ηq,n
Fs

)
,

(12)

with H(z) =
∑

k∈Z
hkz

−k the Z-transform of h. Then fixing

n and defining ωq := e−i2π
ηq,n
Fs , since (ωj

q)
j=m0,...,m0+Q−1
q=1,...,Q is

an invertible matrix and aq,n is non-zero for all q, it follows

that H (ωq) = 0 for all q = 1, . . . , Q. Conversely, if H (ωq) =
0 for all q = 1, . . . , Q then one derives (ln ∗ h)j = 0 from

Eq. (12). Thus, an annihilating filter h of ln of size Q+1 has

{ωq}q=1...Q as its roots.

As the coefficients cm(g) decay very quickly as |m| in-

creases, to use those associated with larger values of |m|
may result in numerical instabilities. Therefore, the indices

we consider in ln,• are centered around 0.

Consequently, considering a filter h of length Q + 1, with

h0 = 1 (see [9] for details), we write (12) for j = 1, . . . , Q,

to obtain the following system of Yule-Walker equations




ln,0 · · · ln,−Q+1

ln,1 · · · ln,−Q+2

...
. . .

...

ln,Q−1 · · · ln,0







h1
h2
...

hQ


=−




ln,1
ln,2

...

ln,Q


 , (13)

which has a unique solution. This reconstruction approach also

allows for the estimation of the instantaneous amplitudes (IA)

of the modes, since one can then write:




w0,1 · · · w0,Q

...
. . .

...

wQ−1,1 · · · wQ−1,Q







a1,n
a2,n

...

aQ,n


=




ln,0
ln,1

...

ln,Q−1


 , (14)

with wm,q = e−i2π
mηq,n

Fs , W = {wm,q}
q=1,...,Q
m=0,...,Q−1 and an =

(a1,n, . . . , aQ,n)
⊤, which is an invertible Vandermonde system

Wan = ln.

3) Algorithm in practice: Going back to (6), in a signal

made of two pure tones, at time t = 2k+1
4δω with k in Z,

the interference is null, implying that the just described Prony

method with Q = 3 wrongly looks for three Gaussian func-

tions where there are only two. In practice, this results in jumps

in IF estimation at these locations. We deal with this issue

by removing these problematic IF estimates. Furthermore, at

each time instant n, we only keep the IF estimates associated

with an amplitude in modulus larger than Tn (in our case

fixed to 10−2max
q

|aq,n|, i.e. 1 % of the maximum amplitude

at time n). Finally, we connect the remaining IF estimates

using monotone piecewise cubic interpolation [18]. Once these

IF estimates are computed, some may still be related to

interference between modes. So, to discriminate these from

those actually associated with the modes of the MCS (which

we want to keep), we simply remark that the former are

associated with negative amplitudes on some interval, and we

discard such IF estimates in our final set of estimates.

Lastly, though the algorithm we propose assumes the num-

ber P (and thus Q) of modes contained in the MCS is

known, it would technically be possible, but not in the scope

of the present paper, to assess this number by studying the

eigenvalues of the matrix in (13) [19]. To summarize, the

algorithm runs as follows:

Algorithm: Estimation of IF and IA based on Prony method

Input: – f a multicomponent signal,

– P the number of modes in f .

1: Compute the spectrogram {sn,k} of f with window g.

2: Estimate Q = P (P +1)/2 IFs and IAs at each time index

n from sn using (13) and (14).

3: Connect IF and IA estimates when n varies using a

frequency closeness criterion.

4: Remove the points in IF and IA estimates associated with

irrelevant jumps in IF estimation.

5: At each time index n, remove the points in IF and IA that

are below the threshold Tn.

6: Construct missing IA and IF estimates using monotone

piecewise cubic interpolation [18].

7: Remove IF estimates associated with negative amplitude

on some interval.

Output: Remaining IF estimates.

IV. RESULTS

In this section, we study the quality of the IF estimation

provided by our algorithm when the modes are close in

frequency (Sec. IV-A), and compare it with state-of-the art

techniques based on ridge detection (Sec. IV-B). We conclude

with an example on a more complex signal, demonstrating the

generality of our method. Due to space constraints, the focus is

essentially put on IF and not IA estimation. The code enabling

the reproduction of the figures is available at [20].

A. IF Estimation in Close Modes Situations

1) Case of Three Parallel Pure Tones: In this section, we

first consider the signal composed of three pure tones whose
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Fig. 1: (a) Spectrogram of a three pure-tones signal containing

two strongly interfering modes, with estimated IFs superim-

posed; (b) Same as (a) but for two close parallel linear chirps.

spectrogram is represented in Fig. 1a, the value of σ being

fixed to 0.04. This signal is such that the two modes with the

lowest frequencies strongly interfere, and the third one is away

from the two others. The amplitude of the modes are 3, 2 and

1 from high to low frequencies. In this case, since P = 3,

then Q = 6, and the algorithm described in Sec. III-B leads to

the three IF estimates superimposed on Fig. 1a (the estimation

errors computed using (15), are 0.63, 0.20, and 4.85 · 10−5,

for p = 1 to 3 respectively).

2) Case of Two Parallel Linear Chirps: The spectrogram

of a linear chirp is also a Gaussian function but the window

length parameter is slightly different from the σ considered

when dealing with pure tones [17]. Therefore, when two

parallel linear chirps interfere (Fig.1b), the interference pattern

is not exactly the same as that described in (7). Nonetheless,

the approximation made in (8) holds and leads to accurate IF

estimations (with Q = 3, see IF estimations superimposed on

Fig. 1b, the estimation error (computed with (15)) is 1.26 for

both modes).

B. Comparison with Ridge Detection Techniques

We now compare the proposed technique with those based

on ridge detection introduced in Sec. II. Denoting by IFp

an estimation of the IF of the pth mode, we compute the

estimation error as:

E(IFp) =

√√√√ 1

L

L−1∑

n=0

(
φ′p

(
n

Fs

)
− IFp(n)

)2

. (15)

We here consider a signal made of two pure tones with the

same amplitude, whose spectrogram is displayed in Fig. 2a. In

the following, we only show the IF estimation error for one of

the mode, as the quality of estimation is similar for the other.

According to [17], for that type of signal, the spectrogram

exhibits two separate ridges associated with each mode as

soon as
√

π
2σ(ω2−ω1) ≤ 1, which corresponds to 0.04 in our

case. This is reflected on Fig. 2b where the performance of

IF estimation based on the spectrogram ridges significantly

degrades as σ hits that value. We also notice on Fig. 2b

that, since the frequencies ω1 and ω2 are purposefully not

chosen on the frequency grid, IF-SR and IF-FSSTR lead to
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Fig. 2: (a) Spectrogram of two interfering modes; (b) IF

estimation error corresponding to formula (15), and for the

lowest frequency mode (Q = 3 in the Prony method).

a biased estimate even for large values of σ. IF-FSSTR-OG

compensates for that issue for large σ but, as this technique is

based on ridge detection, the estimation performance worsens

when σ decreases, which is not the case with the proposed

Prony-based method.

C. Illustration on a More Complex Signal

In this last section, we illustrate the importance of consider-

ing the interference between the modes in the Prony method,

on a more complex signal whose spectrogram is displayed in

Fig. 3. We overlay the IF estimation with the Prony method

with Q = 2 (a) and Q = 3 (b), and clearly see that considering

Q = 3, rather that Q = 2 avoids spurious oscillations in IF

estimation where interference occurs.
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Fig. 3: Prony method with (a): Q = 2; (b): Q = 3.

V. CONCLUSION

In this paper, we have presented a novel technique for

IF estimation using the formalism provided by the Prony

method. We have shown its relevance in situations where

strong interference occurs, and that it outperforms traditional

techniques based on ridge detection in such circumstances. As

the simulations were carried out in the absence of noise, we

are currently working on adapting the proposed approach to a

noisy context.
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