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Abstract. The overexploitation of natural resources and pollution are
urgent concerns affecting the Earth’s global system. Earth Observation
(EO) data can be used to analyze the environmental impact of human
activities. However, extracting meaningful insights from EO time series
data requires domain expertise. In this position paper, we propose a
methodology to improve the accessibility and understanding of environ-
mental trends for a wide audience. Using Machine Learning (ML) tech-
nologies, we detect and describe in the Semantic Web (SW) changes in
EO time series.
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1 Introduction

The overexploitation of natural resources such as forests and seas, as well as the
pollution of air, soil, and water are urgent concerns affecting the Earth’s global
system and leading to climate change and loss of biodiversity. The Intergovern-
mental Panel on Climate Change (IPCC)? constantly reports the drastic conse-
quences of inappropriate human behavior against the environment. To improve
decision-making and implement effective environmental policies that counteract
these negative trends, non-experts stakeholders, e.g., policy-makers and citizens,
need access to Open Data that gives them insight into the environmental evolu-
tion of their municipality, here broadly referred to as Territorial Unit (TU).
Earth monitoring programs such as US Landsat?* and European Coperni-
cus® provide a free and open collection of satellite data depicting the Earth,
also known as Earth Observation (EO) data. Due to the enormous amount of
EO data, most state-of-the-art works [1, 8, 10] propose organizing EO images
into Data Cubes. An Earth Observation Data Cube (EODC) is a massive multi-
dimensional array organizing data to properly store, manage, and analyze the

3 www.ipcc.ch
4 landsat.gsfc.nasa.gov
5 Www.copernicus.eu/en
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EOs [3]. Although EODCs offer numerous benefits, it also presents certain chal-
lenges. For instance, managing EODCs to obtain information requires expertise.
Specialists compute indices such as the Normalized Difference Vegetation Index
(NDVI) to assess the environmental characteristics of specific areas. However,
these indices are provided as raw time series, which requires metadata as well as
processing and analysis to understand their meaning and evolution over time.
Furthermore, EODCs are isolated from other data on the Web, difficulting their
interoperability and reusability.

This position paper introduces our methodology focused on enhancing the
accessibility and understanding of the environment’s evolution over time (i.e.,
the environmental trajectory of Territory Units), by exploiting Machine Learning
and Semantic Web technologies. In particular, this paper outlines three key
areas of focus: (1) Structuring and semantizing EO data, (2) Automatically
detecting significant changes in time series, and (3) Modeling environmental
trajectories in the Semantic Web. This research is part of the TRACES project®,
an international collaborative research program between France and Switzerland,
with a focus on building a Knowledge Graph (KG) that provides insights into
the environmental evolution of municipalities for a wide audience.

2 Related work

Below, we present related work that is relevant to the problems we aim to address
and that fits our proposed methodology:

1. Structure and semantize EO data: Semantic Sensor Network (SSN) [2]
and RDF Data Cube Vocabulary (QB) [13] are standard ontologies that
can be used to integrate EO data into the Semantic Web framework. SSN
provides a means to describe sensors and their observations, encompassing
satellite imagery as well. RDF Data Cube supports the publication of various
multidimensional data, e.g., socioeconomic or environmental, and aligns with
the OLAP cube concept used in Online Analytical Processing. Following, in
projects like TELEIOS [9], novel methods for managing large EO data were
devised. However, their focus is primarily on publishing image metadata on
the Semantic Web using the non-standard stRDF ontology. The paper [5]
introduced a method for publishing EO raster data at the pixel level us-
ing RDF Data Cube. In the context of our work, it is more appropriate to
publish data at a local level such as municipalities, which is meaningful to
the stakeholders. In the [15] study, the authors presented a modular ontol-
ogy that contributes to the semantization of EO data. Their model reuses
vocabularies such as SNN and the TSN ontology [4]. As a result, the integra-
tion allowed characterizing the Territory Units along with their land cover
characteristics.

2. Detect significant changes in time series: Time series data often present
change points such as trends and breaks, which indicate shifts in the behav-
ior of the observations. Such changes, related to environmental indices, may

5 http://traces-anr-fns.imag.fr
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describe an important event or phenomenon. Various studies have proposed
methods to detect these changes in time series. One widely used algorithm is
the Breaks For Additive Seasonal and Trend (BFAST) [16] algorithm, which
decomposes time series into trend, seasonal, and remainder components while
identifying changes within the data. BFAST is versatile and applicable to
different types of time series data. BFAST lite is an alternative version that
improves speed and flexibility by utilizing a multivariate piecewise linear
regression approach and handling missing data without interpolation [11].
Continuous Change Detection and Classification (CCDC) is commonly used
for near-real-time change detection [19]. BFAST is the most popular tech-
nique for detecting trends and breaks in environmental indices like EO land
cover. In the work conducted by [7], BFAST was employed to detect forest
clear-cuts and burnt areas in a specific region of central Portugal. In the re-
search paper [18], the authors monitored methane emissions from wetlands
in China between 2002 and 2018 to observe the impact of climate change.
Additionally, in [17], BFAST was applied to detect changes in 16-day NDVI
images taken in a forested study area in southeastern Australia.

3. Modeling environmental trajectories in the Semantic Web: Few
works focus on describing environmental trajectories in the Semantic Web.
In the study of [14], a modular ontology was proposed to monitor land cover
changes over time. In the paper of [12] is introduced an ontological design for
modeling “trajectories” and their explanatory factors. Although the study
focused on life trajectory data, it introduced vocabulary terms applicable to
environmental evolution, e.g., “episode”, “event”, and “trajectory”. In the
work of [6], the author proposed the use of BFAST to detect events in big EO
data. Then, he presents a hierarchy of terms such as “trajectory”, “pattern”,
and “event” in order to describe land cover changes over time. This work is
relevant to our proposal but has not been developed so far.

3 Methodology

Based on the RW (section 2), we present our methodology that consists in first,
preparing the input data by aggregating the EOs by municipalities to be as closer
as possible to the stakeholders; second, opening and structuring the aggregated
data, in time and space, by exploiting Semantic Web and Machine Learning
technologies such as the RDF Data Cube vocabulary and the BFAST algorithm
respectively; and third, building a Knowledge Graph describing the environmen-
tal trajectory of municipalities based on our produced RDF data cubes and the
detected breaks and trends. Additionally, Figure 1 (a) illustrates the different
phases involved in our approach.

1. Input data: The TRACES project partners are the creators of the Swiss Data
Cube (SDC)”. The SDC data cover all of Switzerland and part of France.
In this research, three significant case studies were selected from the SDC

" https://www.swissdatacube.org/
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(a) The pipeline of our methodology (b) Example of BFAST output: Change detection in
Bellevaux NDVI TS
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Fig. 1. Overview of our contributions and preliminary results.

as our study area, i.e., Fribourg, Evian, and Grand Geneve. Subsequently,
Land Cover indices were calculated for each study area and delivered as
raw time series. More specifically, three families of indices compose our case
studies. Landsat Indices (LIS), Landsat Surface Temperature (LST), and
Corine Land Cover (CLC). All the indices were calculated using the SDC.
Furthermore, LIS and LST are available at seasonal, monthly, and daily
levels covering 38 years, from 1985 to 2022, while CLC has five versions
(1990, 2000, 2006, 2012, and 2018). Refer to Table 1 for more information.

Index Family|Index var Name Total number of indices| Obs. per index
| NDSI Normalized Difference Snow Index
NDVI  |Normalized Difference Vegetation Index Seasonal: 149 aprox
LIS WRI Water Ratio Index 20 i :

Monthly: 380 aprox.

NDBI Normalized Difference Built-Up Index Daily: 897 aprox.

LST st Surface Temperature 1
cle-11 Urban fabric
cle-22 Permanent crops . .
CLC 44 5-time observations.
cle-31 Forests

Table 1. Three families integrate the selected Land Cover indices for our case studies:
LIS, LST and CLC.

2. Open and structure EO time series: To overcome the challenges of isolation,

interoperability, and reusability typically found on EODCs, we utilize the
W3C standard RDF Data Cube vocabulary (QB). QB enables the organi-
zation and publication of EO time series in a multidimensional structure on
the Semantic Web. QB also allows the linking and sharing of cube dimen-
sions with Linked Data resources. Simultaneously, we use Machine Learning
techniques, such as trends and breaks detection algorithms, to structure the
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successive data measures over time into segments that characterize the evo-
lution of a given Territory Unit. These consecutive segments are referred to
as Environmental Trajectories of Territories (ETT).

3. Semantic trajectory: After identifying the segments that best represent the
environmental evolution of a given Territory Unit (i.e., ETT), our goal is
to define, with the support of experts, a vocabulary that describes these
segments on the Semantic Web. We refer to this vocabulary as the Seman-
tic Environmental Trajectories of Territorial units (SETT) Ontology. SETT
may include terms such as “increase”, “decrease”, “deforestation”, “replant-
ing”, “forest”, “trajectory” and “trend” in order to describe the segments
in a precise but easy-to-understand format. Later, by populating the SETT
ontology with data from our three case studies and linking it to other Linked
Data resources, including our produced RDF data cubes, we obtained the
SETT Knowledge Graph. Our main objective with SETT is to enable the
creation of a semantic trajectory that provides a comprehensive understand-
ing of the environmental changes over time expressed as an RDF Graph for
wide audiences, such as citizens, associations, and policymakers.

4 Modeling SETT using trends and breaks detection

To understand the environmental trajectory of a Territory Unit, it is essential
to analyze the changes in the EO time series. Environmental changes can be
linked to important events. For example, a decline in the NDVI index might
suggest a reduction in vegetation cover due to deforestation policies. To detect
significant changes, the Machine Learning algorithm BFAST is used. It separates
the time series data into three components: trend, seasonal, and remainder. The
trend component reflects the long-term changing pattern, while the seasonal
component captures recurring patterns like seasonal variations. The remainder
component represents the unexplained parts of the data. By analyzing the trend
and seasonal components, BFAST identifies breakpoints, which indicate shifts
or changes in the behavior of the time series. However, it is important to note
that BFAST has limitations. It does not work when the time series contains
unknown measurements. In such cases, an interpolation process must be applied
to complete the missing values. In addition, the selection of parameters, such
as the “break threshold”, influences the results of the analysis. This is why we
want to test other change detection algorithms, such as BFAST lite or the CCDC
algorithm, in the future.

As shown in Figure 1 (b), we applied BFAST to the NDVT index of Bellevaux,
a French municipality. As a result, the time series was decomposed into seasonal,
trend, and residual components. Moreover, only one significant breakpoint was
detected in the trend component between the years 1990 and 1992, representing
a decrease in vegetation cover in Bellevaux. The reader must note that this
experiment was performed for one index at one municipality, while in this work,
we have to deal with large data, i.e., 373 municipalities and 65 indexes with data
covering 38 years.
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In this research, we will work with TRACES project members, specialists in
Land Cover and Land Change Science, to address challenges such as large EO
data management, setting suitable parameter values in change detection algo-
rithms, and defining a specific vocabulary for SETT oriented to broad audiences.
Regarding the latter, terms such as “increase”, “decrease”, “deforestation”, “re-
planting”, “forest”, etc, can be used to describe the environmental trajectories
and avoid complex terms such as “breakpoints” and “normalized difference veg-
etation index”. Subsequently, the SETT ontology will be linked to other Linked
Data resources and metadata. This whole integration enables the creation of a
semantic trajectory that provides a comprehensive understanding of the envi-
ronmental changes over time for municipalities.

5 Conclusions

This position paper aims to enhance the accessibility and comprehension of EO
data, at the municipality level, for a broad audience. To face this issue, we
proposed a methodology that constructs complex artifacts called SETT which
require the exploitation of Semantic Web and Machine Learning technologies.
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