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Solids on Soli: Millimetre-Wave Radar Sensing through Materials
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Fig. 1. Integrating radar-based gesture recognition in consumer devices requires the signal to pass through a covering material
twice (a). To help application designers select suitable materials for interaction, we provide an ample catalogue of 75 everyday
materials that is agnostic to the underlying gesture classifier. Designers can evaluate their own recognisers against just 3 reference
materials (b), enter the observed performance measures into a simple tool (c) and get updated performance estimates for all materials
in the catalogue.

Gesture recognition with miniaturised radar sensors has received increasing attention as a novel interaction medium. The practical use

of radar technology, however, often requires sensing through materials. Yet, it is still not well understood how the internal structure

of materials impacts recognition performance. To tackle this challenge, we collected a large dataset of 14,090 radar recordings for 6

paradigmatic gesture classes sensed through a variety of everyday materials, performed by humans (6 materials) and a robot system

(75 materials). Next, we developed a hybrid CNN+LSTM deep learning model and derived a robust indirect method to measure signal

distortions, which we used to compile a comprehensive catalogue of materials for radar-based interaction. Among other findings, our

experiments show that it is possible to estimate how different materials would affect gesture recognition performance of arbitrary

classifiers by selecting just 3 reference materials. Our catalogue, software, models, data collection platform, and labeled datasets are

publicly available.
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1 INTRODUCTION

In recent years, gesture recognition with miniaturised radar sensing has received increased attention in academia and

industry. Two factors have fuelled this trend: the emergence of low-cost low-power radar chips and the impressive

breakthroughs in deep learning, which allows to interpret radar signals very accurately for interaction. However, there

are still several unsolved research problems in order to enable practical applications of this technology.

First and foremost, real-world interaction with radar devices often requires sensing through materials. This not

only includes interaction e.g. with a mobile phone while in our pocket, but also interaction with other devices (e.g.

infotainment systems or smart homes) through a radar sensor that is integrated in nearby objects such as clothing

accessories, car dashboards, seats, doors, indoor furniture, and walls. Nevertheless, it is still not well understood how

different materials affect gesture recognition performance. Ideally, application designers would speed up development

with a convenient method for determining which materials would perform best for a recogniser of their choice.

To make radar-based gesture recognition practical on different materials, we first need to understand how the radar

signal degrades when passing through them. This seemingly straightforward problem is rather challenging in reality.

To measure signal degradation with high precision, one would need to acquire an expensive vector network analyser

and operate it in a shielded environment, preventing electromagnetic interference. Another problem arises from the

plethora of potential materials and various thicknesses one would like to evaluate. Together with different gesture

sets and custom classifiers, this would result in a vast number of measurements to perform. Lastly, if we were able to

overcome all these aforementioned problems, how could we conveniently predict gesture recognition performance on

untested materials when only signal characteristics (e.g. transmission coefficient) for the materials are known?

To address these challenges we (i) used Google Soli, a millimetre-wave (mm-wave) radar sensor, to record range

Doppler images and time series data for 11 core features as well as 9 meta-features; (ii) developed a state-of-the-art

hybrid CNN+LSTM deep learning model to test recognition performance on 75 materials; and (iii) derived a robust

method to measure signal distortions, which we used to compile a catalogue of materials, and predict recognition

performance on arbitrary gesture classifiers. Even though a few tabulations of material properties are available in the

literature [16, 34], to the best of our knowledge none exist for a large variety of everyday materials in the mm-wave

band.

2 PROBLEM STATEMENT AND CONTRIBUTIONS

Radar technology uses radio-frequency (RF) electromagnetic waves to detect nearby objects. Essentially, a radar device

has a transmitter antenna (Tx) that emits an RF pulse to the environment, and a receiving antenna (Rx) that captures

the echoed pulse. The received signal is analysed to determine object properties, such as their radar cross-section and

velocity [51].

RF waves can be affected by a variety of phenomena such as: absorption, refraction, diffraction, polarisation, scattering,

and reflection [45]. Since these phenomena happen simultaneously and interact with one another, a simplified model

based on the lightwave analogy (Figure 2) is used to characterise the signal, where only the incident, reflected, and

transmitted components are considered. This model is typically employed in network analysis, where designers and
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Fig. 2. Lightwave analogy (a) to characterise signal distortions [3]. When no occluding material is present (b), the transmitted RF
pulse gets reflected by the user’s hand (referred to as incident signal). When an occluding material is present (c), the reflected signal
needs to pass though the material (referred to as transmitted signal).

manufactures of networking components characterise how such components distort the input signal over a desired

frequency range [3].

When radar sensing is used for interaction through materials, the RF signal needs to pass through them twice. Since

different materials have different characteristics, which depend on their thickness and their dielectric properties, these

characteristics will significantly affect how the signal propagates through them. This opens up the following research

questions:

(1) How to accurately characterise radar signal distortions through materials without using an expensive equipment?

(2) How would such distortions affect gesture recognition?

(3) Can we predict performance of arbitrary classifiers when only the characteristics of signal distortions for a given

material are known?

While it may appear obvious that the contrast of an RF signal degrades while it passes through materials, thereby

affecting recognition accuracy, our work is the first one to precisely quantify this degradation. As previously discussed,

such a quantification is non-trivial yet critical when designing radar-based gesture interaction systems.

Among other findings, we observed a strong inverse correlation of signal amplitude and material thickness for

several Soli core features that we describe in Section 3.5. We validate our findings on different material types, showing

that our proposed measurement method is adequate and reveals that some materials are more apt for interaction than

others. As a result, we have compiled an extensive catalogue of everyday materials for radar sensing that we make

publicly available (see Supplementary Materials).

3 RELATEDWORK

We analyse previous research according to our main areas of interest: gesture interaction, RF sensing technologies,

mm-wave radar sensors (including Google Soli), and sensing through materials.

3.1 Gesture interaction

Gesture interaction is an active research topic with a history dating back to the 1960s with Sutherland’s Sketchpad

project [55] and his far reaching vision of the Ultimate Display essay [56]. Today, gesture interaction can be categorised

into 2 broad groups: (i) mid-air, used for example in consumer electronics such as gaming consoles, and (ii) stroke-based,
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used for example in devices with touchscreens such as smartphones. We focus on the former group, given the increasing

importance it has gained recently.

Mid-air gesture interaction has been extensively researched as an alternative to other modes or as a complementary

mode of interaction in a variety of settings such as entertainment [6, 44, 47], automotive industry [19, 28, 39, 46, 50],

medical applications [10, 26, 31, 43, 54], wearable computing [4, 14, 15, 17], smart home control [18, 60, 64], virtual

reality manipulation [23, 65], and art installations [36, 37]. Such interaction is particularly interesting where other

modes are dangerous, hard, or impossible to use.

3.2 RF sensing technologies

Despite popular technologies used for implementing gesture recognisers such as RGB [27, 52, 58] or infrared (IR) [11, 15,

21, 53, 54] cameras, RF-based solutions including radar [29, 40], Wi-Fi [2, 41, 69], GSM [68], and RFID [14] offer several

advantages. Above all, RF sensing technologies are insensitive to light, which usually affects camera and, especially, IR

based solutions (both cannot be used in bright sunlight). RF sensing does not require an elaborate setup of various

sensors on or around users. In addition, the RF signal can penetrate non-metallic surfaces and can sense objects and

their movements through them.

RF sensing has been used for analysing walking patterns or gait [7, 33, 62], tracking sleep quality and breathing

patterns [43, 70], and recognising movements of body parts such as hands for interactive purposes [14, 25, 28, 36, 37, 41,

60]. The radars used in these studies operated at various frequencies, ranging from 2.4 GHz [60, 70] to 24GHz [28, 43].

3.3 Millimeter-wave radar-on-chip sensors

To detect and recognise fine-grained interactions, it is necessary to increase the radar’s spatial resolution. For this, radar

chips working at even higher frequencies, around 50ś70GHz, have been recently used [29, 63]. Such chips open up the

path to precise close-range gesture interactions in a variety of applications, including wearable, mobile, and ubiquitous

computing. Since these sensors operate in the millimeter range, they allow for tighter integration of the circuit due to

the reduced size of different passive (non-moving) components and low-power requirements [29]. These properties also

allow manufacturing them inexpensively at scale.

Radar sensing is very effective in detecting close-proximity, subtle, nonrigid motion mostly articulated with hands

and fingers (e.g. rubbing, pinching, or swiping) [22, 61] or with small objects (e.g. pens) [63]. It can also recognise

large gestures in 3D space [35] with remarkable accuracy. Recent research has explored radar-based interaction with

everyday objects and in augmented reality scenarios [9, 59], as well as creating music [5, 48]. A mm-wave radar can

also distinguish various materials when placed on top of it [25, 66]. What is missing, however, is an investigation of

gesture recognition performance through various materials present on and around us, which is the focus of our work.

We should note that there are essentially two standard approaches to mm-wave gesture recognition: one feeds

the raw signals or derived images (e.g. Doppler images) directly into a classifier [20, 22], while the other approach

applies different beamforming vectors to extract/track location before feeding it to a classifier [35, 42]. The results of

the characterisation in this work are primarily focused on the first approach, since we use the Google Soli sensor. The

second approach is possible with other mm-wave sensors like the IWR1443 board from Texas Instruments, for example.

3.4 Sensing through materials

The fact that RF signals can penetrate non-metallic materials makes them particularly interesting for interaction. Alas,

sensing through materials has been barely explored. Notable examples include tracking people through walls [1, 8]
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Solids on Soli 5

and gesture recognition through walls [41] and above an office desk [25]. All these approaches have focused on coarse

gestures instead of fine-grained ones, have considered only one material, and have not used radar-on-chip sensors.

Leiva et al. [20] investigated radar-based gesture recognition on wearable devices, but they did not characterise

signal distortions nor estimated recognition performance on arbitrary gesture classifiers. Now that mm-wave radar

technology is available on consumer products, it is expected that it will be further integrated in a variety of objects in

the near future.

3.5 Google Soli

Soli is a 60GHz 4-channel receiver (Rx antennas) 2-channel transmitter (Tx antennas) radar-on-chip that has become

available in consumer electronics such as the Pixel 4 smartphone. Complemented with time-varying micro-Doppler

frequency features analysis [7], the sensor offers detection of movements with near-millimeter precision [29]. Soli

comes with an SDK that can represent the radar signal with range Doppler images as well as a variety of low-level core

features [22]:

(F1) Range: Overall distance of the moving targets to the sensor.

(F2) Acceleration: Overall acceleration of the moving targets.

(F3) Energy total: Amount of reflected energy overall.

(F4) Energy moving: Amount of reflected energy from the moving targets.

(F5) Velocity: Overall velocity of the moving targets.

(F6) Velocity dispersion: Dispersion of energy over the Doppler space.

(F7) Spatial dispersion: Dispersion of energy over the range space.

(F8) Energy strongest component: Amount of reflected energy from the most dominant moving target.

(F9) Movement index: Moving target identifier.

(F10) Fine displacement: Instantaneous velocity of each moving target.

(F11) Velocity centroid: Weighted average of the overall velocity.

These core features essentially characterise the energy distribution across the radar transformation space, which have

been shown to accurately describe relative finger dynamics [5, 22] as well as end-effector trajectories [28, 67].

4 GESTURE RECOGNITION EXPERIMENTS

We describe the gesture recogniser we developed under a control condition (no occluding material). It will be our

baseline classifier to analyse radar sensing performance through different materials later on.

4.1 Gesture set

We surveyed previous work that used mm-wave radar sensing for interaction [61] as well as gestures supported by the

Soli sensor in consumer devices. From these gesture sets, we chose the ones that are relatively easy for a mechanical

system to replicate. Eventually, a set of 6 distinct gestures was selected (Figure 3).

4.2 Experimental system

To explore the effect of different materials on gesture classification performance, we should be able to execute as many

times as needed the gestures with minimal articulation variation. For this reason, we first built a robot system and then

recruited human participants.
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Fig. 3. Experimental gesture set. Filled and dashed circles denote, respectively, the initial and final position of the ball.

Fig. 4. Experimental platform setup and model arhitecture. Left: robot setup. Middle: human setup, Right: Hybrid deep learning
model architecture. Range Doppler images (1) are processed with a CNN (2) that extracts feature maps followed by max pooling (3)
and spatial dropout (4) layers. Then, a fully connected layer (5) creates the feature vectors for a recurrent LSTM layer with dropout (6)
and finally a softmax layer (7) outputs the gesture class prediction (𝑦̂).

4.2.1 Robot system. We followed the setup proposed by Leiva et al. [20]. It consists of (i) a robot-based gesture simulator

based on the GoPiGo3, to which an empty plastic ball of 5 cm diameter is attached; (ii) an aluminium-shielded frame

placed on the table, on which different materials can be placed (the frame prevents the radar signal from escaping

around the analysed material); and (iii) the Soli radar sensor placed in the frame and connected to a computer (see

Figure 4 left). The distance between the sensor and the ball in its lowest position is 5 cm.

This system is designed to generate two types of movements: pendulum-like (e.g. swing or swipe movements) and

vertical movements along the 𝑧-axis. The pendulum movement is generated by manually releasing the ball from a

limiter position, whereas the vertical movements are automatically generated by the robot.

4.2.2 Human system. This setup is identical to the robot system, but instead of a bouncing ball, a human hand executes

the gestures (Figure 4 right). The user is sitting in front of a computer display that instructs what gesture to perform

and when to perform it. Besides visual indicators, the system also plays a sound to help the user executing the gesture

systematically within a fixed time window. For this setup, we recruited six participants (5 males, 1 female) aged 24ś34.

4.3 Data collection setup

Gestures are stored in two data formats: (i) a sequence of frames of 32 × 32 px range Doppler images; and (ii) a time

series of 11 core features, computed with the Soli SDK. We use the range Doppler images for developing our classifiers,

since they enable robust recognition [20, 61]. The extracted core features are used to characterise signal distortions.
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The Soli sensor is configured to record at 1000Hz, Doppler range sensitivity is set to [-2,0] dB (based on pilot trials

with our robot system), and the built-in adaptive clutter filter is disabled. Note that 1000Hz sampling represents an

upper bound, which can be conveniently downsampled as needed.

We collected 20 repetitions of the 6 gestures for 75 materials with the robot system (9,000 recordings) and 200

trials of each gesture in the baseline condition (1,200 recordings). Each participant performed 10 repetitions of the 6

gestures for 6 materials (2,160 recordings), and 300 trails (50 per participant) for each gesture in the baseline condition,

totalling 1,800 recordings. Some recordings were flagged as inappropriate by the experimenter (e.g. the user articulated a

different gesture or it was performed sloppily) and thus were removed, reducing the total number of baseline recordings

performed by the participants to 1,730.

Since Soli computes range Doppler images for each Rx antenna, we averaged them to ensure a robust frame

representation. Further, images were grayscaled and sequences were resampled to 100Hz and padded to 400 timesteps,

which is large enough to accommodate for arbitrary gesture articulations. As a reference, each recorded gesture took

1.5 seconds on average, or 150 timesteps.

4.4 Model architecture

Our model, depicted in Figure 4, is a hybrid deep CNN+LSTM (convolutional neural network + long short-term memory)

model, inspired by previous work [12, 22, 30, 32, 61]. We also tested a Conv3D architecture (see Appendix) but it did

not match the excellent performance of the hybrid CNN+LSTM architecture. See Table 5 for a comparison. Note that by

having such an excellent baseline performance, we can attribute the subsequent recognition performance degradation

to the occluding materials. Otherwise, the recogniser would become a confounder variable in our experiments.

Each frame (Doppler image) is processed by a stack of 32 × 64 × 128 convolutional layers with 3 × 3 filters to capture

spatial information. The resulting frame sequence is further processed in a recurrent fashion by means of an LSTM

layer (embedding size of 128) to capture temporal information, and eventually classified with a softmax layer. Our

model has 2.4M weights, which is rather small for today’s standards.

Each convolutional layer automatically extracts feature maps from input frames that are further processed by max

pooling and spatial dropout layers. The max pooling layers (pool size of 2) downsample the feature maps by taking the

largest value of the map patches, resulting in a local translation invariance.

Crucially, the spatial dropout layer (drop rate of 0.25) removes entire feature maps at random, instead of individual

neurons (as it happens in regular dropout layers), which promotes independence between feature maps, thus improving

performance. The LSTM layer uses both a dropout rate and a recurrent dropout rate of 0.25. The softmax layer has

dimensionality of 6, since we have 6 gestures.

4.5 Model training and evaluation

We created random splits comprising 50% of the data for model training, 20% for model validation, and the remaining

30% for model testing. The test data are held out as a separate partition, which simulates unseen data. The model was

trained only with data from ‘no material’ condition in batches of 10 sequences using categorical cross-entropy as loss

function.

We used the Adam optimiser with learning rate 𝜂 = 0.0005 and decay rates 𝛽1 = 0.9, 𝛽2 = 0.999. The maximum

number of epochs was set to 200, but we also set an early stopping criteria of 50 epochs. That is, training stopped if the

validation loss did not improve after 50 consecutive epochs, and the best model weights were retained.
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We built 7 classifiers for each data source (robot and humans), totaling 14 classifiers. As shown in Table 1, all classifiers

were built for different gesture combinations (6/6 and all possible combinations of 5/6 gestures), to demonstrate that our

findings are agnostic to the recogniser and data source. Finally, each classifier is evaluated on the baseline (no material)

condition as well as on 75 materials for the robot system and on 6 materials for the human system, respectively.

4.6 Results

Table 1 shows that our model architecture performs really well for different combinations of gestures: accuracy is 98%

on average for the robot and around 96% for human participants. G0 denotes no action, which is used as a łrejection

class”. Further evaluation on all materials are provided in Table 5 in the Appendix.

Performance is slightly better in the robot condition (Table 1 top), as expected, since the variation in gesture

articulation is lower as compared to that of the humans, as the robot movements are systematically executed the same

way.

Table 1. Gesture recognition performance metrics for the baseline (no material) condition, using both our robot system (top table)
and aggregated data from six users (bottom table).

Classifier Gesture set Recordings ACC AUC Precision Recall F1

Robot A [G0 G1 G2 G3 G4 G5] 1,200 97.35 98.42 97.40 97.35 97.35

Robot B [G1 G2 G3 G4 G5] 1,000 96.07 97.57 96.20 96.07 96.10

Robot C [G0 G1 G2 G3 G4] 1,000 99.29 99.55 99.31 99.29 99.29

Robot D [G0 G1 G2 G3 G5] 1,000 96.55 97.88 96.75 96.55 96.56

Robot E [G0 G1 G2 G4 G5] 1,000 98.97 99.35 98.97 98.97 98.97

Robot F [G0 G1 G3 G4 G5] 1,000 98.57 99.11 98.60 98.57 98.57

Robot G [G0 G2 G3 G4 G5] 1,000 99.29 99.55 99.29 99.29 99.29

Mean 98.01 98.78 98.07 98.01 98.02

Humans A [G0 G1 G2 G3 G4 G5] 1,730 93.33 96.00 94.05 93.33 93.30

Humans B [G1 G2 G3 G4 G5] 1,428 92.36 95.25 92.58 92.36 92.38

Humans C [G0 G1 G2 G3 G4] 1,440 97.00 98.12 97.02 97.00 96.99

Humans D [G0 G1 G2 G3 G5] 1,451 97.22 98.27 97.41 97.22 97.22

Humans E [G0 G1 G2 G4 G5] 1,450 98.96 99.34 98.96 98.96 98.96

Humans F [G0 G1 G3 G4 G5] 1,451 95.33 97.08 95.37 95.33 95.34

Humans G [G0 G2 G3 G4 G5] 1,440 95.83 97.38 96.32 95.83 95.80

Mean 95.72 97.35 95.96 95.72 95.71

Gestures:

G0 - No action 

G1 - Swing right 

G2 - Swing left 

G3 - Away 

G4 - Towards 

G5 - Wiggle 

ACC: Accuracy

AUC: Area Under the ROC

F1: F1 score

5 MODELING SIGNAL DISTORTION

To characterise distortion of electromagnetic waves as they pass though materials, we need to measure the difference

between incident and transmitted signal across the frequency range of the radar sensor. As discussed in Section 1,

one approach is to use a vector network analyser, which is an expensive equipment that needs to be operated in an

isolated environment. As an alternative, we propose to perform indirect measurements using only information from

the radar sensor and our robot system. The incident signal can be measured when no material is present, whereas the

transmitted signal can be measured when different materials occlude the sensor. Therefore, we can measure distortions

in the Amplitude and Signal-to-Noise Ratio (SNR). We formulated the following hypotheses:

• H1: Distortions in amplitude of the radar signal should be detectable using indirect measurements of core features.

• H2: Distortions in SNR should be detectable using indirect measurements also available through core features.
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5.1 Data collection

We recorded the radar signal passing through 7 different materials (Oriented strand board, Paper, Drywall, Acrylic,

Polycarbonate, Polyethylene, and Styrofoam) each of various thicknesses (26 materials in total) as our robot performed 2

pendulum swings over the sensor. We chose this particular gesture as it induces a signal that is sinusoidal in nature

with a clear amplitude, period, and phase, which should be easy to notice visually. To make our observations robust to

measurements error, we repeated the recording 20 times for each material (520 recordings in total).

5.2 Data analysis

5.2.1 Detecting amplitude distortions with indirect measures (H1). Since we completed multiple recordings of the

pendulum swing gesture for each material, we aggregated the data prior to visualisation. Then, we synchronised the

first peak or valley on the same time series. In sum, our aggregation procedure followed these steps:

(1) Downsample the recording frame rate from 1000 to 200Hz, which is more than enough to capture fine-grained

variations of Soli core features.

(2) Apply Dynamic Time Warping with barycenter averaging.

(3) Smooth the time series by calculating the mean over a sliding window of 10 frames.

(4) Apply Savitzky-Golay finite impulse response (FIR) filter with polynomial order 3 and frame length of 21.

We opted for a barycentric averaging method because the arithmetic mean depends on the order of frame aggregation,

which can be problematic when tying to create reliable descriptors [38]. Further, we selected a relatively small window

size and small polynomial order to avoid aggressive filtering [49].

We note that core feature F10 (Fine Displacement) requires additional preprocessing to compensate for measurement

drifts caused by the sensor, therefore we performed 2 additional steps:

(1) Outlier removal using a Hampel filter with a window size of 100 frames and removal criteria of 3 standard

deviations.

(2) Offset the signal to zero using the minimum value in the whole time series.

With this setup, we should observe a drop in signal amplitude with increasing material thickness. We also should

observe a periodic behaviour of the extracted features (e.g. distinct peaks at a constant period). To reinforce the visual

observation of amplitude and material thickness, we ran a correlation analysis between peak-to-peak amplitude of time

series data between core features and the thickness of a given material.

5.2.2 Detecting distortions in SNR (H2). Similar to signal amplitude, we expect to observe a distortion in SNR when

the signal passes through various materials. We also expect to see an inverse correlation betwewn SNR and material

thickness (the greater the thickness, the smaller the SNR).

SNR is defined as the ratio of the power of a signal to the power of background noise. We performed an indirect

computation of SNR, as follows. First, instead of considering signal power we considered signal amplitude. Second,

the amplitude measured in the łno action” gesture cases (Figure 3), in which the ball is stationary above the sensor, is

considered background noise. To get a reliable estimation, we took 20 measurements from each of the above-mentioned

26 materials, and aggregated these measurements by averaging at each frame of each time series. We also performed

frame outlier removal with the interquartile range technique [57] to ensure consistent estimates.
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Fig. 5. Time series of the radar signal as the ball swings past the sensor. Each plot represents one Soli core feature for the baseline (no
material) condition and 3 different thicknesses of Paper material (10, 100, and 200 sheets of paper). See our Supplementary Materials
for additional results.

Fig. 6. Correlation between peak-to-peak amplitude and Signal-to-Noise Ratio against material thickness for Soli core features F3, F4,
and F8.

5.3 Results

As an example, the visualisation of time series data for Paper materials (10, 100, and 200 sheets of paper) is provided in

Figure 5. We can see that peak-to-peak amplitude drops with increased material thickness for core features Energy

total (F3), Energy moving (F4), and Energy strongest component (F8). These features follow the periodic behaviour of a

pendulum swing. On the other hand, the time series data for more transparent materials such as Styrofoam, Polyethylene,

or Acrylic, only follow periodic swing behaviour whereas a drop in amplitude was not observed (see Supplementary

Materials).
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The correlation analysis of Amplitude and SNR with material thickness (Figure 6) confirmed our research hypotheses

H1 and H2. Except for more transparent materials to the radar signal, the correlation is very strong overall (mean -0.92

for amplitude and mean -0.82 for SNR). We can conclude that, to select appropriate material candidates, we can use Soli

core features F3, F4, and F8, since their signal distortions correlate best with material thickness.

6 MODELING MATERIAL PERFORMANCE

As the quality of the transmitted radar signal decreases due to signal distortions caused by occluding materials, we

expect to see a performance drop in our gesture classifiers. We hypothesise:

• H3: Distortions of the signal amplitude and SNR caused by materials should result in a drop of recognition

performance.

• H4: Performance drop can be modeled by indirect measurements of material properties based on the incident

and transmitted signal.

6.1 Material properties

We define (physical) material properties as a set of meta-features that can be derived from Soli core features. Considering

the nature of our experimentation system (e.g. our method cannot measure phase shift) we chose Transmission coefficient

(𝑇𝑐 ) and Insertion loss (𝐿) to measure material properties. Following standard measures in time series analysis, we chose

these descriptive statistics as meta-features: Mean, Median, Maximum, Asum (absolute sum across all values in the time

series), and Energy (sum of squares across the whole time series).

Transmission coefficient is defined as the transmitted voltage divided by the incident voltage. If the absolute value is

larger than 1, a system is said to have gain; otherwise it has attenuation [3]. We make the assumption that occluding

materials can only induce insertion loss, hence it is reasonable to limit their 𝑇𝑐 to 1, which we will refer to as 𝑇 ′
𝑐 . As our

system cannot directly measure voltage, we use signal Amplitude to calculate𝑇𝑐 . Insertion loss (in dB) is a pseudo-feature

based on the transmission coefficient [3]: 𝐿 = −20 log10 |𝑇𝑐 |. Only values larger than 0 are physically possible, which

we will refer to this limited insertion loss as 𝐿′.

6.2 Modeling performance drop

We build linear regression models of performance drop, where performance is defined as Perf = (Accuracy + AUC)/2

to get a single prediction outcome. The procedure follows these steps:

(1) Determine which core features are good candidates for the task at hand, by conducting a correlation analysis of

average performance against each material’s meta-features.

(2) Fit a linear regression model of recognition performance given the statistically significant predictors (model

coefficients) of material properties. We repeat this step for all the 14 gesture classifiers (Section 4.5).

(3) Choose the strongest predictor (with the highest 𝑝-value) and fit a simple linear regression model. We also repeat

this step for all the 14 gesture classifiers.

6.3 Results

6.3.1 Correlation analysis for all core features. Figure 7 shows that the best overall correlating core feature is Energy

moving (F4). The results also indicate that Acceleration (F2), Velocity (F5), Movement index (F9), and Fine displacement

(F10) are not good predictors. For these core features, the absolute mean and absolute median values across all material
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meta-features are either low or have a high standard deviation; see the 3 bottom rows in Figure 7. Based on these

results, we conclude that core features F1, F3, F4, F6, F7, F8, and F11 should be used for building multi-predictor linear

regression model. The high correlation between performance, amplitude, and SNR (rows 5 and 9 in Figure 7) confirms

H3: Distortions of the amplitude and SNR caused by an occluding material will result in a substantial degradation of

recognition performance.
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Fig. 7. Correlation analysis between gesture recognition performance and material meta-features of Soli core features. Features F2,
F5, F9, and F10 are weakly correlated and so they were excluded from MEAN, MEDIAN, and STDEV row-wise calculations.

The results also show that the best correlating meta-features are Transmission coefficient and Insertion loss, where

the two can be further enhanced if capped to 1 and 0, respectively. This capping of values makes sense because, as

previously hinted, they cannot induce gain when measured with an occluding material. For this reason, 𝑇 ′
𝑐 and 𝐿′

should be considered for building multi-predictor linear regression models.

6.3.2 Linear regression models. We chose all high-correlation core features (F1, F3, F4, F6, F7, F8, and F11), however we

noticed that the Energy strongest component (F8) is linearly dependent to other core features. Thus, we excluded it and

built a multi-predictor linear regression model with 54 predictors (9 material properties for each selected core feature,

marked as bold on the left margin in Figure 7). This linear regression model exhibits an excellent fit (Adj.𝑅2 = 0.94,

Figure 8 left). However, we can build a simpler regression model using only the most relevant material’s meta-feature Ð

𝑇 ′
𝑐 for core feature Energy Total (F3) Ð and still get a very good fit (Adj.𝑅2 = 0.85, Figure 8 right).

Table 2 shows how well linear regression models can predict performance of our 14 gesture classifiers. Single and

multi-predictor regression models are built in the same way as in Figure 8. The results show a good fit for all models,

with an excellent Adj.𝑅2 for the multi-predictor model (mean=0.91, std=0.03) and a high Adj.𝑅2 for the single-predictor

model (mean=0.81 with std=0.03 for robot and mean=0.85 with std=0.09 for human data). This confirms H4: it is possible

to build a linear regression model of gesture detection performance drop using material properties that are based
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𝑐
of core feature Energy

Total (F3).

on indirect measurement of incident and transmitted signal. This was validated for classifiers trained on different

combinations of gestures. Further, to show that recognition performance can also be estimated with other model

architectures, we repeated the same set of experiments with a Conv3D architecture (see Table 4 in Appendix).

Table 2. Linear regression models (LRMs) to predict performance of Hybrid architecture for different gesture classifiers trained on
both robot and human data with different gestures sets. The results show strong correlation across all conditions.
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Robot A 75 73 6.78 5.09 0.85 0.85 <.001 75 20 4.20 1.64 0.99 0.94 <.001 Humans A 6 4 4.04 3.20 0.85 0.82 <.01
Robot B 75 73 6.49 4.73 0.82 0.81 <.001 75 20 4.90 1.92 0.97 0.89 <.001 Humans B 6 4 3.15 2.40 0.93 0.91 <.01
Robot C 75 73 8.63 6.70 0.83 0.83 <.001 75 20 4.88 1.85 0.99 0.94 <.001 Humans C 6 4 4.50 3.39 0.91 0.89 <.01

Robot D 75 73 8.18 6.39 0.77 0.77 <.001 75 20 4.60 1.78 0.98 0.93 <.001 Humans D 6 4 4.46 3.19 0.85 0.81 <.01

Robot E 75 73 9.30 7.48 0.79 0.79 <.001 75 20 5.74 2.21 0.98 0.92 <.001 Humans E 6 4 3.31 2.49 0.93 0.91 <.01

Robot F 75 73 6.06 4.59 0.78 0.78 <.001 75 20 4.68 1.87 0.97 0.87 <.001 Humans F 6 4 4.93 3.83 0.75 0.69 <.05

Robot G 75 73 6.63 4.91 0.85 0.85 <.001 75 20 6.05 2.39 0.97 0.87 <.001 Humans H 6 4 2.43 1.73 0.94 0.92 <.01

Mean 7.44 5.70 0.81 0.81 5.01 1.95 0.98 0.91 Mean 3.83 2.89 0.88 0.85

Acronyms: Perf: (ACC + AUC)/2  DoF: Degrees of Freedom   RMSE: Room Mean Square Error   MAE: Mean Absolute Error  R²: R-squared   Adj. R²: Adjusted R²

7 PERFORMANCE ON ARBITRARY CLASSIFIERS

The main goal of our catalogue is to conveniently predict performance of a gesture classifier when only characteristics

of signal distortions for a given material are known. This would enable designers to make more informed decisions

when deciding on their own gesture sets, model architectures, and operational conditions for their sensing systems.

We evaluate how well our catalogue of materials can support the above-mentioned claim for situations where

performance (measured by the geometric average of Accuracy and AUC, see Section 6.2) of a given gesture classifier is

known for at least 3 materials from our catalogue. For simplicity, we use only one predictor (transmission coefficient);

however, we have shown that it is possible to improve the model fit by considering more predictors (Section 6.2). At the
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same time, adding more predictors implies additional effort since more data points are required to build the model,

hence a small number of predictors is preferable.

Note that 3 is the minimum number of materials to derive reasonable results, in order to cover the whole range

of our catalogue: one material should come from the low opacity range (𝑇 ′
𝑐 ∈ [0.8, 1]), one from the middle opacity

range (𝑇 ′
𝑐 ∈ [0.3, 0.5]), and one from the high opacity range (𝑇 ′

𝑐 ∈ [0, 0.2]). We fitted the linear regression model with

this single coefficient as in Section 6.3.2 and repeated this process 4 times, each time with a different combination of 3

materials.

Table 3 reports the results of these experiments. Material combinations were randomly chosen, following the

procedure described above. The results show Adj.𝑅2 ranging from 0.75 to 0.81 and mean absolute error (MAE) ranging

from 5.36% and 6.57%, which suggest that it is possible to estimate how different materials would affect gesture

recognition performance by considering just 3 reference materials. Designers can thus predict gesture recognition

performance for all the materials in the catalog for their own classifiers, provided that their set of gestures is similar to

the one we have investigated. In the next section we elaborate more on this discussion.

We offer an interactive tool in our software repository that provides a convenient way to build various linear

regression models and visualise the list of material recommendations based on predicted performance, as highlighted

in Figure 1c. Our catalogue is designed as a guide book, is color coded, and has cards that include factual data about

material properties together with microscope images at various magnifications (1x, 50x, 200x). We also provide in our

software repository a simple step-by-step guide to expand the catalogue with new materials.

Table 3. Single-predictor linear regression models using𝑇 ′
𝑐
of Energy total (F3) and observations from 3 materials to predict gesture

recognition performance on all other materials.

MODEL FIT MODEL EVALUATION
Material 1 Material 2 Material 3

N
um
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at
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DoF RMSE MAE R² Adj.R² N
um
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at
er
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ls

RMSE MAE R² Adj.R²id
name 
(thickness mm) id

name 
(thickness mm) id

name 
(thickness mm) DoF Gesture classifier:

   Gesture set: [G0 G1 G2 
                        G3 G4 G5]        
   Dataset: Robot
   Material:  none
  Recordings: 1,200

14 Eva Fome (40) 51 Deb Cerovy.(10) 82 Picea Abies (17) 3 1 0.96 0.52 1.00 1.00 72 72 7.26 5.82 0.81 0.81
42 Silk (<1) 60 Wood Populus (10) 32 Chipboard (32) 3 1 0.25 0.13 1.00 1.00 72 72 8.43 6.11 0.75 0.75
10 MDF (10) 21 Ceramic tiles (6) 75 Dywall (24) 3 1 9.83 5.20 0.91 0.82 72 72 7.59 5.36 0.80 0.80
35 Paper (10 sheets) 79 Paper (200 sheets) 80 Paper (300 sheets) 3 1 1.79 0.96 1.00 0.99 72 72 8.04 6.57 0.79 0.78

Acronyms: DoF: Degrees of Freedom    RMSE: Room Mean Square Error    MAE: Mean Absolute Error    R²: R-squared    Adj. R²: Adjusted R-squared

8 DISCUSSION, LIMITATIONS, AND FUTUREWORK

Our work can inform application designers interested in estimating a-priori performance of materials for mid-air gesture

interaction. The results for Oriented strand board, Paper, and Drywall (Section 5) provide evidence for the validity of

our proposed approach, showing a high correlation between material thickness and both peak-to-peak amplitude and

SNR (Figure 5). We can conclude that our proposed indirect measurement method is suitable for describing signal

distortions as the radar signal passes though various materials. However, our results also indicate that the proposed

method fails to accurately describe signal distortions for materials that are transparent to the radar signal, such as

Styrofoam, Polyethylene, Acrylic, and Polycarbonate. One confounding factor can be attributed to the fact that we tested

only thicknesses up to 5 cm for these materials, for which small changes in amplitude and SNR are difficult to detect

by our experimental setup. This could be addressed by testing more thicknesses, although the operational range of

mm-wave radar is bound to close proximity (up to 30 cm).
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To make our evaluation agnostic to the data source, recogniser, and architecture, we tested up to 28 different classifiers

(Table 2 and Table 4). The results show a good fit in all cases, which allows us to conclude that our catalogue can be

used for predicting gesture recognition performance for new materials and similar gesture sets.

As the ultimate test, we have shown how to conveniently estimate gesture recognition performance when only

characteristics of signal distortions for a few materials are known. This is possible to achieve by fitting a simple

linear regression model based on performance estimates of just 3 materials from our catalogue. We argue that further

improvements are possible if more reference materials are considered, but at the same time we acknowledge that it

would take additional effort to do so. Overall, our companion tool provides a reasonable ballpark in a matter of minutes,

if not seconds.

For the curious reader, our linear regression models to predict recognition performance have an analytical form. For

example, Perf = 42.3 + 52.7𝑇 ′
𝑐 for the simple model, where𝑇 ′

𝑐 is the limited transmission coefficient of the material. The

intercept and slope values were averaged over the 7 robot-based classifiers considered (Table 1) across all the materials

from our catalogue. This expression can be used to provide a rough estimate without having to use our companion tool,

provided that the designer is using a similar classifier to the ones we have developed in this work. In the Supplementary

Materials we provide the analytical expression of the full regression model, which has 54 coefficients and provides

more accurate estimates than the simple model.

Our catalogue currently holds 75 materials of various types and thicknesses, but there are many more materials one

could envision for radar sensing applications. Due to the low complexity of our experimental setup, one could easily

expand the existing catalogue. In principle, this is limited to those users who have access to the Soli sensor and the

SDK. However, it is important to note that this does not preclude the usage of our catalogue, since the extracted Soli

core features are hardware-agnostic [22]. As such, it should be possible to predict gesture recognition performance for

untested materials with other radar-on-chip sensors that operate in the same frequency range as Soli. We believe this

would make for an interesting future work.

Another avenue for future work would be to use a vector network analyser and extend our catalogue with direct

measurements of material properties. Researchers with access to such equipment could further analyse the influence

of signal distortion on gesture recognition performance using our datasets. Perhaps most interesting would be to

investigate distortions in signal phase, which is not possible to measure with our method. Signal phase is important for

modeling distortion in electronics [3] and it may be useful to predict gesture recognition performance as well.

9 CONCLUSION

We have studied how different materials occluding a mm-wave radar sensor would affect gesture recognition perfor-

mance. Our proposed method is suitable for understanding signal degradation as it passes through various materials.

Critically, our method uses indirect measurements of radar signal properties, requiring only a radar-on-chip sensor

and optionally a DIY robot system for automating gesture articulation. As a result, we have compiled a catalogue of

everyday materials that can support designers to determine which materials and gesture sets will perform best in their

particular situation. Finally, it is possible to predict gesture recognition performance on any material similar to the ones

we have analysed. Our catalogue is diverse enough to cover a reasonably large range of materials, and we hope others

will find it useful and build upon our work.
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A ALTERNATIVE MODEL ARCHITECTURE

Table 4. Linear regression models (LRMs) to predict performance of 3D CNN for different gesture classifiers trained on both robot
and human data with different gestures sets. The results show strong correlation across all conditions.
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Robot A 75 73 8.69 7.02 0.78 0.78 <.001 75 20 5.72 2.28 0.97 0.91 <.001 Humans A 6 4 7.16 5.27 0.86 0.83 <.01
Robot B 75 73 10.60 8.87 0.72 0.72 <.001 75 20 7.37 2.97 0.96 0.87 <.001 Humans B 6 4 6.85 5.45 0.85 0.82 <.01
Robot C 75 73 13.00 10.20 0.59 0.58 <.001 75 20 12.00 4.95 0.90 0.64 <.01 Humans C 6 4 7.12 5.58 0.86 0.83 <.01

Robot D 75 73 11.10 8.87 0.56 0.56 <.001 75 20 7.23 2.92 0.95 0.81 <.001 Humans D 6 4 7.34 5.49 0.90 0.88 <.01

Robot E 75 73 11.60 9.61 0.71 0.70 <.001 75 20 8.93 3.69 0.95 0.82 <.001 Humans E 6 4 9.07 6.66 0.80 0.76 <.05

Robot F 75 73 9.05 6.99 0.78 0.77 <.001 75 20 7.15 2.82 0.96 0.86 <.001 Humans F 6 4 6.85 5.26 0.87 0.84 <.01

Robot G 75 73 8.19 6.65 0.81 0.81 <.001 75 20 7.61 3.14 0.96 0.84 <.001 Humans H 6 4 9.45 7.11 0.88 0.84 <.01

Mean 10.32 8.32 0.71 0.70 8.00 3.25 0.95 0.82 Mean 7.69 5.83 0.86 0.83

Acronyms: Perf: (ACC + AUC)/2  DoF: Degrees of Freedom   RMSE: Room Mean Square Error   MAE: Mean Absolute Error  R²: R-squared   Adj. R²: Adjusted R²

Previous work has shown that a spatio-temporal 3D CNN (Conv3D) architecture is an effective tool for accurate

action recognition of image sequences [13, 24]. Since Soli provides a sequence of Doppler images through time, we

developed a custom Conv3D architecture (Figure 9) as an alternative to our hybrid CNN+LSTM architecture (Figure 4).

This model processes each sequence of gesture images with a stack of four Conv3D blocks to extract feature maps.

Each block is composed of a Conv3D layer followed by a max pooling 3D layer and a spatial dropout layer. The Conv3D

layers have 32 × 64 × 128 × 256 units each with 2 × 2 × 2 filters and use LeakyReLU as activation function. The max

pooling layers (pool size of 2) downsample the feature maps across a 3D volume and the dropout layer (drop rate of

0.5) allows to prevent overfitting. Then, there is a fully-connected layer with 512 units followed by a softmax layer for

classification.
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Fig. 9. Conv3D deep learning model architecture. Range Doppler images (1) are processed with a Conv3D layer (2) that extracts
feature maps followed by 3D maxpooling (3) and spatial dropout (4) layers. Layers (2) to (4) are stacked in blocks of 32, 64, 128, and
256 units. Then a fully connected layer creates the feature vectors which are fed into a softmax layer (5) for class prediction (𝑦̂).

This model is trained with the Adam optimiser with learning rate 𝜂 = 0.001 and decay rates 𝛽1 = 0.9, 𝛽2 = 0.999. As

in our hybrid model training (Section 4.5), we set the maximum number of epochs to 200, and also set an early stopping

criteria of 50 epochs, which means that training stopped if the validation loss did not improve after 50 consecutive

epochs, and the best model weights were retained.

We built 7 classifiers for each data source (robot and humans), totaling 14 classifiers. This was done in the same

way as for our hybrid CNN+LSTM architecture (see Table 1). Again, all classifiers were built for different gesture

combinations (6/6 and all possible combinations of 5/6 gestures).

Table 4 shows strong correlation across all conditions, however RMSE andMAE are higher for the Conv3D architecture

when compared to the hybrid architecture (see Table 2). Nevertheless, these results support our claim that our method

of modeling material performance is actually agnostic to the model architecture.

Table 5 compares our two deep learning architectures considered for all the materials in the catalogue, using robot

data. As can be seen, the hybrid CNN+LSTM model architecture achieves better performance on average. Therefore,

it is preferred for measuring signal distortions with our proposed indirect method. Note that some materials induce

higher signal degradation, thereby lowering recognition performance, and the Conv3D architecture is more sensitive

than the hybrid CNN+LSTM architecture in this regard.

Table 5. Comparison of gesture recognition performance across all materials in our catalogue. We report mean ± standard deviation,
followed by 95% confidence intervals.

Metric CNN+LSTM model Conv3D model

Acc. (%) 73.62 ± 4.95 [68.67, 78.56] 66.14 ± 5.25 [60.89, 71.39]
AUC (%) 84.16 ± 2.97 [81.19, 87.13] 79.77 ± 3.15 [76.62, 82.92]
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