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Asymptotic and invariant-domain preserving schemes for
scalar conservation equations with stiff source terms and

multiple equilibrium points

Alexandre Ern†, Jean-Luc Guermond‡, and Zuodong Wang†

July 4, 2024

Abstract
We propose an operator-splitting scheme to approximate scalar conservation equations

with stiff source terms having multiple (at least two) stable equilibrium points. The scheme
combines a (reaction-free) transport substep followed by a (transport-free) reaction substep.
The transport substep is approximated using the forward Euler method with continuous finite
elements and graph viscosity. The reaction substep is approximated using an exponential
integrator. The crucial idea of the paper is to use a mesh-dependent cutoff of the reaction
time-scale in the reaction substep. We establish a bound on the entropy residual motivating the
design of the scheme. We show that the proposed scheme is invariant-domain preserving under
the same CFL restriction on the time step as in the nonreactive case. Numerical experiments
in one and two space dimensions using linear, convex, and nonconvex fluxes with smooth
and nonsmooth initial data in various regimes show that the proposed scheme is asymptotic
preserving.

Keywords. stiff sources, time-integration methods, conservation equations, asymptotic preserv-
ing, invariant domain.
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1 Introduction
The goal of the paper is to devise approximation schemes for scalar conservation equations with
stiff reaction terms having multiple stable equilibrium points. More precisely, we consider the
following scalar-valued PDE:

∂tu
ε +∇·f(uε) =

1

ε
R(uε) in Q, (1)

posed in the space-time cylinder Q := D × (0, T ), where D is an open bounded polyhedral subset
of Rd, d ≥ 1, and T > 0 is the observation time. The problem is equipped with suitable initial
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data, u0, and boundary conditions. Here, the Rd-valued function f is the flux, and the real-
valued function R is the reaction term. In many situations, a fundamental property of (1) is that
the entropy solution takes values in a bounded interval B ⊂ R, which we henceforth call invariant
domain. The set B typically depends on the initial and boundary conditions and on the equilibrium
points of R. The property of B being invariant, also called maximum principle, means that

uε ∈ B in Q. (2)

Without loss of generality, we assume that B := [0, 1]. More precise statements on the model
problem (1) are given in §2.

The stiffness of the system is quantified by the time scale ε > 0. We are interested in the
stiff regime ε � min(T, β−1`D), where `D := diam(D) is a reference length and β := LipB(f)
a reference speed. Since uε takes values in the bounded set B, it is possible to identify a limit
solution as ε → 0, say u0 := limε→0 u

ε, at least in the weak? L∞-topology. (The limit solution
u0 : D×(0, T )→ B should not be confused with the initial data u0 : D× → B for the problem (1).)
Typically, one expects that the limit solution u0 takes values in the subset

E := R−1({0}) ⊂ B, (3)

which contains the equilibrium (or stationary) points of the problem. We henceforth assume that
E is composed of a least three states, two or more being stable equilibria. In this situation,
one expects that the limit solution u0 consists of several constant states in E separated by shocks
moving at different (a priori unknown) speeds. The shock speeds generally differ from those known
in the nonreactive case. One crucial issue in the numerical approximation is to predict the correct
shock speeds. Albeit simplified, the model problem (1) is representative of some of the difficulties
encountered in the numerical simulation of nonequilibrium gas dynamics in hypersonic flows and
other combustion problems. We also emphasize that the situation considered in the paper with
multiple equilibrium points is more challenging than the setting with a single equilibrium point
(as, e.g., in dissipative systems and relaxation problems).

As discussed in Colella et al. [6], LeVeque and Yee [21], devising numerical approximation
schemes for the model problem (1) that work well in the limit ε → 0 is quite challenging. Many
standard methods yield wrong shock speeds in the reaction dominant regime when the mesh is
not fine enough. Our goal is to design approximation schemes endowed with the following two
key properties. The first one is to be invariant-domain preserving (IDP), i.e., to deliver a discrete
solution uεh (the subscript h refers to the mesh size used for the discretization, see §3) such that

uεh ∈ B in Q. (4)

The second one is to ensure the so-called asymptotic preserving (AP) property:

lim
ε→0

lim
h→0

uεh = u0 = lim
h→0

lim
ε→0

uεh. (5)

The left equality simply means that the scheme is convergent, whereas the right equality means
that the limit solution u0 can be captured in the under-resolved regime as well, i.e., the scheme is
consistent with the limit equation as ε→ 0. The reader is referred to Jin [16] for a review on AP
schemes.

We propose in the paper a time-stepping scheme that is observed to be AP and is proved to
be IDP with the same CFL restriction as in the nonreactive case. The AP property is based on
numerical observations, whereas the IDP property is based on theoretical arguments. We follow
the well-established paradigm of operator-splitting schemes, i.e., we perform, at each time step, a
forward Euler, nonreactive transport substep followed by a transport-free reaction substep. Many
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schemes are available in the literature to perform the transport substep: finite differences, finite
volumes, discontinuous or continuous finite elements. We focus here on continuous finite elements
with graph viscosity, as in [11, 12]. A natural idea for the reaction substep consists of employing
an implicit scheme, or, often better, an exponential-like integrator (see Hochbruck and Ostermann
[14] for a review). This approach has been successful for dissipative systems, kinetic equations,
and systems with relaxation; see, among others Chalabi [5], Chainais-Hillairet and Champier [4],
Pareschi and Russo [22], Filbet and Rambaud [10], Bulteau et al. [3], Hu and Shu [15]. However,
in the present situation, using an implicit scheme or an exponential integrator is not AP, as these
schemes usually predict shocks moving with the wrong speed as ε→ 0. This phenomenon has been
discussed in LeVeque and Yee [21]; see also Colella et al. [6], Engquist and Sjögreen [7], Jin and
Levermore [17]. The key reason for this odd behavior is that stiffness makes the discrete solution
too sensitive to the smeared representation of discontinuities separating equilibrium states.

In order to temper stiffness and achieve the AP property without sacrificing too much accuracy,
the main idea of the paper is to introduce a mesh-dependent cutoff on the reaction time-scale when
performing the reaction substep. The resulting operator-splitting scheme satisfies the following
properties: (i) It is IDP by design; (ii) It satisfies discrete entropy inequalities; (iii) It yields optimal
accuracy in the resolved regime; (iv) It is observed to be AP thorough numerical experiments in
one and two space dimensions using linear, convex, and nonconvex fluxes.

The literature on IDP-AP schemes for the present problem is relatively scarce. To our knowl-
edge, the few (IDP-)AP schemes available in the literature somehow exploit the knowledge of the
limit equation or work only in special situations. Two salient examples are the random projection
scheme devised in Bao and Jin [1, 2] and the IMEX scheme proposed in Svärd and Mishra [23]. The
projection scheme works for discontinuous (shock-type) initial data and convex flux, and the IMEX
scheme is tailored to situations for which the location of the discontinuities can be predicted by the
solution to the homogeneous problem (see §6 for other details). In contrast, the scheme proposed
in the paper does not require any knowledge on the limit equation and can handle a wide range
of situations, including nonconvex fluxes, general initial data, and discontinuities propagating at a
priori unknown speeds.

The rest of the paper is organized as follows. The model problem is presented in §2. The discrete
setting together with the proposed scheme are discussed in §3. The main results of this section are
Proposition 3.1 and Theorem 3.3, which establish, respectively, that the scheme is IDP and that it
satisfies entropy inequalities with a residual decaying to zero under some assumptions. Numerical
results are presented in §4, §5, §6. All the numerical experiments are conducted with the help of the
Gridap.jl library developed by Verdugo and Badia [24] in the julia programming language. In
§4, we study the cutoff parameters and identify an all-purpose cutoff strategy ensuring that the AP
property holds for all our numerical experiments. In §5, we assess the cutoff strategy on challenging
test cases. In particular, we highlight that the mesh-dependent cutoff strategy introduced herein
allows one to capture the correct shock location even in the under-resolved regime (recall that
the presence of multiple equilibrium points causes the shocks to travel at speeds that differ from
the nonreactive case). In §6, we finally compare the proposed method to existing schemes from
the literature. The main conclusion is that the proposed mesh-dependent cutoff strategy leads
to operator-splitting schemes that perform better than existing schemes from the literature when
simulating scalar conservation equations with stiff source terms and multiple equilibrium points.
Finally, §7 contains the proof of Theorem 3.3.
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2 Model problem
We consider the PDE (1) posed in the space-time cylinder D × (0, T ) together with the initial
condition u0 ∈ L∞(D;B) with B := [0, 1]. The flux and the source term are assumed to be smooth
with

f ∈ C1(B;Rd), R ∈ C1(B; [−1, 1]). (6)

Since the time scale ε > 0 is used to quantify the strength of the source term, we assume without
loss of generality that R takes values in [−1, 1]. We assume that there are 0 < ϑ0 < ϑ1 < 1 such
that

∂B = {0, 1} ⊂ E , R(v) < 0 ∀v ∈ (0, ϑ0), R(v) > 0 ∀v ∈ (ϑ1, 1), (7)

meaning that both 0 and 1 are stable equilibrium points. The values 0 and 1 are chosen for
normalization purposes without loss of generality. In general situations, these two values must be
replaced by the smallest and largest values of the stable equilibrium points associated with R. The
intermediate value theorem then implies that there is at least another equilibrium point α ∈ (0, 1).
The simplest setting is when E = {0, α, 1} and α is an unstable equilibrium point. The following
prototypical example considered by LeVeque and Yee [21] meets the above assumptions:

R(v) = Rα(v) := v(1− v)(v − α), ∀v ∈ [0, 1]. (8)

To avoid distracting technicalities with the boundary conditions, we assume that: (i) either the
initial data u0 is compactly supported in D and the observation time T is short enough so that the
solution uε remains compactly supported at all times t ∈ [0, T ]; (ii) or a zero boundary condition
is enforced at all times at any inflow boundary and the solution uε vanishes in a neighborhood of
the inflow boundary at all times. Both assumptions are reasonable since 0 is a stable equilibrium
point.

For any fixed ε > 0, the Cauchy problem admits a unique entropy solution (see e.g., Kružkov
[19, Thm. 2]). Specifically, for any convex entropy η ∈ W 1,∞(B;R) with entropy flux q(u) :=∫ u

0
η′(v)f ′(v)dv, and for any test function ψ ∈W 1,∞

0 (D × [0, T ];R+), the unique entropy solution
in L∞(Q;R) is such that the following holds:∫

D

η
(
uε(x, T )

)
ψ(x, T )dx−

∫
D

η
(
u0(x)

)
ψ(x, 0)dx

−
∫
Q

{
η(uε)∂tψ + q(uε)·∇ψ

}
dxdt ≤

∫
Q

1

ε
η′(uε)R(uε)ψdxdt. (9)

A characterization of the limit solution u0 as ε→ 0 is available in one space dimension (d = 1)
for convex fluxes. In this case, and assuming that the reaction term is given by (8) (the result
can be extended to more general reaction terms), it is shown in Fan et al. [9, Thm. 1.1] that u0

takes values in {0, 1} (as expected), with shocks moving at speed f(1)−f(0)
1−0 when the left and right

states are (1, 0) and at speed f ′(α) when the left and right states are (0, 1). Notice that in the first
case, the shock speed coincides with that given by the Rankin–Hugoniot relation just like for the
nonreactive problem. In the second case, the solution to the nonreactive problem is a rarefaction
wave, whereas the limit solution u0 for the reactive problem features a shock whose speed does
not satisfy the Rankin–Hugoniot relation (since, in general, f ′(α) 6= f(1)−f(0)

1−0 ). To the best of
our knowledge, the characterization of the limit solution remains an open problem in more general
situations.
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3 Discrete scheme
In this section, we present our scheme and establish that, under some assumptions, the scheme
is IDP and that it satisfies an entropy inequality with a residual decaying to zero as the mesh is
refined, uniformly in ε.

3.1 Discrete setting
The time discretization is defined by using the collection of discrete time nodes tn for all n ∈ N :=
{0:N}, with t0 = 0 and tN = T . The time step τn is defined as τn := tn+1 − tn, and we set
In := [tn, tn+1) for all n ∈ N := {0:N − 1}. To simplify the notation, we omit the superscript n
and denote the time step by τ .

To stay general, we do not specify the space discretization scheme yet; more details are given
in §3.3 in the context of continuous finite elements. Possible space discretization methods are, e.g.,
finite volumes, finite differences, discontinuous or continuous finite elements. At this stage, we just
assume that the space discretization is based on a mesh Th that belongs to a quasi-uniform mesh
sequence. Here, h denotes the mesh size, i.e., the largest diameter of the mesh cells. The space
discretization is characterized by a collection of degrees of freedom (dofs) which we enumerate with
the index set V. The set V is partitioned as V = V◦ ∪ V∂ , where V◦ collects the interior dofs and
V∂ the (inflow) boundary dofs. We denote I := card(V).

The operator-splitting scheme is composed of a (reaction-free) transport substep followed by a
(transport-free) reaction substep at each time step n ∈ N :

(Uni )i∈V
transport−−−−−−−−−−→ (Wn+1

i )i∈V
reaction−−−−−−−−−−→ (Un+1

i )i∈V , (10)

where (Uni )i∈V is obtained from the previous time step if n ≥ 1 or by a suitable approximation of
the initial condition if n = 0. For both transport and reaction substeps, boundary conditions can
be enforced by requiring that Un+1

i = Wn+1
i = Uni = 0 for all i ∈ V∂ .

We henceforth assume that the transport substep is IDP under a CFL restriction on the time
step: There exists a real number τ∗ depending on β and h so that for all

τ ≤ τ∗, (11)

the following holds true:(
Un := (Uni )i∈V ∈ BI

)
=⇒

(
Wn+1 := (Wn+1

i )i∈V ∈ BI
)
. (12)

We briefly show in §3.3 how (12) is achieved using continuous finite elements.

3.2 Details on the reaction substep and IDP property
We describe in this section a method to perform the reaction substep in (10). The central idea of the
paper is to regularize the stiffness parameter ε in the reaction substep by using a mesh-dependent
cutoff. Recall that there are two reference times, T and β−1`D. For the sake of simplicity, we
assume that both times are of the same order of magnitude, and we use T as the reference time.
Up to straightforward modifications, everything that is said hereafter remains valid if one replaces
T by min(T, β−1`D) in (13).

We define a regularized stiffness time using two user-dependent parameters (θ, γ), both in (0, 1],
as follows:

Φε,γ,θ := max
(
ε, γT

(
h
βT

)θ)
. (13)
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The time scale T and the velocity scale β are introduced for dimensional consistency; in the
nondimensional setting, one simply obtains Φε,γ,θ := max(ε, γhθ), which better highlights that the
two parameters available to tune the cutoff are γ and θ. How to choose the parameters (θ, γ) is
thoroughly discussed in §4. Setting

hε,γ,θ := βT
(
ε
γT

) 1
θ , (14)

we have Φε,γ,θ := ε max(1, ( h
hε,γ,θ

)θ). We say that we are in the resolved regime when h . hε,γ,θ
and in the under-resolved regime when h & hε,γ,θ. Hence, Φε,γ,θ = ε in the resolved regime and
Φε,γ,θ = γT

(
h
βT

)θ in the under-resolved regime. Selecting the parameters (θ, γ) deserves some
attention. Ideally, one would like to pick θ close (or equal) to one to make the resolved regime as
large as possible (i.e., when h . 1

γβε). However, numerical experiments reported in §4 show that
it may happen that limh→0 limε→0 u

ε
h 6= u0 (see (5)) when θ > 1

2 , which means that the scheme is
not AP when θ > 1

2 . On the other hand, numerical experiments suggest that the scheme is indeed
AP for θ ∈ (0, 1

2 ]. Moreover, we establish in §3.4 a bound on the entropy residual for which θ < 1
2

is a sufficient condition for the residual to decay to zero.
The reaction substep is based on the general idea of exponential integrators with two salient

differences with respect to what is usually done in the literature. First, the part of the source term
that is integrated exactly is quadratic and is based on the two equilibrium states {0, 1} composing
the boundary of the invariant domain B. Second, and more importantly, the time integration is
not performed over the time interval [0, τε ] but over the (generally) shorter time interval [0, τε,γ,θ]
with

τε,γ,θ :=
τ

Φε,γ,θ
. (15)

We start by defining the function R̃(v) := R(v)
v(1−v) for all v ∈ B (this function is well-defined

on (0, 1) and is continuously extended to B = [0, 1] using l’Hôpital’s rule: R̃(0) = R′(0), R̃(1) =
−R′(1)). For instance, when R is defined by (8), we have R̃(v) = v − α for all v ∈ B. The next
step is to consider the ODE

d

ds
ϑ(v; s) = ϑ(v; s)(1− ϑ(v; s))R̃(v), s ≥ 0,

ϑ(v; 0) = v ∈ B.
(16)

Finally, the reaction substep in (10) is defined by setting

Un+1
i = ϑ(Wn+1

i ; τε,γ,θ), ∀i ∈ V. (17)

As the solution to (16) is ϑ(v; s) = v exp(sR̃(v))/(1 + v(exp(sR̃(v))− 1), we obtain

Un+1
i =

Wn+1
i exp

(
τε,γ,θR̃(Wn+1

i )
)

1 + Wn+1
i

(
exp

(
τε,γ,θR̃(Wn+1

i )
)
− 1)

) , ∀i ∈ V. (18)

Notice that for the boundary dofs, the above expression gives Un+1
i = Wn+1

i = 0 since ϑ(0; s) = 0
for all s ≥ 0.

Proposition 3.1 (IDP). Assume that the CFL restriction (11) holds. Let the reaction step be
defined in (17). Then, the operator-splitting scheme (10) is IDP.

Proof. Assume that Un ∈ BI . The property (12) holds owing to the CFL restriction (11), and we
infer that Wn+1 ∈ BI . Furthermore, the solution ϑ(v; s) of the ODE (16) stays in B for all s ≥ 0
whenever v ∈ B, whence Un+1

i ∈ B for all i ∈ V. Thus, Un+1 ∈ BI , i.e., the operator-splitting
scheme (10) is IDP.
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Remark 3.2 (Alternative). An alternative to the reaction substep defined in (18) is to use a
forward Euler substep with an additional clipping on the time step to ensure that the update is
IDP. Specifically, we observe that there is χ > 0 such that

v ∈ B =⇒ v + ρR(v) ∈ B, ∀ρ ∈ [−χ, χ].

For instance, one can take χ = min( 1
α ,

1
1−α ) ≤ 2 when R(v) := v(1− v)(v−α). Then, the reaction

substep is defined by setting

Un+1
i = Wn+1

i + min(χ, τε,γ,θ)R(Wn+1
i ), ∀i ∈ V.

By construction, Un+1
i ∈ B whenever Wn+1

i ∈ B, and therefore the operator-splitting scheme (10) is
IDP under the CFL restriction (11). Note, however, that the clipping of the time step can become
a hindrance if χ is very small.

3.3 Finite-element transport substep
The discretization of the transport step using continuous finite elements can be done in many ways.
We follow here the technique described in [11, 12]; see also [8, Chaps. 79-83] for an easy introduction
to the method. Recall that the mesh Th belongs to a quasi-uniform mesh sequence. We assume
that the mesh is composed of (affine) simplices. We focus, for simplicity, on continuous, piecewise
affine finite elements. Thus, the dofs are the values at the mesh vertices, and the boundary dofs
are the values at the mesh vertices located at the inflow boundary. The global shape functions are
denoted by {ϕi}i∈V . The stencil associated with the dof i ∈ V is defined as

I(i) := {j ∈ V | ϕiϕj 6= 0}, (19)

The notion of stencil is symmetric, i.e., j ∈ I(i) iff i ∈ I(j). The global shape functions satisfy
the following partition of unity property:

∑
i∈V ϕi(x) = 1, for all x ∈ D. The matrix with entries

mij :=
∫
D
ϕi(x)ϕj(x)dx, for all i, j ∈ V is called the consistent mass matrix. The lumped mass

matrix has entries equal to mi :=
∑
j∈I(i)mij =

∫
D
ϕi(x)dx > 0, for all i ∈ V. For all i ∈ V and

all j ∈ I(i)\{i}, we define the vectors cij :=
∫
D
ϕi(x)∇ϕj(x)dx ∈ Rd and nij :=

cij
‖cij‖2 ∈ Rd.

Finally, we also define the first-order graph-viscosity coefficients

dnij := max(λmax(Uni ,U
n
j ,nij)‖cij‖2, λmax(Unj ,U

n
i ,nji)‖cji‖2), (20)

where λmax(Uni ,U
n
j ,nij) is any upper bound on the maximum wave speed in the Riemann problem

with data (Uni ,U
n
j ) and flux f ·nij .

With the above definitions, the finite element realization of the transport substep reads as
follows: For all n ∈ N ,

Wn+1
i = Uni −

τ

mi

∑
j∈I(i)\{i}

{
f(Unj )·cij − dnij(Unj − Uni )

}
, ∀i ∈ V, (21)

where Un = (Uni )i∈V is either known from the previous time step if n ≥ 1 or prescribed by the initial
condition (e.g., U0

i := 1
mi

∫
D
u0(x)ϕi(x)dx, for all i ∈ V ). Recall that owing to the assumptions

made on the initial data and the boundary conditions, the update (21) also holds true for the
boundary dofs and gives Wn+1

i = Uni = 0.
A crucial property of the transport substep (21) is that it is IDP (i.e., (12) holds true) under

the CFL restriction
τ ≤ τ∗ := min

i∈V◦
mi

2
∑
j∈I(i)\{i} d

n
ij

, ∀n ∈ N . (22)
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3.4 Bound on entropy residual
The main result of this section is that, under reasonable assumptions, the above scheme satisfies
entropy inequalities with a residual that decays to zero with the mesh size. The proof is postponed
to §7. For all n ∈ {0:N}, we reconstruct from the dofs (Uni )i∈V a continuous function that is
piecewise affine in space by setting

unh(x) :=
∑
i∈V

Uni ϕi(x), ∀x ∈ D. (23)

Then, we reconstruct a piecewise constant function in time by setting

uεh(x, t)|[tn,tn+1) := unh(x), ∀n ∈ N , uεh(x, T ) := uNh (x). (24)

The Lagrange interpolant is defined as Ih(v)(x) :=
∑
i∈V v(ai)ϕi(x), for any function v ∈ C0(D)

and all x ∈ D, where ai denotes the mesh vertex associated with the global shape function ϕi.
The same definition is used componentwise for vector-valued fields.

theorem 3.3 (Bound on entropy residual). Let the transport substep be defined in (21). Let the
reaction substep be defined in (17). Assume that the CFL restriction (11) holds true. Then, there
exists a constant C independent of h, τ , and ε, but that can depend on the mesh shape-regularity,
the functions R, η, and ψ, and the cutoff parameters (θ, γ), such that, for any convex entropy
η ∈ C2(B;R) with associated flux q, and for any test function ψ ∈W 1,∞

0 (D × [0, T ];R+), we have∫
D

Ih
(
η(uNh )

)
(x)ψ(x, T )dx−

∫
D

Ih
(
η(u0

h)
)
(x)ψ(x, 0)dx (25)

−
∫
Q

{
η(uεh)∂tψ + q(uεh)·∇ψ +

1

Φε,γ,θ
η′(uεh)R(uεh)ψ

}
dxdt ≤ CΛ(h),

where

Λ(h) :=
h

βΦ2
ε,γ,θ

‖uεh‖L1(Q) +

(
h

Φε,γ,θ
+

h2

βΦ2
ε,γ,θ

)
‖∇uεh‖L1(Q). (26)

Remark 3.4 (Λ(h)). Notice that ‖uεh‖L1(Q) is bounded since uεh takes values in the bounded set
B. If a uniform bound is available on ‖∇uεh‖L1(Q), (26) shows that, in the under-resolved regime,
Φε,γ,θ ∼ hθ, we have Λ(h) ∼ h1−2θ, and this quantity decays to zero if θ ∈ (0, 1

2 ) (the first term
in (26) is the dominant one). A more realistic assumption is ‖∇uεh‖L1(Q) ≤ Ch−

1
2 (this bound is

a consequence of the L2-estimate, but a sharper BV-estimate is possible in 1D). In this case, one
has Λ(h) ∼ h

1
2−θ, which again decays to zero if θ ∈ (0, 1

2 ) (the second term in (26) now becomes
dominant). Finally, in the resolved regime, one obtains Λ(h) ∼ h

1
2 /ε. The half-order decay in h

with fixed ε is typical of the nonreactive case.

4 Numerical study on the cutoff parameters
The goal of this section is to numerically study the impact of the cutoff parameters (θ, γ) on the
computational performance of the scheme, and therefore propose a rationale for choosing these
parameters. We proceed in three steps. First, we show that it is indeed beneficial to use a cutoff
on the source term. Second, we find optimal values for the cutoff parameters (θ, γ) on a series
of test cases. However, we shall see that these values depend on the flux type (linear, convex,
nonconvex) and the form of the reaction term (quantified by the parameter α, see (8)), whereas
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the dependence on the smoothness of the initial condition appears to be marginal. The third
step consists of selecting all-purpose values of the cutoff parameters. Although optimal values of
the cutoff parameters are problem-dependent, our numerical experiments indicate that it is still
possible to identify all-purpose values for these parameters that produce results that are reasonably
close to those produced by the optimal ones.

4.1 Overview of the test cases
We consider 1D test cases, all posed on the interval D := (−1, 1), and we are going to explore
linear, convex (Burgers), and nonconvex (sine) fluxes, defined respectively as follows:

f(v) := v, f(v) :=
1

2
v2, f(v) :=

1

2π
sin(2πv). (27)

We select the source term to be that defined in (8), and we are going to explore α ∈ {0.5, 0.7, 0.9}.
We are also going to explore three types of initial data:

• IC1 (smooth (C0) IC)

u0(x) =

{
x+ 1, if x ∈ (−1, 0),

1, otherwise.
(28)

• IC2 (nonsmooth IC with one shock)

u0(x) =


2(x+ 1), if x ∈ (−1,− 1

2 ),

1, if x ∈ (− 1
2 ,

2
5 ),

0, otherwise.
(29)

• IC3 (nonsmooth IC with two shocks)

u0(x) =


2(x+ 1), if x ∈ (−1,− 1

2 ),

0.95, if x ∈ (− 1
2 ,

2
5 ),

0.3, otherwise.
(30)

In all cases, the reference velocity is β := 1, and we set the final time to T := 0.5. The time step
is defined by

τ := Ccfl min
i∈V◦

mi

2
∑
j∈I(i)\{i} d

n
ij

, (31)

and, unless stated otherwise, we use Ccfl = 1
2 in the simulations.

Errors are measured in the relative L1-norm at the final time (i.e., normalized by the L1-
norm of the exact solution). For the linear flux, the exact solution is computed by the method of
characteristics and an implicit Runge–Kutta integrator along the characteristics. For the nonlinear
fluxes, the exact solution is obtained on a fine grid with mesh size href := 0.1×2−13 ≈ 1.2×10−5.
We consider two values for the stiffness parameter ε ∈ {10−2, 10−3}. For these values, and since
T = 0.5, the difference between uε and u0 measured in the relative L1-norm is of the order of
the machine precision for the linear flux, whereas it scales like O(ε) for the nonlinear fluxes; for
instance, this difference is in the range [1, 5]× 10−3 for ε = 10−3.

The mesh sizes sampled are hj := 0.1 × 2−j for j ∈ {0:10}, thus we mainly focus on the
under-resolved regime. The mesh size href we use to approximate the exact solution is eight
times smaller than the smallest mesh size h10 explored. As the cutoff (13) makes the source
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term in the numerical scheme independent of ε in the under-resolved regime (i.e., hε,γ,θ ≤ h), and
‖uεh−uε‖L1(D) ≈ ‖uεh−u0‖L1(D) for very small values of ε, we expect that the error ‖uεh−uε‖L1(D)

varies very little with respect to ε in the under-resolved regime when ε is smaller than 10−3. We
have numerically tested this statement, and observed that it is indeed the case. We do not report
these tests for brevity. In conclusions, we do not report tests done with values of ε smaller than
10−3.

4.2 On the benefits of using a cutoff in the source term
Recall that we are in the resolved regime when h . hε,γ,θ and in the under-resolved regime when
h & hε,γ,θ, with hε,γ,θ defined in (14). For the linear flux, we expect the asymptotic convergence
rate to be of order 1 for the initial condition IC1 and of order 1

2 for the initial conditions IC2 and
IC3. For the nonlinear fluxes, the asymptotic convergence rate is expected to be between 1

2 and 1
for the three initial conditions. Recall, however, that we are mainly considering mesh sizes in the
under-resolved regime.

Figure 1 shows tests with the stiffness parameter ε = 10−3 for the problems defined in §4.1. The
relative L1-errors at the final time are represented as a function of the mesh size for three values of
the cutoff parameter θ ∈ {0.2, 0.4, 0.8}, the choice γ = 0.1, and the three initial conditions. Each
panel corresponds to one value of the reaction parameter α ∈ {0.5, 0.7, 0.9} (from left to right)
and to one flux (from top to bottom: linear, convex, nonconvex). In each panel, the red dashed
curve corresponds to the numerical results without cutoff, i.e., setting Φε,γ,θ := ε (plain exponential
integrator, labeled Φ = ε in the legend). Vertical lines in each panel indicate the value of the mesh
size corresponding to the transition from the under-resolved to the resolved regime; the color of
the vertical line corresponds to the value of θ. We observe in Figure 1 that the resolved regime can
be reached only for θ = 0.8 with the mesh sizes considered here. The red and blue curves overlap
for mesh sizes smaller than the value indicated by the vertical blue line.

Several observations can be made from the results displayed in Figure 1. Let us focus first on
the reaction parameters α ∈ {0.7, 0.9} (central and right columns).

• The errors with no cutoff are generally larger than those obtained with cutoff. The errors level
off on the coarser meshes if no cutoff is used.

• Choosing θ = 0.8 is always less effective than choosing θ < 1
2 . A plateau is observed on

the coarser meshes for θ = 0.8. This observation is consistent with the main conclusion of
Theorem 3.3 which recommends to select θ < 1

2 .

• The most effective choice of θ in {0.2, 0.4} depends on the flux type. The value θ = 0.4
generally performs better for the nonlinear fluxes, whereas the value θ = 0.2 generally performs
better for the linear flux.

Regardless of the error levels, the above conclusions are fairly independent of the initial condi-
tions. The errors obtained with the smooth initial condition IC1 are smaller than those obtained
with the nonsmooth initial conditions IC2 and IC3. The differences on the results obtained with
the initial data IC2 and IC3 are marginal.

Perhaps a bit surprisingly, the conclusions are less clear cut for α = 0.5 (left column in Figure 1).
The most salient observation is that for the linear flux, the scheme without cutoff (i.e., setting
Φε,γ,θ := ε) generally leads to lower errors. It is, however, still beneficial to use a cutoff for the
nonlinear fluxes in the under-resolved regime. Some clarifications about these observations are
given in §4.3.
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(a) linear, α = 0.5 (b) linear, α = 0.7 (c) linear, α = 0.9

(d) convex, α = 0.5 (e) convex, α = 0.7 (f) convex, α = 0.9

(g) nonconvex, α = 0.5 (h) nonconvex, α = 0.7 (i) nonconvex, α = 0.9

Figure 1: L1-errors as a function of the mesh size for ε = 10−3, three values of the cutoff parameter
(θ = 0.8 in blue, θ = 0.4 in brown, θ = 0.2 in green), γ = 0.1, and three ICs (IC1: ◦, IC2: ?,
IC3: ×). From left to right: α = 0.5, α = 0.7, and α = 0.9. From top to bottom: linear, convex,
and nonconvex fluxes. The red dashed line labeled ‘Φ = ε’ is obtained without any cutoff (plain
exponential integrator).

4.3 Optimizing the cutoff parameters
The above results lead us to wonder whether it is possible to devise an optimal strategy to define
the cutoff parameters (θ, γ). For this purpose, we fix γ = 1 and we perform a sampling of θ
in the interval [0.3, 1.0] with step δθ = 0.1. We explore again the three reaction coefficients
α ∈ {0.5, 0.7, 0.9} and the three fluxes (linear, convex, and nonconvex) defined in §4.1. For brevity,
we focus on the initial condition IC1, the results for the initial conditions IC2 and IC3 being
essentially similar.

We first discuss the results for ε = 10−3 and with Φε,γ,θ := γT
(
h/βT

)θ instead of (13). The
results are reported in Figure 2. For comparison, all the panels in Figure 2 also include the errors
corresponding to the plain exponential integrator (Φε,γ,θ = ε, red dashed curve labeled Φ = ε in
the legend). As before, vertical lines indicate the start of the resolved regime for each value of
θ. The most striking observation is that, in most situations, there is an interval of mesh size in
the under-resolved regime, say [h[, h]], where the error curves corresponding to various values of
θ reach smaller errors than the curve corresponding to Φε,γ,θ = ε. In particular, for those values
of θ, the error has two different behaviors as h spans [h[, h]]: There is first a super-convergence
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(a) linear, α = 0.5 (b) linear, α = 0.7 (c) linear, α = 0.9

(d) convex, α = 0.5 (e) convex, α = 0.7 (f) convex, α = 0.9

(g) nonconvex, α = 0.5 (h) nonconvex, α = 0.7 (i) nonconvex, α = 0.9

Figure 2: L1-errors as a function of the mesh size for ε = 10−3 and IC1, α ∈ {0.5, 0.7, 0.9} (from left
to right), and linear, convex, and nonconvex fluxes (from top to bottom). The cutoff parameters
are θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and γ = 1. The red dashed line labeled ‘Φ = ε’ is
obtained without any cutoff.

phase, then the error stagnates until the resolved regime is reached (as indicated by the vertical
lines). As expected, the error levels off in the resolved regime since using Φε,γ,θ := γT

(
h/βT

)θ,
instead of Φε,γ,θ := ε, is not consistent. We loosely refer to the above behavior as a resonance
phenomenon. The resonance phenomenon is clearly visible for the three fluxes and α ∈ {0.7, 0.9}.
It is also visible for the nonlinear fluxes when α = 0.5 (up to some oscillations of the reference
solution corresponding to Φε,γ,θ = ε).

To gain some insight into the resonance phenomenon, we report in Figure 3 some solution
profiles for the linear flux with α = 0.7 and θ = 0.6. We consider four mesh sizes identified by circle
and star symbols in Figure 2(b). We observe that the super-convergent phase of the under-resolved
regime (star symbols) corresponds to a swift reduction of the smearing of the discrete solution near
the shock, whereas the stagnation phase (circle symbols) corresponds to the stabilization of the
shock position at an incorrect location. As expected, the shock eventually moves to its correct
location in the resolved regime (i.e., when Φε,γ,θ = ε).

For each triple consisting of a flux, a value of α and an initial condition, we construct a
list {(θi, hi)}i∈L where for each index i in this list, θi is such that a resonance occurs in the
under-resolved regime and the value hi is the mesh size giving the smallest error. Plotting these
points in a graph (not shown for brevity), we find that a good fit is obtained in the form θi ≈
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Figure 3: 1D linear transport with ε = 10−3 and IC1: solution profiles corresponding to the
symbols (star, circle) shown in Figure 2(b).

α 0.5 0.7 0.9
ε IC IC1 IC2 IC3 IC1 IC2 IC3 IC1 IC2 IC3

L
in
ea
r 10−2 θ — — — 0.05 0.1 0.1 0.1 0.1 0.05

γ — — — 0.05 0.1 0.1 0.05 0.1 0.05

10−3 θ — — — 0.05 0.1 0.1 0.1 0.1 0.05
γ — — — 0.05 0.1 0.1 0.05 0.1 0.05

B
ur
ge
rs 10−2 θ — — — 0.3 0.3 0.3 0.3 0.3 0.3

γ — — — 0.15 0.15 0.15 0.15 0.15 0.15

10−3 θ 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
γ 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2

Si
ne

10−2 θ — — — 0.15 0.15 0.15 0.2 0.15 0.15
γ — — — 0.05 0.05 0.05 0.05 0.05 0.05

10−3 θ 0.4 0.4 0.4 0.25 0.25 0.25 0.3 0.4 0.4
γ 0.03 0.03 0.03 0.05 0.05 0.05 0.03 0.1 0.1

Table 1: Optimal cutoff parameters θopt and γopt.

a + b(log(hi/βT ))−1 (recall that, in all the cases, we have βT = 1
2 ). In other words, multiplying

by log(hi/βT ) and taking the exponential, the above fit implies that

(hi/βT )θi ≈ eb(hi/βT )a. (32)

This, in turn, implies that the optimal expression of the cutoff function Φε,γ,θ is indeed of the form
max

(
ε, γoptT

(
h
βT

)θopt
)
as proposed in (13) with γopt := eb and θopt := a. These optimal values

are reported in Table 1 for the linear, convex, and nonconvex flux, respectively. Entries with a
dash in the tables mean that optimal values were not found, i.e., resonance did not occur in the
under-resolved regime. For ε = 10−3, this is only the case for the linear flux and α = 0.5. In this
case, we observe in Figure 2(a) that the resonance phenomenon only occurs in the resolved regime.

The numerical experiments discussed above for ε = 10−3 are repeated for ε = 10−2. The results
are reported in Figure 4. The main observations regarding the presence of a resonance phenomenon
and the possibility to devise optimal values for the cutoff parameters remain unchanged. The only
relevant difference is that the value of the reaction parameter α = 0.5 now eludes the possibility
of devising optimal cutoff parameters for the three fluxes (see the panels (a,d,g) in Figure 4). The
reason is that the resonance phenomenon is observed in the resolved regime for the linear flux
and the nonconvex flux, and the resonance phenomenon fails to deliver lower errors than those
obtained with Φε,γ,θ = ε for the convex flux. The optimal cutoff parameters for ε = 10−2 are again
collected in Table 1 for the linear, convex, and nonconvex flux, respectively.
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(a) linear, α = 0.5 (b) linear, α = 0.7 (c) linear, α = 0.9

(d) convex, α = 0.5 (e) convex, α = 0.7 (f) convex, α = 0.9

(g) nonconvex, α = 0.5 (h) nonconvex, α = 0.7 (i) nonconvex, α = 0.9

Figure 4: L1-errors as a function of the mesh size for ε = 10−2 and IC1, α ∈ {0.5, 0.7, 0.9} (from left
to right), and linear, convex, and nonconvex fluxes (from top to bottom). The cutoff parameters
are θ ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and γ = 1. The red dashed line labeled ‘Φ = ε’ is
obtained without any cutoff.

4.4 Selection of all-purpose cutoff parameters
The next step in our investigation is to propose pairs of all-purpose cutoff parameters (θ, γ) that
perform reasonably well uniformly over all the test cases. The inspection of Table 1 suggests to
use

(θ, γ) :=

{
(0.1, 0.05) linear flux,
(0.4, 0.1) nonlinear (convex and nonconvex) fluxes.

(33)

Slightly different values can be chosen without significantly impacting the computational perfor-
mance of the cutoff procedure. Figure 5 compares the errors obtained using the optimal cutoff
parameters (star symbols, ?) with the errors obtained using the all-purpose cutoff parameters de-
fined above (circle symbols, •). For these tests, we have set ε = 10−3 and used α ∈ {0.5, 0.7, 0.9},
the three fluxes, and the three initial conditions. The main observation is that using the all-purpose
cutoff parameters instead of the optimal ones only leads to a marginal deterioration of the errors.
This fortunately indicates that despite the diversity of the behaviors observed when varying the
flux, the initial conditions, and reaction parameter, reasonable all-purpose values of the cutoff
parameters can be found. The results for ε = 10−2 are similar to those displayed in Figure 5 and
are omitted for brevity.
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(a) linear, IC1 (b) linear, IC2 (c) linear, IC3

(d) convex, IC1 (e) convex, IC2 (f) convex, IC3

(g) nonconvex, IC1 (h) nonconvex, IC2 (i) nonconvex, IC3

Figure 5: L1-errors as a function of the mesh size for ε = 10−3 and α ∈ {0.5, 0.7, 0.9}. From
top to bottom: linear, convex, and nonconvex fluxes. From left to right: IC1, IC2, and IC3.
Comparison between optimal values (star symbols, ?) and all-purpose values (circle symbols, •) of
the cutoff parameters. The errors obtained with Φε,γ,θ = ε are reported using dashed lines with
color matching the value of α.

In conclusion, the all-purpose values for the cutoff parameters indicated in (33) will be used in
the rest of the paper.

5 Tests with all-purpose cutoff parameters
In this section, we focus on the nonlinear fluxes (convex and nonconvex) and we test the proposed
scheme with the all-purpose cutoff parameters identified in (33), i.e., we set (θ, γ) = (0.4, 0.1). We
consider two 1D test cases and two 2D test cases.

5.1 High-order viscosity
To improve the performance of the scheme, we now make use of a high-order graph viscosity instead
of the low-order one defined in (20). Following [13], [8, §82.2], we replace dnij in the transport
substep by the quantity d∗,nij := dnij max(ψ(αni ), ψ(αnj )), for all i ∈ V and all j ∈ I(i), where αni
is a local, linearity preserving, smoothness indicator based on the discrete solution (Uni )i∈V (see,
e.g., [8, Eq. (82.24)]) and ψ : [0, 1] → [0, 1] is any smooth increasing function satisfying ψ(0) = 0
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and ψ(1) = 1 (we set ψ(t) = t2 in our numerical experiments). When the flux is nonconvex, we
actually set d∗,nij := dnij for any pair (i, j) such that an inflexion point of the flux lies between Uni
and Unj . Moreover, we now set Ccfl = 0.1 in (31).

5.2 1D test with nonlinear fluxes
This section is devoted to 1D tests.

5.2.1 Convex (Burgers) flux

We consider nonlinear transport with Burgers flux, ε = 10−3, and α = 0.9. The initial condition is

u0(x) =


0, if x ∈ (−1,−0.9),

1, if x ∈ (−0.9,−0.5),

0.3, otherwise.
(34)

(a) low-order graph viscosity (b) high-order graph viscosity

Figure 6: 1D Burgers with ε = 10−3, α = 0.9 and IC (34). Solution profiles at T = 0.5 with mesh
sizes h ∈ {0.39, 1.6, 6.3}× 10−3. Left: first-order graph viscosity; right: high-order graph viscosity.

The limit solution u0 in the time interval (0, 1) is composed of the two equilibrium states {0, 1}
separated by two moving shocks. The shock originating at x = −0.9 travels at speed f ′(α) = 0.9,
and the shock originating at x = −0.5 travels at speed f(1)−f(0)

1−0 = 1
2 . The two shocks meet at time

T = 1, and the limit solution is identically zero thereafter. To illustrate the importance of using
a high-order graph viscosity, we compare in Figure 6 the solutions obtained using low-order and
high-order viscosity at T = 0.5. Three solutions using the mesh sizes h ∈ {0.39, 1.6, 6.3} × 10−3

are shown (we are still in the under-resolved regime since hε,γ,θ ≈ 2.9×10−5, see (14)). We observe
that the higher-order solutions are significantly more accurate that the low-order ones. Using the
high-order graph viscosity allows us to capture well the two shocks (recall that the speed of the
first shock is reaction-dependent).

5.2.2 Nonconvex (sine) flux

We now consider the nonconvex flux (sine) with ε = 10−3 and α = 0.7. The initial condition is

u0(x) =

{
1, if x ∈ (− 1

2 ,−
1
5 ) ∪ ( 1

5 , 1),

0, otherwise.
(35)
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(a) T = 0.1 (b) T = 0.2

(c) T = 0.4 (d) T = 1

Figure 7: 1D test with nonconvex flux (sine), IC (35), and α = 0.7. Comparison of nonreactive
(ε =∞) and limit (ε = 0) solutions at times T ∈ {0.1, 0.2, 0.4, 1.0}.

Figure 7 shows the profiles at times T ∈ {0.1, 0.2, 0.4, 1.0} of the exact solutions of the non-
reactive (ε = ∞) and limit (ε = 0) equations. We observe that u∞ develops composite waves
combining shocks and rarefaction waves; this is the expected behavior. The limit u0 takes values
in {0, 1} with three shocks moving at the same speed, s ≈ −0.216. This speed is the value of the
derivative of both the upper concave and the lower convex envelopes of the flux f evaluated at α.
Thus, the fact that a shock separating two states corresponding to a rarefaction wave moves at
the speed f ′(α) when the flux f is convex, as shown in Fan et al. [9], carries over to the present
nonconvex case. This can be seen by adapting the arguments in [9], whereby f is replaced by
its suitable envelope. Another interesting observation drawn from Figure 7 is that the shocks in
the nonreactive and reactive solutions move at the same speed at short times (T ∈ {0.1, 0.2}),
but the speeds differ as soon as shocks originating from different locations start to interact in the
nonreactive case.

Figure 8 shows the profiles at T ∈ {0.1, 0.2, 0.4, 1.0} of approximate solutions obtained with the
mesh sizes h ∈ {0.39, 1.6, 6.3}×10−3 and the high-order graph viscosity. The three shock positions
are well captured on all meshes at the short times T ∈ {0.1, 0.2}, and that this is still the case for
the longer times T ∈ {0.4, 1.0} on the finer meshes.

We close this section with a more challenging situation where the source term leads to five
equilibrium states:

R 1
4 ,

3
4
(v) := 44v(v − 1

4 )(v − 1
2 )(v − 3

4 )(1− v). (36)

The states {0, 1
2 , 1} are stable, whereas the states { 1

4 ,
3
4} are unstable. We still consider the

nonconvex flux f(v) = 1
2π sin(2πv), but we now use the smooth initial condition

u0(x) = 0.5
(
1 + sin(π(x+ 0.5))

)
. (37)
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(a) T = 0.1 (b) T = 0.2

(c) T = 0.4 (d) T = 1

Figure 8: 1D test with nonconvex flux (sine), IC (35), and α = 0.7. Discrete solutions at times
T ∈ {0.1, 0.2, 0.4, 1.0} with mesh sizes h ∈ {0.39, 1.6, 6.3} × 10−3.

We consider the short observation time T := 0.1 so as to allow the solution to take intermediate
values in [0, 1]. The profiles of the limit solution u0 and the approximate solutions using the mesh
sizes h ∈ {1.25, 2.5, 5.0} × 10−2 are reported in Figure 9. The limit solution takes values in the
set {0, 1

2 , 1} as expected. The four shocks are well captured by the discrete solutions, even using
relatively coarse meshes, thereby giving again credence to the cutoff strategy proposed in the paper.

Figure 9: 1D nonconvex flux (sine), IC (37), and source term (36): Discrete solution profiles at
T = 0.1 using the mesh sizes h ∈ {1.25, 2.5, 5.0}×10−2; the horizontal dashed orange (resp., violet)
line materializes the unstable (resp., stable) values of α.

5.3 2D numerical tests
This section is devoted to 2D numerical tests. As, to our knowledge, there is no mathematical
theory identifying the limit solution in this setting, these 2D results should be considered as
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(a) nonreactive solution (b) two stable equilibria (c) three stable equilibria

Figure 10: 2D Burgers equation with IC (38). From left to right: (a) nonreactive solution; (b)
reactive solution with two stable equilibria; (c) reactive solution with three stable equilibria.

illustrative of the capacity of the present scheme to capture reasonable solutions.

5.3.1 Convex (Burgers-like) flux

In this section, we consider the reactive Burgers equation in the square D := (−0.25, 1.75)2 with
the flux function f(v) := ( 1

2v
2, 1

2v
2), and the following initial condition:

u0(x) =

{
1, if ‖x− (1, 1)T‖∞ ≤ 1

2 ,

− 3
4 , otherwise.

(38)

This test, considered in [13, §6.1] in the nonreactive regime, is challenging since it exhibits sonic
points. The nonreactive solution is given by Eqs. (52)-(53) therein.

The invariant set is now B = [a, b] := [− 3
4 , 1]. Defining the linear map ϕ : B → [0, 1] with

ϕ(v) := v−a
b−a (and ϕ−1(z) = (b− a)z + a), we consider the reaction terms:

Rϕα(v) := Rα(ϕ(v)), Rϕ1
4 ,

3
4

(v) := R 1
4 ,

3
4
(ϕ(v)), ∀v ∈ B, (39)

with Rα defined in (8) and R 1
4 ,

3
4
defined in (36). Thus, Rϕα gives two stable equilibrium states

{a, b} = {− 3
4 , 1} and one unstable equilibrium state {ϕ−1(α)}. In what follows, we choose α :=

− a
b−a = 3

7 , so that ϕ−1(α) = 0, which corresponds to the sonic point for Burgers flux. The
source Rϕ1

4 ,
3
4

gives three stable equilibrium states {− 3
4 ,

1
8 , 1} and two unstable equilibrium states

{− 5
16 ,

7
16}. Finally, recalling that the solution to the ODE (16), ϑ(v; s), maps [0, 1] to [0, 1], we

formulate the reaction substep by using the change of variable [a, b] 3 v 7→ z := ϕ(v) ∈ [0, 1]. We
obtain

Un+1
i = ϕ−1

(
ϑ(ϕ(Wn+1

i ); (b− a)τε,γ,θ)
)
, ∀i ∈ V, (40)

which gives, with Zn+1
i := ϕ(Wn+1

i ) =
Wn+1
i −a
b−a and Rϕ denoting either Rϕα or Rϕ1

4 ,
3
4

,

Un+1
i = a+ (b− a)

Zn+1
i exp

(
(b− a)τε,γ,θR

ϕ(Zn+1
i )

)
1 + Zn+1

i

(
exp

(
(b− a)τε,γ,θRϕ(Zn+1

i )
)
− 1)

) , ∀i ∈ V. (41)

Figure 10 shows isocontours of the nonreactive solution (left panel), the reactive solution with
Rϕα (center panel), and the reactive solution with Rϕ1

4 ,
3
4

(right panel). The computations are done
with ε = 10−3 on a fine mesh composed 4002 grid points. The nonreactive solution matches well
with the analytical solution given in [13]. In the reactive case with two stable equilibrium states,
the shocks separating the two states are very well resolved. The shocks propagate differently than
the nonreactive shocks. In the reactive case with three stable equilibrium states, the numerical
solution takes the three values in the set {− 3

4 ,
1
8 , 1}. Notice that the level set {u = 1} is different

when considering two or three stable equilibrium states.
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5.3.2 Nonconvex flux

For the second 2D test case, we set D := (−2, 2) × (−2.5, 1.5), with the nonconvex flux f(v) :=
(sin(v), cos(v)), and the initial condition

u0(x) =

{
15π
4 , if ‖x− (0.5, 0.5)T‖2 ≤ 1,
π
4 , otherwise.

(42)

The nonreactive solution to this problem, proposed by Kurganov et al. [20], is a composite wave
composed of a shock followed by a rarefaction wave. This solution is shown in Figure 11(a) at
T = 1.

(a) nonreactive solution (b) two stable equilibria

Figure 11: 2D KPP test case with IC (42). Solution isocontours at T = 1. Left: nonreactive
solution. Right: reactive solution with two stable equilibria, ε = 10−3.

The invariant domain associated with the initial condition is B = [a, b] := [π4 ,
15π
4 ]. We proceed

as in (39) to define the reaction terms Rϕα and Rϕ1
4 ,

3
4

on B. Here, we set α = 10π
4 . Figure 11(b)

shows isocontours of the reactive solution with two stable equilibrium states. The computation
is done with ε = 10−3 on a fine mesh composed of 4002 grid points. As above, we observe a
sharp resolution of the shocks separating the stable equilibrium states. Here again, the shocks
in the reactive case propagate differently from the nonreactive case. Finally, Figure 12 shows
isocontours of the solution with the source term giving three stable equilibrium states. The left
panel corresponds to ε = 10−3 and T = 1. The right panel corresponds to ε = 10 and T = 4.
In the first case, we observe that the intermediate equilibrium state is absent, whereas it can be

(a) ε = 10−3, T = 1 (b) ε = 10, T = 4

Figure 12: 2D KPP test case with IC (42) and three stable equilibria. Left: solution isocontours
for ε = 10−3 and T = 1. Right: solution isocontours for ε = 10 and T = 4.
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observed in the second case where the stiffness parameter ε is much milder. This illustrates the
complex interaction between shock dynamics and reaction terms.

6 Comparison to other schemes
We now compare the proposed algorithm with methods published in the literature. The tests are
done in one space dimension with the three-state reaction term Rα defined in (8).

6.1 Other IMEX-based schemes
We first compare the present scheme to three IMEX-based methods from the literature. The reac-
tion substep for the first method consists of using an exponential integrator, i.e., setting Φε,γ,θ = ε
in (17). The reaction substep for the second method consists of using the implicit Euler scheme with
the nonlinear equation for each dof solved using Newton’s method. Finally, the third scheme is in-
spired from the additive schemes proposed in Kennedy and Carpenter [18] for convection-diffusion
equations. In the present setting, it amounts to writing the reaction substep as

Un+1
i = Wn+1

i + ϑ(Uni ; ε−1τ)− Uni , ∀i ∈ V. (43)

Notice that the exponential integrator is used in (43), but with the initial data Uni instead of Wn+1
i

as in (17). Another significant difference is that there is no cutoff on the time step, i.e., τε is used
instead of τε,γ,θ as in (17). Notice in passing that neither the plain IMEX scheme nor the additive
scheme are IDP.

(a) α = 0.5 (b) α = 0.7 (c) α = 0.9

Figure 13: 1D linear transport with IC (43) and ε = 10−3: solution profiles with mesh size
h = 3.9× 10−4. Left: α = 0.5; center: α = 0.7; right: α = 0.9.

We solve the 1D linear transport with the discontinuous initial data

u0(x) =

{
0, if x < − 1

2 ,

1, otherwise.
(44)

Figure 13 compares solution profiles at T = 0.5 obtained with the above schemes and the present
one with ε = 10−3, α ∈ {0.5, 0.7, 0.9}. The mesh size is h = 3.9 × 10−4. We observe that, for
α ∈ {0.7, 0.9} (central and right panels), the three IMEX-based schemes fail to locate the correct
shock position (the predicted shock location actually falls outside the figure for the plain IMEX
scheme), whereas the present scheme correctly locates the shock. As already mentioned above,
correctly capturing the shock location is less challenging when α = 0.5 (left panel); in particular,
the plain exponential integrator and the additive scheme now work well, whereas the plain IMEX
scheme still fails.
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6.2 Another AP scheme
A scheme to approximate the model problem (1) has been proposed by Svärd and Mishra [23]. The
method is tested therein for scalar conservation laws with convex fluxes and for the compressible the
Euler equations coupled with a scalar conservation equation for a reactive species with a dissipative
source term, i.e., 0 is the only equilibrium state.

To discuss the scheme (henceforth referred to with the letters SM), we focus on the reaction
term defined in (8) and introduce the projector Πα : B → B such that Πα(v) = 0 if v ∈ [0, α),
Πα(α) = α, and Πα(v) = 1 if v ∈ (α, 1]. The key idea in [23] is to simultaneously approximate (1)
and the nonreactive problem (ε = ∞). An IMEX scheme is used to advance in time the reactive
equation, and an explicit Euler scheme is used for the nonreactive equation. The IMEX scheme
for the reactive equation gives a nonlinear problem at every dof, which is solved using a Newton
method initialized using the image by Πα of the dof corresponding to the nonreactive solution.

(a) present scheme (b) SM scheme

Figure 14: 1D Burgers with ε = 10−3, α = 0.9 and IC (34). Solution at T = 0.5 with mesh sizes
h ∈ {0.39, 1.6, 6.3} × 10−3. Left: present scheme; right: SM scheme.

The SM scheme captures well the reactive solution in the under-resolved regime in various
situations. This happens when the nonreactive solution has shocks or rarefactions, possibly many
of them but not interacting, and in some cases, when the exact solution features composite waves.
More precisely, the nonreactive solution, u∞, is informative about the shocks appearing in the
reactive solution, uε, as ε→ 0, if the following holds true:

Πα(u∞) = u0. (45)

(This condition appears not to be explicitly identified in [23].) Although a bit unexpected at first
sight, the condition (45) turns out to be satisfied in several situations. For instance, it is the case
for Burgers equation, as long as the shocks and rarefaction waves present in u∞ do not interact.
The SM scheme performs well in these situations, and actually better than the present scheme on
coarse meshes since it does not have any cutoff. On the other hand, the SM scheme behaves poorly
when u∞ is composed of two shocks moving at different speeds, which eventually interact.

We now illustrate the above argumentation with the 1D Burgers equation with ε = 10−3, Rα
with α = 0.9, and the initial condition (34), as in §5.2.1. Figure 14 presents solution profiles at
T = 0.5 on the three mesh sizes h ∈ {0.39, 1.6, 6.3}×10−3. The solution obtained with the present
scheme is shown in the left panel (this is the same as in Figure 6(b)). The solution obtained with
the SM scheme is shown in the right panel. The present scheme predicts well the shock locations
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(a) present scheme, T = 0.4 (b) SM scheme, T = 0.4

(c) present scheme, T = 1.0 (d) SM scheme, T = 1.0

Figure 15: 1D sine flux with ε = 10−3, α = 0.7 and IC (35). Solution profiles at T = 0.4 (top
row) and T = 1.0 (bottom row) with mesh sizes h ∈ {0.39, 1.6, 6.3} × 10−3. Left column: present
scheme; right column: SM scheme.

on the considered mesh sizes (recall that we focus on the under-resolved regime). We also observe
that the SM scheme captures (at least part of) the subset {u = 1} only on the finest mesh.

We further illustrate the method by considering the 1D nonconvex flux (sine), with ε = 10−3,
α = 0.7, and the initial condition (35), as in §5.2.2. Figure 15 shows solution profiles at T = 0.4 (top
row) and T = 1.0 (bottom row) using the same mesh sizes as above. The solution obtained with
the present scheme are shown in the left column. The solutions obtained with the SM scheme are
shown in the right column. We draw the same conclusions as above. The present scheme achieves
a much sharper prediction of the shock locations than the SM scheme in the under-resolved regime,
and the SM scheme meets with some difficulties in capturing the first connected component of the
subset {u = 1} on the coarser meshes.

7 Proof of Theorem 3.3
Recall that we want to prove that, for any test function ψ ∈W 1,∞

0 (D × [0, T ];R+), we have∫
D

Ih
(
η(uNh )

)
(x)ψ(x, T )dx−

∫
D

Ih
(
η(u0

h)
)
(x)ψ(x, 0)dx (46)

−
∫
Q

{
η(uεh)∂tψ + q(uεh)·∇ψ +

1

Φε,γ,θ
η′(uεh)R(uεh)ψ

}
dxdt ≤ CΛ(h),
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where

Λ(h) :=
h

βΦ2
ε,γ,θ

‖uεh‖L1(Q) +

(
h

Φε,γ,θ
+

h2

βΦ2
ε,γ,θ

)
‖∇uεh‖L1(Q).

The symbol C denotes a generic positive real number whose value can change at each occurrence
as long as it is independent of h, τ , and ε. The value of C can, in particular, depend on the norm
‖ψ‖L∞(Q) +T‖∂tψ‖L∞(Q) +βT‖∇ψ‖L∞(Q), as well as bounds over B on the functions R, η, β−1q,
and their derivatives. Notice also that the CFL condition (11) on the time step with τ∗ defined in
(22) amounts to

τ . β−1h. (47)

Proof. (1) It is well-known (see, e.g., [8, Theorem 81.12]) that the update Wn+1
i from the transport

substep satisfies the following discrete entropy inequality: For all n ∈ N and all i ∈ V,

mi
η(Wn+1

i )− η(Uni )

τ
−
∫
D

Ih
(
q(unh)

)
·∇ϕidx−

∑
j∈I(i)

dnij
(
η(Unj )− η(Uni )

)
≤ 0.

Moreover, we can rewrite the reaction substep as

Un+1
i = Wn+1

i + τε,γ,θRε,γ,θ(W
n+1
i ), Rε,γ,θ(v) :=

1

τε,γ,θ

(
ϑ(v; τε,γ,θ)− v

)
∀v ∈ B. (48)

Recalling that τε,γ,θ := τ
Φε,γ,θ

, the convexity of η then implies that

η(Wn+1
i ) ≥ η(Un+1

i ) + η′(Un+1
i )(Wn+1

i − Un+1
i )

= η(Un+1
i )− τ

Φε,γ,θ
η′(Un+1

i )Rε,γ,θ(W
n+1
i ).

We infer that

mi
η(Un+1

i )− η(Uni )

τ
−
∫
D

Ih
(
q(unh)

)
·∇ϕidx

−
∑
j∈I(i)

dnij
(
η(Unj )− η(Uni )

)
− mi

Φε,γ,θ
η′(Un+1

i )Rε,γ,θ(W
n+1
i ) ≤ 0. (49)

(2) Let us set ψnh(x) :=
∑
i∈V Ψn

i ϕi(x) with Ψn
i := 1

mi

∫
D
ψn(x)ϕi(x)dx and ψn(x) := ψ(x, tn)

for all x ∈ D. Multiplying the inequality (49) by τΨn
i ≥ 0 and summing over n ∈ N and i ∈ V,

we infer that
E1,h + E2,h + E3,h + E4,h ≤ 0, (50)

where

E1,h :=
∑
n∈N

∫
D

{(
Ih
(
η(un+1

h )
)
− Ih

(
η(unh)

))
ψn
}

(x)dx,

E2,h := −
∑
n∈N

τ

∫
D

{
Ih
(
q(unh)

)
·∇ψnh

}
(x)dx,

E3,h :=
∑
n∈N

τ
∑
i∈V

∑
j∈I(i)

1

2
dnij(η(Uni )− η(Unj ))(Ψn

i −Ψn
j ),

E4,h := −
∑
n∈N

τ

∫
D

1

Φε,γ,θ

{
Ih
(
η′(un+1

h )Rε,γ,θ(w
n+1
h )

)
ψn
}

(x)dx,
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where we used the symmetry of dnij to re-arrange the expression of E3,h and where we have set
wn+1
h (x) :=

∑
i∈VW

n+1
i ϕ(x). Moreover, denoting LHS the left-hand side of (46), we have

LHS = E1,h + E2,h + E4,h,

with

E1,h :=

∫
D

{
Ih
(
η(uNh )

)
ψN
}

(x)dx−
∫
D

{
Ih
(
η(u0

h)
)
ψ0
}

(x)dx

−
∫
Q

{
η(uεh)∂tψ

}
dxdt,

E2,h := −
∫
Q

{
q(uεh)·∇ψ

}
dxdt,

E4,h := −
∫
Q

1

Φε,γ,θ

{
η′(uεh)R(uεh)ψ

}
dxdt.

Since E1,h + E2,h + E3,h + E4,h ≤ 0, we have

LHS = E1,h + E2,h + E4,h

= E1,h + E2,h + E3,h + E4,h

+ (E1,h − E1,h) + (E2,h − E2,h)− E3,h + (E4,h − E4,h)

≤ |E1,h − E1,h|+ |E2,h − E2,h|+ |E3,h|+ |E4,h − E4,h|.

Hence, to prove that LHS ≤ CΛ(h), it suffices to establish that |E3,h| ≤ CΛ(h) and |Ek,h−Ek,h| ≤
CΛ(h) for all k ∈ {1, 2, 4}.

(3) Bound on |E1,h − E1,h|. Let us set

ūεh(x, t)|(tn,tn+1] := un+1
h (x), ∀n ∈ N , ūεh(x, 0) := u0

h(x).

Since ūεh is piecewise constant in time, we infer that∫
Q

{
Ih
(
η(ūεh)

)
∂tψ
}

dxdt =
∑
n∈N

∫
D

{
Ih
(
η(un+1

h )
)
(ψn+1 − ψn)

}
(x)dx

=

∫
D

{
Ih
(
η(uNh )

)
ψN
}

(x)dx−
∫
D

{
Ih
(
η(u0

h)
)
ψ0
}

(x)dx

−
∑
n∈N

∫
D

{(
Ih
(
η(un+1

h )
)
− Ih

(
η(unh)

))
ψn
}

(x)dx.

This gives

E1,h − E1,h =

∫
Q

{(
Ih
(
η(ūεh)− η(uεh)

))
∂tψ
}

+
{(
Ih
(
η(uεh)

)
− η(uεh)

)
∂tψ
}

dxdt.

We bound the right-hand side using the triangle inequality. The second term on the right-hand
side is bounded by CΛ(h) using the approximation properties of Ih and since η is of class C2.
Invoking the L1-stability of Ih and the smoothness of η, the first term is bounded as∣∣∣ ∫

Q

{(
Ih
(
η(ūεh)− η(uεh)

))
∂tψ
}

dxdt
∣∣∣ ≤ CT−1

∑
n∈N

τ
∑
i∈V

mi|Un+1
i − Uni |.
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Using mi ∼ hd, ‖cij‖`2 ∼ hd−1, λmax(Uni ,U
n
j ,nij) ≤ β together with the CFL restriction (47), we

obtain ∑
i∈V

mi|Wn+1
i − Uni | ≤ Ch‖∇unh‖L1(D). (51)

Recalling (48), observing that |Rε,γ,θ(v)| ≤ Cv for all v ∈ B, and using the triangle inequality
together with (51), the reaction substep gives∑

i∈V
mi|Un+1

i −Wn+1
i | ≤ Cτε,γ,θ‖wn+1

h ‖L1(D)

≤ C ′(βΦε,γ,θ)
−1h

(
‖unh‖L1(D) + h‖∇unh‖L1(D)

)
, (52)

where we used the definition (15) of τε,γ,θ and the CFL restriction (47). In conclusion, we have

T−1
∑
n∈N

τ
∑
i∈V

mi|Un+1
i − Uni |

≤ C
(
T−1h‖∇uεh‖L1(Q) + (βTΦε,γ,θ)

−1h
(
‖uεh‖L1(Q) + h‖∇uεh‖L1(Q)

))
≤ C ′Λ(h),

where the last bound follows from Φε,γ,θ ≤ T . Putting everything together, we obtain

|E1,h − E1,h| ≤ CΛ(h).

(4) Bound on |E2,h − E2,h|. We have E2,h − E2,h = A2,1 +A2,2 +A3,3 with

A2,1 =
∑
n∈N

τ

∫
D

{(
Ih
(
q(unh)

)
− q(unh)

)
·∇ψnh

}
(x)dx,

A2,2 = −
∑
n∈N

τ

∫
D

{
∇·q(unh)(ψnh − ψn)

}
(x)dx,

A2,3 = −
∑
n∈N

τ

∫
D

{
∇·q(unh)(ψn − ψ)

}
(x)dx.

Using the approximation properties of the Ih, the smoothness of ψ, and the CFL restriction (47),
we infer that

|E2,h − E2,h| ≤ CT−1(h+ βτ)‖∇uεh‖L1(Q) ≤ C ′T−1h‖∇uεh‖L1(Q).

(5) Bound on |E3,h|. We have |η(Uni ) − η(Unj )| ≤ C|Uni − Unj | and |Ψn
i − Ψn

j | ≤ C(βT )−1h for
all i ∈ V and all j ∈ I(i). Since dnij ≤ Cβhd−1, we infer that

|E3,h| ≤
∑
n∈N

τ
∑
i∈V

∑
j∈I(i)

dnij |Uni − Unj ||Ψn
i −Ψn

j |

≤ C
∑
n∈N

τ
∑
i∈V

∑
j∈I(i)

T−1hd|Uni − Unj | ≤ C ′T−1h‖∇uεh‖L1(Q),

where we used the shape-regularity of the mesh sequence in the last bound.
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(6) Bound on |E4,h − E4,h|. We observe that E4,h − E4,h = −
∑
k∈{1:5}A4,k with

A4,1 :=
∑
n∈N

∫
In

1

Φε,γ,θ

∫
D

{
η′(unh(x))R(unh(x))(ψ(x)− ψn(x, t))

}
dxdt,

A4,2 :=
∑
n∈N

τ
1

Φε,γ,θ

∫
D

{(
η′(unh)R(unh)− Ih

(
η′(unh)R(unh)

))
ψn
}

dxdt,

A4,3 :=
∑
n∈N

τ
1

Φε,γ,θ

∫
D

{
Ih
((
η′(unh)− η′(un+1

h )
)
R(unh)

)
ψn
}

dxdt,

A4,4 :=
∑
n∈N

τ
1

Φε,γ,θ

∫
D

{
Ih
(
η′(un+1

h )
(
R(unh)−R(wn+1

h )
))
ψn
}

dxdt,

A4,5 :=
∑
n∈N

τ
1

Φε,γ,θ

∫
D

{
Ih(η′(un+1

h )
(
R(wn+1

h )−Rε,γ,θ(wn+1
h )

)
)ψn

}
dxdt.

Using the smoothness of Ψ in time and the CFL restriction (47) gives

|A4,1| ≤ CΦ−1
ε,γ,θτT

−1‖uεh‖L1(Q) ≤ C ′Φ−1
ε,γ,θh(βT )−1‖uεh‖L1(Q).

Using the approximation properties of Ih we obtain

|A4,2| ≤ CΦ−1
ε,γ,θh‖∇u

ε
h‖L1(Q).

The shape-regularity of the mesh sequence and the triangle inequality yield

|A4,3|+ |A4,4| ≤ C
∑
n∈N

τ
1

Φε,γ,θ

∑
i∈V

mi

(
|Wn+1

i − Uni |+ |Un+1
i −Wn+1

i |
)
.

Recalling inequalities (51) and (52), and invoking the CFL restriction (47), this gives

|A4,3|+ |A4,4| ≤ CΦ−1
ε,γ,θ

(
Φ−1
ε,γ,θβ

−1h‖unh‖L1(Q) + h(1 + Φ−1
ε,γ,θβ

−1h)‖∇unh‖L1(Q)

)
.

Setting ζ(v) := v(1− v), we have, for all v ∈ B,

R(v)−Rε,γ,θ(v) =
1

τε,γ,θ

∫ τε,γ,θ

0

(
ζ(ϑ(v; s))− ζ(v)

)
R̃(v)ds.

Since ζ is Lipschitz in B, we infer that
∣∣R(v)−Rε,γ,θ(v)

∣∣ ≤ Cτ |v|. As a result, invoking again the
CFL restriction (47), we obtain

|A4,5| ≤ CΦ−2
ε,γ,θβ

−1h
(
‖unh‖L1(Q) + h‖∇unh‖L1(Q)

)
.

Putting everything together and since Φε,γ,θ ≤ T , we infer that

|E4,h − E4,h| ≤ C
(

h
βΦ2

ε,γ,θ
‖uεh‖L1(Q) +

(
h

Φε,γ,θ
+ h2

βΦ2
ε,γ,θ

)
‖∇uεh‖L1(Q)

)
.

(7) Combining the bounds established in Steps (3)–(6) and using Φε,γ,θ ≤ T to simplify the
upper bound completes the proof.
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