
HAL Id: hal-04357742
https://hal.science/hal-04357742

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Optimization and sensitivity analysis of existing deep
learning models for pavement surface monitoring using

low-quality images
Ronald Roberts, Fabien Menant, Gaetano Di Mino, Vincent Baltazart

To cite this version:
Ronald Roberts, Fabien Menant, Gaetano Di Mino, Vincent Baltazart. Optimization and sensitivity
analysis of existing deep learning models for pavement surface monitoring using low-quality images.
Automation in Construction, 2022, 140, pp.104332. �10.1016/j.autcon.2022.104332�. �hal-04357742�

https://hal.science/hal-04357742
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 

1 
 

 

Title: Optimization and sensitivity analysis of existing Deep 1 

Learning models for Pavement Surface monitoring using low-quality 2 

images 3 

Authors: Ronald Roberts1*, Fabien Menant1, Gaetano Di Mino2 and Vincent Baltazart3 
4 

1MAST-LAMES, Université Gustave Eiffel, IFSTTAR, Campus de Nantes, 44344 Bouguenais, 5 

France 6 

2DIING - Department of Engineering, University of Palermo, Viale delle Scienze ed.8, Palermo, 7 

90128, Italy; 8 

3SII-COSYS, Université Gustave Eiffel, IFSTTAR, Campus de Nantes, 44344 Bouguenais, 9 

France 10 

*Corresponding author, Tel.: +33 07 61 64 16 69 11 

 12 

Email addresses:  13 

Ronald Roberts - ronald.roberts@univ-eiffel.fr;  14 

Fabien Menant - fabien.menant@univ-eiffel.fr; 15 

Gaetano Di Mino – gaetano.dimino@unipa.it; 16 

Vincent Baltazart – vincent.baltazart@univ-eiffel.fr.  17 

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0926580522002059
Manuscript_35bb6fcd41f1771297507ed6bedf2c7b

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0926580522002059
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0926580522002059


 

2 
 

 

Abstract 18 

Automated pavement distress detection systems have become increasingly sought after by road 19 

agencies to increase the efficiency of field surveys and reduce the likelihood of insufficient road 20 

condition data. However, many modern approaches are developed without practical testing using 21 

real-world scenarios. This study addresses this by practically analysing Deep Learning models to 22 

detect pavement distresses using French Secondary road surface images, given the issues of 23 

limited available road condition data in those networks. The study specifically explores several 24 

experimental and sensitivity-testing strategies using augmentation and hyperparameter case 25 

studies to bolster practical model instrumentation and implementation.  The tests achieve 26 

adequate distress detection performance and provide an understanding of how changing aspects 27 

of the workflow influence the actual engineering application, thus taking another step towards 28 

low-cost automation of aspects of the pavement management system. 29 

 30 

Keywords 31 

Deep Learning, Transfer Learning; Pavement distresses; Pavement Management Systems; 32 

Monitoring Pavement Surfaces 33 

1.0 Introduction 34 

1.1 Context and Overview 35 

With its 1,000,000 km, France has one of the largest and most dense road networks in Europe. 36 

Like other countries, the main issue for road managers now is more to maintain the network than 37 

extend it. The preservation of road assets consists of defining and planning maintenance works 38 

from several types of technical data: inventory data (e.g. age and form of the pavement structure), 39 

traffic data and pavement monitoring data that aim to detect the presence of road defects. 40 

Pavement monitoring data typically come from measurements or surveys provided on the visible 41 

part of the road (i.e. surface layer) as well as the non-visible part (i.e. base layer). One of the most 42 

important pavement monitoring data to have is the distress survey that mainly consists of 43 

detecting and locating different types of cracks at the road surface. These defects may indeed 44 

reveal issues about the surface layer (minor issues) or about the structure as a whole, which is 45 

then more serious. This type of data is key to producing adequate pavement management plans 46 

for maintenance, rehabilitation and reconstruction activities. 47 
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For main roads (highways and national roads), distress surveys are usually done using very 48 

accurate measurement systems which are also very expensive to buy and use (only a dozen of 49 

these systems operate in France). This is acceptable because the main roads are highly strategic 50 

for economic activities (e.g. transportation of goods) and also because they represent only a small 51 

part of the network (about 2% in France). For the rest of the network and especially for the 52 

secondary roads (rural roads) that approximately represent 38% of the French network (380,000 53 

km)[1], these systems are financially and operationally less adapted. Therefore, secondary road 54 

managers look out for adaptive measurement systems that can solve both the economic 55 

constraints and the need for data collection. For now, such a system does not really exist so 56 

managers have either no data or data that are often too inaccurate/unreliable to be used as they 57 

come from visual inspections. 58 

1.2 Goals of the study 59 

This study aims to test, adapt and evaluate some Deep Learning (DL) techniques applied to “low-60 

quality” images for carrying out distress surveys on road networks. With “low-quality images” 61 

defined as images coming from low-cost devices such as webcams and camera phones with low 62 

photo resolutions (images where 1 pixel represents more than 1 mm of actual detail) and other 63 

adverse factors such as the presence of shadows, altering brightness conditions and blurs. In this 64 

study, only a few types of distresses have been considered, specifically those, which are the most 65 

relevant for the management of secondary roads[2]. Faced with economic constraints and the 66 

need to cover the large size of the secondary road networks, images from low-cost cameras 67 

embedded into a fleet of vehicles (e.g. patrol vehicles) are used. In this way, it is possible to have 68 

many pictures of the road surface, continuously and frequently updated, on the network but with 69 

a low quality. In this context, a robust image processing technique is highly desired in order to 70 

detect and classify pavement distresses from the images. DL can help this challenge considering 71 

that it is well adapted to the use of probe vehicles, which provides numerous images and thus 72 

facilitates an important need of the learning process. Nevertheless, we do not know if DL will 73 

adequately perform for low-quality images (because of the camera characteristics) and for 74 

“noisy” images that include the effects of several factors: mechanical vibrations, brightness 75 

changes, shadows, vehicle speed, etc. This paper outlines a methodology used to test and adapt 76 

Deep Learning models from experimental data that are representative of real conditions and 77 
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provides case studies of changing different aspects of the workflow in practical scenarios. The 78 

novel aspect of the work is centered around the results of case studies testing the various 79 

available DL models that mimic practical changes that could occur in the real world. The results 80 

are meant to offer a practical understanding of how to test and understand using augmentations 81 

and hyperparameters for the specific task of detecting and understanding pavement distresses in a 82 

Deep Learning engineering application. 83 

1.3 The rising use of Deep Learning for problem-solving 84 

Deep Learning (DL) has seen significant rises in recent years [3] to solve many practical 85 

problems with numerous studies focused on defect detection, diagnosis and prediction [4]. This is 86 

important as authorities are continually seeking a range of technologies because they are key to 87 

instrumenting road infrastructure for detecting and monitoring damages [5].  DL generally 88 

involves using models comprised of several processing layers that learn data representations 89 

using multiple layers of generalization [6]. The key capability of a DL system is its ability to 90 

extract very complex features using large amounts of data by uncovering hidden patterns within 91 

them [7]. This allows complex models to be easily built for important tasks. The general 92 

architectures of DL models have been widely studied [6] with continual advancements to their 93 

structures. The systems can however suffer from errors, chief among them being systematic and 94 

random ones [8]. With more testing and calibration, errors can be averted by improving training 95 

using more generalizable data and better hypothesis functions [4]. To this end, this study aims to 96 

carry out a series of optimization and sensitivity tests to help improve the understanding of 97 

building models to detect road distresses. This will provide more clarity on practical model 98 

development. This is especially important because of the gap that often lies when connecting the 99 

fields of DL and practical engineering application and in particular, road asset management. 100 

When looking at DL research in pavement engineering, the primary focus has been on the 101 

computer science phases with many studies focusing on improving the structure rather than 102 

practical application and calibration. This is seen in many studies focused on generating new 103 

model structures and algorithms that can reduce errors based on generic isolated datasets.  104 

This is often a problem with DL due to the disconnect between modelling and real-world 105 

applications where the connection of important problems to the larger world of science and 106 

society is lost [9]. This often happens because DL researchers are not always experts in the 107 
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relevant technical areas and therefore focus more on the model structure rather than their 108 

adaptation. Assisting the adaptation to real-world implementation is this study’s primary goal to 109 

help deliver models that are context-driven and understood by practitioners and not just 110 

researchers.  This study, therefore, develops distress detection models using road images from 111 

secondary roads in France to build models and then carry out experimental testing to improve 112 

performance and understand the effects of different practical workflow changes. Models 113 

developed are done so directly from a civil engineering practitioner’s point of view and not with 114 

the typical idea of generating a mathematically advanced model that may suffer practical 115 

application issues.  116 

2.0 Overview of applications in pavement engineering  117 

It is important to highlight aspects of the significant research done using DL for Pavement 118 

Engineering uses [10–12]. These applications can be allotted to the following areas:  119 

• Condition and performance predictions, where models are used to predict future pavement 120 

conditions using historical data [13] 121 

• Pavement Management systems where models are used to optimize their functions  122 

• Serviceability forecasting where models are used to monitor the ability of the pavement to serve 123 

its user’s needs (e.g. comfort) [14] 124 

• Structural evaluations, where models are used to evaluate the pavement’s physical structure 125 

[15] 126 

• Modelling materials, where models are used to monitor materials in the pavement structure and 127 

how they react to different conditions [16]  128 

•  Image analysis and classification, where models are used to analyse images of the pavement 129 

and wherein lies the focus of this study  [17–19]. 130 

The most researched area is Pavement Image analysis in which the focus is split between image 131 

classifications, where images are classified based on a distress in the image; and object detection, 132 

where distresses are detected using bounding boxes or masks in the image. Image classification 133 

has issues as multiple distresses frequently occur in an image making it impossible to label a 134 

particular image with one label. With object detection, multiple overlapping objects within an 135 

image can be identified, making it is possible to detect multiple overlapping pavement distresses. 136 

This is key for road asset databases. Many studies have focused on developing models to indicate 137 
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the presence or lack of a distress [20]. Crack detection has largely been seen as the most 138 

researched category. They are seen as the most common distress [21] and are easier to measure, 139 

with the simple required metrics such as the crack’s width and length.  Many studies have 140 

developed specific DL models for crack detection and analysis using 2D and 3D imagery [20,22–141 

27]. Comparisons are often made to results from image-based systems for crack detection such as 142 

CrackIT [28] and other available crack databases [29,30]. CrackIT is a Matlab based system 143 

created to detect and characterize cracks. It must be noted, however, that whilst the major 144 

category of focus has been cracks; this is only one distress category.  Other studies have 145 

considered multiple distress categories and datasets of multiple types. A German team developed 146 

a model for pavement distress application based on imagery across the German road network 147 

using a mobile mapping system [31]. The German Asphalt Pavement Distress (GAPS) dataset 148 

was developed by this team, which was utilized to detect and analyse six different distress 149 

categories based on German road manuals considering their developed neural network. Recently, 150 

the dataset was further updated with better annotations and a larger database [32]. Other teams 151 

have considered the use of street images where DL models are used to detect distresses, mainly 152 

cracks [33]. Using Google street view images, others have developed models to detect multiple 153 

distresses using the You Only Look Once (YOLO) model and network [34] and subsequently 154 

used image segmentation to detect the crack size [35]. Studies have also been carried out 155 

considering fourteen distress categories with the application of semantic segmentation and object 156 

detection algorithms on a dataset in Naples, Italy [36]. This was used to create a decision support 157 

system based on the occurrence of predicted distresses. There is also a large dataset of road 158 

surfaces called the KITTI dataset [37], however, this dataset was created primarily for assisting 159 

with automated driving research. Other studies have considered the use of transfer learning using 160 

models initially trained in the ImageNet database. Using these available models, models were 161 

developed to detect cracks [20]. The use of smartphones for capturing datasets has also been 162 

considered with one of the applications being the use of a DL model on image patches collected 163 

from a smartphone to detect cracks [38]. There has also been the development of a Japanese road 164 

distress database using smartphones [39]. This has provided the basis for competitions such as the 165 

Global Road Damage Detection Challenge [40], where different models are submitted to obtain 166 

higher performances using different configurations. This has led to different configurations using 167 

different base networks and models having the same goal to detect distresses [41,42]. Whilst 168 
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these developed models represent a significant step forward in distress detection and analysis, 169 

changes to model training and testing due to augmentation and hyperparameter testing has largely 170 

been missing. This study further explores this by using models built around similar bases but 171 

focusing on highlighting the effects of different changes to the model workflow.  172 

3.0 Methodology 173 

3.1 Data collection 174 

A database containing 56,783 images captured across approximately 100km of secondary roads 175 

in France was used. The images were taken during road surveys using a webcam affixed to a 176 

survey vehicle and aimed directly at the pavement’s surface in a top-down view as shown in 177 

Figure 1. 178 

 179 

Figure 1.  Example of instrumentation used to collect images  180 

The webcam used was a Logitech C920 Pro with a max resolution of 1080p equipped at a vertical 181 

distance of 1.8m from the surface. This means the road surface represents 2mm/pixel on an image 182 

with the actual space taken being 1.5m in length and 2m in width. This configuration offers a 183 

good compromise between the minimum image resolution and ground measurement area and 184 

importantly accordingly with the needs of road managers for rural French roads. After an 185 

overview of the database, it was determined that five distress categories would be considered.  186 

These categories are in line with category descriptions of the French Manual for distress 187 

collection and identification [43], which is critical as this is what is used by the industry. 188 

 The categories are: 189 

1. Ravelling (denoted as RV) 190 

2. Transverse Cracking (denoted as TC) 191 
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3. Longitudinal cracking out of wheel path (denoted as LC1) 192 

4. Longitudinal cracking within wheel path (denoted as LC2) 193 

5. Alligator/Block cracking (denoted as BC1) 194 

These are the most relevant to the road managers and given the type of roads (secondary), 195 

managers only need to know the mere presence of the distress in the road sections being 196 

surveyed, making object detection a perfect tool. The distinction between the longitudinal cracks 197 

in and out of the wheel path is relevant to determining whether the cracking is due to pavement 198 

fatigue or not due to the direct loads of vehicles. Examples of these are shown in Figure 2.  199 

 200 

Figure 2.  Examples of distress categories used in modelling 201 

The next step was analysing the complete dataset to pinpoint images containing the relevant 202 

distresses. This was done manually and the distresses were identified and recorded using the 203 

LabelImg open-source software [44] in the Pascal VOC [45] xml format. For annotations 204 

Complex cases ( such as alligator cracking inside block cracking) are not labelled as it is 205 

considered as the same in the French methodology for secondary roads The distresses identified 206 

are detailed in Table 1. This dataset amounted to 2325 images with 3280 annotations (1.4 per 207 

image) out of the complete set (4.09% of images). 208 

 Table 1. Annotated distresses 209 

Distress Number of occurrences % of occurrences of the total dataset 
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RV 904 1.59 

LC1 676 1.19 

LC2 545 0.96 

TC 565 1.00 

BC1 590 1.04 

3.2 Development using pre-existing DL models 210 

For model development, the TensorFlow (tf) [46] library was used. Within the library, there is a 211 

vast object detection model zoo [47], which provides base models, trained on millions of images 212 

that can be utilized for transfer learning for new tasks. Transfer learning enables training models 213 

based on the ‘backbone’ of preexisting models and therefore does not require training from 214 

scratch. It has been shown to be efficient for developing new models [48,49].  The models used 215 

were: 216 

• ssd_mobilenet_v2 217 

• ssd_inception_v2 218 

• ssdlite_mobilenet_v2 219 

• ssd_mobilenet_v1_ppn 220 

• ssd_mobilenet_v1_fpn 221 

• faster_rcnn_inception_v2 222 

These models were chosen based on earlier work on the detection of pavement distresses [50]. 223 

Besides these models, one other widely used model that should also be mentioned is the Yolo – 224 

You only look once [51] model which uses a single convolutional network for predictions and is 225 

the backbone of many applications. The network does not look at the entire image. It splits the 226 

model into a grid and then bounding boxes are generated within that image. For each box, the 227 

network then outputs the class probabilities and offset values. Boxes that have a class probability 228 

above a set threshold value are identified and used to pinpoint the location of the object in the 229 

image. It does have issues detecting small objects with noted issues such as missed and false 230 

detections [52,53]. As pavement distresses can be very small, the decision was made not to use it 231 

in this particular study but it can be considered for future research. Furthermore, the model is not 232 

included in the object detection model zoo [47] that was used for this study.  233 
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The architectures of these models will not be considered here as they have widely been studied 234 

and the importance of this work is on the workflow and sensitivity testing using the specific case 235 

study applications. The largest difference between the models is that the first three take a single-236 

stage approach using only one snapshot of the image to detect multiple objects within the image, 237 

whilst the final two use a region proposal approach wherein two steps are employed, the first 238 

being to generate region proposals and then the second where the predictions are made.  For the 239 

training, Figure 3 highlights the key stages of the process, wherein the files necessary for the 240 

training are developed using various scripts to be used in the TensorFlow environment.  241 

242 
Figure 3.  Workflow for developing TensorFlow pavement distress detection model 243 

The tf record format which is used for the model development is key as the information on the 244 

annotations and their locations are embedded within these files. Additionally, it is important to 245 

point out that the dataset was split for training, validation and testing in the ratio of 70:20:10 246 

which is typical for this type of model development [50]. The split was made ensuring that a 247 

similar distribution of the distresses was in each dataset to avoid overfitting or inflated results at 248 

any point. The percentage image split of each dataset is provided in Table 2. From this, it can be 249 

seen that the distributions are done to ensure no set is inflated with any particular category. The 250 

distributions cannot be exact, because of multiple distresses in images and overlaps, which is how 251 

they appear in the real world.  252 

Table 2. Analysis of commonly used metrics 253 

Distress 
% of distress occurrence  

in the training set 

% of distress occurrence in 

the validation set 

% of distress occurrence in 

the testing set 
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BC1 19% 18% 20% 

LC1 23% 19% 22% 

LC2 18% 19% 15% 

RV 22% 21% 25% 

TC 18% 23% 18% 

 The critical stage in the process is the tuning, which occurs, based on the evaluation results of 254 

the model during the training process. This is monitored using Tensorboard, which allows the 255 

user to check the losses and other metrics of evaluation during the training and evaluation stages 256 

of the model. The workstations utilized for modelling was a Windows 10 PC with an NVIDIA 257 

Quadro P4000 GPU (8 GB ram) and total CPU memory of 32 GB @ 3.7GHz and 64bit 258 

processor. The general speed of the models on the workstation is approximately 0.6 seconds per 259 

training step with an average of 200,000 steps utilized in the modelling process. The faster of the 260 

models, as expected, was the Mobilenet one, which was developed for quick mobile deployment.  261 

3.3 Determination of optimization tests for models 262 

For the optimization tests, the focus was on augmenting images with different alterations that 263 

could mimic practical changes such as light exposure and blurs, factors that are typically linked 264 

to the use of low-cost cameras. Additionally, it became apparent that the size of the object being 265 

detected was critical so considerations of the bounding box in the actual distribution were also 266 

done. The model hyperparameters were varied to obtain the best performance of the model. The 267 

hyperparameters considered were the learning rate, the decay rate of the learning rate, 268 

intersection threshold, anchor-box sizes and scale. Throughout the training, these parameters 269 

were monitored and changed with learning rates varying between 0.001 and 0.002. The former 270 

was the more utilized version that saw quicker losses in the training and was in line with 271 

previous models run in past experiments [50]. A decay of 0.95 in the learning rate was generally 272 

employed after 50,000 steps and again was in line with previous work done [50].  It should be 273 

noted that these are not the only available parameters that could be changed but represent key 274 

ones that contribute to the effectiveness of the model in practical applications. 275 

3.4 Performance metrics  276 

Model performance is typically evaluated based on the metrics of precision and recall. Precision 277 

can be classified as the results within a test that are relevant to the detection problem whilst 278 
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Recall refers to the percentage of relevant results which are in turn correctly identified by the 279 

model. These metrics are computed from the confusion matrix values, which detail the 280 

occurrences of true and false positives (TP, FP) and negatives, (TN, FN). Table 3 shows the 281 

metrics and offers a practical explanation regarding detecting pavement distresses.  282 

 283 

Table 3. Analysis of commonly used metrics 284 

Metric Description Formula 

Precision 
The proportion of accurate distresses that are detected against 

the total number of predicted distresses 
TP/(TP+FP) 

Recall 
The proportion of accurate distresses that are detected against 

the total number of actual distresses 
TP/(TP+FN) 

f1 score 
The harmonic mean between precision and recall where the 

two are treated equally 
2((1/Precision) + (1/Recall)) 

Whilst generally, it is common to have information on both precision and recall as they represent 285 

the key efficiencies of the DL model, the use of these metrics largely depends on the motivation 286 

of the study and model. The critical element that must be considered is what is important to the 287 

designated stakeholder. It should be further stated that if a stakeholder emphasizes that there 288 

should be limited false positives then precision is considered a good metric for performance 289 

evaluation. With regards to pavement distresses, this would mean that the stakeholder does not 290 

want a large number of falsely detected pavement distresses which is the case for a great number 291 

of French road managers, therefore stressing the importance of this metric for the application on 292 

French roads. However, should the stakeholder place greater emphasis on simply identifying the 293 

distress and missing a distress is not acceptable then recall is a better metric. If both of these are 294 

important then the harmonized f1 score should be the preferred metric. These considerations are 295 

key to the practical implementation and use of the DL models. For engineering applications, the 296 

use of these metrics may also heavily depend on financial resources and the importance of not 297 

missing a distress during a survey. Therefore, this is a critical consideration for practical 298 

evaluations.  299 

3.5 Anchor-box considerations 300 

As the size and perspective of images obtained in practical situations may differ, the sizes of 301 

distresses in an image can also change. A significant change could be from a panoramic view to a 302 
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top-down view as used in this study. In these two situations, the number of pixels in the image 303 

where the distress occurs would change significantly and this needs to be considered in 304 

hyperparameter selection. One of the key considerations while developing many detection 305 

models is the anchor-box configuration. During the modelling process, models make numerous 306 

predictions on where an object could be within the image space. Typically, thousands of boxes 307 

are generated on the image to assist in this process. These boxes, named anchor-boxes, are 308 

defined before the training begins and are typically rectangular in size and used by the model to 309 

pinpoint the location of the detection by comparing their location and size to the location of the 310 

ground truth boxes and using the differences to train. These boxes should be consistent with the 311 

location, shape and size of the objects that the model is attempting to detect. This is important as 312 

the overlap between the boxes generated and the annotated training set is used for the model to 313 

understand the particular features of the annotations. As a result, it is important to establish a 314 

clear understanding of the space occupied by the distresses to produce effective models. The 315 

traffic direction may for example be different in different countries causing distresses to be 316 

localized in different lanes. This is another clear justification for the inclusion of this study on 317 

anchor-box location for practical applications. For this, the images within the used database were 318 

analyzed. To this end, the CSV files generated from the annotated images containing the 319 

information on the bounding box location and sizes were analysed. Their sizes were normalized 320 

using the resizing function ‘compute_new_static_size’ from the TensorFlow object detection API 321 

[47]. The distribution of the sizes and location of the bounding boxes' width and height were 322 

calculated and are displayed in Figure 4.  323 

 324 
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Figure 4. Distribution of the bounding boxes of the annotated dataset (dots in the graph on the left represent 325 

the location of the distress detections and the graph on the right shows a heatmap of these points across the 326 

dataset) 327 

To further visualize this, generic examples of anchor-box configurations used on the images are 328 

illustrated in Figure 5, where the colored boxes represent the model’s default anchor-boxes.  329 

 330 

Figure 5.  Generic anchor-box configuration on example image from the dataset 331 

Considering the distributions, it was decided to use optimized anchor-boxes sizes to identify the 332 

locations of the distress annotations.  This was done by carrying out calculations to determine a 333 

more appropriate aspect ratio (AR) and scale sizes to be used in the training. The AR refers to the 334 

ratio of the width to height of the box and the scale refers to the size of the box with respect to the 335 

size of the image being used. A k-means clustering approach was utilized for this with four 336 

clusters applied for the bounding boxes in an attempt for the model to produce a greater 337 

Intersection over Union (IOU) when creating the anchor-boxes and searching for the annotation 338 

location during training. The IOU is a value commonly used to measure the overlap of 339 

predictions versus the ground truth.  The k-means clustering was considered suitable given the 340 

distribution shape of the boxes. The clustering approach was based on a calculation of the IOU 341 

between the boxes and the ‘k’ number of clusters given in equation 1. 342 

intersection

box_area cluster_area intersection
=

+ −
IOU                              343 

(1) 344 

Following this, the average IOU between the boxes and clusters was obtained and then the k-345 

means clustering was applied using the Euclidean distance to identify the nearest clusters in the 346 

process. A cluster of four was used to reproduce four numbers for the AR and scale in line with 347 
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the previous number of scales and aspect ratios utilized for other models. Using this in Python, 348 

the clusters were returned in terms of width and height. Subsequently, the AR and scale size were 349 

calculated based on the image size as shown in equations 2 and 3: 350 

       
clusterbox _ width

aspect _ ratio
clusterbox _ height

=                             (2) 351 

  
clusterbox _ height aspect _ ratio

scale
height _ of _ gridanchor

×
=                         (3) 352 

4.0 Results and discussion 353 

4.1 Anchor-box optimizations 354 

In performing the anchor-box optimizations as described in section 3, the process resulted in 355 

optimized aspect ratios and sizes, which are shown along with the default values in Table 4.  356 

Table 4. Changes to Anchor-boxes 357 

Generic Aspect ratios Aspect ratios after clustering Generic scale sizes Scale sizes after clustering 

0.5 0.1953 0.25 0.4640 

1.0 4.4461 0.50 0.6692 

2.0 0.4893 1.00 1.5916 

0.75 0.2302 2.00 0.9465 

An example of the new anchor-boxes, when visualized on the image, is given in Figure 6.  358 

 359 

Figure 6.  Optimized anchor-box configuration on an image from the dataset 360 

From the image, it is seen that the anchor-boxes are more suitable to the shape and size of the 361 

annotated distresses as they appear more similar in size. This is key to quicker training and higher 362 

developed accuracies for practical application. Future work will carry out further testing on the 363 
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effect of using optimized anchor-box configurations. After the setup and in the first instance of 364 

testing, the results of the full dataset with the different base models and utilizing the five 365 

previously referenced classes are shown in Figure 7. 366 

 367 

Figure 7.  Level of performance on initial models for distress detection 368 

Considering the results of these models, there were high levels of precision achieved for the 369 

majority of distresses but lower levels of recall, particularly for the longitudinal cracking and 370 

block, cracking categories. It was also noted that the base models of 371 

ssd_mobilenet_v1_fpn_shared_box_predictor and ssd_mobilenet_v1_ppn_shared_box_predictor 372 

both performed quite poorly with the former of two seeming unable to produce usable results at 373 

least under the used configurations of the models. This may be due to the models trying to speed 374 

up detection compared to the regular SSD configuration [54]  and missing the smaller detections 375 

of pavement distresses contained in this dataset. It should not be ruled out that other 376 

configurations could yield usable results and therefore further test of these models could remain 377 

an option. Examples of the detections shown on actual images are given in Figure 8. 378 
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 379 

Figure 8.  Example of detections given by the DL models 380 

4.2 Case studies to test the use of Augmentations 381 

In an attempt to increase the dataset size and produce better results (given the tendency of DL to 382 

function better with more data [55]), augmentations were considered and applied to the images 383 

before training. Augmentations are variations of an image, wherein particular image 384 

characteristics are modified. These changes can vary from the color, size or rotation of the images 385 

and this process is used to increase the size of the dataset. Augmentation is generally assumed to 386 

increase the variability and diversity of the data which will enable producing a more robust DL 387 

model, considering the many variances that can exist in the specific data [56]. This study aimed 388 

to explore this and understand the effects of using various augmentations for the given dataset. 389 

The purpose of this was not to declare a specific combination of augmentations as the winner but 390 

rather to see if there was indeed a boost to the model performance and understand whether this 391 

process should be carried out. To carry this out tests were run without any augmentations, and 392 

this model was used as a base case scenario. Subsequently, test sets using the same pipeline were 393 

run changing different augmentations. These augmentations included several changes to the 394 

image appearance, which could practically happen, with changes to light and movement during a 395 

survey such as vibrations of a camera, causing image blurs. An example of the augmentations 396 

used is shown in Figure 9. 397 
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 398 

Figure 9.  Example of an augmentation where the lighting was artificially changed, (middle image is the 399 

original one) 400 

 In the figure, the original image appears in the middle and brightened and darkened versions are 401 

shown to the left and right, representing differing lighting conditions that can occur during 402 

surveys. The images show how light can make a significant difference in identifying the presence 403 

of distresses. In total, nine different situations were considered for the case study with results 404 

shown in Figure 10 and which were done using Python scripts to add the changes to the images. 405 

It should be noted that horizontal and vertical flips were performed but these flips are mirror flips 406 

wherein the orientation of the transverse or longitudinal cracks are not interfered with and instead 407 

the crack would simply appear in the other half of the image. This is important as the use of an 408 

incorrect flip or rotation could result in a transverse crack noted as a longitudinal one or vice 409 

versa. 410 

 411 
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Figure 10.  Evolution of the f1 scores of the model due to augmentations for each distress type 412 

When analyzing the results and changes of the augmentations, the changes varied across the 413 

distress types and the results are shown in Figure 9. In the figure, it is shown that some 414 

augmentations had very marginal effects on the model’s performance with some even producing 415 

negative effects in particular instances. The following important points were ascertained: 416 

i. The augmentation of a random crop had negative effects, particularly on distresses 417 

where the location was important (Longitudinal cracking within the wheel path – 418 

LC2). This is rational, as a crop would allow the distress not to appear in its precise 419 

location. However, it could be considered as a positive for models where the position 420 

of the distress is not important. This underscores the importance of establishing 421 

criteria based on specific site information and exact distresses in practical engineering 422 

applications. 423 

ii. The effect of brightening appears more effective than that of darkening which caused 424 

significant drops in performance. When examining photos, it was seen that this 425 

augmentation showed mixed performance as some images appeared better when 426 

brightened whereas some in their original instance suffered from too much light and 427 

therefore darkening helped. This led to the consideration of exposure, contract and 428 

pixel value changes as these alterations focus on the particular allocation of pixels 429 

within the image and not a generic application to the entire dataset. These 430 

augmentations are however not natural and therefore particular attention has to be 431 

paid to their use. 432 

iii. The use of horizontal and vertical flips appeared to provide a marginally positive 433 

response in performance. 434 

iv. A combination of flips with random changes to the contrast proved to be the best 435 

combination of augmentation for this test. 436 

v. The augmentations generally had little positive effect on increasing the performance 437 

of the models to detect longitudinal cracking. 438 

vi. It is simply not good enough to assume the positive effect of an augmentation and for 439 

practical implementation, testing must be done to determine the best combinations. 440 
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After testing the best three models as defined by the combined metrics are given in Table 5. 441 
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Table 5. Performance of Models 442 

  Base models 

Distress Metric ssd_mobilenet_v2 ssd_inception_v2 faster_rcnn_inception_v2 

RV 

 

Precision 98% 95% 88% 

Recall 68% 79% 86% 

F1 score 81% 86% 87% 

TC Precision 95% 96% 58% 

Recall 29% 39% 86% 

F1 score 44% 55% 70% 

LC1 Precision 91% 93% 60% 

Recall 33% 21% 81% 

F1 score 49% 34% 69% 

LC2 Precision 79% 82% 53% 

Recall 28% 19% 52% 

F1 score 42% 31% 53% 

BC1 Precision 92% 90% 76% 

Recall 59% 90% 92% 

F1 score 72% 90% 83% 

From Table 5, the models based on the SSD network with the inception and mobilenet 443 

configurations show greater levels of precision but lower levels of recall as compared to the 444 

faster-rcnn based one. It is also useful to note that the first two models take a ‘one-shot’ look 445 

approach to determine the object in the images [57], whereas the faster-rcnn one takes a region 446 

proposal approach [58] making the case that for distress detection, this plays a significant role 447 

considering the sizes of pavement distresses. The models’ f1 scores are shown in Figure 11 448 

showing the best overall model as the faster-rcnn based one with values similar to the many 449 

studies done on DL models in the field as shown by [17]. A comparison of precision to recall for 450 

the models is also shown in Figure 12 to highlight the strengths and weaknesses of the models.  451 
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 452 

Figure 11.  Level of performance of the best three models 453 

 454 

Figure 12.  Comparison of Precision to Recall for the best three models 455 

From Figure 11, it can be clearly shown that the first two models (one-shot approach types) 456 

produce outstanding levels of precision but suffer from poor levels of recall for this type of 457 

application. Therefore, it should be noted that the first two models, therefore, produce lower 458 

levels of false positives – as high levels of precision imply – but in the same instance produce a 459 

larger number of false negatives (missed detections). The importance of this has to be decided by 460 

the stakeholder that the model is directed at, as some companies/authorities may value false 461 

detections higher than missed detections. Nevertheless, it is an important result to be noted for 462 

practical application. 463 

4.3 Case studies to test Confidence and IOU thresholds 464 
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Case studies were also carried out to determine the effects of changing the Intersection over 465 

Union (IOU) and Confidence thresholds. The idea behind this was to boost the detection rate in 466 

order to reduce the false-negative rate whilst still maintaining an adequate performance level for 467 

the models. The IOU threshold has a range of 0 to 1, where one represents a perfect overlap of 468 

detection and the ground truth. Confidence meanwhile refers to the model’s score in predicting 469 

the class, which is the ‘certainty’ the model has when making a prediction. The confidence 470 

threshold, therefore, sets the minimum value that the model score should be before returning a 471 

result of a detection. For this test, a range of IOU thresholds was utilized from 0.10 to 0.95 with a 472 

fixed confidence threshold score of 0.50. Additionally, the confidence score was also altered with 473 

a range of 0.10 to 0.95 with a fixed IOU Threshold of 0.50. This process was tested on the best 474 

model iterations of the inception and faster_rcnn based models. Each case study’s results are 475 

given below. 476 

4.3.1 Effects on ssd_inceptionv2 based model 477 

In the first case, the confidence level was controlled with varying levels of threshold and there 478 

was no effect on the general model performance. After a threshold of 75% was applied, however, 479 

the f1 scores began to fall. In the second test, the IOU threshold was maintained and confidence 480 

levels were changed. With this test, the performance of the models in detecting distresses 481 

dropped across categories incrementally. Both tests are shown in Figure 13. 482 

 483 

Figure 13.  Variation of f1 scores when altering the thresholds 484 

4.3.2 Effects on Faster-RCNN based model 485 
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For this test, the model’s performance again was maintained until approximately 75% IOU 486 

threshold where its performance declined significantly and quickly as shown in Figure 14.  487 

 488 

Figure 14.  Variation of f1 scores when altering the thresholds 489 

However, in the confidence threshold test, the performance of the model increased incrementally 490 

as the confidence threshold was increased with increases of up to 30% from initial results across 491 

all distress categories. Given these results, it was concluded that the tuning of the confidence 492 

level does affect the models used. However, it appeared with the model based on inception, the 493 

overall performance of the models could not be increased even with alterations to the confidence 494 

levels. To understand what could be causing these changes, the numbers of positives and 495 

negatives detected were similarly observed across the models with varying confidence levels. In 496 

analyzing these parameters, the changes in the number of false positives were identified as a 497 

cause for the change. These graphs are shown in Figure 15.  498 

 499 

Figure 15.  Variation of f1 scores when altering the thresholds 500 
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Concerning false positives, both had a similar decreasing pattern but because the numbers of false 501 

positives were substantially less for the inception based model, the effect of the confidence 502 

threshold did not produce better results. Therefore, it is clear that when altering these values, the 503 

trained model itself must have the flexibility for any altering to be effective. Essentially, there 504 

must be a higher number of false positives in the results which could be filtered out with higher 505 

confidence levels. Whilst the inception model initially produced higher precision, it also had a 506 

smaller number of false positives and therefore did not have much scope to be changed by the 507 

hypothesis of altering confidence. Conversely, the faster-rcnn based model had more false 508 

positives that could be removed and therefore increasing the confidence allowed the model to 509 

reduce the errors. It must be restated here that the models were all tested using the same test 510 

dataset, which was not revealed to the model until the testing phase and therefore represented a 511 

test akin to what could happen in practice. This is stated to establish that the effect was directly 512 

related to the models' performance on these types of images and detections. 513 

4.4 Case studies to validate models using blank images with no distresses 514 

As a further test on the models’ robustness, a case study was done using blank images where 515 

there were no distresses were present. This was done as the initial performance of the models 516 

developed were based on test images in which distresses were present, which is typical of this 517 

workflow type. To analyze what would happen with images with no distress another test set was 518 

used. The images within this test set had images of pavements with no distresses and involving 519 

situations where other methods would likely produce a false-positive result and were images 520 

previously never used in the training or testing phases. Examples are given in Figure 16.   521 
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 522 

Figure 16.  Examples of blank images used in the case study 523 

These included images which were particularly chosen having characteristics likely to produce a 524 

false positive, such as shadow projections, skid marks, manhole covers and with high contrast 525 

and brightness issues as shown. The test case tried to utilize images as shown where there were 526 

marks similar to cracks, manhole covers, discolored sections and shadows created by the rod of 527 

the surveillance vehicle and marks from patches. A total of 210 images were used. The models 528 

were run over these images resulting in six cases of false detections representing a false rate of 529 

2.86%. Given the small number of false detections, it should be considered as a positive outcome 530 

underlying the performance of the model. Additionally, the model did not suffer from the issues 531 

associated with other segmentation tools, which routinely produced false detections associated 532 

with shadows and markings on the road. None of the images showing the shadow of the 533 

surveillance vehicle were falsely detected as a pavement distress during the exercise. The images 534 

with false detections were ones with marks resembling a crack and of slightly discolored roads 535 

where it appears that ravelling has not occurred but could appear in the future. 536 

4.5 Transferability of models 537 

Finally, it became important to consider the transferability of detection models in other situations. 538 

In many studies, this is not considered and models are assumed to have similar results in other 539 

applications, which is not necessarily the case. As a result, the best model was tested with a 540 

different view (panoramic view) on images from the same corridor with secondary roads.  541 
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This was done using images that were simultaneously captured at panoramic view whilst the 542 

main top-down images were captured so that detections could be compared. In the first test, the 543 

images used were captured from a panoramic view using a camera installed within the survey 544 

vehicle. This resulted in images as shown in Figure 17.  545 

 546 
Figure 17.  Example of view of panoramic images used in modelling 547 

The other images were captured as shown in the setup in section 3. The change of camera 548 

perspective however meant that the size of the distress is different and also surrounding items 549 

such as trees, electric posts and other vehicles are now captured during a survey. None of these 550 

elements appear in surveys when using a top-down approach. Therefore, it was assumed that the 551 

results would be poor when tested using the model developed and the actual results validated this. 552 

There were still several instances where the model correctly identified the distress as shown in 553 

Figure 18.  554 

 555 
Figure 18: Examples of images where the model correctly identified distress in a panoramic view 556 

The most commonly correctly identified distresses were that of longitudinal and transverse 557 

cracking. However, the model also produced a series of false and missed detections as shown in 558 

Figure 19 leading to an ineffective survey.  559 
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 560 
Figure 19: Examples of incorrect detections by model on panoramic images 561 

The model was shown to incorrectly detect items such as electric wires and rails as cracks. This 562 

can be expected given in the training none of these elements appeared and the general shape of 563 

these objects are similar to that of cracks.  Additionally, the models used in this work were 564 

adapted to the size of distress in the top-down view, which would be significantly different in 565 

these views. 566 

These tests, therefore, established that for the model to work, the camera perspective should 567 

remain the same. It is a significant result as the surrounding characteristics and image orientation 568 

have to be considered. This test was done to validate that models are not transferable over 569 

different environments where there are a significant number of features not shown on the images 570 

used for training the original models. For transferability, the images used should have similar 571 

characteristics and backgrounds. Whilst all features on similar networks cannot be featured in a 572 

training set, the difference should not be significant as a change from a top-down view to that of a 573 

panoramic view. A model showing high performance metrics is not the only thing that matters in 574 

this case and the background context is critical. 575 

 576 
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5.0 Conclusions 577 

The study included the practical assessment of different optimization and sensitivity tests and 578 

strategies for instrumenting Deep Learning models for detecting pavement distresses on 579 

secondary roads in France. For this kind of network, a summary of the detection of distresses 580 

(presence/absence) is expected and needed by road managers, unlike main networks where a 581 

more accurate survey is needed to be able to observe the evolution of degradations over time. The 582 

models are able to produce a global overview of the presence of distresses on a corridor and this 583 

can be tracked by simply rerunning the survey on the corridor without the need to track the exact 584 

evolution of every distress. This adds significant value for secondary road managers, who are the 585 

target of this study. Future work will consider models that can track the evolution of distresses to 586 

assist larger networks and road managers. 587 

The main goals of this work are to understand the impacts of changing particular aspects of the 588 

DL workflow in a practical and effective manner, especially for these secondary road types. To 589 

do this, several DL models are tested with varying optimization and sensitivity tests to understand 590 

the effects on the performance when detecting particular distresses for secondary roads. 591 

The experimental results from the case studies demonstrate the value of testing strategies 592 

considering a real-world approach and with real datasets, and showcase the performance under 593 

different practical situations. The case studies help to provide an understanding of how DL 594 

models react to different changes in the context of pavement engineering and application. The 595 

results can be used to create better workflows for practical implementation and they offer a new 596 

view of the typical DL implementation and workflow, showing the novelty of the research. This 597 

includes considerations of different augmentations, the optimization of anchor-boxes for models 598 

and considerations of changes to the confidence and IOU thresholds. These provide a practical 599 

examination of how DL distress models react, which can help the end-user in troubleshooting a 600 

model or deciding on which model to use. The use of augmentations in particular help 601 

demonstrate the effects different types can have on a distress detection model. Moreover, they 602 

importantly demonstrate that a broad application of them should not be done and each case 603 

should be treated differently considering that some augmentations can in fact have a negative 604 

result on performance. The consideration of the different metrics also presents a clear pipeline 605 

consideration for the final stakeholder and the results of the paper can be used to make decisions 606 

on a model type for the required application. The results of this particular study indicate that 607 
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models that utilize a two-step approach to the detection such as the faster-rcnn models seem more 608 

appropriate to pavement distress detection in the specific context of this work. These models also 609 

showed that with the particular optimization tests relating to the IOU and confidence threshold, 610 

further increases of up to 30% in the f1 scores can be possible which is an important result. 611 

However, it must be reiterated that results of this are context-specific and the more important 612 

results are the shown variations from the sensitivity and optimization tests demonstrating the 613 

value of similar exercises before a model is practically implemented.  Furthermore, the test 614 

considering a different camera orientation demonstrates that models should also be only 615 

transferred across situations where the expected images that will be used remain similar as 616 

models need to understand the specific environmental context. The results also confirm that the 617 

models, using only low-cost cameras, can be accurate for the intended purpose as opposed to 618 

typical visual inspections.  619 

 The use of DL techniques is likely to take over the domain still held by common images 620 

segmentation methods in particular when the quality of images is quite low. Although the initial 621 

results in this study were interesting, better robustness will be sought through both an 622 

optimization of several parameters in the DL workflow and a further expanded sensitivity study. 623 

Future tests will consider comparisons to results using higher quality images, more datasets of 624 

similar roads conditions and the implementation of more distress categories such as 625 

glazing/bleeding, representing more visual road deformations. 626 
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