

Differentiation of synthetic sources of an organophosphorus chemical by LC-HRMS-based metabolomics

Carla Orlandi, Grégoire Delaporte, Christine Albaret, Emmanuel Joubert, Anne Bossée, Laurent Debrauwer, Emilien Jamin

▶ To cite this version:

Carla Orlandi, Grégoire Delaporte, Christine Albaret, Emmanuel Joubert, Anne Bossée, et al.. Differentiation of synthetic sources of an organophosphorus chemical by LC-HRMS-based metabolomics. ASMS conference, Jun 2023, Houston (TX), United States. hal-04357560

HAL Id: hal-04357560 https://hal.science/hal-04357560

Submitted on 21 Dec 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Carla ORLANDI^{1,2}, Grégoire DELAPORTE³, Christine ALBARET³, Emmanuel JOUBERT³, Anne BOSSÉE⁴, Laurent DEBRAUWER^{1,2} and Emilien L. JAMIN¹

¹ Toxalim (Research Center in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, Toulouse, France ² MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France

Determination of characteristic impurities of different chlorpyrifos synthetic sources.

Overview

Untargeted LC-HRMS metabolomics approaches combined with multivariate analyses.

Detection and annotation of more than 70 impurity features, under structural elucidation.

Synthesis of chlorpyrifos

• 7 combinations of chlorpyrifos synthesis were performed in triplicate. As the physical aspects of the triplicates varied greatly, homogeneity was assessed by sampling each triplicate 3 times.

Reaction scheme for the different pathways to chlorpyrifos

Optimization and analytical conditions

	³ CI CI CI CI NOT	ОСН ₃ СН ₃	HS OPO DMTP Ac	CN CI N	$ \begin{array}{c} c_{I} \\ c_{$
CI CI NOH CI CI NOH CI	CIOHP	CI CI 2CIBz		$CI \xrightarrow{CH_3} CH_3$ H ₃ C CH ₃	

- an UPLC-HRMS system.

		_	ESI NEG		ESI POS		APCI POS	
standards 1ng/μL φA	[M-H] ⁻	$[M+H]^+$	Retention Time (min)	intensity	Retention Time (min)	intensity	Retention Time (min)	intensity
CPF	347.9191	349.9335	nd	nd	24.02	6.46E+05	23.9	3.84E+06
CPF-oxon	331.9413	333.9569	nd	nd	19.92	4.91E+07	19.92	1.13E+07
DMTP	140.9775	142.9931	1.32	7.10E+06	1.31	1.86E+06	1.31	3.63E+04
AcrN	52.0192	54.0337	nd	nd	nd	nd	nd	
mCPF	319.8871	321.9028	nd	nd	21.90	1.31E+05	21.90	2.66E+06
4CIP	213.879	215.8935	nd	nd	nd	nd	19.69	5.13E+03
ТСРу	195.9129	197.9274	15.94	2.30E+07	16.02	2.34E+05	16.01	1.15E+06
CIOHP	127.9909	130.0054	4.81	9.80E+04	4.87	1.03E+07	4.81	2.92E+06
2ClBz	144.9617	146.9762	nd	nd	nd	nd	nd	
2CIP	145.9571	147.9715	nd	nd	nd	nd	10.09	2.41E+05
2Cl2mP	91.0321	93.0465	nd	nd	nd	nd	n	k
20HP°HCI	110.0248	112.0392	1.61	3.30E+06	1.61	2.68E+06	1.62	3.15E+04

ESI parameters	NEG	POS
Capillary (kV)	0.6	0.7
Sampling Cone (V)	40	20
Source Offset	60	60
Source T (°C)	130	130
Desolvaton T (°C)	300	250
Cone Gas (L/Hr)	45	50
Desolvation Gas (L/Hr)	700	550
Nebuliser G (Bar)	6.5	6.5

APCI parameters	POS
Corona µA	3
Sampling Cone (V)	30
Source Offset	60
Source T (°C)	120
Probe	500
Cone Gas (L/Hr)	50
Desolvation Gas (L/Hr)	600
Nebuliser G (Bar)	6.5

References

CONFERENCE Mass Spectrometry and Allied Topics

G. Fraga and al, Anal. Chem. (2010) 82, 4165–4173 H. Holmgren and al, *Talanta 186* (**2018**) 615–621 Jacques and al, Archives of Toxicology (2021) 95:3303–3322 E. L. Jamin and al, Anal. Bioanal. Chem. (2014) 406, 1149-1161 [5] F. Giacomoni and al, *Bioinformatics*. (**2015**) 31, 1493

Differentiation of synthetic sources of an organophosphorus chemical by LC-HRMS-based metabolomics

Financial support : Agence de l'Innovation de Défense (AID) and Direction Générale pour l'Armement (DGA) Analyses were achieved by the MetaToul-AXIOM platform which is a part of the french national infrastructure in metabolomics and fluxomics: MetaboHUB (MetaboHUB-ANR-11-INBS-0010).

✓ ³ Analytical Chemistry Department, DGA CBRN Defence, Vert-Le-Petit, France

⁴ Chemistry Division, DGA CBRN Defence, Vert-Le-Petit, France

AGENCE ΙΝΝΟΥΛΤΙΟΝ DÉFENSE

