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Sampling the Boltzmann distribution using forces that violate detailed balance can be faster than
with the equilibrium evolution, but the acceleration depends on the nature of the nonequilibrium
drive and the physical situation. Here, we study the efficiency of forces transverse to energy gradients
in dense liquids through a combination of techniques: Brownian dynamics simulations, exact infinite-
dimensional calculation and a mode-coupling approximation. We find that the sampling speedup
varies non-monotonically with temperature, and decreases as the system becomes more glassy. We
characterize the interplay between the distance to equilibrium and the efficiency of transverse forces
by means of odd transport coefficients.

To sample a given target distribution, the paradigm is
to construct Markov processes endowed with detailed bal-
ance. When the physics slows the dynamics down, as for
instance in the vicinity of a critical point, or in disordered
and dense systems, algorithms that can increase the sam-
pling efficiency are much needed [1, 2]. Sampling by vi-
olating detailed balance using nonequilibrium dynamics
is a possible route, explored in an applied mathemat-
ics literature dating back to the mid-nineties [3–6]. Po-
tential applications are not limited to physical systems,
since, for instance, slow dynamics caused by a complex
non-convex energy landscape are also encountered in ma-
chine learning and neural networks [7–10]. Bounds and
inequalities on the convergence or mixing rates have been
obtained [11–18], and studies encompass the mean-field
Ising model [19] and systems evolving via diffusive hydro-
dynamics [20–22]. This is a very active field of applied
mathematics [23, 24] and of computer science [25–28].
Numerical studies also exist for a variety of systems [29–
37], but no quantitative results exist for systems with
self-induced disorder, such as glassy liquids. In the lat-
ter case, nonequilibrium forces can either shift [38] or
destroy [39] the glass transition, while the addition of
unphysical degrees of freedom was recently shown [40] to
drastically change the relaxation dynamics.

We explore how nonequilibrium methods that sam-
ple the Boltzmann distribution fare when applied to a
strongly-interacting classical many-body system, such as
a high-density or low-temperature fluid exhibiting glassy
dynamics, and determine the dependence of the accel-
eration on the state point. The specific dynamics we
study is the overdamped Langevin dynamics driven out
of equilibrium by a force field transverse to the local en-
ergy gradient. Our results are established using a com-
bination of techniques, ranging from the numerical inte-
gration of Langevin equations for a Kob-Andersen mix-

ture, through mean-field infinite dimensional calculation
to finite-dimension mode-coupling approximation. Our
presentation goes along these three axes, each of which
sheds its own light on the questions we ask.

We demonstrate the existence of an optimal temper-
ature for the acceleration. While a gain remains, the
efficiency decreases as the glass transition is approached.
Transverse forces also lead to the appearance of odd
transport coefficients, that were earlier found in active
matter systems composed of chiral particles or driven by
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FIG. 1. (a) The addition of transverse forces (red) to the po-
tential ones (blue) acts similarly to (b) a dynamics lifted by
additional degrees of freedom (green), by creating an effective
chirality. (c) Rendering of a short trajectory for a few parti-
cles without any transverse force at T = 0.8. (d) Same with
transverse forces which induce circular trajectories.
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nonreciprocal forces [41–43] (see also [44, 45] for a dilute
equilibrium fluid). Surprisingly, odd diffusivity is insen-
sitive to the emergence of glassy behavior.

Our approach is illustrated with the example of a single
particle with position r in an external potential V (r) at
temperature T = β−1,

dr

dt
= −µ(1 + γA)∂rV +

√
2µTη, (1)

where µ is the mobility. The components of the Gaussian
white noise η are independent, ⟨ηi(t)ηj(t′)⟩ = δijδ(t−t′).
When the matrix A is skew-symmetric, the nonequi-
librium force of strength γ is transverse to the energy
gradient. The stationary distribution thus retains its
Boltzmann form, ρB(r) = e−βV (r)/Z even when γ >
0, but the entropy production rate is finite, τ−1

Σ =
βγ2⟨(A∂rV )2⟩B. Another relevant time scale govern-
ing microscopic dynamics is given by the reciprocal of
the average escape rate [46–48]. Its equilibrium expres-
sion is τ−1

0 ∼ ⟨β(∂rV )2⟩B but with a nonzero γ this be-
comes τ0

1+γ2||A||2F/d
(see SM [49]). This elementary rea-

soning would suggest that transverse forces simply result
in a global rescaling of time scales. We show below that
many-body interactions lead to a very different picture.

To widen the scope of our statements, we highlight a
correspondence between transverse forces, as defined in
Eq. (1), and the lifting procedure [4–6, 23, 24], which
is an alternative approach to accelerate the dynamics.
In a nutshell, lifting amounts to augmenting the degrees
of freedom of a system with equilibrium dynamics by a
set of auxiliary (and unphysical) variables that produce
nonequilibrium flows while preserving the original equi-
librium distribution. One way to see the connection with
transverse forces is to consider, following [33], two equi-
librium systems with potentials V1(r1) and V2(r2) evolv-
ing through the coupled dynamics

dr1
dt

= µ (−∂r1V1 + γ∂r2V2) +
√
2Tµη1,

dr2
dt

= µ (−∂r2V2 − γ∂r1V1) +
√
2Tµη2.

(2)

In this case, the nonequilibrium forces are transverse
in the extended (r1, r2) space and the stationary dis-
tribution decouples into ρB(r1, r2) ∝ e−βV1(r1)e−βV2(r2).
If we choose for system 2 a quadratic potential, the
equation of motion for 1 resembles that of an active
Ornstein-Uhlenbeck particle [50] where the role of the
self-propulsion velocity is played by r2 [49]. The equation
of motion for 2 is however different from the Ornstein-
Uhlenbeck equation to ensure that 1 samples the Boltz-
mann distribution: the dynamics of system 1 is lifted by
that of system 2. A cartoon of the connection between
transverse forces and lifting is shown in Fig. 1. While our
derivations start from transverse forces, our conclusions
may therefore extend to some locally lifted systems.
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FIG. 2. (a): Static structure factor at γ = 0 (full color) and
γ = 8 (dashed) at two temperatures. (b): Mean-squared dis-
placement of the A particles for different temperatures. Two-
step dynamics becomes visible below the onset temperature
near T ≈= 1.0. (c) Mean-squared displacement of the A par-
ticles at T = 0.8 for various values of γ.

The general many-body problem considered is a sys-
tem with i = 1, . . . , N particles in d dimensions evolving
under the influence of interparticle forces Fi = −(1 +
γA)

∑
j ̸=i ∂riV (ri − rj), where A is a skew-symmetric

matrix, and V (r) is a pair potential, evolving as in Eq. (1)
with thermal noise. The strength of the nonequilibrium
forces is controlled by γ which means we keep the matrix
elements of A or order 1 (and independent of γ). The
steady state distribution is again the Boltzmann distribu-
tion ρB ∝ e−β

∑
i<j V (ri−rj). We first report the results

of numerical simulations of a three-dimensional binary
Kob-Andersen mixture [51–53] of NA = 800 particles of
type A and NB = 200 of type B interacting as

Vαβ(r) = 4εαβ

[(σαβ

r

)12

−
(σαβ

r

)6
]
, r ≤ 2.5σαβ (3)

with α, β ∈ {A,B} and where εAA = 1, εAB = 1.5,
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εBB = 0.5, σAA = 1, σAB = 0.8, σBB = 0.88. The linear
size of the system is 9.4σAA and periodic boundary con-
ditions were used. We choose A in a block diagonal form
with ±1 elements in the xy plane, without loss of general-
ity. We integrate the equations of motion using a Euler-
Heun algorithm with a discretization step calibrated to
optimize efficiency while still properly sampling equilib-
rium properties [54]. We first show in Fig. 2(a) that the
static structure is unaffected by the introduction of trans-
verse forces, demonstrating equilibrium sampling with
nonequilibrium dynamics, over a temperature range en-
compassing a high-temperature almost structureless fluid
down to a mildly supercoooled liquid. To estimate the
speedup of the sampling, we use the mean-squared dis-
placement ∆r2(t) for particles A. Its temperature evolu-
tion is shown in Fig. 2(b) at equilibrium, which displays
the development of a two-step glassy dynamics below the
onset temperature near T ≈ 1.0.

In Fig. 2(c), we demonstrate that the introduction of
transverse forces accelerates the dynamics of the system.
To quantify this acceleration, we extract the diffusion
constant, D(γ, T ), from the long-time limit of the mean-
squared displacements, see Fig. 3(a). At fixed γ, there
exists a temperature near T ∗ ≈ 100 that maximizes the
increase of the diffusion constant.

At high temperatures, interactions (including chiral
ones) are smeared out by thermal noise which degrades
the efficiency. The initial increase of the acceleration is
then well captured by a weak fluctuation expansion [55].
The drop of acceleration as the temperature is lowered
can be rationalized by the fact that the energy landscape
remains unaffected by the transverse forces. When the
supercooled regime is entered more deeply, particles spin
along circular trajectories within their local cages, see
Fig. 1(c,d). This local motion has a modest influence on
the long-time dynamics. We thus expect that the glass
transition occurs at the same temperature as in equilib-
rium. These two opposite trends account for the exis-
tence of an acceleration maximum.

To confirm the picture of a swirling motion inside a
local cage we measure the odd diffusivity of the particles
A, which can be calculated from a Green-Kubo expres-
sion [41]

D⊥ =
1

2NA

NA∑

i=1

∫ +∞

0

dt ⟨ẏi(t)ẋi(0)− ẋi(t)ẏi(0)⟩ . (4)

By symmetry, D⊥ vanishes for an equilibrium dynam-
ics, and its value usefully quantifies the circular motion
shown in Fig. 1(d). For example, in the limiting case of a
particle trapped in a harmonic well, we show in SM [49]
that D⊥ = −µγT , with µ the mobility of the particle.

The temperature dependence of D⊥ for our simulated
system is shown in Fig. 3(a) for different values of γ. Its
absolute value increases with γ. At fixed γ, the odd dif-
fusion starts from 0 at high T : as thermal fluctuations
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FIG. 3. (a) Diffusion constant D(γ, T ) normalised by its equi-
librium value at γ = 0 as a function of inverse temperature.
The temperature axis uses a logscale to emphasize the non-
monotonic dependence. The right axis describes the odd-
diffusivity as a function of T−1 for various values of γ. (b)
Same as (a) using a linear scale to concentrate on the glassy
regime below T = 1.0. The black dashed line corresponds to
the equilibrium efficiency.

wash out interactions, they also suppress particles’ chiral
motion, which is induced by transverse forces. The mod-
ulus of D⊥ rises then steeply as a function of T−1 from
0 to a finite value near T ∗. As the system enters its slow
dynamical regime, D⊥ settles to a finite value as shown
in the inset of Fig. 3(b). Interestingly, the observed be-
havior in the arrested glass phase, where it is presumably
dominated by the in-cage circular motion created by the
transverse forces, agrees with the predictions for the har-
monic well. This contrasts with the translational diffu-
sion coefficient which changes by orders of magnitude in
the supercooled liquid, and vanishes in the glass.

Overall the simulations reveal a non-monotonic tem-
perature dependence of the sampling efficiency of trans-
verse forces, which decreases when temperature is low-
ered, accompanied by odd-diffusivity which appears in-
sensitive to this evolution. To understand these non-
trivial findings, we turn to two analytical approaches,
focusing for simplicity on a monodisperse fluid.

First, we consider the mean-field limit which is
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achieved, for simple fluids, by increasing the space di-
mension d to infinity [56–60], while keeping the number of
neighbors per space direction of order unity. In this limit,
one can derive an effective Langevin equation for the po-
sition of a tagged particle with an effective noise that
originates from the remaining components and the coor-
dinates of all other particles. We defer technical details to
[61]. Even out of equilibrium [62, 63], the influence of the
bath appears as a sum of a position-independent friction
kernel and a noise. The friction kernel and the noise au-
tocorrelation need to be determined self-consistently, in
a typical mean-field procedure. For our problem, we find
that the position ri of tagged particle i evolves according
to

dri(t)

dt
= −µβ

∫
dt′(1+ γA)M(t− t′)

dri(t
′)

dt′
+Ξi(t),(5)

where M is a d×d memory kernel to be determined, and
Ξi is a zero-average Gaussian noise with correlations

⟨Ξi(t)⊗Ξj(t
′)⟩ =δij

[
2Tµ1δ(t− t′)

+ (1+ γA)M(t− t′)(1− γA)
]
.
(6)

The memory kernel M is given by correlations of the
pair-potential gradients,

M(t) =
∑

j

⟨∇iV (rij(t))⊗∇iV (rij(0)⟩, (7)

where rij = ri−rj . To determine M we need to consider
the evolution of the relative position r = rij , which can
be shown [61] to follow

1

2

dr

dt
= −µ(1+γA)∂rV−µβ

2

∫
dt′(1+γA)M(t−t′)

dr

dt′
+Ξ(t)

(8)
where the Gaussian noise Ξ has correlations ⟨Ξ(t) ⊗
Ξ(t′)⟩ = Tµδ(t− t′)+ 1

2 (1+ γA)M(t− t′)(1− γA). The
procedure is to determine the statistics of r as a func-
tional of M, and then to determine the force statistics
in the rhs of Eq. (7) as a functional of M, hence ob-
taining a self-consistent functional equation for M. In
practice, even for equilibrium dynamics, M can only
be determined numerically [64]. To evaluate the dif-
fusion constant we only need the time integral of the
kernel which becomes diagonal, M = 1M . The diffu-
sion constant is expresssed in terms of its time integral
M̂(γ, T ) =

∫ +∞
0

M(t)dt as

D(γ, T ) = Tµ
1 + (1 + γ2)βM̂

(1 + βM̂)2 + (βγM̂)2
. (9)

This result is obtained in even space dimension for a ma-
trix A [61] made of d/2 identical 2 × 2 blocks with ±1
entries (nonidentical blocks would require averaging over
the blocks, without affecting our conclusions; working

in an odd space dimension would involve a single extra
space dimension with negligible effect as d ≫ 1). In the
ergodic phase, one can show that the γ-dependent re-
laxation time of M scales as τ(γ) = M̂ ∝ γ−1 when
γ ≫ 1. The diffusion constant D(γ, T ) therefore behaves
as D ∼ γ for large γ. Note also that when M(t) does

not relax to 0 then M̂ = +∞ and D(γ, T ) vanishes. We
expect that the constraint of Boltzmann sampling is so
strong that transverse forces cannot prevent the emer-
gence of diverging free energy barriers leading to ergod-
icity breaking, in contrast with active forces [38] or shear
flows [39]. This implies that the dynamical transition
temperature at nonzero γ is unaffected by the transverse
forces [61].

The quantity M̂ diverges at a finite temperature while
a low density approximation shows [61] that it increases

with 1/T . It is thus natural to expect that M̂ is an
increasing function of 1/T . Under this assumption,
and looking at Eq. (9), we see that D becomes a non-
monotonous function of temperature. Since the maxi-
mum of D occurs at high temperature where memory is
weak, it makes sense to evaluate Eq. (9) using a low den-

sity approximation for M̂ . It turns out that equilibrium
expression of M̂ obtained in [64] still holds at nonzero
γ [61], and it produces an evolution of D consistent with
Fig. 3(a) as explicitly shown in SM [49].

We also obtain the odd diffusivity, given by

D⊥(γ, T ) = −γTµ
βM̂ + (1 + γ2)(βM̂)2

(1 + βM̂)2 + (γβM̂)2
, (10)

and which behaves as D⊥ ∼ γ at large γ. At very
high temperature we have D⊥ = −γµM̂ ≃ 0. We also
see that D⊥ = −γµT below the dynamical transition
temperature, when M̂ → ∞, consistently with the har-
monic well picture [49]. In the mean-field limit, a genuine
glass phase appears at low temperature in which parti-
cles are trapped in a local harmonic environment created
by their neighbors. In a harmonic well the spectrum of
the Fokker-Planck operator only picks up an imaginary
part when transverse forces are applied, leaving the real
part of the eigenvalues unchanged [49], thereby captur-
ing the emergence of circular orbits within the well. The
physical picture is that chiral forces eventually lose their
accelerating power by wasting the injected energy into
circular trajectories.
It is unclear whether these mean-field results are valid

in finite dimensions. We thus resort to an approximate
theory in the spirit of the mode-coupling theory of glassy
dynamics [65]. To compare with the infinite-dimensional
calculation we focus on the self-part of the intermedi-
ate scattering function, Fs(q, t) =

1
N

∑
j⟨eiq·[rj(t)−rj(0)]⟩.

The long wavelength limit of Fs(q; t) is related to the

mean-squared displacement, Fs(q → 0, t) = 1− q2

6 ∆r2(t),
and therefore the long time dynamics of Fs at large wave-
length allows us to obtain the diffusion constant.
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The standard mode-coupling approximation applies to
equilibrium dynamics, though recent inroads [66–69] pave
the way for nonequilibrium extensions. The main tech-
nical difficulty in our case is the presence of transverse
currents, which come in addition to the usual longitu-
dinal ones. Within our own mode-coupling approxima-
tion for transverse forces, we obtain the memory ker-
nels (M∥(q, t),M⊥(q, t)) encoding respectively longitu-
dinal and transverse current-current correlations. The
evolution of Fs(q, t) is given by [55]

∂tFs + Tµq2Fs + µβ(1 + γ2)M⊥ ∗ Fs =

−
[
µβ(M∥ +M⊥) + µ2β2(1 + γ2)[M⊥ ∗M∥]

]
∗ ∂tFs,

(11)

where ∗ denotes a time-convolution. The functional ex-
pression of M∥ is the same as in equilibrium [70], while

M⊥ = T 2ρ0

∫
dk

(2π)3

(
Aq · k
|Aq|

)2

c(k)2Fs(q−k, t)S(k, t),

with ρ0 is the number density, S(k, t) the collective in-
termediate scattering function and ρ0c(k) ≡ 1− 1/S(k).
The same matrix A as in our numerics is used. To close
Eq. (11) we need an equation of motion for S(q; t). This
equation, discussed in detail in [55], also predicts that
the location of the mode-coupling transition is not in-
fluenced by the transverse currents, thus confirming the
infinite-dimensional results.

The zero-frequency mode of the memory kernel M̂α,i =

limq→0

∫ +∞
0

Mα(qei, t)dt controls the behavior of the dif-
fusion constants,

D∥,x = Tµ
1 + (1 + γ2)βM̂⊥,x

(1 + βM̂∥,x)(1 + βM̂⊥,x) + γ2β2M̂∥,xM̂⊥,x

,

D∥,z =
Tµ

1 + βM̂∥,z
, (12)

with D∥,y = D∥,x. We note two consequences of working
in finite dimension: M⊥ ̸= M∥ and D∥,z ̸= D∥,x (note
that replacing both M⊥ and M∥ with M in Eq. (12)
for D∥,x leads back to the infinite-dimensional expression
Eq. (9)). Assuming that the system falls into a noner-
godic regime below some transition temperature TMCT,
the memory kernels M⊥(t) and M∥(t) also saturate at a
nonzero value at long times, and the longitudinal diffu-
sion constants vanish. Whereas the location of the ergod-
icity breaking transition is independent of γ, the dynam-
ics in the ergodic phase is not. In particular, assuming
that M̂∥,i does not exceed its equilibrium counterpart,
one can show that the longitudinal diffusion constants
for γ ̸= 0 are always larger than their equilibrium coun-
terpart. If the diffusion constant is larger, the long time
relaxation of Fs is faster, and thus the value of the zero-
frequency limit of the kernels is reduced, self-consistently
demonstrating acceleration of the dynamics for γ > 0.

Remarkably, Eq. (12) shows that the diffusion (quantified
by D∥,z) along the z-direction is also indirectly acceler-
ated by the coupling with the other directions. Overall,
the mode-coupling calculation highlights interesting dif-
ferences with the large d limit, but the main results are
in agreement.

In conclusion, we found that the acceleration pro-
vided by transverse forces in a dense interacting system
strongly depends on temperature, which comes as a sur-
prise. The acceleration departs from a simple rescaling of
the time, due to both interactions and emerging glassi-
ness, which also lead to non-trivial asymptotic scaling
with γ. Transverse forces begin to operate when the re-
laxation time of the system exceeds τΣ ∼ τ0/γ

2, but their
efficiency decreases in deeply supercooled states leading
instead to circular trajectories but only modest acceler-
ation. This picture is corroborated by the behavior of
the odd diffusivity, which is small as long as τΣ exceeds
the relaxation rate of the system, but saturates to a fi-
nite value as the glass phase is approached. Our study
resorts to a very local, and somewhat uninformed, way of
driving the system out of equilibrium. In the more elabo-
rate methods implemented in [31, 71], spatially extended
and correlated moves are performed. It is a stimulat-
ing open question to find out how, when pushed towards
glassiness, these methods compare with the minimal ones
investigated here.
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I. ESCAPE RATE

In this Section we define the rate at which the system escapes its local configuration and we derive its expression
for the transverse force dynamics. In the main text, the escape rate appears after Eq. (1) when we discuss the various
relevant time scales for our system.

Consider the motion of a particle in d dimensions under the influence of transverse forces for an external potential
V :

dr

dt
= −µ(1 + γA)∂rV +

√
2µTη (1)

with ⟨η(t)⊗ η(t′)⟩ = 1δ(t− t′). Since the noise is Gaussian, the probability P (ri+ ṙidt|ri, 0) of observing a transition
from an initial position ri to the position ri + ṙidt in the infinitesimal time interval dt is

P (ri + ṙidt|ri, 0) ∝ exp

{
−dt

µ

[
1

4T
(ṙ+ (1+ γA) ∂rV )

2 − 1

2
∂2
rV

]}
(2)

If we set ṙ = 0 in Eq. (2) we obtain the probability that the particle remains in its initial configuration during the
infinitesimal interval dt, i.e.

P (ri,dt|ri, 0) ∝ exp

{
−dt

µ

[
1

4T
((1+ γA) ∂rV )

2 − 1

2
∂2
rV

]}
. (3)

This allows us to interpret the quantity with τ−1
0 ≡ 1

Tµ

∣∣∣ 14 ((1+ γA) ∂rV )
2 − T

2 ∂
2
rV

∣∣∣ as the rate at which the system

escapes from its current configuration. The two terms in τ−1
0 have the following physical meaning: the first one

expresses that nonzero forces make the system move away from a given configuration. The second term tells about
the influence of the concavity of the potential on the escape process.

We can average the escape rate over the steady-state Boltzmann distribution ρB ∝ e−βV . Using the fact that
A = −AT and an integration by parts we get

〈
τ−1
0

〉
B
=

1

4µT

[〈
(∂rV )

2
〉
B
+ γ2

〈
(A∂rV )

2
〉
B

]
. (4)

For γ = 0 we recover the equilibrium result τ−1
0,eq = 1

4Tµ

〈
(∂rV )

2
〉
B
. If the potential is spherically symmetric,

〈
(A∂rV )

2
〉
B
= 1

d ||A||2F
〈
(∂rV )

2
〉
B
with ||A||2F ≡ ∑

i,j A
2
ij the Frobenius norm of A. We therefore conclude that

τ−1
0 =

(
1 +

1

d
γ2||A||2F

)
τ−1
0,eq. (5)

This result shows that transverse forces increase, through a rescaling, the escape rate of the system with respect to
the equilibrium case. Note that in our infinite-dimensional calculation we have imposed that ||A||2F = d so that τ0 has
a well-defined d ≫ 1 limit.
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II. CONNECTION BETWEEN TRANSVERSE FORCES AND A LIFTED MODEL

In this Section we define a lifted model inspired by the active Ornstein-Uhlenbeck process and highlight its connec-
tion with transverse forces.

We first recall the general definition of a lifted Markov Chain. A system described by a degree of freedom r is
said to be lifted when it is endowed with an additional set of degrees of freedom v and an irreversible (detailed
balance-violating) Markovian dynamics in the newly defined extended space. The dynamics is constructed so that
the steady state distribution for r, after averaging over the variable v, is a desired target distribution. In our case the
target distribution is the Boltzmann distribution ρB ∝ e−βV . If ρss(r,v) is the steady state distribution of the lifted
dynamics, we then need to impose

∫
dvρss(r,v) = ρB(r). Here we consider as an example the following specific lifted

dynamics

ṙ = −µ∂rV + v0u+
√

2Tµη

u̇ = −u− βv0∂rV +
√
2χ.

(6)

Here v = v0u plays the role of the lifting variable. One can check that ρss(r,u) ∝ ρB(r)e
−u2

2 and that the dynamics
is irreversible, since the entropy production rate reads

τ−1
Σ =

dv20
µT

+ (βv0)
2⟨(∂rV )2⟩B > 0. (7)

Interestingly, this is the same expression, up to an additive constant, as the one obtained after Eq.(1) in the main
text. We refer to Eq. (6) as a lifted AOUP (ℓAOUP).

To establish an explicit connection with transverse forces, we consider the case of a ℓAOUP with temperature-

dependent mobility, µ = T−1. If we introduce the extended variable x = (r,v)
T
and the extended potential U(x) =

βV (r) + u2

2 we obtain from Eq.(6)

ẋ = −(12d + γA)∂xU +
√
2χ(t) (8)

with A =

[
0d −1d

1d 0d

]
a 2d× 2d skew-symmetric matrix, χ a Gaussian white noise with correlations ⟨χ(t)⊗ χ(t′)⟩ =

δ(t− t′)12d and γ ≡ v0. Upon considering the extended space of x and rescaling the mobility of the system, we have
been able to bring forth the presence of transverse forces in a lifted dynamics.

III. ACCELERATION AT LARGE γ

In this Section we provide supporting evidence for the large γ behavior of the diffusion constant. Fig. 1 shows the

behavior of the ratio D(γ,T )
γT as a function of γ, evaluated at T = 100. For large values of γ this quantity reaches a

plateau, signaling the scaling D(γ, T ) ∼ γ. This result is also predicted from both the dynamical mean field theory
and the mode coupling theory, as stated in the main text.

IV. TRANSVERSE FORCES IN A HARMONIC WELL

The goal of this Section is to investigate the properties of transverse forces for a particle in a two-dimensional
harmonic well. We will study both the relaxation rate of the system and its odd diffusion. The results gathered here
help to build up an intuition on the performance of transverse forces in systems characterized by caging effects such
the ones investigated in the main text.

We consider the dynamics of a particle in a two-dimensional isotropic harmonic well of stiffness k under the action
of transverse forces:

ṙ = −µk(1+ γA)r+
√

2Tµη(t) (9)

where η(t) is a Gaussian white noise with correlations ⟨η(t)⊗ η(t′)⟩ = 1δ(t− t′).
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FIG. 1. Behavior of the ratio D(γ, T )/Tγ measured for T = 100 as a function of γ. For large values of γ, we see the scaling
D(γ, T ) ∼ γ.

A. Relaxation time

To determine the relaxation time, we will map the Fokker Planck operator associated to the dynamics with transverse
forces to a quantum mechanical problem. The Fokker-Planck operator Ωγ reads

Ωγ = µ∂r · [(1+ γA)r+ T∂r] . (10)

It governs the evolution of the probability distribution ρ(r, t), ∂tρ(r, t) = Ωγρ(r, t). The steady-state solution is the

Boltzmann distribution ρB ∝ e−kβ r2

2 . The mapping to a quantum mechanical problem is performed by considering
the operator

Hγ ≡ −ρ
−1/2
B Ωρ

1/2
B = H0 − µγk (Ar) · ∂r (11)

where H0 = Tµ
(
−∇+ βk r

2

) (∇+ βk r
2

)
is the Hermitian operator usually found for equilibrium dynamics and the

second term is a skew-Hermitian operator. Its appearance is a consequence of injecting irreversible currents in the
system through the transverse forces.

To diagonalize Hγ , we first introduce a set of creation and annihilation operators

a ≡
√

T

k

(
∂r + βk

r

2

)

a† ≡
√

T

k

(
−∂r + βk

r

2

) (12)

that satisfy te commutation relations
[
ai, a

†
j

]
= δij . This makes possible to rewrite the Hamiltonian Hγ as

Hγ = µka† ·
[

1 +γ
2

−γ
2 1

]
· a. (13)

This operator can now be diagonalised using the change of basis

b ≡ 1√
2

[
1 i
1 −i

]
a

b† ≡ 1√
2

[
1 i
1 −i

]
a†

(14)
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which yields

Hγ = kµb†
[
(1− iγ) 0

0 (1 + iγ)

]
b. (15)

It follows from the theory of the quantum harmonic oscillator that the spectrum of Hγ is discrete and characterized
by a two-dimensional vector n = (n1, n2)

T ∈ N2:

λn = kµ [n1 + n2 + iγ (n2 − n1)] (16)

We see that the effect of transverse forces on the harmonic oscillator is a purely imaginary contribution to its spectrum,
which does not change the relaxation time, but produces oscillations in the motion of the particle. In the next Section
we will capture this swirling motion by computing the odd diffusion constant of the system.

B. Odd diffusion

In this Section we compute the odd diffusion in the harmonic well. The odd diffusion constant D⊥ is

D⊥ ≡ −µ

2

∫ +∞

0

⟨ṙ(t) ·Aṙ(0)⟩ (17)

where ⟨. . .⟩ is the average of the initial position over the Boltzmann distribution and over the realisation of the noise
η. Note that we chose the sign of D⊥ so that D⊥ < 0 if the system undergoes a counterclockwise swirling motion.

Using Eq. (9) and the fact the realization of the noise η(t) are independent from η(0) and r(0) we get

D⊥ = −µ

2

∫ +∞

0

k2 ⟨(1+ γA) r(t) ·A (1+ γA) r(0)⟩ −
√
2Tk ⟨(1+ γA) r(t) ·Aη(0)⟩ . (18)

To proceed, we use the solution r(t) of Eq.(9):

r(t) = r(0)e−µk⟨1+γA)t +
√
2Tµ

∫ t

0

dτe−µk(1+γA)(t−τ)η(τ) (19)

and the fact that ⟨r(0)⊗ r(0)⟩B = 1T
k . Integration over time leads to

D⊥ = − Tµ

1 + γ2
Tr [(1− γA) (1− γA)A (1+ γA)] = −γTµ. (20)

This is the expression for the odd diffusivity of the harmonic oscillator under transverse forces. We conclude with two
remarks. First, the expression for D⊥ is the same as the one found in an infinite dimensional liquid with transverse

forces at the glass transition (Eq. (10) of the main text with M̂ → ∞) or from mode coupling theory, providing a
simple picture to explain the effect of transverse forces close to dynamical arrest. The second remark is that D⊥ does
not depend on k, the stiffness of the harmonic well. This is physically due to the following cancellation effect: the
odd diffusivity scales as F 2τR, where F 2 is the average squared force acting on the particle and τR the relaxation
time of the particle. Now, F 2 ∼ k2

〈
r2
〉
B
∼ k, while τk ∼ k−1, see Eq.(17). The two factors cancel out, leaving D⊥

independent from the well stiffness.

V. DYNAMICAL MEAN FIELD THEORY WITH TRANSVERSE FORCES AT LOW DENSITY

In this Section we will address a low density expansion of dynamical mean field theory described in the main text

in the case of a linear potential. This will lead to an explicit expression of the integrated memory kernel M̂ , and thus

to an explicit calculation of the efficiency D(γ,T )
D(0,T ) in the mean field theory. Here we will provide a sketch on how the

expansion is implemented and describe the results it gives, while we refer the reader to [? ] for a detailed derivation.
The basic idea is to expand the memory kernel of Eq. (7) of the main text in power of the density of the system

ρ ≡ N
V :

M = M(1) +M(2) + . . . (21)
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The expression of M(n) ∼ O(ρn) can be self-consistently determined from the two-body process in Eq. (8), evaluated
truncating the series in Eq.(21) at the order ρn−1. In infinite dimension we can show that the M = 1M ≈ 1M (1) is
independent from γ [? ]. This is a consequence of the infinite dimensional limit, where even for γ ̸= 0 only the radial
component of the two-particle process matters. The expressions for the longitudinal and the odd diffusion constants,
D(γ, T ) and D⊥(γ, T ) read

D(γ, T ) ≈ Tµ
1 + (1 + γ2)βM̂ (1)

(
1 + βM̂ (1)

)2

+
(
βγM̂ (1)

)2

D⊥(γ, T ) ≈ −γTµ
βM̂ (1) + (1 + γ2)

(
βM̂ (1)

)2

(
1 + βM̂ (1)

)2

+
(
γβM̂ (1)

)2

(22)

In the case of a linear potential with interaction range l, V (r) ≡ ϵ
∣∣ r
l − 1

∣∣ θ
(
1− r

l

)
the memory kernel M̂ (1) can

be analytically determined. The calculation is the same as the one performed in [? ]. Its expression reads, upon

introducing the rescaled packing fraction ϕ̂ ≡ ρVd
ld

d , with Vd the volume of a sphere of unit radius in d dimensions

βM̂ (1) =
ϕ̂

2

β2 (2 + β)

(1 + β)
3 . (23)

where we have used units such that l = 1, ϵ = 1.

Figure 2 shows the efficiency D(γ,T )
D(0,T ) and the odd diffusion constant D⊥(γ, T ) calculated using the low density

expansion mentioned above for several values of γ as a function of β. We observe a very strong qualitative similarity
with the high temperature behavior of the efficiency found in Fig. 3(a) of the main text. The efficiency evolves
nonmonotonically with β for the larger values of γ, while the D⊥ grows steeply from 0 to a nearly constant value.
The growth of D⊥ happens around the point of maximal efficiency, and absolute value of the plateau value of D⊥
grows with γ.
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FIG. 2. (a) Ratio between the diffusion constant D(β, γ) in the presence of transverse forces and its equilibrium counterpart
D(β, 0) for different values of the strength γ of the nonequilibrium drive, as a function of the inverse temperature β ≡ T−1.
(b) Odd diffusivity in the presence of transverse forces. In both panels, the memory kernel used is the one obtained via a low

density expansion for the case of a linear potential. Its expression is given in Eq. (23), with ϕ̂ = 1.


