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Climate change threatens the capacity of peatlands to continue storing carbon (C) belowground. Microorganisms are crucial in regulating the peatland C sink function, but how climate change affects the richness, biomass and functions of peatland microbiomes still remains uncertain. Here, we conducted a global meta-analysis of the response of peatland bacterial, fungal and micro-eukaryote communities to climate change by synthesizing data from 120 climate change experiments. We show that climate drivers such as warming, drought and warming-induced vegetation shift strongly affect microbial diversity, community composition, trophic structure and functions. Using meta-analytic structural equation modelling, we developed a causal understanding among the different strands of microbial properties. We found that climate drivers influenced microbial metabolic rates, such as CO 2 fixation and respiration, methane production and oxidation, directly through physiological effects, and indirectly, through microbial species turnover and shifts in the trophic structure of microbial communities.

In particular, we found that the response of microbial CO 2 fixation increased for each degree in air temperature gained, while the response of microbial CO 2 respiration tended to decline. When extrapolated at the global peatland scale using the CMIP6 model under the SSP5-8.5 scenario, our findings suggest that the increasingly positive response of microbial CO 2 fixation to temperature anomalies in northern latitudes might compensate to some extent for the possible loss of C from microbial CO 2 respiration, possibly allowing peatlands to remain C sinks on long-term. Our findings have crucial implications for advancing our understanding of carbon-climate feedback from peatlands in a warming world.
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Introduction

Northern latitudes are expected to experience climate change greater than the global average [START_REF] Smith | The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification[END_REF]IPCC, 2023). Such a more intense climate change is likely to deteriorate major ecosystem functions and services provided by northern ecosystems, such as peatlands. This includes climate regulation, recreational services, and provision for foods and goods [START_REF] Solomon | Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF][START_REF] Frank | Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts[END_REF][START_REF] Gallego-Sala | Latitudinal limits to the predicted increase of the peatland carbon sink with warming[END_REF][START_REF] Malinauskaite | Ecosystem services in the Arctic: a thematic review[END_REF][START_REF] Swindles | Widespread drying of European peatlands in recent centuries[END_REF][START_REF] Harris | The essential carbon service provided by northern peatlands[END_REF]IPCC, 2023). Because peatlands' response to climate change may exert positive climatic feedback, further exacerbating human-induced warming [START_REF] Dise | Peatland response to global change[END_REF][START_REF] Qiu | The role of northern peatlands in the global carbon cycle for the 21st century[END_REF][START_REF] Qiu | Large historical carbon emissions from cultivated northern peatlands[END_REF], understanding and predicting the response of biotic parameters that underpin peatlands' functioning is of high priority.

Peatlands store massive amounts of C belowground, a stock estimated between 500 and 1,000 GtC [START_REF] Nichols | Rapid expansion of northern peatlands and doubled estimate of carbon storage[END_REF][START_REF] Yu | No support for carbon storage of >1000 GtC in northern peatlands[END_REF], and hence, exert a net cooling effect on the global climate by removing CO 2 from the atmosphere. Recent modelling approaches predict that undisturbed peatlands could be persistent C sinks in the future [START_REF] Qiu | The role of northern peatlands in the global carbon cycle for the 21st century[END_REF]. Thus, maintaining peatland functioning can be seen as a simple and inexpensive natural-based contribution to mitigate climate change [START_REF] Qiu | The role of northern peatlands in the global carbon cycle for the 21st century[END_REF][START_REF] Strack | The Potential of Peatlands as Nature-Based Climate Solutions[END_REF]. However, while modelling approaches are valuable tools to predict the fate of peatland global C pool in the future, they also suffer from major flaws such as the under-representation of microbial processes involved in C cycling even though they represent key functions such as decomposition and respiration [START_REF] Wang | Modeling Global Soil Carbon and Soil Microbial Carbon by Integrating Microbial Processes into the Ecosystem Process Model TRIPLEX-GHG[END_REF][START_REF] Qiu | ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales[END_REF]. Consolidating existing peat models with additional microbial parameters is, therefore, necessary to improve our estimation of peatland C's response to climate change and reduce the uncertainties in model simulations that are caused by the lack of available data. These models are crucial because they can be used to decide the fate of peatlands (restoration or conservation) and they can help predict the effects of such decisions on the peatland C cycle and therefore on the global C cycle [START_REF] Bonn | Peatland restoration and ecosystem services: An introduction[END_REF][START_REF] Loisel | Expert assessment of future vulnerability of the global peatland carbon sink[END_REF].

Identifying key microbial parameters that underpin the C response of peatlands to climate change is an urgent but challenging need. Peatland microbial communities are highly diverse [START_REF] Andersen | Microbial communities in natural and disturbed peatlands: A review[END_REF], assembled in complex trophic networks [START_REF] Jassey | Food web structure and energy flux dynamics, but not taxonomic richness, influence microbial ecosystem functions in a Sphagnum-dominated peatland[END_REF], and support many biogeochemical functions related to the C cycle [START_REF] Laiho | Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels[END_REF][START_REF] Bardgett | Microbial contributions to climate change through carbon cycle feedbacks[END_REF][START_REF] Andersen | Microbial communities in natural and disturbed peatlands: A review[END_REF][START_REF] Artz | Microbial Community Structure and Carbon Substrate use in Northern Peatlands[END_REF]. For instance, microorganisms mediate critical C fluxes, like CH 4 oxidation into CO 2 [START_REF] Raghoebarsing | Methanotrophic symbionts provide carbon for photosynthesis in peat bogs[END_REF][START_REF] Kip | Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems[END_REF], CH 4 emissions [START_REF] Juottonen | Disentangling the effects of methanogen community and environment on peatland greenhouse gas production by a reciprocal transplant experiment[END_REF][START_REF] Juottonen | Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region[END_REF] and CO 2 emissions [START_REF] Dorrepaal | Carbon respiration from subsurface peat accelerated by climate warming in the subarctic[END_REF][START_REF] Hopple | Massive peatland carbon banks vulnerable to rising temperatures[END_REF]. Recent studies further showed the importance of microbial CO 2 fixation in peatlands, which could approximate c. 10% of peatlands CO 2 uptake [START_REF] Hamard | Contribution of microbial photosynthesis to peatland carbon uptake along a latitudinal gradient[END_REF]. In addition to being diverse in their functions, peatland microbial communities also showed contrasting responses to climate change, making predictions difficult. For instance, experimental drought and warming have been shown to decrease microbial diversity [START_REF] Delarue | Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland[END_REF][START_REF] Song | Linking soil organic carbon mineralization with soil microbial and substrate properties under warming in permafrost peatlands of Northeastern China[END_REF][START_REF] Carrell | Habitat-adapted microbial communities mediate Sphagnum peatmoss resilience to warming[END_REF], increase bacterial, archaeal and fungal biomass [START_REF] Delarue | Experimental warming differentially affects microbial structure and activity in two contrasted moisture sites in a Sphagnum-dominated peatland[END_REF][START_REF] Mpamah | The impact of long-term water level draw-down on microbial biomass: A comparative study from two peatland sites with different nutrient status[END_REF][START_REF] Cao | The effect of drainage on CO2, CH4 and N2O emissions in the Zoige peatland: a 40-month in situ study[END_REF][START_REF] Jiang | Effects of warming on carbon emission and microbial abundances across different soil depths of a peatland in the permafrost region under anaerobic condition[END_REF][START_REF] Song | Linking soil organic carbon mineralization with soil microbial and substrate properties under warming in permafrost peatlands of Northeastern China[END_REF] and reduce the abundance of microbial consumers [START_REF] Jassey | Aboveand belowground linkages in Sphagnum peatland: climate warming affects plantmicrobial interactions[END_REF][START_REF] Jassey | Loss of testate amoeba functional diversity with increasing frost intensity across a continental gradient reduces microbial activity in peatlands[END_REF][START_REF] Lamentowicz | Seasonal patterns of testate amoeba diversity, community structure and speciesenvironment relationships in four Sphagnum-dominated peatlands along a 1300 m altitudinal gradient in Switzerland[END_REF][START_REF] Basińska | Experimental warming and precipitation reduction affect the biomass of microbial communities in a Sphagnum peatland[END_REF]. These structural shifts often threaten the peatland C balance by increasing microbial metabolisms such as respiration, methanogenesis and decomposition [START_REF] Dorrepaal | Carbon respiration from subsurface peat accelerated by climate warming in the subarctic[END_REF][START_REF] Mccalley | Methane dynamics regulated by microbial community response to permafrost thaw[END_REF][START_REF] Gavazov | Vascular plant-mediated controls on atmospheric carbon assimilation and peat carbon decomposition under climate change[END_REF][START_REF] Jassey | Tipping point in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration[END_REF][START_REF] Reczuga | Predator-prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands[END_REF][START_REF] Hopple | Massive peatland carbon banks vulnerable to rising temperatures[END_REF].

However, negative or neutral responses of microbial communities to climate drivers have also been reported in numerous studies [START_REF] Peltoniemi | Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens[END_REF][START_REF] Defrenne | High-resolution minirhizotrons advance our understanding of root-fungal dynamics in an experimentally warmed peatland[END_REF][START_REF] Lamit | Peatland microbial community responses to plant functional group and drought are depth-dependent[END_REF][START_REF] Xue | Fungi are more sensitive than bacteria to drainage in the peatlands of the Zoige Plateau[END_REF], raising uncertainty on the role of microbes in determining the fate of peat C.

The inconsistent responses of peatland microbial communities to climate change components could be tightly linked with climate change magnitude and duration [START_REF] Jassey | An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming[END_REF][START_REF] Jassey | Tipping point in plant-fungal interactions under severe drought causes abrupt rise in peatland ecosystem respiration[END_REF][START_REF] Hollister | A review of open top chamber (OTC) performance across the ITEX Network[END_REF], suggesting that sometimes the amplitude of the disturbance ensures that climate-induced changes on biological attributes remain close to a tipping point [START_REF] Briske | A unified framework for assessment and application of ecological thresholds[END_REF]. Alternatively, the inconsistency among studies in microbial responses to climate change may also result from the experimental approach used. These inferences often rely on three major approaches, namely field experiments, laboratory manipulative experiments and space-for-time substitutions. These methodological constraints may lead to different results, as data are not generated the same way, and thus limit our ability to properly quantify the impacts of climate change on peatland microbial communities. Overall, studies making a synthesis of information regarding the response of peatland microbial communities and C dynamics sensitivity to climate change remain scarce. Yet, by looking at this response we can make an initial estimate and extrapolate the effects of climate change on microbial attributes at a global scale. This could help to better identify which microbial parameters are key for understanding and predicting peatland responses to climate change.

To summarise climate change effects on peatland microbial communities and functions, and hone forecast for particular climate change scenarios, we synthesized microbial responses from 120 experimental studies published in the last decades . We screened for changes from a few weeks to several years of experimental climate change (warming, drought, precipitation shift and vegetation shift) conducted in 16 different countries (Figure 1, Table S1). In particular, we aimed to quantify the responses and sensitivities of key microbial attributes, including richness, alpha-and beta-diversity, abundance, biomass and functions (respiration, CO 2 and CH 4 oxidation and production, enzyme activities) to climate change drivers and develop causal understanding among these attributes. To achieve this goal, we addressed the following questions: [START_REF] Brose | Climate change in size-structured ecosystems[END_REF] what are the impacts of climate change drivers on peatlands' microbial attributes? (2) do climate drivers affect microbial functions directly through physiological responses or indirectly through changes in microbial diversity and trophic structure? and

(3) what can we learn from models built on the data obtained and extrapolation of future changes in peatland C fluxes?

Materials and methods

Literature survey

We searched for studies that tested the effect of climate change drivers on microbial properties. Data from multifactor experiments which factorially performed both multiple single-factor treatments and their combination were also included and treated either as single-factor or multiple-factor effects, respectively. Peer-reviewed publications were collected by searching databases such as Web of Science (all databases), Google Scholar, PubMed and the professional network ResearchGate for the period 1 January 1970 -31 March 2023. Climate change drivers considered were: temperature increase (TI), winter warming (WW), drought (DR, including precipitation shifts), warming-induced vegetation shift (VS) and their possible combinations (Table 1). TI and WW were not pooled because some studies were a mix of warming during winter, snow removal and snow addition. We used the following keywords for the title and abstract searches: 'peatland' AND 'microorganisms' OR 'microbes' OR 'bacteria' OR 'nematodes' OR 'fungi' OR 'virus' OR 'protists' AND 'richness' OR 'abundance' OR 'biomass' OR 'function' AND 'warming' OR 'drought' OR 'precipitation shift' OR 'water-table shift' OR 'vegetation change'. Personal unpublished (or from under-review studies) data were also included in the database. This literature search resulted in 170 peer-reviewed studies published for the period 1970-2023.

Following this literature search, we selected publications by reading each title and abstract and made sure that they reported climate change effects on microbial properties. Publications that reported significant or non-significant effects of climate change on microbial properties were then carefully screened by reading the methods and results sections to identify which of them met the following inclusion criteria:

-Experiments or observations were conducted in peatlands, including bogs, fens or palsa mires (Table S1). Because of the paucity of studies, tropical peatlands were not included in this synthesis. The latitude cutoff was 30˚N; -Studies reported manipulative experiments conducted in situ or in the laboratory and had both control and experimental groups. Each treatment group had several replicates. Natural gradients used as space-for-time design were included as well as regression-based experimental designs. Studies conducted in the field included natural gradient, transplantation and all manipulation directly implemented on the field (open top chamber, irradiation, plant removal, protection against the rain, snow removal/addition, peat removal/addition, drainage), other studies including incubation in the laboratory, microcosms and mesocosms were classified as laboratory experiments;

-The studies should include data on at least one microbial attribute related to either diversity, biomass, community structure or function. Because of a lack of data on viruses, they were not included in our analysis; -The studies should include experimental and control sample size and p-values (or correlation coefficients) in the main text, the figures or the supplementary information.

Based on the above criteria, a total of 120 studies (Table S1) were selected from the 170 initial studies. The global distribution of the peatlands' experimental sites is shown in Figure 1. Facing the paucity of multiple-factor experiments with similar combinations and microbial attributes, only single-factor effects were used.

Data collection

For each selected publication, basic information including publication year, climate drivers, site location (fieldwork location or sampling location for laboratory experiments), peatland type (fen, bog, mire and other), experimental type (field or laboratory experiment), sample sizes, methods used for quantifying microbial properties, the manipulation magnitudes of climate drivers, the group of microorganisms (bacteria, archaea, fungi, micro-eukaryotes and total) and the duration of the experimentation were extracted from the methods. We also attributed a functional group to each group of microorganisms (photoautotrophs, consumers, decomposers, archaea, bacteria, fungi and total; Table S2). Microbial consumers were further subdivided into testate amoebae, ciliates, rotifers, flagellates, and nematodes. We defined a consumer as a microorganism feeding on any kind of living microorganisms (bacteria, fungi, protists, and/or metazoan). Mixotrophic microalgae were not included in consumers as poorly known in peatlands.

Then, the p-values related to the responses of each microbial attribute were retrieved from the text or figures. This included microbial richness (Chao1, OTUs, ASVs or species counts), alpha-diversity (Shannon and Simpson), beta-diversity (response of community structure following Hellinger transformation, Bray-Curtis dissimilarity, Jaccard, Gower or UniFrac distances and modification of denaturing gradient gel electrophoresis (DGGE) matrices), abundance (qPCR, microscopy, sequencing and terminal restriction fragment length polymorphism (TRFLP)) and the biomass (microscopy-based, phospholipids-derived fatty acids (PFLA)). Finally, the responses of microbially-driven functions were also recorded and included enzyme activities (alpha and beta-glucosidase, chitinase, aminopeptidases, phosphatase, phenol-oxidases, invertase, urease, peroxidase, glycosidase, hydrolase), CO 2 respiration and fixation, CH 4 production and oxidation and N 2 fixation. All details can be found in Supplementary Tables S2 andS3. In total, 1,069 p-values (or correlation coefficient) were extracted from the 120 selected studies; among them, 24.4% were related to richness/alphadiversity/community structure, 37.9% to abundance/biomass and 37.7% to functions.

Calculation of the standardized mean differences

We used the standardized mean difference (SMD, unbiased estimator Hedges' g) as an effect size metric to estimate the magnitude and sensitivity of responses of each variable [START_REF] Durlak | How to Select, Calculate, and Interpret Effect Sizes[END_REF]. Hedges' g is a unit-free metric modified from Cohen's d estimator [START_REF] Hedges | Statistical Methods for Meta-Analysis -1st Edition[END_REF]. Cohen's d estimates the difference between two population means (treatment and control) scaled by the pooled standard deviation of the data [START_REF] Cohen | Statistical Power Analysis for the Behavioral Sciences, Second[END_REF]. Hedges' g is useful in the ecological meta-analysis because it provides a statistical bias correction to Cohen's d to treat small samples size [START_REF] Hedges | Statistical Methods for Meta-Analysis -1st Edition[END_REF]. This metric allows a quantitative assessment of patterns when methodology varies among studies [START_REF] Elmendorf | Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time[END_REF][START_REF] Koricheva | Handbook of meta-analysis in ecology and evolution[END_REF].

Effect sizes were calculated in R (R Core Team, 2022) with the package 'compute.es' [START_REF] Re | compute.es: Compute Effect Sizes[END_REF] using p-values (correlation coefficient for regression-based designs), control and treatment sample size. When the responses of variables to climate drivers were negative, SMD was negative, and vice versa for positive responses. For beta-diversity, we used the absolute value of SMD because it was often difficult to infer the direction of the response to climate drivers. When no specific p-value was associated with non-significant values, we used a value of 0.5 for our SMD calculations. We considered that SMD between -0.20 and 0.20 had a weak effect and that above this range SMD had a medium to high effect [START_REF] Cohen | Statistical Power Analysis for the Behavioral Sciences, Second[END_REF].

Bias assessment, sensitivity and statistical analyses

To test for a potential publication bias we did a funnel plot which consisted of plotting the effect sizes against their standard error [START_REF] Sterne | Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis[END_REF] and we conducted an Egger's regression test [START_REF] Egger | Bias in meta-analysis detected by a simple, graphical test[END_REF] using the R package 'metafor' v4.4-0 [START_REF] Viechtbauer | Conducting Meta-Analyses in R with the metafor Package[END_REF][START_REF] Nair | Publication bias -Importance of studies with negative results![END_REF][START_REF] Nakagawa | Quantitative evidence synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for environmental sciences[END_REF]). Egger's test is a linear regression of the intervention effect estimates on their standard errors weighted by their inverse variance. In the absence of publication bias the regression slope is supposed to be zero [START_REF] Rothstein | Publication bias in meta-analysis: Prevention, assessment and adjustments[END_REF]. To test how sensitive our results were to changes in the experimental approach, peatland type or duration of analysis, we also conducted a sensitivity analysis. We divided our data into subsets according to the experimental approach used (e.g. laboratory-based or field-based). Then, we divided our data into two other random datasets, calculated the SMDs and associated standard errors for microbial variables, and compared all the results together.

We used linear mixed effect models (LMMs) both to quantify the mean responsiveness of each microbial variable to climate drivers (D), microbial groups (G) and manipulation magnitude (MM) over all studies (fixed effects), and to analyze variation in effect size with peatland type, experimentation type, and method used (random effects). Linear mixed effects models were run in R using the package 'lmerTest' v3. 1-3 (Kuznetsova et al., 2017). In addition, we conducted separate ANOVAs on each microbial variable to test for the potential impact of the random effects alone. Any significant effect of the random effects was further tested using the Tuckey HSD test. The models were checked for the homoscedasticity and normality of the variables and residuals, data were log-transformed when the transformation induced an improvement in the distribution.

All the statistical analyses were performed in R (R Core Team, 2022) using RStudio v12.0 (RStudio Team, 2020) and the graphical representations were done using 'ggplot2' v3.4.0 [START_REF] Wickham | ggpolt2 Elegant Graphics for Data Analysis 211[END_REF].

Meta-analytic Structural Equation Modelling

We exploited the combined power of microbial diversity, biomass across microbial trophic levels and functions to paint a broad picture of how climate drivers mechanistically affect multiple microbial C processes using MASEM: Meta-Analytic Structural Equation Modelling [START_REF] Cheung | Meta-analytic structural equation modeling: A two-stage approach[END_REF][START_REF] Jak | Meta-analytic structural equation modeling with moderating effects on SEM parameters[END_REF].

MASEM technique combines meta-analysis with structural equation modelling, a method that allows for causal inferences and mechanistic understanding while giving a synthetic overview of relationships among variables of interest [START_REF] Cheung | Meta-analytic structural equation modeling: A two-stage approach[END_REF][START_REF] Eisenhauer | From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology[END_REF]. Generally, MASEM is a two-stage process in which the meta-analysis data are first used to generate a pooled correlation matrix across studies, which is then used to fit a structural equation model [START_REF] Jak | Meta-analytic structural equation modeling with moderating effects on SEM parameters[END_REF]. As almost no match existed between the different strands of microbial data we collected, we used a different approach, more appropriate to the complex and heterogeneous datasets we generated.

As a first step, we constructed an a priori MASEM model, which drew from hypotheses based on current theory of soil microbiomes under climate change [START_REF] Jansson | Soil microbiomes and climate change[END_REF][START_REF] Naylor | Soil Microbiomes Under Climate Change and Implications for Carbon Cycling[END_REF] and accounted for our expectation that microbial C processes increasingly shift along with climate change intensity because of increasing changes of microbial diversity, biomass and interactions (Figure S1; hypotheses: Table S4). To simplify our MASEM model, we included a composite variable entitled "microbial C-related multifunctionality", which was the combined product of microbial CO 2 fixation and respiration, CH 4 oxidation and production, and Crelated enzyme activities (hydrolases and phenoloxidases). Modelling with composites in structural equation modelling involved a two-step process [START_REF] Grace | Integrative modelling reveals mechanisms linking productivity and plant species richness[END_REF].

As a first step, we constructed a SEM model to identify the coefficients of the predictive variables that determine the composite variable 'microbial C-related multifunctionality'. To do so, we constructed a SEM model (hereafter 'latent SEM model') with the unmeasured latent variable 'microbial C-related multifunctionality' (Figure S1). This latent SEM model was run on a pooled matrix using the R package 'lavaan' which allows latent variables. The pooled matrix was obtained by iteratively (k = 50) and randomly selecting twelve effect size values and their respective climate change intensity value for each co-variable across our global database and averaging these matrices. We diagnosed latent SEM model fit based on chi-squared statistics (P > 0.05), low root-mean-square error of approximation index (RMSEA ≤ 0.1), low standardized root-mean-square residual index (SRMR ≤ 0.1) and high comparative fit index (CFI ≥ 0.95), and included variables in the latent variable based on these fit indices and Akaike information criterion (AIC) values (low AIC value was preferred for similar model fit). Second, the resulting standardized estimates of the latent variable were used to compute the composite index of 'microbial C-related multifunctionality' in the MASEM model and test its response to shifts in microbial diversity, biomass and interactions (Figure S1). This procedure was performed on temperature increase and drought effects separately.

In a second step, MASEM was performed iteratively on k matrices; we used k = 50 for temperature increase and k = 10 for drought. k was defined according to the minimum size of covariates for temperature increase and drought sub-matrices. Each covariate included in the MASEM model was ranked by intensity magnitude before the random selection. For temperature increase, we ranked data by increasing temperature increase. For drought, we ranked data by increasing effect size as data on drought intensity were not easily available in every study selected from our data compilation. For each iteration, twelve effect size values along with their respective climate change intensity value, peatland type, experiment type and community type information were randomly selected for each co-variate. Then, MASEM was fitted with LMMs ran through piecewise SEM [START_REF] Lefcheck | piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics[END_REF]. We chose this approach because it allowed us to account for the variation of the standardized estimates according to various random effects (e.g. peatland type, experimentation type, method used, and microbial groups).

In addition, compared to covariance-based SEM, this approach allowed us to use the scenario for +1.5°C and +3°C warming relative to the 1850-1900 baseline. Maps were downloaded with a ground pixel size of 60 arc minutes. As an envelope for predictions, we used the peatland map from the up-to-date peatland distribution Peat-ML map, a global raster of peatland fractional coverage at 5 arc minute ground pixel resolution [START_REF] Melton | A map of global peatland extent created using machine learning (Peat-ML)[END_REF]. We extracted temperature change for each scenario (+1°C and +3°C) at each peatland pixel where fractional coverage was upper than 0% in the exclusion of southern and tropical peatlands (<30°N), as these areas were non-covered by our meta-analysis. Each microbial variable has been predicted using generalized effect models with the SMD as a response variable and the temperature change as an explanatory variable. The models were checked for the homoscedasticity and normality of the variables and residuals, and the quality of predictions was assessed using confidence intervals. Confidence intervals of each prediction were retrieved by making an interval on the scale of the linear predictor, then applying the inverse link function from the model fit to transform the linear level confidence intervals to the response level using 2,000 simulations. The probabilities of the predictions to occur were also calculated and plotted at the global peatland scale.

Results

Effects of climate change on peatland's microbial richness and diversity

Overall, microbial richness was weakly impacted by climate change drivers. Most of the individual responses had low to medium SMDs (Figure 2a). These responses were dependent on manipulation magnitude (LMMs, P < 0.05; Table 2; Table S5). Bacterial richness was, on average, not affected by temperature increase (-0.01 ± 0.27) and weakly affected by drought (-0.2 ± 0.3). Temperature increase (-0.59 ± 0.47) and drought (-0.37 ± 1.12) both decreased micro-eukaryotic richness whereas fungal richness increased with temperature increase (0.96 ± 0.35) and weakly increased with drought (0.16 ± 0.39). Responses of microbial richness facing winter warming and vegetation were all positive and ranged from not significant (bacteria, fungi) to strong effect (archaea, micro-eukaryotes; Figure S2a; Table S6).

The response of microbial alpha-diversity was either positive or negative depending on the microbial group considered (Table S7). Again, the average response of microbial alpha-diversity to climate change drivers was weak (Figure 2b).

Temperature increase induced a decrease in bacterial alpha-diversity (-0.56 ± 0.48) whereas it increased micro-eukaryotic alpha-diversity (0.3 ± 0.69; Figure 2b). Drought increased fungal alpha-diversity (1.18 ± 1.62) but had no impact on bacterial and microeukaryotic alpha-diversity (0.01 ± 0.47 and 0.003 ± 0.75 respectively). Winter warming increased micro-eukaryotic alpha-diversity although the effect strongly varied (0.76 ± 1.16; Figure S2b). LMMs did not show any significant impact of the fixed terms (microbial group, climate driver and manipulation magnitude; P > 0.05, Table 2; Table S5) on microbial alpha-diversity.

We found that microbial community structure (beta-diversity) systematically responded to climate change drivers (Table S8). At the group level, all microbial groups strongly responded to climate change drivers (Figure 2c). Temperature increase had a stronger effect on micro-eukaryotic (1.16 ± 0.30) and fungal (1.17 ± 0.17) community structure than on bacterial community structure (0.67 ± 0.10). Drought showed a very strong effect on all microbial groups with a mean of SMDs above 1.50. We also observed that winter warming and vegetation shift induced a strong response to microbial beta-diversity (mean of SMDs above 0.8; Figure S2c). LMMs further showed that the microbial group together with climate drivers explained the observed effects (P < 0.05; Table 2; Table S5).

Effects of climate change on peatlands microbial biomass and functions

Overall, the response of microbial biomass to climate change strongly depended on the trophic group considered and the manipulation magnitude (P < 0.01 and P < 0.05 respectively; Table 2; ; Table S5; Table S9). Most of the effects were medium to strong with a few SMDs within the range of weak effects, notably for drought (Figure 3a; Figure S3; Figure S4a). The biomass of all microbial groups increased with temperature increase (means of SMDs between 0.53 ± 0.27 and 0.85 ± 0.2). The only exception was consumers for whom the biomass showed a very weak response (0.06 ± 0.39). Drought showed a weaker effect than temperature increase on microbial biomasses, except for photoautotrophs (1.01 ± 0.36) and consumers (-0.67 ± 0.25). Vegetation shift induced a strong negative response of bacterial and fungal biomasses (SMDs of -1.04 and -2.05, respectively; Figure S4a), and winter warming had negative effects on consumers (-0.73 ± 0.25) and weak negative effect on bacteria (-0.15 ± 0.52). In contrast, photoautotroph biomass increased with winter warming (0.53 ± 0.11). Winter warming had a very weak impact on fungal biomass (0.08 ± 0.55; Figure S4a).

Among microbial consumers, we found that nematodes, ciliates, flagellates and testate amoebae were particularly sensitive to climate change (Figure 3b; Figure S4b).

While the biomass of ciliates, nematodes and flagellates increased with temperature increase, testate amoebae showed opposite patterns with a systematic decrease of their biomass in response to climate change (Table S9). LMMs further showed significant effects of microbial group together with climate drivers or with manipulation magnitude on microbial biomass (P < 0.001; Table 2).

At the functional level, we found that climate change overall boosted microbial activities (Figure 3c, Figure S4c, Table S10). However, notable differences were found according to the function considered (P < 0.001; Table 2; Table S5). In terms of carbon emissions, both CO 2 and CH 4 emissions increased with temperature increase (2.28 ± 0.21 and 1.02 ± 0.25 respectively; Figure 3c). Drought also increased CO 2 emissions (1.18 ± 0.32) but decreased CH 4 emissions (-2.01 ± 0.39). We also found that CH 4 oxidation into CO 2 was less impacted by temperature increase (0.18 ± 0.43) whilst CO 2 fixation increased with temperature increase and drought (1.05 ± 0.13 and 1.36 ± 1.35; Figure 3c). Microbial enzyme activities related to C-cycle (e.g. peroxidase, βglucosidase, chitinase; Table S3) increased with temperature increase (0.38 ± 0.23) and drought (1.34 ± 0.61). N-related microbial enzyme activities such as nitrogenase, aminopeptidase and urease (Table S3) were weakly impacted by temperature increase (0.2 ± 0.25) but increased with drought (0.48 ± 0.09). The activity of P-related enzymes (acidic phosphatase activity and P-hydrolase; Table S3) increased with all climate change drivers (Figure 3c). Winter warming and vegetation shift also drove important responses of microbial functional activities (Figure S4c). In particular, N-related enzymes were negatively impacted by vegetation shift (-2.54 ± 3.09). On the opposite, C mineralisation, CO 2 and CH 4 emissions were positively impacted by vegetation shift (3.38 ± 1.31; 2.74 ± 1.06 and 0.93 ± 0.48 respectively).

Publication bias assessment and sensitivity analysis

We assessed potential bias in publication by conducting an Eggers' regression test and we found no impact for biomass (P = 0.14), richness (P = 0.15), alpha-diversity (P = 0.59) and beta-diversity (P = 0.54) data. The only significant bias was found for functions (P = 0.02). When carefully looking at each function, we saw that they responded to climate change drivers toward the same direction which could explain such a bias. Furthermore, when we compared the dataset used in this meta-analysis ('complete') to the four different datasets generated ('field', 'laboratory', 'random1' and 'random2'), we saw that all the results pointed toward the same effect (except for a few exceptions, Figure S5-S8).

Connections between microbial diversity, biomass and function under climate change

Latent SEM models showed that 'microbial C-related multifunctionality' was best defined by microbial CO 2 fixation and CO 2 and CH 4 emissions under temperature increase (Figure 4a). Microbial CO 2 and CH 4 emissions, and hydrolytic and oxidative enzyme activities were the best predictors of microbial C-related multifunctionality under drought (Figure 4b). We, therefore, used these variables and their respective standardized estimates to build the composite variable in the MASEMs. MASEMs for temperature and drought showed overall good fits across iterations (Fisher's C statistic, averaged P > 0.05) and high R 2 values (Figure S9a andc). MASEM showed that temperature increase influenced microbial C-related multifunctionality (averaged R 2 = 0.65; Figure S9a), directly through effects on microbial CO 2 fixation (averaged path = 0.71 ± 0.01) and emission (averaged path = -0.06 ± 0.03) and CH 4 emission (averaged path = 0.26 ± 0.03), and indirectly through shifts in microbial beta-diversity (averaged path = 0.22 ± 0.08) and the biomass of decomposers (averaged path = 0.09 ± 0.08) and phototrophs (averaged path = 0.13 ± 0.08; Figure 4c). Shifts in microbial beta-diversity were further related to shifts in the biomass of decomposers and phototrophs (Figure 4c). Under drought, MASEM evidenced similar mechanisms (Figure 4d). Variation in microbial Crelated multifunctionality (averaged R 2 = 0.96; Figure S9b) was driven by shifts in microbial beta-diversity (averaged path = 0.13 ± 0.07), decomposer (averaged path = 0.69 ± 0.03) and consumer biomass (averaged path = 0.26 ± 0.04; Figure 4d), while changes in microbial biomass across trophic levels were also explained by shifts in microbial beta-diversity.

Potential future changes in microbial C-related functions

Based on the MASEM results (Figure 4) we chose to predict potential future changes of microbial C-related functions (including CO 2 emission and fixation, CH 4 emission and oxidation). Our predictive models showed good results both for CO 2 emissions (P = 0.023 and R 2 = 0.36; Table 3; Figure S10) and CO 2 fixation (P < 0.001, R 2 = 0.73; Table 3; Figure S11). However, the SMDs of CH 4 emission and oxidation did not evidence any significant relationship with temperature increase (P = 0.14 and P = 0.91 respectively;

Table 3). Therefore, we only made projections for the future of CO 2 emission and fixation in response to temperature increase.

Projected under the SSP5-8.5 scenario, we found that peatland C-related functions will strongly change as a result of climate warming, although in different directions. We notably found a global increase in microbial CO 2 emission and CO 2 fixation rates (Figure 5). Overall, for both projections, SMDs were above the threshold of 0.2 and the highest SMDs were predicted at the most northern latitudes. Our projections of microbial CO 2 emission showed that the response of CO 2 emission is temperature dependent (SMDs between 2 and 4; Figure 5a andb). Indeed, we showed that CO 2 emission response to increasing temperature at the highest latitudes will be lower under the 3˚C (SMDs around 2.6) than under the 1.5˚C scenario (SMDs > 3), although still increasing with increasing temperature. For CO 2 fixation our predictions showed an increase of fixation rates along with increasing temperatures at the highest latitudes and across both scenarios (Figure 5c andd). SMDs for CO 2 fixation ranged between 0.5 and 5 with most of the SMDs around 2 for the 1.5˚C scenario and around 4 for the 3˚C scenario.

Discussion

Understanding how climate change affects microbial communities and the underlying functions they drive is a critical issue in climate change and microbiology research [START_REF] Jansson | Soil microbiomes and climate change[END_REF]. By synthesizing the dynamic changes in peatland microbial communities from 120 studies performed over the past four decades, this meta-analysis provides explicit evidence that climate change consistently impacts peatland microbiomes. This agrees with recent findings in other terrestrial systems [START_REF] Blankinship | A meta-analysis of responses of soil biota to global change[END_REF][START_REF] Schindlbacher | Experimental warming effects on the microbial community of a temperate mountain forest soil[END_REF][START_REF] Melillo | Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[END_REF][START_REF] Romero-Olivares | Soil microbes and their response to experimental warming over time: A meta-analysis of field studies[END_REF][START_REF] Zhou | Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality[END_REF][START_REF] Gao | Effects of temperature increase and nitrogen addition on the early litter decomposition in permafrost peatlands[END_REF][START_REF] Li | Effect of short-term warming and drought on the methanogenic communities in degraded peatlands in Zoige Plateau[END_REF][START_REF] Robinson | Aspects of microbial communities in peatland carbon cycling under changing climate and land use pressures[END_REF]. An interesting outcome of this study demonstrates that climate change drivers systematically promote microbial functions, such as CO 2 fixation and emissions, and CH 4 emissions, suggesting a strong impact of climate change on future peatland biogeochemical cycles. Vegetation shift and winter warming were the least represented climate drivers in our analysis but led to strong responses of microbial communities and functions (Figure S2, S3 and S4), highlighting that these two drivers would merit more attention in future investigations.

Our findings show that warming and drought strongly influence microbial attributes in peatlands, which agrees with findings on other terrestrial systems (Lurgi et al., 2012a(Lurgi et al., , 2012b;;[START_REF] De Vries | Controls on soil microbial community stability under climate change[END_REF][START_REF] Meisner | Microbial growth responses upon rewetting soil dried for four days or one year[END_REF][START_REF] Zhang | Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling[END_REF][START_REF] Kaisermann | Legacy effects of drought on plant-soil feedbacks and plant-plant interactions[END_REF][START_REF] Zhao | Negative responses of ecosystem autotrophic and heterotrophic respiration to experimental warming in a Tibetan semiarid alpine steppe[END_REF][START_REF] Gao | Effects of temperature increase and nitrogen addition on the early litter decomposition in permafrost peatlands[END_REF]. In particular, both warming and drought reduced bacterial richness and alpha-diversity, while fungal taxonomic attributes increased (Figure 2a andb). Studies from different terrestrial systems pointed toward the same results, supporting that soil fungal communities are usually more resistant than bacteria to drought and warming [START_REF] Bapiri | Drying-Rewetting Cycles Affect Fungal and Bacterial Growth Differently in an Arable Soil[END_REF][START_REF] De Vries | Land use alters the resistance and resilience of soil food webs to drought[END_REF][START_REF] De Vries | Soil bacterial networks are less stable under drought than fungal networks[END_REF][START_REF] De Vries | Controls on soil microbial community stability under climate change[END_REF][START_REF] Li | Effects of multiple global change factors on soil microbial richness, diversity and functional gene abundances: A meta-analysis[END_REF]. The filamentous structure of fungi and their ability to produce osmoregulatory solutes to protect their metabolisms against unfavorable conditions might explain such differences [START_REF] Maestre | Increasing aridity reduces soil microbial diversity and abundance in global drylands[END_REF][START_REF] Nielsen | Soil Biodiversity and the Environment[END_REF]. In addition, our results showed that bacterial and fungal community composition and biomass always responded to climate drivers (Figure 2c; Figure 3a; Figure S3), which was further linked to the response of associated ecosystem functions they drive such as CO 2 and CH 4 emissions (Figure 4; Figure 5).

Our results also evidenced a positive response of micro-eukaryotes at intermediate trophic levels (Figure 3b), especially for ciliates, flagellates and nematodes which are important bacterial and fungal feeders in microbiomes [START_REF] Rønn | Interactions Between Bacteria, Protozoa and Nematodes in Soil[END_REF][START_REF] Geisen | Soil protists: a fertile frontier in soil biology research[END_REF][START_REF] Neilson | Microbial community size is a potential predictor of nematode functional group in limed grasslands[END_REF][START_REF] Potapov | Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates[END_REF]. This suggests that climate drivers may increase the strength of bottom-up effects in the microbial food web and concomitant processes (e.g. activity, growth). In addition, our findings revealed a possible decrease in the relative importance of top-down effects in structuring microbial communities with the loss of top-predators such as testate amoebae. The biomass of testate amoebae systematically and negatively responded to climate change drivers.

Trophic downgrading in response to climate change has been observed in many systems [START_REF] Petchey | Environmental warming alters food-web structure and ecosystem function[END_REF][START_REF] Dossena | Warming alters community size structure and ecosystem functioning[END_REF][START_REF] Ohlberger | Climate warming and ectotherm body sizefrom individual physiology to community ecology[END_REF], and often results from metabolic constraints of larger organisms [START_REF] Brose | Climate change in size-structured ecosystems[END_REF]Lurgi et al., 2012aLurgi et al., , 2012b)). As size ratio is involved in several biological processes, including for instance metabolism, growth rate and density, trophic flow, biomass fluxes and interaction strength, changes in community size structure are likely to exert strong feedback on trophic functioning [START_REF] Woodward | Body size in ecological networks[END_REF][START_REF] Brose | Climate change in size-structured ecosystems[END_REF]Lurgi et al., 2012a;[START_REF] Jassey | Food web structure and energy flux dynamics, but not taxonomic richness, influence microbial ecosystem functions in a Sphagnum-dominated peatland[END_REF]. This loss of top-predators suggests that climate drivers can restructure microbial food webs in peatlands by causing secondary extinctions along the food web or by altering the diversity and abundance of many taxa from different groups and trophic levels [START_REF] Petchey | Environmental warming alters food-web structure and ecosystem function[END_REF][START_REF] Woodward | Trophic trickles and cascades in a complex food web: impacts of a keystone predator on stream community structure and ecosystem processes[END_REF][START_REF] Dossena | Warming alters community size structure and ecosystem functioning[END_REF][START_REF] Heckmann | Interactive effects of body-size structure and adaptive foraging on food-web stability[END_REF][START_REF] Jassey | Aboveand belowground linkages in Sphagnum peatland: climate warming affects plantmicrobial interactions[END_REF][START_REF] Antiqueira | Warming and top predator loss drive ecosystem multifunctionality[END_REF][START_REF] Reczuga | Predator-prey mass ratio drives microbial activity under dry conditions in Sphagnum peatlands[END_REF][START_REF] Romero | Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics[END_REF][START_REF] Romero | Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics[END_REF]. These multiple changes along trophic levels may strongly affect ecosystem functions [START_REF] Allison | Resistance, resilience, and redundancy in microbial communities[END_REF][START_REF] Antiqueira | Warming and top predator loss drive ecosystem multifunctionality[END_REF].

For example, the loss of testate amoebae which feed on a large variety of prey, including bacteria, fungi, microalgae, ciliates, rotifers and nematodes [START_REF] Yeates | Testate amoebae as predators of nematodes[END_REF][START_REF] Gilbert | Le régime alimentaire des Thécamoebiens (Protista, Sarcodina)[END_REF][START_REF] Gilbert | Population dynamics and food preferences of the testate amoeba Nebela tincta majorbohemica-collaris complex (Protozoa) in a Sphagnum peatland[END_REF][START_REF] Wilkinson | Testate Amoebae and Nutrient Cycling with Particular Reference to Soils[END_REF][START_REF] Jassey | Aboveand belowground linkages in Sphagnum peatland: climate warming affects plantmicrobial interactions[END_REF], may strengthen the interactions between basal species (bacteria and fungi) and intermediate consumers, which is known to enhance microbial enzyme activity and metabolic rates [START_REF] Trap | Ecological importance of soil bacterivores for ecosystem functions[END_REF][START_REF] Team | The dynamics of soil micro-food web structure and functions vary according to litter quality[END_REF]. Such a hypothesis is supported by our MASEM models. We showed that increasing shifts in decomposer biomass resulting from shifts in consumers were related to shifts in microbial C-related multifunctionality (Figure 4). Hence the restructuring of the microbial food web supports the hypothesis that peatlands could become emitters of CO 2 in response to climate change.

Overall, we found that warming and drought strongly impacted multifunctionality related to the C cycle, with a positive response of decomposition (C enzymes) and C emissions (both CO 2 and CH 4 ) except for CH 4 emissions that decreased with drought.

Drought causes aeration of the peat resulting both in unfavourable conditions for methanogens that are very sensitive to oxygen [START_REF] Zehnder | Geochemistry and biogeochemistry of anaerobic habitats[END_REF][START_REF] Dowrick | Sulphate reduction and the suppression of peatland methane emissions following summer drought[END_REF][START_REF] Wu | Drought-induced reduction in methane fluxes and its hydrothermal sensitivity in alpine peatland[END_REF][START_REF] Barel | Come Rain, Come Shine: Peatland Carbon Dynamics Shift Under Extreme Precipitation[END_REF] and favourable conditions for CH 4 oxidation [START_REF] Dowrick | Sulphate reduction and the suppression of peatland methane emissions following summer drought[END_REF][START_REF] Kang | Reduced Carbon Dioxide Sink and Methane Source under Extreme Drought Condition in an Alpine Peatland[END_REF][START_REF] Perryman | Effect of Drought and Heavy Precipitation on CH4 Emissions and δ13C-CH4 in a Northern Temperate Peatland[END_REF]. Other metaanalyses at the global scale also evidenced that warming significantly increases microbial respiration [START_REF] Bardgett | Microbial contributions to climate change through carbon cycle feedbacks[END_REF][START_REF] Wang | Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration[END_REF][START_REF] Crowther | Quantifying global soil carbon losses in response to warming[END_REF][START_REF] Zhou | Interactive effects of global change factors on soil respiration and its components: a meta-analysis[END_REF][START_REF] Xu | Responses of microbial biomass carbon and nitrogen to experimental warming: A meta-analysis[END_REF][START_REF] Liu | Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming[END_REF], thus corroborating our results

and suggesting a loss of C from peatlands in response to climate change [START_REF] Dorrepaal | Carbon respiration from subsurface peat accelerated by climate warming in the subarctic[END_REF][START_REF] Loisel | Expert assessment of future vulnerability of the global peatland carbon sink[END_REF]. Now, if we add the response of microbial photoautotrophs to the global microbial picture, the perception of how peatlands may react to climate change differs. Recent work showed that peatland microbes can fix on average 8.8 mg CO 2 hr -1 m -2 , a rate equivalent to about 9% of peatlands' gross CO 2 uptake (Hamard et al. 2021). Our synthesis showed that such a CO 2 fixation rate is likely to increase with warming and drought. We suggest that the response of photoautotrophs to climate change may to some extent counterbalance the response of heterotrophic microbes to climate change and partly mitigate the rise in microbial C emissions. Such a hypothesis was further supported by our projections of microbial CO 2 emission and fixation at the global peatland scale based on future scenarios of the IPCC (CMIP6 model with SSP5-8.5 scenario for +1.5˚C and +3˚C; Figure 5). Our findings showed a strong and positive response of microbial CO 2 fixation rate along with warming at the global peatland scale and across scenarios, especially in northern latitudes where peatlands are the most abundant. This suggests that peatland microbiomes may take up more C along with temperature increase in the future. This increasingly positive response of microbial CO 2 fixation to temperature anomalies in northern latitudes may be one of the mechanisms possibly allowing peatlands to remain C sinks on the long-term, as predicted by recent model simulations [START_REF] Gallego-Sala | Latitudinal limits to the predicted increase of the peatland carbon sink with warming[END_REF] and experimental studies (Helbig et al., 2022).

On the opposite, our results showed an important increase in the response of CO 2 emissions, but mostly at +1.5°C scenario (Figure 5a). Indeed, our projection indicated that the response of microbial CO 2 emissions might decreased in magnitude under the +3°C scenario (Figure 5b). These results suggest that above a certain temperature anomaly, the increase in microbial CO 2 emissions may stagnate or even decrease. Recent meta-analyses in soils found a similar trend with CO 2 emissions decreasing with warming magnitude after a certain temperature threshold (~+2˚C; [START_REF] Xu | Responses of microbial biomass carbon and nitrogen to experimental warming: A meta-analysis[END_REF][START_REF] Yang | Soil microbial respiration adapts to higher and longer warming experiments at the global scale[END_REF]. This suggests that microbial communities might adapt to climate warming [START_REF] Rinnan | Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath[END_REF][START_REF] Melillo | Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world[END_REF][START_REF] Yang | Soil microbial respiration adapts to higher and longer warming experiments at the global scale[END_REF], probably as a result of physiological adaptation [START_REF] Bradford | Thermal adaptation of soil microbial respiration to elevated temperature[END_REF][START_REF] Tucker | Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming?[END_REF] and community changes [START_REF] Crowther | Thermal acclimation in widespread heterotrophic soil microbes[END_REF]. Another hypothesis that could explain such a decrease in CO 2 emissions with warming has been suggested by [START_REF] Walker | Microbial temperature sensitivity and biomass change explain soil carbon loss with warming[END_REF]. First, warming accelerates growth, respiration and C use by microbial communities, leading to an important release of CO 2 . Then, because of a lack of C in the system, the first phase is followed by a decrease in microbial biomass, reducing microbial activities and attenuating CO 2 emission in the long term [START_REF] Walker | Microbial temperature sensitivity and biomass change explain soil carbon loss with warming[END_REF]. Further studies will be needed to test and verify these hypotheses in peatlands. Furthermore, although very promising, we caution that our projections are an extrapolation from a small dataset of SMDs that does not consider the potential effect of seasons and precipitation changes on microbial C emission and fixation rates. For these reasons, these results merit further support and must be consolidated with additional analyses to increase their robustness. Nevertheless, the probability for the values predicted to be accurate and reliable is relatively high (Figure S12), thus providing some confidence in the projections.

To conclude, our global synthesis demonstrates that climate change strongly impacts peatland microbial attributes with notably an important effect on microbial biomass and functions. Our findings underline that considering the microbiome in its entity (i.e., bacteria, fungi, protists and micro-metazoa) and multiple microbial attributes (i.e., richness, diversity, biomass and functions) is key to paint a broad picture of how climate drivers change microbial diversity and trophic interactions, and how these changes drive shifts in microbial C-related processes. Our findings show that biomass across trophic levels and changes in community structure are tightly linked, and together strongly impact microbial functions simultaneously. Therefore, considering biomass across trophic levels and community structure is key to predict shifts in microbial C processes. Our results further provide empirical support for the new hypothesis that microbial CO 2 fixation may regulate microbial climatic feedback to the peatland C cycle, and yield evidence that incorporating microbial CO 2 fixation process into global peatland C models, such as ORCHIDEE-PEAT [START_REF] Qiu | ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales[END_REF] will likely improve both their mechanistic insight and predictive power. Future studies are needed to build on this foundation, for example, interrogating to what extent microbial CO 2 fixation counterbalances microbial C losses from CO 2 and CH 4 emissions and decomposition will be crucial for advancing our predictions of carbon-climate feedback from peatlands in a warming world. 

  Shipley's test of d-separation to test whether direct or indirect paths are missing from the initial model in predicting microbial C-related multifunctionality. The goodness-of-fit of our MASEM model was evaluated using Fisher's C statistic (P > 0.05) and AIC for each iteration. 2.6 Projections of microbial responses at global peatland scale and under climate change scenarios We projected at the global northern peatland scale (>30˚N) the responses (i.e., SMDs) of main microbial functions defining microbial C-related multifunctionality and its main indirect predictors to forecasted temperature increase. The projected variables were chosen according to the results from MASEM (see section 3.3). No projections were made for drought as we were not able to recover enough data on the drought intensity in every study to build predictive models using IPCC scenarios. Temperature increase predictions were retrieved from the IPCC Interactive Atlas (IPCC, 2021; Iturbide et al., 2021) available online at https://interactive-atlas.ipcc.ch/. We extracted the mean annual temperature change in °C projected from the CMIP6 model under the SSP5-8.5
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 captions1 Figure captionsFigure 1. Peatland coverage and data. Estimated area coverage (in percentage) of peatlands based on the Peat-ML distribution map (Melton et al., 2022). Geometric forms show the global distribution of the experimental sites according to different climate change drivers used in this meta-analysis. TI = temperature increase (n = 41), WW = winter warming (n = 3), DR = drought (n = 32), VS = vegetation shift (n = 2), and MIX = combination of several drivers (n = 42). MIX included TI-DR (n = 25), TI-WW (n = 8), TI-VS (n = 4), DR-VS (n = 4), and TI-DR-VS (n = 1). The map shows only latitude above 30˚N.
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 2 Figure 2. Standardized mean difference (SMD) showing the response of peatland microbial richness (a), alpha-diversity (b) and beta-diversity (c) to temperature increase (TI) and drought (DR). The black dot shows the mean of SMDs and the bars represent the associated standard error. The filled line shows the null effect size (equal to zero), the grey area with dotted blue lines represents the range [-0.2;0.2] in which SMDs are considered weak. Outside this range SMDs are considered to have medium to high effect. Numbers between brackets indicate the number of observations used to calculate the SMDs.

Figure 3 .

 3 Figure 3. Standardized mean difference (SMD) showing the response of peatland microbial biomass grouped by microbial functional groups to temperature increase (TI) and drought (DR) (a), with a focus on consumers (b). SMD showing the response of peatland microbial functions to temperature increase (TI) and drought (DR) (c). The black dot shows the mean of SMDs and the bars represent the standard error associated. The filled line shows the null effect size (equal to zero), the grey area with dotted blue lines represents the range [-0.2;0.2] in which SMDs are considered weak. Outside this range SMDs are considered to have medium to high effect. Numbers between brackets indicate the number of observations used to calculate the SMDs.
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 4 Figure 4. Microbial species turnover and biomass across trophic levels are complementary facets of the response of peatlands' functions to climate change. Latent SEMs showing the best functions defining microbial C-related multifunctionality under (a) temperature increase (X 2 = 0.35, df = 1, P = 0.55; CFI = 1, RMSEA = 0, SRMR = 0.031) and (b) drought (X 2 = 0.27, df = 1, P = 0.60; CFI = 1, RMSEA = 0, SRMR = 0.01). Unmeasured latent variable 'microbial C-related multifunctionality' is represented by a circle while measured variables are represented by squares. Numbers next to each arrow indicated the standardized estimates of the model. Standardized estimates derived from the MASEM models under (c) temperature increase and (d) drought. Circles are the mean of k iterations for each path of the model and the bars indicate the standard error derived from the k iterations (k = 50 for temperature increase; k = 10 for drought, more details can be found in Methods). Fit of the MASEM models are given in supplementary Figure S9. TI = temperature increase, div = alpha-diversity, bdiv = beta-diversity, photot = biomass of phototrophs, dec = biomass of bacteria and/or fungi, cons = biomass of consumers, C = microbial C-
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 1 Figure 1.Peatland coverage and data. Estimated area coverage (in percentage) of peatlands based on the Peat-ML
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 3 Figure 3. Standardized mean difference (SMD) showing the response of peatland microbial biomass grouped by functional type to temperature increase (TI) and drought (DR) (a), with a focus on consumers (b). SMD showing the response of peatland microbial functions to temperature increase (TI) and drought (DR) (c). The black dot shows the mean of SMD and the bars represent the standard error associated. The filled line shows the null effect size (equal to zero), the grey area with dotted blue lines represents the range [-0.2;0.2] in which SMDs are considered weak. Outside this range SMDs are considered to have medium to high effect. Numbers between brackets indicate the number of observations used to calculate SMDs.
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 5 Figure 5. Predicted standardized mean difference (SMD) for the effect of increasing temperatures +1.5˚C (a and c) and +3.0˚C (b and d) on CO2 emissions (a and b) and CO2 fixation (c and d). Peatland distribution was retrieved from the peatland distribution Peat-ML map (Melton et al., 2022), CMIP6 model under the SPP8.5 scenario for +1.5˚C and +3˚C warming related to the 1850-1900 baseline was used.

  

  

  

Table 1 . Description of the climate drivers retained in this synthesis.

 1 

	Climate drivers	Complete name	Description
	TI	Temperature increase	Natural gradient, transplantation, experimental warming, in the field or in laboratory
	WW	Winter warming	Natural or experimental warming during the winter season, snow removal or addition
	DR	Drought	Drought, reduced precipitation or reduction of water availability
	VS	Vegetation shift	Climate-change-induced change of vegetation (for instance removing of some plants)

Table 2 . Summary of the response of richness, alpha-diversity, beta-diversity, biomass and function to climate drivers (linear mixed effects models, LMMs).

 2 Groups, climate drivers and manipulation magnitude were retained as fixed effect terms, whilst the peatland type, experimentation type, method used and study type were retained as random effect terms. G a = microbial group for richness, alpha-diversity, beta-diversity and biomass, and the type of function for microbial function, D = climate drivers, MM= manipulation magnitude. Peatland type = bog,

	fen, mire, other or several; experimentation = laboratory or field; method = method used to estimate alpha-diversity,
	beta-diversity and biomass and/or measure microbial functions (see Methods). *** P < 0.001, ** P < 0.01, * P < 0.05.
				Fixed effects terms	
	Response variable	G a	D	MM D x MM	G a x D	G a x MM G a x D x MM Random effects terms
							Peatland type,
	Richness			*			Experimentation, Method
	Alpha-						Peatland type,
	diversity						Experimentation, Method
	Beta-						Peatland type,
	diversity				*		Experimentation, Method
							Peatland type,
	Biomass	**		*	***	***	Experimentation, Method
							Peatland type,
	Functions	***			***		Experimentation, Study

Table 3 . Summary of the predictive models used for projections at global peatland scale

 3 

	Parameters	CO2 emission	CO2 fixation	CH4 emission	CH4 oxidation
	Number of observations	42	15	41	16
	P-value	0.023	0.001	0.14	0.91
	R 2	0.36	0.73	0.17	0.18
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