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BAYES IN ACTION IN DEEP LEARNING AND DICTIONARY LEARNING

Julyan Arbel1, Hong-Phuong Dang2, Clement Elvira3, Cedric Herzet4,
Zacharie Naulet5 and Mariia Vladimirova1

Abstract. This article summarizes some recent works and associated challenges in the field of Bayesian
statistics that were presented during the Journées MAS 2020. The goal of the session was to give an
overview of the many aspects of Bayesian statistics investigated by young researchers of the community.

Résumé. Cet article résume quelques travaux récents et leurs défis dans le domaine de la Statistique
Bayésienne. Ces travaux ont été présentés aux Journées MAS en 2020. Le but de la session était de
donner un aperçu de tous les aspects de la Statistique Bayésienne investigués par de jeunes chercheuses
et chercheurs de la communauté.

1. Introduction

On Thursday, 26th of August 2021 the “Bayesian statistics” session was held at the Journées MAS 2020 in
Orléans. This article describes some of the works presented during this session.

The Bayesian interpretation of probabilities stipulates that probabilities must be understood as a measure
of the degree of belief in the event. The main philosophy of Bayesian inference is based on this idea. In short,
a Bayesian statistician starts with an initial belief on the object of interest (the prior belief) and updates this
belief on the basis of the observations at hand (the posterior belief). The prior belief may be based on anterior
studies, knowledge, or personal belief. This differs from the frequentist paradigm, which is based on the other
main interpretation of probabilities, in which the probability of an event is viewed as the limiting value of its
relative frequency after an infinite repetition of independent trials.

Formally, a Bayesian model is the joint distribution Π of a random variable (X, θ) taking values in X × Θ,
where X is the observation and θ ∈ Θ the “random” parameter. That is conditional on θ it is assumed that X has
law Pθ. Prior information about θ is incorporated in the model via the marginal distribution ν(·) := Π(X × ·),
the so-called prior distribution. Having observed X = x, Bayesian inference is made on the basis of the law of
θ | X = x, written here Π(θ ∈ · | X = x), known as the posterior distribution. In contrast, a frequentist model
is a family {Pθ : θ ∈ Θ} of distributions over X , with the usual modeling assumption that there exists θ0 ∈ Θ
unknown such that X as law Pθ0 . This last modeling assumption is not required for Bayesian inference, and
the most subjective Bayesians reject its validity [1].

Besides the philosophical differences, it is of interest to understand what the Bayesian framework can offer to
a pragmatic statistician. Arguably one of the most appealing features of the Bayesian framework is the ability

1 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France
2 LaTIM, INSERM-UMR1101, Univ. de Bretagne Occidentale, Brest, & ECAM Rennes, Louis de Broglie, Bruz, France
3 IETR UMR CNRS 6164, CentraleSupelec Rennes Campus 35576 Cesson Sévigné, France
4 Inria centre Rennes - Bretagne Atlantique, Rennes, France
5 Université Paris-Saclay, CNRS, Laboratoire de mathématiques d’Orsay, 91405, Orsay, France.

© EDP Sciences, SMAI 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Article published online by EDP Sciences and available at https://www.esaim-proc.org or https://doi.org/10.1051/proc/202374090

https://creativecommons.org/licenses/by/4.0
http://publications.edpsciences.org/
https://www.esaim-proc.org
https://doi.org/10.1051/proc/202374090


ESAIM: PROCEEDINGS AND SURVEYS 91

to incorporate prior knowledge in the model in a most natural manner via ν. We can also mention that the
approach gives a systematic and natural way to handle uncertainty quantification through credible sets that are
sets Cx such that Π(θ ∈ Cx | X = x) ≥ 1− α, where 1− α is a credibility level. In nonparametric statistics, it
is also often the case that Bayes’ estimators are intrinsically adaptive to the smoothness of the true parameter
– assuming it exists – while frequentist adaptative procedures can be tricky to build [2, Chapter 10]. Somewhat
anecdotally, even the most frequentist statisticians may find some comfort in the use of Bayes’ estimators, using
them as a powerful tool to construct admissible (even minimax) frequentist procedures [3].

Yet, as appealing as the Bayesian framework can seem, there is still a lot of research going on to understand
and address its limitations. We may establish the following taxonomy of fruitful research topics in Bayesian
statistics. We believe these are the current main research areas in the community, but we do not exclude the
possibility that this list may be biased by the authors’ centers of interest.

(A) Design of prior distributions and complex models with meaningful interpretation. As many modern
applications involve complex data and/or sampling mechanisms, it is often challenging to design inter-
pretable and tractable Bayesian models. We note that this issue is not specific to the Bayesian paradigm.
Yet, it is an important field of research in the community and deserved to be mentioned here.

(B) Efficient posterior computations. The posterior distribution is rarely available in closed-form, neither
numerically computable. The traditional way to overcome this difficulty is to obtain representative
samples from the posterior Π(θ ∈ · | X = x). A powerful and popular technique involves building a
Markov chain whose stationary distribution is the posterior [4]. However, this method is intrinsically
sequential and often does not scale well with a large number of data. Many efforts have been put
in recent years to try and solve this issue. Among the most popular solutions are methods based on
subsampling the data [5], or building coresets [6], or optimizing for the best approximant of the posterior
distribution in a given family [7], or splitting the data and perform computation in parallel [8].

(C) Frequentist validation of Bayes procedures. Of interest to the pragmatic Bayesian are the frequentist
properties of Bayes estimates. That is, under the frequentist modeling assumption that X has law Pθ0

for a fixed “true” θ0 ∈ Θ, what is the behaviour of Π(θ ∈ · | X) (as a measure-valued random variable).
Questions of interest regard its concentration on neighborhoods of θ0, the rate of this contraction, the
limiting distribution shape, etc. Although these questions are rather well understood for parametric
models [9, Chapter 10], they are much more challenging in nonparametric models [2].

(D) Bayesian Machine Learning. The impressive successes of Machine Learning (ML) algorithms in recent
years have attracted the attention of many statisticians. This is especially the case of learning algo-
rithms, which consists on learning, either from labeled data (X1, Y1), . . . , (Xn, Yn) ∈ X ×Y (supervised
learning setting), or from unlabeled data X1, . . . , Xn ∈ X (unsupervised learning setting), a function
f : X → Y that maps features to labels. The popularity of learning in the statistical community is cer-
tainly due to the emergence of Statistical Learning Theory [10,11], a popular framework for theoretical
analysis of learning algorithms. Since the goal of learning is reminiscent to prediction, without surprise
many statistical model-based approaches (including Bayesian!) have been proposed over the last decade
to design learning algorithms.

The goal of the “Bayesian statistics” session was to present works by young researchers in the field, with
the aim to cover as much as possible the whole spectrum of topics described above. Let us briefly summarize
the content of the session, listing the talks in their order of appearance. The first talk was given by Maxime
Vono and was concerned with the research topic (B). He presented a generic method to perform distributed
(ie. parallel) posterior computations. The second talk was given by Hong-Phuong Dang and was concerned
with topics (A), (B) and (D). She has presented the advantages of a Bayesian approach for image denoising,
together with an algorithm for efficient posterior sampling. The third talk, given by Thibault Randrianarisoa,
was concerned with topic (C). He presented frequentist guarantees for point-estimation and confidence sets in
density estimation for a Bayesian model based on Pólya trees. The last talk, given by Mariia Vladimirova,
was concerned with topics (A) and (D). She explained how we can understand and interpret the internals of
somewhat complicated models such as Bayesian neural networks.
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This article presents in more detail some of the works that have been presented during the session, organised
and chaired by Zacharie Naulet who wrote this introduction. The focus of the article is put on topic (D), in
particular on two popular Bayesian supervised learning algorithms that are Bayesian neural networks and sparse
linear models. Section 2, written by Mariia Vladimirova and Julyan Arbel, focuses on distributional properties
of Bayesian neural networks. Section 3, written by Hong-Phuong Dang, Clément Elivra, and Cédric Herzet,
describes an approximate posterior sampling scheme for dictionary learning.

Notations

We use the following notations throughout the paper. Matrices and vectors are respectively denoted by
uppercase (e.g., W, D) and lowercase (e.g., g, h, d) bold letters. IL is the identity matrix of dimension L. The
nth column of matrix D is written as dn and element (k, n) as dkn. ⊙ denotes element-wise product between
two vectors. ∥ · ∥F is the Frobenius norm of a matrix; ∥ · ∥0 returns the number of nonzero elements in its
argument. I{·} is the indicator function which is equal to 1 when the statement between braces is true and to
0 otherwise. The symbol ∝ refers to equality up to a normalization constant. Finally, the notations N , IG,
Ber, Beta, and GWTR stand respectively for the Normal, Inverse Gamma, Bernoulli, Beta, and generalized
Weibull-tail distributions. We use the following notations for neural networks. The number of hidden layers,
called depth, is denoted L. Each layer following the input layer consists of units which are linear combinations of
previous layer units transformed by a function (oftentimes nonlinear), referred to as the activation function and
denoted by ϕ : R → R. Given an input x ∈ RN (for instance an image made of N pixels) the ℓ-th hidden layer,
ℓ = 1, . . . , L, consists of two vectors of size denoted by Hℓ (called the width of layer). The vector of units before
application of the non-linearity is called pre-activation, and is denoted by g(ℓ)(x) = g(ℓ) = (g

(ℓ)
1 , . . . , g

(ℓ)
Hℓ

), while
the vector obtained after element-wise application of ϕ is called post-activation and is denoted by h(ℓ)(x) =

h(ℓ) = (h
(ℓ)
1 , . . . , h

(ℓ)
Hℓ

). More specifically, these vectors are defined as

g(ℓ)(x) = W(ℓ)h(ℓ−1)(x), h(ℓ)(x) = ϕ(g(ℓ)(x)), (1)

where W(ℓ) is a weight matrix of dimension Hℓ×Hℓ−1 including a bias vector, with the convention that H0 = N ,
the input dimension.

2. Bayesian neural networks distributional properties

Neural networks suffer from numerous limitations, despite many advances and high interest in the deep
learning field. Their adoption in practical and safety-critical applications is still restrained [12]. To overcome
limitations, many researchers work on understanding the mechanisms behind deep learning models and devel-
oping new tools. For instance, the influence of different architecture and training procedure on outputs and
their better description can help with the choice of a proper model for a given problem and, in general, with
transparency and trustworthiness. In the same way, it is essential to have well-calibrated uncertainty for be-
lieving the prediction outputs [13,14]. Uncertainty estimates can also serve as a means of transparency as they
inform when the model does not know the correct prediction [15].

Bayesian inference is considered as one of the solutions to trustworthiness as it allows to provide some
uncertainty for the outputs. Instead of taking into account a single answer of a model, Bayesian methods
allow considering an entire distribution of answers. Bayesian neural networks achieve good performance while
providing an uncertainty quantification of their outputs. The Bayesian approach does not open the black box
of neural network-based models; however, it gives a new perspective to studying internal mechanisms of neural
networks. For recent reviews, see [16–18].

We suggest studying the internal mechanisms in Bayesian neural networks. More specifically, we focus on
prior distributions at the unit level. The flagship result is that function-space priors converge to a Gaussian
process when the layers’ width tends to infinity. We extend this result to finite-width Bayesian neural net-
works by providing a characterization of the marginal prior distribution of the units. We provide an accurate
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characterization of hidden units tails through sub-Weibull and Weibull-tail descriptions. The obtained results
illustrate the heavy-tailed nature of hidden units in deep layers for different weight priors. We believe that
these characterizations help to understand the internal mechanisms of neural networks and to suggest model
improvements.

2.1. Sub-Weibull hidden units

The recent work by Bibi et al. [19] provides the expression of the first two moments of the output units of a
one-layer neural network. Obtaining moments is a preliminary first step to characterizing a whole distribution.
However, the methodology of [19] is also limited to one hidden layer neural networks.

Later work focuses on moments of hidden units and shows that any order moments are finite under mild
assumptions on the activation function. More specifically, the sub-Weibull property of distributions is shown,
conjecturing that hidden units are heavier-tailed with going deeper in the network [20, 21]. This is in contrast
with their GP limit which is obtained when going wider. To describe this result, we start with the formal
definition of a Sub-Weibull random variable:

Definition 2.1 (Sub-Weibull random variable). A random variable X satisfying for all x > 0 and for some
θ > 0

P(|X| ≥ x) ≤ a exp
(
−x1/θ

)
, (2)

is called a sub-Weibull random variable with so-called tail parameter θ, which is denoted by X ∼ subW(θ).

Sub-Weibull distributions are characterized by tails lighter than (or equally light as) Weibull distributions;
in the same way as sub-Gaussian or sub-exponential distributions correspond to distributions with tails lighter
than Gaussian and exponential distributions, respectively. Sub-Weibull distributions are parameterized by a
positive tail index θ and are equivalent to sub-Gaussian for θ = 1/2 and sub-exponential for θ = 1.

Given some input x, such prior distribution induces by forward propagation (1) a prior distribution on the
pre-nonlinearities and post-nonlinearities, whose tail properties are the focus of this section. To this aim, the
activation function ϕ is required to span at least half of the real line as follows. We introduce an extended
version of the activation function assumption from Matthews et al. [22]:

Definition 2.2 (Extended envelope property). An activation function ϕ : R → R is said to obey the extended
envelope property if there exist c1, c2 ≥ 0, d1, d2 > 0 such that the following inequalities hold

|ϕ(u)| ≥ c1 + d1|u| for all u ∈ R+ or u ∈ R−,

|ϕ(u)| ≤ c2 + d2|u| for all u ∈ R.
(3)

The interpretation of this property is that ϕ must shoot to infinity at least in one direction (R+ or R−, at
least linearly (first line of (3)), and also at most linearly (second line of (3)). Of course, compactly supported
nonlinearities such as sigmoid and tanh do not satisfy the extended envelope property but the majority of other
nonlinearities do, including ReLU, ELU, PReLU, and SeLU.

Theorem 2.1 (Vladimirova et al. [20]). Consider a Bayesian neural network with centered Gaussian priors and
with activation function ϕ satisfying the extended envelope condition of Definition 2.2. Then conditional on the
input x, the marginal prior distribution induced by forward propagation (1) on any unit (pre- or post-activation)
of the ℓ-th hidden layer is sub-Weibull with tail parameter θ = ℓ/2. That is for any 1 ≤ ℓ ≤ L, and for any
1 ≤ m ≤ Hℓ,

u(ℓ)
m ∼ subW(ℓ/2),

where a subW distribution is defined in Definition 2.1, and u
(ℓ)
m is either a pre-activation g

(ℓ)
m or a post-activation

h
(ℓ)
m .
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2.2. Weibull-tail hidden units

Further, this result is improved by showing that hidden units are Weibull-tail distributed. Weibull-tail
distributions are characterized in a different manner than sub-Weibull distributions, not based on moments but
on a precise description of their tails. Denote by FX( · ) and FX( · ), respectively, the cumulative distribution
function and survival function of some random variable X.

Definition 2.3 (Generalized Weibull-tail on R). A random variable X is generalized Weibull-tail on R with
tail parameter β > 0 if both its right and left tails are upper and lower bounded by some Weibull-tail functions
with tail parameter β:

e−xβlr1(x) ≤FX(x) ≤ e−xβlr2(x), for x > 0 and x large enough,

e−|x|βll1(|x|) ≤FX(x) ≤ e−|x|βll2(|x|), for x < 0 and −x large enough,

where lr1, lr2, ll1 and ll2 are slowly-varying functions. We note X ∼ GWTR(β).

This tail description reveals the difference between hidden units’ distributional properties in finite- and
infinite-width Bayesian neural networks, since hidden units are generalized Weibull-tail with a tail parameter
depending on those of the weights:

Theorem 2.2 (Vladimirova et al. [23]). Consider a Bayesian neural network as described in Equation (1)
with ReLU activation function. Let ℓ-th layer weights be independent symmetric generalized Weibull-tail on R
with tail parameter β

(ℓ)
w . Then conditional on the input x, the marginal prior distribution induced by forward

propagation (1) on any pre-activation is generalized Weibull-tail on R: for any 1 ≤ ℓ ≤ L, and for any
1 ≤ m ≤ Hℓ,

g(ℓ)m ∼ GWTR(β
(ℓ)),

with tail parameter β(ℓ) such that 1
β(ℓ) = 1

β
(1)
w

+· · ·+ 1

β
(ℓ)
w

, where a GWTR distribution is defined in Definition 2.3.

Note that the most popular case of weight prior, iid Gaussian [24], corresponds to GWTR(2) weights. This
leads to units of layer ℓ which are GWTR(

2
ℓ ).

2.3. Generalized Weibull-tail vs sub-Weibull properties

Some of the commonly used techniques to study the tail behavior is to consider probability tail bounds such
as sub-Gaussian, sub-exponential, or their generalization to sub-Weibull distributions [21,25]. The sub-Weibull
property of Definition 2.1 for a non-negative random variable ensures the existence of the moment-generating
function as well as bounds on moments. In contrast, the Weibull-tail property of Definition 2.3 characterizes
the survival or density functions without a hand on moments.

While tail parameters in Definition 2.1 and Definition 2.3 of sub-Weibull and generalized Weibull-tail prop-
erties play different roles, there exist connections. Notice that for any constants a, b, β > 0, function l(x) =

b− log a
xβ ≥ 0 is slowly-varying and ae−bxβ

= e−xβl(x). It means that if a random variable X is sub-Weibull with
parameter θ = 1/β > 0, satisfying Equation (2), then the survival function of X is upper-bounded by a Weibull-
tail function with tail parameter β and slowly-varying function l(x) = 1. Conversely, let X be a generalized
Weibull-tail random variable with tail parameter β and denote by l the slowly-varying function associated with
its definition. Then by Proposition 1.3.6 in [26], for any α > 0, we have xαl(x) → ∞ and x−αl(x) → 0 when
x → ∞. So for any β1, β2 such that 0 < β1 < β < β2, there exist a1, a2 > 0 such that

a1e
−xβ2 ≤ FX(x) = e−xβl(x) ≤ a2e

−xβ1
.

In other words, GWTR+
(β) ⊂ SubW(1/β1) and GWTR+

(β) ̸⊂ SubW(1/β2), as illustrated on Figure 1.
Theorem 2.1 shows that hidden units of Bayesian neural networks with iid Gaussian priors are sub-Weibull

with tail parameter proportional to the hidden layer number, that is θ = ℓ
2 . It means that the unit distributions
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:
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(

1
β2

)

Figure 1. Relation between sub-Weibull and generalized Weibull-tail characteristics.

of hidden layer ℓ can be upper-bounded by some Weibull distributions ae−x2/ℓ

for all ℓ. For larger tail parameter
θ, Weibull distribution ae−x1/θ

is heavier-tailed but being sub-Weibull does not guarantee the heaviness of the
tails. However, this upper bound is optimal in the sense that it is achieved for neural networks with one hidden
unit per layer.

From Theorem 2.2, for neural networks with independent Gaussian weights, hidden units of ℓ-th layer are
generalized Weibull-tail with tail parameter β = 1/θ = 2/ℓ so they have upper and lower bounds of the form
e−x2/ℓl(x) up to a constant where l is some slowly-varying function. Therefore, it proves that hidden units are
heavier-tailed when going deeper for any finite number of hidden units per layer.

2.4. Related literature and discussion of the results

Regularization interpretation. It is well-known that performing a maximum a posterior (MAP) estima-
tion in a Bayesian context is akin to employing a penalized maximum likelihood estimation (MLE), where the
role of the penalty is played by the negative log-prior. According to this lens, [20] show that the sub-Weibull
prior obtained in Theorem 2.1 induces a different regularization at the level of the units U than at the weights
level W. As summarized in Table 1, the negative log-prior for some Gaussian prior is nothing but an L2 penalty
(also called weight-decay in the deep learning community), while the negative log-prior for sub-Weibull priors
of tail parameter ℓ/2 may take the more elaborate form of L2/ℓ penalties.

Layer Penalty on W Approximate penalty on U

1 ∥W(1)∥22, L2 ∥U(1)∥22 L2 (weight decay)
2 ∥W(2)∥22, L2 ∥U(2)∥ L1 (Lasso)
ℓ ∥W(ℓ)∥22, L2 ∥U(ℓ)∥2/ℓ2/ℓ L2/ℓ −1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

U1

U
2

Layer 1

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

U1

U
2

Layer 2

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

U1

U
2

Layer 3

Table 1. Left: Comparison of Bayesian neural network penalties on weights W and units U
for varying layer depths. Right: Graphical representation of the unit penalties implied at the
unit level for varying layer depths.

Gaussian pre-activations. The study of the neural networks’ distributional properties through Bayesian
analysis, where the weights are assigned some prior distribution, has attracted a lot of attention in recent years.
One of the main results in the field states that Bayesian deep neural network units converge in distribution
to a Gaussian process when the layers’ width goes to infinity. Originally stated by [27] for one-hidden-layer
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Figure 2. Tail index estimator θ̂ for units at layers ℓ ∈ {1, 3, 10} as a function of the width H ∈ {1, 2, . . . , 10}.

neural networks, this result was recently shown to carry over to deep neural networks by [22, 28]. In contrast,
Theorem 2.2 shows that the non-asymptotic (i.e. for finite-width neural networks) prior distribution of units
from the ℓ-th layer induced by some prior on the weights gets heavier when going deeper in the network. This
result puts into perspective the infinite-width Gaussian process property which might be far from holding for
real-world, often very deep, neural networks. To illustrate this point, we conducted the following experiment.
We simulated Bayesian fully connected neural networks according to standard Gaussian weights, with varying
depth ℓ ∈ {1, 3, 10} and varying width (but fixed for each architecture) H = Hℓ ∈ {1, 2, . . . , 10}. We propagated
those random weights to units conditional on a fixed (once for all randomly sampled) input. For every layer, we
then computed the tail index estimator θ̂ proposed in [21] for the tail parameter θ appearing in Equation 2.1.
We can see in Figure 2 that the theoretical result of Theorem 2.1 that states that θ = ℓ/2 is well in line with
the estimates obtained with networks of width H = 1. When the width increases, the estimates for θ tend
to decrease, narrowing the gap to the lower bound of 1/2 corresponding to a Gaussian distribution. A better
understanding of this Gaussian is important since it is assumed to hold in a number of subsequent works, for
instance, relative to information propagation in the neural network, as described below.

Information propagation and Edge of Chaos. An active line of research focuses on the propagation
of deterministic inputs in neural networks [29–31]. These works build upon the limiting Gaussian process
property of neural networks, in order to devise efficient initialization rules for neural networks. The main
idea is to explore the covariance between pre-activations for two given different data points. [29] and [30]
obtain recurrence relations under the assumption of Gaussian initialization and Gaussian pre-activations. They
conclude that there is a critical line, so-called Edge of Chaos, separating signal propagation into two regions.
The first one is an ordered phase in which all inputs end up asymptotically correlated. The second one is a
chaotic phase in which all inputs end up asymptotically independent. To propagate the information deeper
in a neural network, one should choose Gaussian prior variances corresponding to the separating line Edge of
Chaos. [31] show that the smoothness of the activation function also plays an important role. Since this line
of works considers Gaussian priors not only on the weights but also on the pre-activations, it is closely related
to a wide regime where the number of hidden units per layer tends to infinity. Given that hidden units are
heavier-tailed with depth, we argue that the impact of the Gaussian pre-activations assumption on the Edge of
Chaos should be better understood. This issue is further investigated in [32].

Cold posterior effect and priors. It was recently empirically found that Gaussian priors in neural
networks lead to the cold posterior effect in which a tempered “cold” posterior, obtained by exponentiating
the posterior to some power greater than one, performs better than an untempered one [33]. The performed
Bayesian inference is considered sub-optimal due to the need for cold posteriors, and the model is deemed
misspecified. From that angle, [33] suggest that Gaussian priors might not be a good choice for Bayesian
neural networks. In some works, data augmentation is argued to be the main reason for this effect [34, 35]
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as the increased amount of observed data naturally leads to higher posterior contraction [34]. At the same
time, even considering the data augmentation for some models, the cold posterior effect is still present. [35]
hypothesize that using an appropriate prior incorporating knowledge of data augmentation might provide a
solution. Moreover, heavy-tailed priors have been shown to mitigate the cold posterior effect [36]. According
to Theorem 2.2, heavier-tailed priors lead to even heavier-tailed induced priors in function-space. Thus, the
heavy-tail property of distributions in function-space might be a highly beneficial feature. [36] also proposed
correlated priors for convolutional neural networks since trained weights are empirically strongly correlated, see
also [37]. Correlated priors improve overall performance but do not alleviate the cold posterior effect. Another
research direction to understanding the cold posterior effect is through the lens of generalization bounds such
as PAC-Bayesian ones [38]. It is argued that discussions of the cold posterior effect should take into account
that approximate Bayesian inference does not readily provide guarantees of performance on out-of-sample data,
which are better described through generalization bounds.

2.5. Conclusion

Bayesian inference is one of the solutions to trustworthiness as it provides a framework to describe some
uncertainty for the outputs. Instead of taking into account a single answer of a model, Bayesian methods
allow considering an entire distribution of answers. Bayesian neural networks achieve good performance while
providing an uncertainty quantification of their outputs. Though the Bayesian approach does not open the black
box of neural network-based models, it opens a new perspective to study the internal mechanisms. We discussed
some recent advances in describing Bayesian neural networks at the level of units. We hope that these results
help to understand better the underlying working flow.

3. Small-variance asymptotics approximation of Gibbs sampling for
dictionary learning

3.1. Problem statement

Most digital acquisition devices have traits that make measurements subject to noise. A standard signal
processing task therefore consists of recovering some unknown signal s ∈ RL from its noisy observation

x = s+ b (4)

where b represents some corrupting noise. It is well-known that reducing the noise variance is only possible
if some prior information on s is known, e.g., s ∈ Starget ⊂ RL [39, Ch. 11]. Since such knowledge is rarely
available in practice, many denoising algorithms leverage the construction of a surrogate model Smodel ⊇ Starget

from a set of collected data, say

xn = sn + bn n = 1, . . . , N. (5)

In this paper, we consider the so-called “s-sparse” model where each element of {sn}Nn=1 is assumed to stem
from a noisy linear combination of a few columns of some matrix D ∈ RL×K , that is

Smodel = {s = Dw + ϵ | ∥w∥0 ≤ s, ∥ϵ∥2 ≤ δ}, s ∈ N∗, δ ∈ R+. (6)

During the last decade, model (6) has attracted the attention of many researchers. Its success mostly revolves
around the combination of two ingredients. First, many natural signals have been shown to lie close to a sparse
model, see e.g., [39, Sec. 9.3] for a discussion in image processing. Second, a remarkable amount of algorithms
(along with their theoretical analyses) have been proposed in the literature [40] to obtain sparse representations.
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In particular, many of them have been shown to be robust to additive noise and stable with respect to sparsity
defect, see e.g., [40, Th. 4.19].

From the point of view of our denoising problem, a “good” sparse model should satisfy several (often contra-
dictory) objectives. On the one hand, robustness against noise requires Smodel not to “spread” too much in RL.
This implies that s, K and δ should be chosen as small as possible. On the other hand, Smodel must obviously
contain the set of target vectors Starget. Hence, s, K and δ should be chosen sufficiently large to obey this
requirement. Lastly, the value of s, K and δ is also constrained from a “learning” point of view: since Smodel

has to be learned from a finite number of (noisy) samples {xn}Nn=1, the number of degrees of freedom of Smodel

should not be too large to avoid overfitting and allow for generalization [41].

Many approaches to build sparse models satisfying these requirements have been proposed in the literature.
The problem of finding a “good” matrix D from a set of data points {xn}Nn=1 is often known as “dictionary
learning”. Most methods addressing dictionary learning leverage the seminal work by Olshausen & Field [42]
and are based on the resolution of an optimization problem where some constraints on s and δ are included
explicitly or implicitly, see e.g., [43–47]. The most popular example of such an approach is probably the “K-
SVD” algorithm proposed by Aharon et al. in [43] where the authors introduced a dictionary learning algorithm
searching (heuristically) a solution of the following problem:

min
D∈RL×K ,{wn∈RK}N

n=1

N∑
n=1

1

2
∥xn −Dwn∥2F + λ∥wn∥0 (7)

for some λ > 0. Here the trade-off between sparsity level and modeling/observation noise is implicitly chosen
via the tuning parameter λ. The choice of λ and K has to be done manually using, e.g., cross-validation [41].
This operation may be computationally cumbersome since problem (7) needs then to be solved for each new
value of K. Moreover, the number and the range of values to test for K often remain a heuristic choice. A few
works have elaborated on the K-SVD approach to propose adaptive dictionary learning methods that infer the
size of the dictionary within the optimization process, see [48–51]. Nevertheless, these procedures still call for
important parameter tuning. For example, most of them need to know the noise or the sparsity level.

Another well-known family of dictionary learning procedures are Bayesian methods, see e.g., [52–55]. Unlike
“optimization-based” methods, Bayesian procedures can naturally include the evaluation of model parameters
within the estimation process. For example, in [52–54] the parameters of a Bernoulli-Gamma-Gaussian model
and the variance of the observation noise were embedded within the dictionary learning problem. In [55],
Dang et al. went one step further and incorporated the size of the dictionary (K) into the learning task
by using an “Indian-Buffet-Process” (IBP) prior. In these papers, a tractable implementation solving the
joint “dictionary-parameters” estimation problem is usually achieved by resorting to Monte-Carlo sampling
algorithms. Although these procedures are known to converge asymptotically (in the number of samples) to
exact a posteriori estimates, their main drawback stands in their computational complexity since a large number
of iterations are often needed to attain the target sampling distribution.

Many solutions have been proposed in the literature to overcome the high-computational cost of Monte-Carlo
methods, e.g., stochastic methods, sequential Monte Carlo, particle Markov chain Monte-Carlo, stochastic
variational inference or variational Bayes methods. In this paper we focus on the so-called “small-variance
asymptotics” (SVA) approximation of the Gibbs sampler proposed in [56] and further extended in [57–64].
We emphasize that exploiting this type of approximation in the context of dictionary learning can lead to
procedures combining the advantages of “optimization-based” and “Bayesian-based” methods, namely reasonable
computational cost and integrated estimation of the model parameters. The material of this paper leverages
contributions [65–67].
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Target Distribution family Parameters definition

dk | · N (µ,Σ) Σ =
(
L+ σ−2

b

N∑
n=1

(wkn)
2
)−1

IL µ = σ−2
b Σ

N∑
n=1

wkn

(
xn −

K∑
j ̸=k

djwjn

)
ckn | zkn = 1, · N (µ,Σ) Σ =

(
σ−2
b ∥dk∥22 + σ−2

c

)−1

µ = σ−2
b ΣdT

k

(
xn −

K∑
j ̸=k

djwjn

)
ckn | zkn = 0, · N (µ,Σ) Σ = σ2

c µ = 0

σ2
b | · IG(α, β) α = e0 +

NL
2 β = f0 +

1
2∥X−DW∥2F

σ2
c | · IG(α, β) α = c0 +

KN
2 β = d0 +

1
2∥C∥2F

Table 2. Expressions of some a posteriori conditional probabilities related to model (8)-(12). Short-
hand notation “X | ·” refers to random variable X conditioned to all the other variables of the problem.

3.2. Bayesian model

This section introduces the Bayesian model used for our dictionary learning problem. We assume that each
element of the training set {xn}Nn=1 is an independent realization of the following model

x = Dw + b (8)

corresponding (to some extent) to the sparse model (6) with δ = 0,1 and where

b ∼ N (0, σ2
bIL)

dk ∼ N (0, L−1IL) ∀1 ≤ k ≤ K
(9)

and w obeys some “sparsity-enforcing” distribution.
In this paper, we consider the following option:

w = c⊙ z where c ∼ N (0, σ2
cIK) (10)

and p(z) is a distribution on {0, 1}K which favors sparsity. We will consider two particular choices for p(z)
herefafter, namely a Bernoulli distribution (Section 3.3.1) and an “Indian-Buffet Process” (Section 3.3.2). We
finally assume that variances σ2

b and σ2
c are distributed as

σ2
b ∼ IG(e0, f0) (11)

σ2
c ∼ IG(c0, d0) (12)

for some positive hyper-parameters c0, d0, e0, f0. In the sequel, we will use the notations X, W, C, Z to denote
matrices whose columns correspond to realizations {xn}Nn=1, {wn}Nn=1, {cn}Nn=1 and {zn}Nn=1, respectively. As
a final remark, we note that the variance of each dk in (9) has been fixed to L−1 to address the multiplicative
factor indeterminacy in the pair (D,W).2

1The choice δ = 0 is arbitrary and follows from the fact that the model defect ϵ in (6) and the observation noise b in (4) cannot
be disambiguated.
2Setting the variance of each dk proportional to L−1 implies that E

[
dT
k dk

]
= 1, thus corresponding to a form of “soft normalization”.
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3.3. Small-variance approximation of Gibbs sampling

A standard approach to compute a point estimate from some a posteriori distribution is to resort to Monte-
Carlo approximation and Gibbs sampling [4]. The former consists of approximating the expectation of a random
quantity by the arithmetic mean of a set of realizations; the latter is a powerful tool to drawn samples from the
distribution of interest. Gibbs sampling is a “Markov chain Monte Carlo” method: it generates a sequence of
iterates which can be shown to asymptotically converge to realizations of the target distribution. The sequence
of iterates is generated by sequentially sampling realizations of the problem’s random variables (here σ2

b, σ2
c,

elements of D, C, Z and potential hyperparameters) from their conditional a posteriori distributions.

Some conditional distributions associated to σ2
b, σ2

c, D, C are summarized in Table 2. The conditional
distribution of Z will be detailed in Sections 3.3.1 and 3.3.2 for two particular choices of p(Z). We note that,
as far as σ2

b, σ2
c, D, C are concerned, the conditional probabilities involved in the implementation of the

Gibbs sampler correspond to distributions which can be efficiently sampled by many well-known methods of the
literature, see e.g., [4, Chapter 2].

Unfortunately, despite this desirable feature, solving dictionary learning problems via Gibbs sampling often
entails a computational complexity superior to “optimization-based” methods by orders of magnitude. In this
paper we consider a particular approximation of the Gibbs sampler, known as “small-variance asymptotics”
(SVA), to decrease the computational cost of this method. SVA approximation has been proposed in [56] and
consists of approximating (some of) the problem’s conditional distributions by their limit expression as the
noise variance σ2

b tends to zero. More specifically, SVA methods commonly build on the following two key
ingredients:3

i) A Gibbs procedure designed to sample the target posterior probabilities (that is p(C,Z,D, σ2
b, σ

2
c|X) in

our image-denoising framework). The definition of this sampler involves in particular the specification
of conditional probabilities on (subsets of) variables C,Z,D, σ2

b, σ
2
c.

ii) The approximation of the above conditional probabilities by single-mass discrete probabilities. The
name “SVA” comes from the fact that the construction of the single-mass approximation is based on the
asymptotic behavior of the target conditional probability as σ2

b tends to zero (and for some particular
choice for the scaling of hyper-parameters).

We note that, upon the approximation mentioned in ii), the sampling of the conditional probabilities appearing
in the Gibbs procedure reduces to deterministic (sometimes closed-form) updates of the variables C,Z,D, σ2

b, σ
2
c.

Hence, in a nutshell, SVA methods can be seen as approximations of Gibbs samplers in which the sampling of
the conditional probabilities are replaced by deterministic updates. Although there exist (to the best of our
knowledge) no theoretical guarantees on the quality of the posterior estimates obtained from SVA approxima-
tions, this framework has been shown in many contributions [56–58,68] to drastically reduce the computational
complexity of standard Gibbs samplers while achieving nice empirical estimation performance.

In rest of this section, we illustrate how the above two keys ingredients particularize to our image-denoising
setups. We consider the cases where p(Z) corresponds to a Beta-Bernoulli distribution in Section 3.3.1 and an
“Indian-Buffet Process” in Section 3.3.2.

3.3.1. Beta-Bernoulli model
In this section, we consider the case where

zn ∼
K∏

k=1

Ber(πk) with π ∼
K∏

k=1

Beta(a0, b0), a0, b0 > 0. (13)

3We refer the reader to the original paper [56] for a detailed explanation of the rationale behind this method.
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We see that the number K of atoms is fixed in advance in model (13). Nevertheless, the probability πk of
activation of each atom is left as a degree of freedom to the estimator. The learning procedure can therefore
possibly “decrease” the number of atoms in the dictionary by setting some activation parameters to zero.

The conditional posterior probabilities of zkn and πk take the form:

zkn | · ∼ Ber
( pkn
pkn + 1− πk

)
where pkn = πk exp

[ −1

2σ2
b

(
c2kn∥dk∥22 − 2cknd

T
k (xn −

K∑
j ̸=k

djwjn)
)]

(14)

πk | · ∼ Beta
(
a0 +

N∑
n=1

zkn, b0 +N −
N∑

n=1

zkn

)
. (15)

SVA approximation consists of considering the limit form of (some of) the conditional probabilities in Table 2
and (14)-(15) for σ2

b → 0 in the Gibbs sampler. To avoid degeneracy of the problem at stake, the activation
probabilities are moreover parameterized as a particular function of the noise variance. More specifically, we let

πk = exp
(
− λk

2σ2
b

)
with λk > 0, (16)

so that πk → 0 as σ2
b → 0. Considering the parameter of the Bernoulli distribution in (14), we thus easily find

that

lim
σ2
b→0

(
pkn

pkn+1−πk

)
=

{
0 if ρkn > 0

1 otherwise
(17)

where ρkn ≜ c2kn∥dk∥22−cknd
T
k (xn−

∑K
j ̸=k djwjn)+λk. Hence, under hypothesis (16) and in the small-variance

limit, the realizations of the a posteriori conditional probability on zkn obey the following deterministic rule:

zkn =

{
1 if ρkn < 0

0 otherwise.
(18)

This update is tantamount to defining the Gibbs sampling update as the mode of the conditional probabilities.
A similar approach (not detailed here) can be followed for the distributions specified in Table 2. When the
distribution is Gaussian, the SVA approximation thus corresponds to the limit of the mean as σ2

b → 0, see [67].

3.3.2. Indian-Buffet-Process model
Let us now assume that the elements of {zn}Nn=1 correspond to binary sequences (K = ∞). With a slight

abuse of notation, we will stick to matrix notations and let Z denote the column-wise concatenation of sequences
{zn}Nn=1 and zkn the kth element of sequence zn. We consider the following model on Z (better known as “two-
parameter Indian-Buffet4 Process” (IBP) in the literature):

p(Z|α, ξ) ∝ (αξ)K+

γ(Z)

K+∏
k=1

β(
∑
n

zkn, N −
∑
n

zkn + ξ)
∏

k>K+,n

I{zkn = 0} (19)

4This name conceals a culinary metaphor which was initially used to explain the construction of the IBP, see [69].



102 ESAIM: PROCEEDINGS AND SURVEYS

where α > 0, ξ > 0 are two model parameters,5 K+ ≜ ∥
∑N

n=1 zn∥0 (that is, the number of atoms that
participate to the reconstruction of at least one observation), β is the beta function and γ(Z) ̸= 0 is a function
which basically depends on the “structure” of Z (but unimportant for our exposition here), see [70].

As K = ∞, the number of atoms considered in our model is theoretically infinite. However, only atoms
corresponding to “not all-zero columns” of Z (referred to as active atoms) contribute to the reconstruction of
the observations. A careful examination of model (19) indicates that the IBP promotes realizations of Z with
finite numbers of active atoms (K+). In that sense, we say that the size of the dictionary is left as a degree of
freedom in the IBP model.

Let us concentrate on the SVA approximation of the following conditional probability

p(C,Z|X,D, σ2
b, σ

2
c, α, ξ) ∝ p(X|D,C,Z, σ2

b) p(Z|α, ξ) p(C|σ2
S). (20)

Similarly to Section 3.3.1, parametrization of α, ξ as functions of σ2
b must be considered to avoid degeneracy of

the conditional probability when σ2
b → 0. In particular, letting

α = exp

(
σ2
b

2λ1
− λ1

σ2
b

)
, ξ = exp

(
λ2

σ2
b

− σ2
b

2λ2

)
for λ1 > λ2 > 0, (21)

we have that (20) concentrates on its mode(s) when σ2
b → 0. Moreover, the latter correspond to the minimizers

of the following function:

N∑
n=1

1

2

∥∥xn −
K+∑
k=1

dk(ckn ⊙ zkn)
∥∥2
2
+ λ2

∑
k

zkn

+ (λ1 − λ2)K+. (22)

We note that, for a given value of K+, the minimization over the first K+ components6 of cn and zn reduces
to a standard ℓ0-penalized sparse representation problem over a dictionary of K+ atoms. This problem has
been extensively studied in the literature during the last decades and many heuristic methods exist to solve it
(exactly or to good accuracy) in many setups, see e.g., [40].

As a final remark, let us note that (22) may admit infinitely many minimizers since for all n and k ≤ K+

such that zkn = 0, all choices of the coefficient ckn lead to the same value of the objective function. To resolve
this ambiguity, we proceed to an extra sampling step according to the posterior probability

lim
σ2
b→0

p(C|X,D,Z, σ2
b, σ

2
c, α, ξ) (23)

after solving (22). An SVA analysis of (23) indicates that the value of ckn remains unchanged if zkn = 1 and
that ckn has to be drawn according to some normal distribution otherwise (see Table 2).

3.4. Numerical experiments

This section reports the main conclusions of several numerical experiments in image processing conducted
in [65–67]. More precisely, a standard method in image processing to assess the relevance of different dictionary
learning approaches is to compare their denoising performance. As far as our simulation setup is concerned, the

5Whose behavior can be understood as follows: the “mass” parameter α controls the total number of atoms participating to
the reconstruction of each observation; the “concentration” parameter ξ controls the “frequency” at which each atom is used to
reconstruct the observations.
6The other components are equal to zero by definition of K+.
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Figure 3. Denoising results in the high-noise scenario obtained by using the IBP model. From left
to right: noisy, denoised, original images and learned dictionary.

two models presented in this paper lead to denoising performance comparable to the state of the art. More-
over, they benefit from some properties of Bayesian techniques while inducing a computational cost similar to
“optimization-based” methods. Figure 3 displays typical denoising results obtained by our proposed procedures.
The rest of the section is organized as follows. We describe below our simulation setup. The performance
of the dictionary learning procedures obtained from the two considered models are discussed in Sections 3.4.1
and 3.4.2, respectively.

Our simulation setup is as follows. A set of 5 (standard) images of size 512 × 512 is considered, namely
“barbara”, “hill”, “mandrill”, “lena” and “peppers”. Each image is corrupted with an additive noise whose
entries are i.i.d. realizations of a zero-mean Gaussian with standard deviation σimg. We consider the cases
σimg = 25 and σimg = 40, respectively referred to as “low-noise scenario” and “high-noise scenario” hereafter.
Each image is then decomposed into a set of 8×8 overlapping patches, resulting in N = 16129 (corresponding to
50% overlapping) training vectors {xn}Nn=1 ⊂ R64. We then apply the Bayesian model described in Section 3.2
to all patches. More precisely, we interpret each patch xn as a deteriorated version of some noise-free patch
which obeys the sparse model (6). For the two models, the estimator of the nth (denoised) patch is thus defined
as D̂(ĉn ⊙ ẑn) where the “hat” symbol refers to the SVA approximation of a MAP estimator. More details
can be found in [65, 67]. The reconstructed image is eventually obtained by merging all estimated patches.
Since the latter have been designed so that each pixel is involved in many patches, the value of one pixel of the
reconstructed image is obtained by averaging its value over all patches where it was involved. The denoising
performance is finally obtained by evaluating a peak signal-to-noise ratio (PSNR) between the original image
and the estimated one. Hence, the higher the PSNR, the better the denoising performance.

3.4.1. Results for the Beta-Bernoulli model
In this section, we report numerical results obtained with the SVA approximation of the Gibbs sampler

presented in Section 3.3.1. We refer to this method as “BBG-sva” hereafter.

As mentioned earlier, the size of the dictionary (namely K) is a parameter of the model for BBG-sva. Figure 4
shows the evolution of the PSNR obtained with BBG-sva seen as a function of K for the two considered noise
levels (i.e., σimg = 25 and σimg = 40) and several images. For all considered setups, we observe that the denoising
performance stabilizes for some value of K. Such a behavior has already been observed in [55] and suggests the
existence of an “optimal” size that depends on both the image and the noise level. Besides, overestimating K
seems to only affect the computational cost of the method. For these reasons, we focus on the value of K = 300
in the next experiment. Interestingly, this finding is also coherent with typical setups in image processing where
a dictionary of size K = 256 or 512 atoms is typically learned [43,54,71].

An empirical comparison of the denoising performance of BBG-sva with state-of-the-art dictionary learning
approaches has been carried out in [67, Table 1] for K = 300. We have observed that BBG-sva achieves
denoising performance similar to its competitors for a running time of the same order of magnitude. This



104 ESAIM: PROCEEDINGS AND SURVEYS

0 100 200 300 400 500 K
22

24

26

28

30

32
PS

NR
 (d

B)
peppers

lena

hill

barbara

mandrill

0 100 200 300 400 500

peppers

lena
hill

barbara

mandrill

Figure 4. Evolution of BBG-sva performances (PSNR of the reconstructed image) seen as function
of the dictionary size K for several images. Left and right images correspond to the low-noise and
high-noise scenarii, respectively.

+

Figure 5. Evolution of the dictionary size K+ across iterations for several couples of (λ1, λ2) in the
low-noise scenario. The orange lines stand for discarded couples and the blue curve is the retained one.

indicates that BBG-sva is able to automatically adjust the values of the hyper-parameters {λk}Kk=1 in (18) and
still features the flexibility of Bayesian approaches despite the SVA approximation.

3.4.2. Results for the Indian-Buffet-Process model
In this section, we illustrate the performance of the SVA approximation of the Gibbs sampler presented in

Section 3.3.2. We refer to this method as “IBPDL-sva” hereafter. In our simulations, we use OMP –a standard
greedy procedure, see [40]– to address (22). Details about the implementation of the addition/removal of atoms
(that is the update of K+) can be found in [65].

In constrast to BBG-sva, IBPDL-sva includes the size of the dictionary as a variable of the problem. Such a
feature has nevertheless been obtained at the cost of two additional hyperparameters in the model, namely λ1

and λ2 (see (21)). In our simulations, these two parameters are tuned by resorting to cross-validation on one
image and reused for the others.

Figure 5 shows the evolution of the effective size K+ of the dictionary along the iterations of the procedure for
several couples of (λ1, λ2) and in the low-noise scenario. The “peppers” image is considered in this simulation.
The blue curve denotes the couple (λ1, λ2) chosen by cross-validation while the orange ones correspond to the
rejected couples. Interestingly, one observes some form of stability with respect to the choice of λ1 and λ2.
More specifically, all the curves tend to stabilize around a common value of K+ for all choices of λ1 and λ2.

An empirical comparison of the denoising performance of IBPDL-sva with state-of-the-art dictionary learn-
ing approaches is available in [65,66]. Two conclusions can be drawn from these experimental results. First, the
denoising performance of IBPDL-sva is similar to that of other state-of-the-art dictionary learning procedures
while automatically estimating the size of the dictionary and the noise level corrupting the data. Second, a
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comparison of the complexity of IBPDL-sva and the Gibbs sampler proposed in [55],7 reveals that the former
enables gain in terms of computational time of (at least) one order of magnitude with respect to the latter.
More precisely, we have observed that Gibbs sampler in [55] performs in average 30 iterations per hours while
our proposed methods reaches 150 iterations in 30 minutes8.

3.5. Conclusion

Here we studied the “small-variance asymptotics” approximation of the Gibbs sampler related to two Bayesian
models for dictionary learning. Our analysis leverages a carefully-designed coupling between the parameters
of the model and the (estimated) noise variance. For the two models, the resulting method gathers both the
flexibility of Bayesian modeling and the numerical efficiency of optimization methods. The relevance of the
proposed approach was assessed on an image denoising application. The performance of the proposed approach
was shown to be comparable with that of existing supervised methods, while automatically tuning the size of
the dictionary and the level of the corrupting noise.
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