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On the exclusion of exponential autocatalysts
by sub-exponential autocatalysts
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Gulliver, CNRS, ESPCI Paris, Université PSL, 75005 Paris, France

Selection among autocatalytic species fundamentally depends on their growth law:

exponential species, whose number of copies grows exponentially, are mutually ex-

clusive, while sub-exponential ones, whose number of copies grows polynomially,

can coexist. Here we consider competitions between autocatalytic species with dif-

ferent growth laws and make the simple yet counterintuitive observation that sub-

exponential species can exclude exponential ones while the reverse is, in principle,

impossible. This observation has implications for scenarios pertaining to the emer-

gence of natural selection.

I. INTRODUCTION

Autocatalysts are molecules that catalyze their own formation, leading to an auto-
amplification process: the presence of more autocatalysts of a species leads to a decrease
in the time required to produce additional autocatalysts of the same species [1]. This
auto-amplification can cause the number of autocatalysts of a species to grow at a rate
proportional to their concentration, a relationship mathematically described by dA/dt = kA,
where A denotes the concentration of the autocatalytic species and k its replication rate.
This model results in an exponential growth dynamics, A(t) ∼ ekt. This is not, however,
the only dynamics that autocatalysts may follow. In fact, most non-enzymatic autocata-
lysts studied to date show a different behavior where their growth rate is sub-linear in their
concentration and better described by dA/dt = kAn with n < 1 [1–5]. This corresponds to a
slower, polynomial dynamics, of the form A(t) ∼ t1/(1−n). The value n ≈ 1/2 has most often
been observed, leading to A(t) ∼ t2, also known as parabolic growth [6]. In autocatalysis
through template replication, this value is understood as arising from product inhibition,
the common rebinding of a product to a template [6]. As far as growth and selection are
concerned, however, the underlying mechanisms are not essential.

Instead, past works have stressed that the value of n captures the most fundamental
distinction, setting apart exponential (n = 1) from sub-exponential (n < 1) autocatalytic
species [5, 7, 8]. While exponential species with different k are mutually exclusive, sub-
exponential ones generally coexist, with exclusion taking place only in particular limiting
cases [7, 9–11]. As a consequence of this result, the field of experimental abiogenesis and the
broader community engaged in developing non-enzymatic autocatalysts have concentrated
their efforts on creating autocatalysts that can achieve exponential growth [1, 6, 12–19].
However, the theoretical studies on which this conclusion is based have only considered au-
tocatalytic species with different growth parameters k and the same exponent n, without
exploring the possibility for n to differ between competitors. Yet, n is well-recognized to be,
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as much as k, an effective parameter that can vary between autocatalytic species and can
therefore be subject to selection. Here, we extend previous analyses to study the selection of
competing autocatalytic species with different exponents n, in addition to different param-
eters k. As we show, the results are counterintuitive and challenge the view that only ex-
ponential autocatalytic species can be excluding: sub-exponential autocatalytic species can
exclude exponential ones, but not vice versa.

II. MODELS

The simplest setting to study autocatalysis under resource limitation is that of a contin-
uous stirred-tank reactor, or chemostat [20], where the resource needed for reproduction is
introduced and removed at a constant rate, such that its concentration R is coupled to the
concentration A of the autocatalytic species by

dA

dt
= kRAn −DA,

dR

dt
=D(R0 −R) − kRAn.

(1)

In these equations, k denotes the species replication rate constant, n signifies its reaction
order, and D serves a dual purpose: it represents both a common dilution or decay rate
for the autocatalytic species and the resource, as well as the rate at which the resource is
replenished from a reservoir with concentration R0. In what follows, we introduce τ = Dt
and κ = k/D to have effectively D = 1,

dA

dτ
= κRAn −A,

dR

dτ
= R0 −R − κRAn.

(2)

The minimal concentration of resource that allows an autocatalytic species to grow
(dA/dτ > 0) is R = A1−n/κ. When growth is sub-exponential (n < 1), A therefore grows
whenever it is small enough. More specifically, a stability analysis indicates that the bound-
ary equilibrium A = 0 is always unstable when n < 1 (limA→0 d2A/dτ 2 = +∞): this implies
that sub-exponential autocatalytic species can never become extinct. When, instead, growth
is exponential (n = 1), survival solely depends on the concentration of resource and is possible
only if R > 1/κ; correspondingly, the boundary equilibrium A = 0 is unstable only if R > 1/κ
in this case. This fundamental difference is the key to understanding why sub-exponential
autocatalytic species can coexist while exponential ones exclude each others but also, as we
show below, why sub-exponential autocatalytic species can exclude exponential ones but not
conversely.

To study exclusion and coexistence of species subject to a common limiting resource, we
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extend the model to include two species dependent on the same resource,

dA1

dτ
= κ1RAn1

1 −A1,

dA2

dτ
= κ2RAn2

2 −A2,

dR

dτ
= R0 −R −

2

∑
i=1

κiRA
ni
i .

(3)

Here, we view the concentration R0 of resource in the reservoir as an extrinsic or “environ-
mental” parameter, but the parameters κi and ni as parameters intrinsic to each autocat-
alytic species i and therefore potentially subject to selection. Our point is to identify the
intrinsic and extrinsic conditions that lead to the exclusion of one species by another. To
this end, we consider that a first, resident species has reached a steady state and analyze
whether a second, invading species, can grow when introduced in infinitesimal quantity in
the background of the resident one [8, 11, 21].

III. RESULTS

When the two autocatalytic species are exponential (n1 = n2 = 1), the invading
species faces a concentration of resource R̄1 set by the resident autocatalysts with R̄1 = 1/κ1
if κ1 > 1/R0 and R̄1 = R0 otherwise, in which case the resident autocatalysts do not survive
by themselves. If κ2 < κ1, the invading species cannot grow, while if κ2 > κ1 and κ2 > 1/R0

it grows to eventually exclude the resident species. This is the essence of the exclusion prin-
ciple [5]: two exponential autocatalytic species cannot coexist if they depend on the same
resource and have different replication rate constants.

If the resident species is exponential (n1 = 1) but the invading one is sub-exponential
(n2 < 1), however, the situation is different since the sub-exponential species can always
grow provided its concentration is low enough, i.e., provided A2 < (R/κ2)1/(1−n2). There is
therefore no way for the resident exponential autocatalytic species to exclude an invading
sub-exponential species. If, on the other hand, the resident species is sub-exponential and
the invading species is exponential, two scenarios are possible. If κ1 > 1/R̄2, where R̄2 is
the steady state concentration of resource in presence of the sub-exponential species alone,
the exponential species can invade and come to coexist with the sub-exponential one. If,
however, κ1 < 1/R̄2, the exponential species cannot invade and is therefore excluded.

Beyond this invasion analysis, the condition for exclusion of a exponential (n1 = 1) auto-
catalytic species by a sub-exponential (n2 < 1) one is

R0 < 1/κ1 + (κ2/κ1)
1

1−n2 . (4)

This includes, in particular, levels of resource R0 where the exponential species would survive

by itself but is excluded by the sub-exponential species, when 1/κ1 < R0 < 1/κ1+(κ2/κ1)
1

1−n2 .
This is illustrated in Fig. 1A with the case of an exponentially growing autocatalytic
species (n1 = 1) competing with a parabolically growing species (n2 = 1/2).

Finally, when two sub-exponential species (n1 < 1 and n2 < 1) compete, they neces-
sarily coexist. In the particular case where they have same exponent (n1 = n2 = n),
their relative concentration at steady state only depends on their intrinsic parameters,
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n1 = 1, n2 = 1/2 n1 = 3/4, n2 = 1/4(A) (B)
Ā2/(Ā1 + Ā2) Ā2/(Ā1 + Ā2)

FIG. 1: Exclusion and coexistence in competitions of autocatalytic species with different growth laws, i.e.,

different exponents n. A. Mixture of a exponential and a sub-exponential autocatalytic species: n1 = 1 and

n2 = 1/2. B. Mixture of two sub-exponential species: n1 = 3/4 and n2 = 1/4. The graphs show the relative

concentration at steady state of one of two species, Ā2/(Ā2 + Ā1), as a function of the total concentration of

resource R0 and of the ratio κ2/κ1, when κ1 = 1. The steady-state concentrations are obtained by numerical

integration of the kinetic equations, Eq. (3). In A, the orange line indicates the total concentration of

resource R0 below which the exponential autocatalytic species is excluded (Ā1 = 0). The green lines indicate

the total concentration R0 for which the two species are in same proportion, Ā1 = Ā2.

Ā1/Ā2 = (κ1/κ2)1/(1−n). More generally, however, their relative concentration is controlled
by the amount of resource R0. In this case again, when R0 is low, the most abundant one
can be, somewhat counterintuitively, the one with lowest exponent n (Fig. 1B).

The analysis can be extended to investigate the conditions under which a sub-exponential
autocatalytic species (n < 1) can exclude a super-exponential one (n > 1). The minimal
concentration of resource that allows super-exponential species to grow (dA/dτ > 0) increases
as their concentration decreases, R = 1/(An−1κ). Therefore, in a situation where the resident
species is sub-exponential, an autocatalytic species introduced in infinitesimal quantity is less
advantaged when it is super-exponential than when it is exponential. However, a resident
species requires a smaller concentration of resource when it is super-exponential than when
it is exponential, and it is therefore more difficult to displace. The results of the competition
of a super-exponential species with another species therefore depends strongly on the initial
conditions. This has been referred to as the “survival of the first” in previous studies [22].
Autocatalytic species growing super-exponentially have, however, not been demonstrated
experimentally so far, even though theoretical models that include hypercycles could result
in it [23–26].

IV. DISCUSSION

The primary aim of this paper is to highlight that a sub-exponential autocatalytic
species can exclude an exponential autocatalytic species and, more generally, that a sub-
exponential species can dominate one of higher replication order, i.e., following a growth
law dA/dt = kAn with a larger exponent n. This selection for autocatalytic species of lower
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order occurs because autocatalytic dynamics depends not only on the growth order n, but
also on the replication rate constant k: a species with a lower reaction order can outcompete
another with a higher reaction order if it has a greater replication rate constant.

Our results rely on the phenomenological equation dA/dt = kAn, which is widely em-
ployed to model the competitive dynamics of autocatalysts dependent on a common lim-
iting resource [1, 5, 8–11]. In practice, the parameters k and n may be either inferred
from experimental data [2, 3, 13, 15, 27], or derived from mechanistic models [6]. Deriva-
tions from mechanistic models bring an important nuance by showing that sub-exponential
growth typically arises as an approximation of a more general relationship dA/dt = f(A),
where f(A) ∼ An with n < 1 for sufficiently high concentrations of A [6, 7, 11]. At low
concentration, however, this sub-exponential growth typically turns into an exponential
growth, since dA/dt ≈ f ′(0)A for small values of A. The presence of these two regimes is
well understood when sub-exponential growth stems from product inhibition [3, 6], which
is necessarily negligible at low autocatalyst concentration. This dependence of the growth
rate on the concentration of autocatalyst is generic and, in the absence of mechanistic de-
tails, autocatalytic growth can typically be captured through logistic or similarly shaped
functions, for which the growth of an autocatalyst is exponential at low concentration and
decreases at higher concentration [28, 29]. In any case, this implies that a sub-exponential
autocatalytic species following a growth law with these two regimes becomes extinct below a
certain concentration, which opens the possibility for an exponential one to exclude it. This
does not affect, however, the possibility for the same sub-exponential species to exclude an
exponential species, as we have noted.

Current research on autocatalysis is geared towards the experimental design of exponen-
tial autocatalytic species, motivated by the desire to observe exclusion, which is viewed as
a key step towards achieving evolution by natural selection [7, 15, 30, 31]. The exclusion
principle, first formulated by Gause in an ecological context [32], states that among two
exponential species, the one with the higher replication rate will outcompete the other,
irrespective of the magnitude of the difference between the rates [5]. Yet, our findings indi-
cate that sub-exponential autocatalytic species can outperform their exponential and even
super-exponential counterparts, and can therefore also cause selection by exclusion. As
such, sub-exponential autocatalytic species set constraints on the evolutionary emergence
of the first exponential ones. The issue takes on particular importance when we recog-
nize the interrelated nature of the parameters k and n arising from mechanistic models.
These parameters are indeed influenced by shared physical factors like reaction volume and
autocatalyst-substrate interaction strength, resulting in a trade-off between them. Given
that we have shown that k can be the primary determinant of autocatalyst dominance, this
type of physical correlation further calls into question an exclusive emphasis on exponential
autocatalysts.
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