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Training and Generalization Errors for
Underparameterized Neural Networks

Daniel Martin Xavier, Ludovic Chamoin, Laurent Fribourg

Abstract— It has been theoretically explained, through
the notion of Neural Tangent Kernel, why the training error
of overparameterized networks converges linearly to 0. In
this work, we focus on the case of small (or underparam-
eterized) networks. An advantage of small networks is that
they are faster to train while retaining sufficient precision
to perform useful tasks in many applications. Our main
theoretical contribution is to prove that the training error of
small networks converges linearly to a (non-null) constant,
of which we give a precise estimate. We verify this result
on a neural network of 10 neurons simulating a Model
Predictive Controller. We also observe that an upper bound
of the generalization error follows a double-peak curve as
the number of training data increases.

Index Terms— Neural networks, data driven control, opti-
mization.

I. INTRODUCTION

RECENTLY, the notion of Neural Tangent Kernel (NTK)
matrix was introduced [1], and has provided an elegant

explanation of the linear convergence of the training error
towards 0 on overparameterized NNs (see [2], [3]). In this
type of network, the number m of parameters is much larger
than the number n of data (m ≫ n). The explanation of the
convergence lies in the fact that, during the Gradient Descent
(GD) procedure, the n×n NTK matrix stays close to its infinite
limit, with all eigenvalues positive.

In this context, Jerray et al. [4] proposed some general as-
sumptions ({C1, C2, C3}) for the convergence of the training
error to 0 without reference to the number of parameters m
or data n. In particular, Assumption C2 corresponds to the
property of positive-definiteness of the NTK matrix, which is
satisfied in the case of overparameterized networks.

In the present work, we relax Assumption C2 as Assumption
C2’ which states that the NTK matrix is positive semi-
definite (and not positive definite): the nullspace N is no
longer reduced to 0, but is a space of dimension larger
than 1. Under Assumption C2, Jerray et al. [4] proved that
the training error ∥v(t)∥ converges to 0 (see Theorem 2). In
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Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, Laboratoire
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most cases, however, underparameterized NN do not satisfy
Assumption C2 but satisfy C2’. Under the weaker Assumption
C2’, Theorem 2 does not hold anymore, and we prove in this
work that the limit superior of ∥v(t)∥ is upper bounded by a
positive constant b (see Theorem 3).

More precisely, the training error v(t) is now projected as
v2(t) onto V2(t) := N (t) and as v1(t) onto the orthogonal
space V1(t) := N⊥(t). We will show that the training error
converges linearly to a positive constant b = ∥v2(t0)∥ which
corresponds to the projection of the error ∥v(t0)∥ where t0 is
a short time of stabilization of the error after initialization.

Contribution
We show that for underparameterized NNs:
1) The training error converges to a constant b = ∥v2(t0)∥

(see Theorem 3).
2) This theoretical result is illustrated by Example 1, which

shows that an underparameterized network accurately
simulates a Model Predictive Controller (MPC).

3) We also observe on Example 2 that an upper bound
of the generalization error (built upon some results of
[5]) follows a double-peak curve as n increases, in line
with with recent works on the shape of learning curves
(see [6], Fig. 1 (middle) and [7], Section 6.2).

Comparison with related work
The present work extends the analysis of Jerray et al. [4]

by considering the more general case where the NTK matrix
is positive semi-definite (Assumption C2’) instead of positive-
definite (Assumption C2). As mentioned above, we propose
a decomposition of the space of NTK eigenvectors into two
orthogonal spaces: the nullspace V2(t) := N (t) and the space
V1(t) := N⊥(t) of eigenvectors associated with positive
eigenvalues.

In the context of overparameterized NNs, the works [5],
[8], [9] perform a similar decomposition, but the eigenvalues
associated to the NTK matrix are always positive. Their
decomposition is made between a space associated with high-
value positive eigenvalues, and another space associated with
low-value positive eigenvalues. Both ranges of values are
separated by a “cutoff” value (a notion which is not necessary
in our work). In these works, the training error converges to 0
(and not to a positive value equal to ∥v2(t0)∥ as in our work).

Furthermore, the theory of Rademacher complexity has been
used in connection with rules of early stopping in the context
of “kernel boosting” algorithms in [10], and in the context



of overparameterized NNs in [11]–[13]. The results of these
works are adapted here in the context of underparameterized
NNs.

Few studies are dedicated to the analysis of underparame-
terized NNs: Wang et al. [14] used the notion of “activation
patterns” to show that a loss of exponential type converges to
0 when the data is “well-separated”. Besides, Bowman et al.
[15] showed that the NN learns eigenfunctions of an integral
operator determined by the NTK at rates corresponding to the
eigenvalues (“spectral bias”).

II. PRELIMINARIES

A. Notation

In this paper, we denote by R and N the set of real and
natural numbers, respectively. These symbols are annotated
with subscripts to restrict them in the usual way, e.g., R>0

denotes the positive real numbers. We also denote by Rn an
n-dimensional Euclidean space, and by Rn×m a space of real
matrices with n rows and m columns.

We use bold letters for vectors and bold capital letters for
matrices. Given a matrix A, let Ai,j be its (i, j)-th entry,
λmin(A) its minimal eigenvalue, and A⊤ its transpose. The
Euclidean norm is denoted by ∥ · ∥, the Frobenius norm by ∥ ·
∥F , and the inner product by ⟨·, ·⟩. Let In be the n×n identity
matrix, and σ(·) the ReLU function σ(z) = max{z, 0}.

We denote by I{E} the indicator function for an event E,
by B ⊎ C the disjoint union of sets B and C, and by V1 ⊕
V2 the direct sum of vector spaces V1 and V2. We also use
the abbreviation i.i.d. to indicate that a collection of random
variables is independent and identically distributed. Finally, the
time-discrete version of a time-continuous object ξ is denoted
as ξ̃.

B. One-hidden Layer Neural Networks

We consider a one-hidden layer neural network with m
neurons in the hidden layer and a ReLU activation function:

f(W ,a,x) =
1√
m

m∑
r=1

arσ(w
⊤
r x), (1)

where x ∈ Rd is the input, w1, . . . ,wm ∈ Rd are the
weight vectors of the first layer, a1, . . . , am ∈ R are the
weights of the second layer. For simplicity, we denote W =
(w1, . . . ,wm) ∈ Rd×m and a = (a1, . . . , am)⊤ ∈ Rm.

In this work, we focus on the empirical risk minimiza-
tion problem using a training dataset with n samples S =
{(xi, yi)}ni=1 drawn i.i.d. from an underlying data distribution
D over Rd × R. The NN is trained using a gradient descent
(GD) algorithm on the following training loss function:

L(W ,a) =
1

2

n∑
i=1

(yi − f(W ,a,x))2. (2)

The parameters of the first layer are randomly initialized
using wr(0) ∼ N (0, I), while the parameters of the second
layer are uniformly sorted using ar ∼ unif({−1, 1}),∀r ∈
[m]. Similarly to other works on NTK [2], [5] (Section 3.1),

we fix the parameters of the second layer of the NN and we
only apply the GD algorithm over the weights of the first layer.

As the ReLU activation function used in the hidden layer
is not continuously differentiable at 0, we should a priori
consider the subgradient of σ(0) which can take any value
in [0, 1]. However, Theorems 1 and 2 of [16] assert formally
that the choice of σ′(0) = s with s arbitrarily chosen in
[0, 1] “does not affect” neither neural network training nor
backpropagation. This justifies the use of σ′(0) = 0, as in
PyTorch [17].

The gradient formula is then given by:

∂L(W ,a)

∂wr
=

ar√
m

n∑
i=1

(yi − f(W ,a,x))I{w⊤
r xi ≥ 0}xi.

(3)
The update rule is:

W̃ k+1 = W̃ k − η
∂L(W̃ k,a)

∂W
, (4)

where η is the learning rate and W̃ 0 = W (0). This update rule
corresponds to the Euler discretization of the set of ordinary
differential equations defined by:

dW (t)

dt
= −∂L(W (t),a)

∂W
. (5)

C. Gradient Descent for Neural Networks
According to Du et al. [2], the convergence of the GD

algorithm to a globally optimal solution comes down to show-
ing the convergence of the error (i.e. difference between the
prediction of the NN and the ground truth) to zero. Their proof
is based on the analysis of the error dynamics v : R≥0 → Rn

defined by:
v(t) = p(t)− y, (6)

where p(t) = (p1(t), . . . , pn(t))
⊤ ∈ Rn is a vector with all

n predictions pi(t) = f(W (t),a,xi) at time t, and y =
(y1, . . . , yn)

⊤ ∈ Rn.
As demonstrated in the proof of Theorem 3.2 by Du et al.

[2], the continuous dynamics of the error v can be written in
a compact way:

d

dt
v(t) = −H[W (t)]v(t), v(0) = v0, (7)

where H[W (t)] : R≥0 → Rn×n is the Gram matrix from a
kernel associated with the ReLU function, being symmetric
positive semi-definite as follows:

Hij [W (t)] =

〈
∂f(W (t),a,xi)

∂W
,
∂f(W (t),a,xj)

∂W

〉
=

1

m
x⊤
i xj

m∑
r=1

I{x⊤
i wr(t) ≥ 0,x⊤

j wr(t) ≥ 0}.

The discrete version resulting from the Euler discretization
of (7) reads:

ṽk+1 − ṽk = −ηH[W̃ k]ṽk, (8)

where η is the step size, and ṽ(0) = ṽ0.
We are now ready to formalize the problem:



Problem 1: Given the discrete time system in (8), provide
conditions on the matrix H[W (t)] : R≥0 → Rn×n, the
training loss function L : Rd×m → R≥0, and the step size
η to ensure the convergence of the training error ṽk to zero,
together with an explicit bound on its convergence rate.

Let us recall the assumptions provided by Jerray et al. [4]
to derive a solution for Problem 1:

Assumption C1: The GD algorithm for the update of the
weights of the neural network in (4) converges to a local
minimum W ∗, i.e. ∂L(W̃ k,a)

∂W converges to 0 as k goes to
infinity.

Assumption C2: There exist λ∗ > 0 and t0 ≥ 0 such that,
for all t ≥ t0: λmin(H[W (t)]) ≥ λ∗, where the time-varying
matrix H[W (t)] is given in (7).

Assumption C3: The loss function L is locally strongly
convex around every local minimizer W ∗ of L, thus for every
local minimizer W ∗, there is a neighborhood around W ∗ on
which L is strongly convex.

As mentioned in Jerray et al. [4], Assumption C1 is satisfied
when the gradient descent algorithm reaches a local minimum.
This condition is satisfied almost surely with a random initial-
ization of the algorithm [18], when the step size η is chosen
such that η < 1

L where L is the Lipschitz constant of the loss
function L.

Furthermore, Assumption C3 is satisfied when the loss
function L is strongly convex in the neighborhood of each
minimizer. This condition can be always verified by initializing
the parameters so that they fall into the basin of the local
strong convexity region. In the case of the ReLU activation
function, Zhong et al. [19] demonstrated that it satisfies certain
mathematical properties, leading to local strong convexity (see
Properties 3.1, 3.2, 3.3, Section 3).

Jerray et al. [4] then used Assumptions C1 and C3 to derive:
Theorem 1: (Theorem 1 of [4]) Under assumptions C1 and

C3, if the step size η satisfies η < 2
L , where L is the Lipschitz

constant of the loss function L, then the sequence ∥W̃ k −
W (kη)∥, k ∈ N, converges to 0, where W̃ k is defined by
(4) and W (kη) = [w1(kη), . . . ,wm(kη)] with W (t) defined
by (5).

Since ∥W̃ k −W (kη)∥ converges to 0 according to Theo-
rem 1, it follows by continuity that for all i ∈ {0, . . . , n− 1}:

lim
k→∞

∥λ̃i(kη)− λi(kη)∥ = 0, (9)

where λ̃i (resp. λi) is the i-th eigenvalue of H[W̃ k] (resp.
H[W (t)]).

On the other hand, the authors used Assumption C2 to
derive the following statement:

Theorem 2: (Theorem 2 of [4]) Under assumptions C1, C2
and C3, if the step size η satisfies η < 2

L , where L is the
Lipschitz constant of the training loss function L, then there
exists k0 ∈ N such that, for all k ≥ k0:

∥ṽk∥ ≤ (1− 1

2
λ∗η)k−k0∥ṽk0

∥.
Assumption C2 only holds in the case of overparameterized

NNs, in which all eigenvalues of the NTK are larger than some
λ∗ > 0 (see [4]). The present work considers the more general
case where the eigenvalues λi(t) of H[W (t)] are divided into:

one part always larger than λ∗, and another part always equal
to zero (corresponding to the nullspace N ).

III. TRAINING ERROR

In underparameterized networks, Assumption C2 does not
hold and, without loss of generality, we suppose that the space
V(t) of eigenvectors of H[W (t)] decomposes as V1(t) ⊕
V2(t), where V1(t) (resp. V2(t)) is the cluster of eigenvectors
associated to eigenvalues λ(t) greater than 0 (resp. equal to
0). Formally, we replace C2 by:

Assumption C2’: There exist λ∗ ∈ R>0, I1 = {0, . . . , n1−
1} and I2 = {n1, . . . , n1 + n2 − 1} with n1 + n2 = n such
that the eigenvalues can be divided into:

• λi(t) ≥ λ∗ for all i ∈ I1, t ≥ 0,
• λi(t) = 0 for all i ∈ I2, t ≥ 0.

where {λi(t)}i∈I1⊎I2 is the eigenvalues set of the NTK matrix
H[W (t)], and I1 (resp. I2) the index set of eigenvectors
spanning V1(t) (resp. V2(t)).

If we assume C2’ instead of C2 , the result of Theorem 2
becomes:

Theorem 3: Under assumptions C1, C2’ and C3, there
exists α ∈ (0, λ∗) such that, if the step size η satisfies η < 2

L
and η < 1

α , where L is the Lipschitz constant of the loss
function L, then there exists k0 such that for all k ≥ k0:

∥ṽk∥ ≤
√
(1− αη)2(k−k0)∥ṽ1

k0
∥2 + ∥ṽ2

k0
∥2, (10)

where ṽi
k (i = 1, 2) is the projection of the vector ṽk on the

span Ṽi
k of the ni eigenvectors of H[W̃ k]. It follows that

lim supk→∞ ∥ṽk∥ ≤ b := ∥ṽ2
k0
∥.

Proof: By Theorem 1, which relies on C1 and C3, but
not C2, we know that for η < 2

L , ∥W̃ k −W (kη)∥ converges
to 0 as k → ∞. Let λ̃i(kη) (i ∈ {0, . . . , n − 1}) denote the
eigenvalues of the matrix H[W̃ k]. Recall that C2’ specifies
that the eigenvalues λi(t) of H[W (t)] with i ∈ I1 are in
[λ∗,∞), and those with i ∈ I2 are null. It follows from (9),
that there exists α ∈ (0, λ∗) such that:

lim
k→∞

λ̃i(kη) > α for all i ∈ I1, (11)

lim
k→∞

λ̃i(kη) = 0 for all i ∈ I2. (12)

So there exists k0 such that for all k ≥ k0:

λ̃i(kη) ≥ α for all i ∈ I1, (13)

λ̃i(kη) < α for all i ∈ I2. (14)

It follows that for all k ≥ k0, Ṽ1
k and Ṽ2

k are orthogonal
(since each eigenvalue λ̃i(kη) with i ∈ I1 is different from
each eigenvalue λ̃j(kη) with j ∈ I2). The discretized dynam-
ics of the error in (8) then writes:

ṽk+1 = (In − ηH[W̃ k])ṽk. (15)

We also know that the NTK matrix H[W̃ k] can be decom-
posed as:

H[W̃ k] = P kDkP
⊤
k , (16)

where P k is the transition matrix whose columns are the
eigenvectors of H[W̃ k], and Dk is the diagonal eigenvalue



matrix with first n1 elements in [α,∞), and last n2 elements
in [0, α). From (15), it follows:

ṽk+1 = P k(In − ηDk)P
⊤
k ṽk. (17)

The n×n matrix P k is made of an upper n1×n matrix P 1
k

and a lower n2×n matrix P 2
k. The rows of the matrix P 1

k are
the n1 eigenvectors of H[W̃ k] associated with eigenvalues in
[α,∞), and those of P 2

k are the n2 other eigenvectors. Hence,
for a vector v, P i

k

⊤
v (i = 1, 2) corresponds to the projection

ṽi
k of v on the span Ṽi

k of the ni eigenvectors of H[W̃ k].
Equation (17) thus decomposes as:

ṽ1
k+1 = P 1

k(In1 − ηD1
k)P

1
k

⊤
ṽ1
k, (18)

ṽ2
k+1 = P 2

k(In2 − ηD2
k)P

2
k

⊤
ṽ2
k, (19)

where D1
k is the n1 × n1 top left submatrix of Dk, and D2

k

the n2 × n2 bottom right submatrix. For k ≥ k0 and η < 1
α ,

equations (18) and (19) lead to:

∥ṽ1
k+1∥ ≤ ∥In1

− ηD1
k∥∥ṽ1

k∥ ≤ (1− αη)∥ṽ1
k∥, (20)

∥ṽ2
k+1∥ ≤ ∥In2

− ηD2
k∥∥ṽ2

k∥ ≤ ∥ṽ2
k∥. (21)

It follows from (20) and (21) that there exists k0 such that for
all k ≥ k0 and η < 1

α :

∥ṽ1
k∥ ≤ (1− αη)k−k0∥ṽ1

k0
∥,

∥ṽ2
k∥ ≤ ∥ṽ2

k0
∥.

Finally, using the fact that Ṽ1
k and Ṽ2

k are orthogonal:

∥ṽk∥2 = ∥ṽ1
k∥2 + ∥ṽ2

k∥2,
≤ (1− αη)2(k−k0)∥ṽ1

k0
∥2 + ∥ṽ2

k0
∥2.

(22)

Remark 1: In practice k0 is small, which means that ∥ṽ2
k∥ is

rapidly constant from t0 = k0η. The training error ∥ṽk∥ is thus
asymptotically equal to b = ∥ṽ2

k0
∥. The constant b depends on

the initial value W (0) of the NN parameters. When b = ∥ṽ2
k0
∥

is deemed too important, one can stop the GD procedure early
(at t = k0η) and reinitialize it. Note that, apart from the choice
of initial weight W (0), the GD procedure considered here is
deterministic.

Example 1: In order to verify that the training error con-
verges linearly to a non-zero constant on underparametrized
NNs, we consider a toy example using the Van der Pol
oscillator (see e.g. [20]). The system possesses 2 states x =
(x1, x2), a control action u, and a damping coefficient µ = 1.
The oscillator position is represented by x1, its velocity by
x2, and the state derivative by ẋ. The system is defined by:{

ẋ1 = x2

ẋ2 = µ(1− x2
1)x2 − x1 + u.

(23)

The goal is to design a NN that mimics the behavior of
an optimization problem in a MPC controller that steers the
system to a desired position xref

1 . We first collect data using
an implementation of the MPC controller, which is then used
to train a one-hidden layer neural network offline.

The MPC controller is synthesized using a time step of
Ts = 0.5s, a prediction horizon of N = 5, and an initial

condition x0 = (1, 0) using [21]. The command applied to
the oscillator is constrained to the interval u ∈ [−1, 1], and
the cost function associated to the optimization is written as:

J(x, u) =

N−1∑
i=0

∥xref
1 (k + i)− x1(k + i)∥+γ∥∆u(k + i)∥

s.t. ulb ≤ u(k + i) ≤ uub, ∀i ∈ [0, ..., N − 1]

where ulb and uub are the lower and upper bounds for the
command, respectively, ∆u(k) = u(k)−u(k−1) is the change
on the command, and γ = 0.1 is a weighting coefficient.
The error with respect to the reference is represented by
ϵ(k) = xref

1 (k)−x1(k), where k is the current step time. The
MPC simulation is conducted offline through the definition of
different setpoints that are randomly generated in [−1, 1].

The NN used to simulate the MPC is a one-step-ahead
predictive controller depicted in Fig. 1. It has d = 3 entries
in the input layer (x1(k), x2(k), x

ref
1 (k)), 10 neurons in the

hidden layer, and one output (u(k)) in the last layer. It
was implemented using PyTorch [17] with a ReLU activation
function in the hidden layer.

Input Layer ∈ ℝ³ Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ¹

Fig. 1. Architecture of the NN used to simulate the MPC controller of
Example 1.

The GD algorithm is performed over a single batch of
n = 15 data. The training phase is conducted over 2 · 105
epochs with a learning rate1 of η = 10−2. Under this
configuration, the 15× 15 NTK matrix H[W̃ k] describes the
dynamics of the error ∥ṽk∥ at each iteration k. Figure 2 depicts
the log-scale evolution of the subset of eigenvalues λ̃i with
i ∈ I1 = {0, . . . , 8} which are larger than α = 10−4. The
other eigenvalues λ̃i with i ∈ I2 = {9, . . . , 14} are inferior to
α = 10−4 and correspond to the eigenvectors spanning N .

Furthermore, the experimental proof is illustrated in Fig. 3,
which depicts the log-scale evolution of the error ∥ṽk∥
(blue), and projections ∥ṽ1

k∥ (orange) and ∥ṽ2
k∥ (green).

The error ∥ṽ1
k∥ converges linearly to 0, and we have:

lim supk→∞ ∥ṽk∥ ≤ b := ∥ṽ2
k0
∥ = 0.0584 for k0 = 17, 000.

The red curve corresponds to the right-hand side of (10), and
is above ∥ṽk∥ (blue) as stated by Theorem 3.

1Note that according to Theorem 3, η < 2/L and η < 1/α. In practice,
the step size η is determined by decreasing it sufficiently since α separates
the positive eigenvalues from the zero eigenvalues in the continuous setting.



Fig. 2. Evolution of the 9 positive eigenvalues (λ̃0, . . . , λ̃8) of the NTK
matrix H[W̃ k] (the 6 other eigenvalues are inferior to α = 10−4 and
are not shown in the figure).

Fig. 3. Log-scale evolution of the training error ∥ṽk∥ (blue), which
is decomposed in ∥ṽ1

k∥ (orange) and ∥ṽ2
k∥ (green). The red curve

corresponds to the right-hand side of (10), and is above ∥ṽk∥ (blue)
as stated by Theorem 3.

IV. GENERALIZATION ERROR

In this section, we give an upper bound Γ for the general-
ization error (see Proposition 1) which follows from results
of Arora et al. [5]. Let ℓ(·, ·) be an elementary loss function
defined over R × R. The population loss LD over data
distribution D and the empirical loss LS over n samples
S = {(xi, yi)}ni=1 drawn i.i.d. from D are defined as follows
(see [5]):

LD(f) = E(x,y)∼D[ℓ(f(x), y], (24)

LS(f) =
1

n

n∑
i=1

ℓ(f(xi), yi). (25)

The generalization error refers to LD(f) − LS(f) for
the learned function f given sample S. Given a class F
of functions, the notion of Rademacher complexity (denoted
RS(F)) has been used in [22] to derive an upper bound for
the generalization error:

Theorem 4: (Theorem 11.3 of [22]) Suppose the loss func-
tion ℓ(·, ·) is bounded in [0, c] and is ρ-Lipschitz in the first
argument. Then with probability at least 1− δ over sample S
of size n:

sup
f∈F

{LD(f)− LS(f)} ≤ 2ρRS(F) + 3c

√
log(2/δ)

2n
,

where the Rademacher complexity is defined as:

RS(F) :=
1

n
Eε∈{±1}n

[
sup
f∈F

n∑
i=1

εif(xi)

]
. (26)

Besides, Arora et al. [5] proved the following:

Theorem 5: (Lemma 5.4 of [5]) Given R > 0, with proba-
bility at least 1− δ over the random initialization (W (0),a),
simultaneously for every B > 0, the following function class:

FW (0),a
R,B = {f(W ,a) : ∥wr −wr(0)∥ ≤ R (∀r ∈ [m]),

∥W −W (0)∥F ≤ B} (27)

has empirical Rademacher complexity:

RS(FW (0),a
R,B ) :=

1

n
Eε∈{±1}n

 sup
f∈FW(0),a

R,B

n∑
i=1

εif(xi)


bounded as:

RS(FW (0),a
R,B ) ≤ B√

2n

(
1 +

(
2 log 2

δ

m

)1/4
)

+ 2R2
√
m+R

√
2 log

2

δ
.

It follows from Theorem 4 and Theorem 5:
Proposition 1: Consider the function loss ℓ(·, ·) defined by

ℓ(z, y) := (z − y)2 for all z, y ∈ R, and suppose ℓ(·, ·) is
bounded in [0, c] and is ρ-Lipschitz in its first argument. Then
with probability at least 1− δ over sample S:

sup
f∈FW (0),a

R,B

{LD(f)− LS(f)} ≤ Γ

with

Γ = 2ρR

(
2R

√
m+

√
2 log

2

δ

)

+
1√
2n

(
2ρB

[
1 +

(
2 log 2

δ

m

)1/4
]
+ 3c

√
log(2/δ)

)
.

Given a test set Stest = {(xtest
i , ytesti )}ntest

i=1 of the NN, the
test error, i.e. the mean squared error associated to Stest, is
defined by:

Ltest =
1

ntest

ntest∑
i=1

(fW ∗,a(x
test
i )− ytesti )2, (28)

where fW ∗,a is the learned function from the GD algorithm
on the training set S. Knowing that Ltest ≤ LD, we can use
Proposition 1 to write:

Ltest ≤ Σ, (29)

where Σ := Γ + LS .
Example 2: We consider the same case study as in Ex-

ample 1, except that we increase the number of neurons in
the hidden layer to m = 100 and we vary the number of
data (8 ≤ n ≤ 400). The network is trained using GD until
convergence with the same hyperparameters and initialization
as in Example 1.

Figure 4 gives the evolution of Ltest and Σ (bound over the
population loss LD) as a function of the number of training
data n. We verify that the curves Ltest and Σ have similar
trends.2 In particular, the curves present a double-peak shape



Fig. 4. Evolution of Ltest and Σ with the number of training data n.

as observed, e.g., in [6] and [7] with peaks around n = d and
n = m.

Finally, Fig. 5 depicts a comparison between the command
uMPC synthesized by the MPC controller and uNN predicted
by the neural network (with m = 100 neurons and a training
set of size n = 2160). This illustrates the fact that an
underparameterized network is capable of reproducing the
MPC controller with good accuracy (Ltest = 0.003).

Fig. 5. Comparison of the true command (uMPC ) and the one
predicted by the NN (uNN ) using the test dataset.

V. CONCLUSION

This paper presented a proof that the training loss of an
underparameterized neural network converges linearly to a
(non-null) constant. The generalization error of the trained
model was investigated, and a bound to the population loss
was computed using the Rademacher complexity. We illustrate
these results on a one-hidden layer NN simulating a MPC
controller. We hope that our work will pave the way for a
better understanding of the success of data-driven MPC using
neural networks of moderate size.

Limitations and Future Work

This study focused on the analysis of the training error con-
vergence in a neural network with scalar output where only the
first layer is trained. We plan to extend the analysis to include
training on several layers and to consider multidimensional
outputs.

2Note that, in this example, the difference between Σ and Ltest is large.
This is partly explained by the fact that Ltest has been computed here with a
set Stest of data obtained with high precision. A set Stest of data perturbed
with noise would increase the value of Ltest and bring it closer to Σ.
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