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ABSTRACT

Urban areas are serious candidates for the production of solar energy but their intrinsic complexity makes
it challenging. The heterogeneity in the geometries and radiative properties of the different elements
composing the urban fabric, specifically induces important spatiotemporal variations of the distribution of
incident solar radiations. Besides, Principal Component Analysis (PCA) has been widely validated as an
efficient tool to identify the principal behavioural features of a high-dimensional physical model. This paper
proposes a novel approach to analyse and characterise the spatiotemporal variability of the solar resource
within an urban context by means of PCA. A theoretical 100×100 m2 asymmetric urban district made of
nine cuboids with various heights is studied. The distribution of the incident field of irradiances is modelled
via backward Monte-Carlo ray tracing over a full year on the facets of the central building under a clear sky,
with a 15 min timestep and 1 m spatial resolution. PCA is subsequently applied to the simulated model
to analyse its spatial and temporal variabilities. First results validate modal decomposition as a powerful
technique for the analysis of the variability distribution, allowing the identification of the district areas
subjected to important spatial and temporal variations of the solar resource. Characteristic scales are clearly
represented by orders of decomposition. The contribution of surrounding geometries is also transcribed by
particular spatial modes and similar influential variables are encountered across multiple evaluated surfaces
but at different modal ranks.

KEYWORDS: Solar radiations, Urban environment, Spatiotemporal variability, Model Order Reduction, Princi-
pal Component Analysis

1. INTRODUCTION

Sunlight is an abundant, inexhaustible and easily accessible natural resource for energy production. Over
the last decades, significant efforts have been made to position solar energy as a tangible alternative to
traditional non-renewable fuels [1]. If appropriate measures and support policies are being taken and
rapidly implemented by governmental authorities, it could be able to meet over 30% of the global energy
needs by 2060 [2]. Urban areas are serious candidates for the deployment of solar collectors, since a
substantial part of the energy produced is being used directly in cities [3].

However, the complexity of the urban environment makes the production of solar energy challenging.
The presence of buildings, vegetation and other obstacles, and the diversity of their geometrical nature
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(e.g., shape, size, orientation and inclination) and materials optical properties (e.g., specular and/or diffuse
reflectivity, transmissivity) alter solar and infrared radiative transfers [4]. Multiple reflections of solar
radiations and complex dynamic overshadowing effects are taking place between structural elements [3].
Building façades are specifically of important influence here. This participates in the creation of a specific
local climate in interaction with the urban infrastructures, contributing to the Urban Heat Island (UHI) effect
[5]. Another important agent of solar radiations regulation is the atmosphere itself. Light from the sun
passing through the atmosphere is subjected to multiple radiative events (absorption, emission, scattering
and reflection) before reaching the ground [4]. This interdependency between the local climate and the urban
structure eventually adds on the inherent spatiotemporal variability of the solar resource. The geographic
location, daily and seasonal cycles, via the apparent movement of the sun relatively to the Earth, and
meteorological conditions, especially through the motion of clouds, are mainly responsible for the natural
variations of sunlight. All of this leads to a significant spatiotemporal variability of the solar resource at the
urban scale. Various approaches and a plethora of increasingly efficient simulation tools have been proposed
for the modelling of radiative exchanges taking place in the urban fabric [3, 6]. However, when dealing with
multivariate phenomena involving a huge amount of data over a wide range of spatial and temporal scales,
like in the present situation, improvements in the numerical capabilities are still usually not sufficient.

A solution to deal with such complex physical problems is to apply Model Order Reduction (MOR)
techniques [7]. MOR has been widely employed in various fields for models defined in high-dimensional
spaces (e.g., quantum mechanics, fluid dynamics) or for multiscale problems with very large characteristic
spatial or temporal scales (e.g., solid mechanics, acoustics) [8]. In multiple situations, a high-dimensional
physical phenomenon can be reasonably approximated by the behaviour of a few numbers of its dominant
features [7]. The benefit of MOR in such cases is thus twofold:

1. The essential features are identified, which inherently facilitates the interpretability of the global
model’s behaviour;

2. The restricted set of features can be used to create a reduced order model of the physical problem and
drastically lessen the computational effort for future modelling.

Among the variety of available MOR approaches, Principal Component Analysis (PCA) [9] has been
extensively used and validated in multiple areas, including renewable energies [1, 10]. Also known as
Principal Orthogonal Decomposition (POD) [11] in computational fluid dynamics, Hotelling Transform
[9] and Karhunen-Loève Transform [12] in image processing or the Empirical Orthogonal Function (EOF)
[13] in climate science, it consists of identifying the most representative orthogonal features of a given
dataset [14], namely directions in which data varies. PCA generates a set of uncorrelated features (principal
components) being linear combinations of the original variables and summarising at best the dataset, i.e.,
accounting for the maximum variance [10]. It is robust to sets of data dealing with multiple interdependent
variables and with a high dimensionality with respect to their number of samples [1].

The aim of this paper is to present and investigate the applicability of Model Order Reduction methods as
an efficient means to analyse and characterise the spatiotemporal variability of the solar resource within
an urban context. In that objective, a numerical simulation of the distribution of annual solar radiations,
in terms of irradiances, has first been conducted on a simple theoretical three-dimensional urban geometry
of heterogeneous morphology. A subsequent statistical analysis has been performed by means of PCA on
the simulated field of irradiances. The main methodology is detailed in section 2. The principal resulting
features have finally been analysed with respect to their influence on the model’s spatial and temporal
variabilities (sections 3 and 4).



2. METHODOLOGY

This section details the methodology and corresponding methods adopted in this work, as well as their
underlying rationales and assumptions.

2.1 Numerical model The input geometry has consisted of an assembly of nine three-dimensional
buildings, namely one central and eight peripheral structures (Fig. 1). The motive for this configuration was
to keep the domain size reasonable for maintaining an acceptable trade-off between speed and accuracy in
the simulation process. The main design parameters, i.e., Shape Factor, Floor Area Ratio, Site Coverage and
Average Building Height [15], have been defined in the aim of mimicking a theoretical urban district with
an open mid-rise typology [16]. The morphological diversity has been restricted here to a heterogeneity in
the buildings location and height. They have been arranged in a disorganised manner across the 100×100
m2 district area and modelled by cuboids of 20×20 m2 bases with a height ranging from 15 to 35 m. For
the sake of simplicity, no semi-transparent (e.g., vegetation) or highly specular (e.g., glazings) elements,
which would alter the reflected, transmitted and absorbed components of incoming radiations at the district
scale, have been introduced. All surfaces have been considered Lambertian, i.e., perfect diffusers, with a
reflectance of 0.3. Thus, both the directional and spectral dependencies of the full geometry on incident
radiations have been omitted.

Similar atmospheric profiles to Caliot et al. (2022) [17] have been employed to describe the atmosphere,
where the optical properties of its constituting gases are defined using the ECRAD radiation scheme for the
European Centre for Medium-Range Weather Forecasts (ECMWF) [18]. No clouds have yet been consider
at this stage, resulting in typical clear sky conditions for the location of Paris (48◦51′12.28′′ N; 2◦20′55′′ E).

2.2 Annual solar irradiances modelling A new engine, named htrdr-urban, has recently been
proposed and validated for the accurate simulation of solar and infrared radiative transfers in an urban
context with complex geometries and in the presence of a cloudy atmosphere [4, 19]. By combining backward
Monte-Carlo ray tracing with Null-Collision Algorithms (NCA), the computational effort becomes quasi-
independent of the complexity of the three-dimensional scene. This tool has thus been used here to evaluate
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Fig. 1 3D (a) and top view (b) of the considered heterogeneous district. Each building is coloured in light
grey and referenced in terms of its height (m). The building of interest is highlighted in green. A buffer
band of 10 m width surrounds the district area (salmon-pink).



the shortwave irradiances across the measurement grids at each timestep, by solving the monochromatic
Radiative Transfer Equation (RTE) for the defined simulation setup. No heat transfers by conduction or
convection have been considered, meaning that the simulation boundary conditions at the domain borders
are entirely established by the geometry and surfaces albedo of the numerical model.

The simulation has been performed for one building of interest located at the centre of the studied neighbour-
hood, highlighted in green in Figure 1. The distribution of incident radiations on the considered structure
has been evaluated in terms of horizontal or vertical irradiances (W.m−2) for a set of measurement points
across its visible surfaces, i.e., for its four vertical façades (east, west, north, south) and roof. Each surface
has been discretised into a regular array of points. Similarly to previous studies using the same geometry
[6, 20], a spatial resolution of tϕ = 1 m has been adopted here to allow for a reasonable observation of
variations in the spatial patterns of the solar resource. Values have been computed for a full year, from 21st

December 2020, 08:30 to 20th December 2021, 15:00, with a timestep tα = 15 min.

2.3 Model Order Reduction Principal Component Analysis has been employed to decompose the
simulated field of irradiances along its principal features both in the temporal and spatial domains. The
rationale behind this decomposition builds on the spatiotemporal separated representation suggested by
Pierre Ladevèze a few decades ago [8], by assuming that the incident irradiance distribution on a given
surface can be expressed as:

E(x, t ) = ∑
k≥1

γkϕk (x)αk (t ) (1)

with ϕk and αk the spatial and temporal contributions, respectively, and γk a real number vouching for the
field amplitude at rank k. In that aim, the raw dataset of simulated irradiances E(x, t ) has initially been
arranged in a 2D real matrix of size n ×p:

E=


features︷ ︸︸ ︷

e11 · · · e1p
... . . . ...

en1 · · · enp


n,p

 samples (2)

Its rows (samples) and columns (features) refer to the n annual timesteps and to the p measurement points,
respectively. The number of discretisation points being here significantly higher in the temporal than in the
spatial domain (n ≫ p), it results in a very “thin” input matrix E.

When performing PCA, it is a common requirement that data are standardized, i.e., centred around a null
mean and scaled to have a standard deviation of one, prior to the reduction procedure. Translating the
values by subtracting their means ensures that the first principal component actually reflects the maximum
variance of the dataset and not its mean value [14], which would otherwise be likely to make it statistically
misleading. Scaling is usually employed to avoid allocating too much weight to some features over the others
and reduce noise in the higher-order components [21]. PCA is in that case performed on the correlation
instead of the covariance matrix. Within the scope of this work, scaling would not be of high relevancy,
since all features are by definition on the same scale. Hence, data centring only has been carried out during
the pre-processing stage by deducting to each column j of E its mean value µα, j .

PCA can either be performed via Eigenvector Decomposition (EVD) of the covariance (or correlation)
matrix for the input data or by applying Singular Value Decomposition (SVD) to the raw dataset directly. In
EVD-based PCA, the principal components are accessed via eigenvectors of the covariance matrix (principal
directions) and their related amount of information is given by its eigenvalues. When SVD is employed,



the principal directions, i.e., eigenvectors, correspond to the singular vectors of the input matrix, while the
singular values are equal to the square root of the eigenvalues (standard deviations). The latter aspect justify
why PCA is generally more accurate and numerically robust, yet slightly slower, when based on SVD rather
than on EVD for a higher number of samples than features. SVD-based PCA is therefore preferred for
high-dimensional datasets [21] and has been used thereafter. Application of SVD to the centred matrix Ė
provides the following decomposition:

Ė=U.Σ.V⊤ (3)

with U a unitary matrix of size n×n and Σ a n×p matrix whose main diagonal contains the singular values
σα, j associated with the singular vectors represented by the rows of the p ×p matrix V⊤

1. Having here
n ≫ p, only the first p columns and rows of U and Σ, respectively, related to the p non-null singular values
σα, j , have been kept to avoid unnecessary huge sizes for these matrices. Equation (3) can thus be rewritten:

Ė′ =U′.Σ′.V⊤ (4)

where U′ is now of size n×p and Σ′ of size p×p. The principal components, i.e., the projection of the data
onto the principal directions, have then been obtained by multiplying Ė′ by V:

Ė′V=U′.Σ′.V⊤.V=U′Σ′ = [
pcα,1 · · · pcα,p

]
n,p

(5)

with their related variances, i.e., the eigenvalues λα, j of the covariance matrix of Ė′, being directly accessed
from the singular values σα, j :

λα, j =
σ2
α, j

n −1
(6)

Finally, the principal component pcα, j of rank j is simply selected from the columns of Ė′V=U′Σ′, while
its rows give the samples coordinates in the projection space. To visualise the corresponding mode Êα, j ,
i.e., the reconstruction of the original dataset from this principal component only, pcα, j has further been
multiplied by its related principal direction v∗j ( j -th column in V⊤), and its mean value µα, j summed back:

Êα, j = pcα, j .v∗j +µα, j I (7)

The above demonstration is valid within the scope of a temporal decomposition, with the n annual timesteps
and the p grid points accounting for the samples and the features, respectively, in the PCA calculation. The
idea being to investigate both the temporal and spatial variabilities of the field of irradiances, E has also
been transposed so that its rows now depict the p evaluation points (samples) and its columns the n related
timesteps (features). The input dataset E⊤ for spatial decomposition would thus be a “thick” matrix of size
p×n, with µϕ,i the mean values over its temporal features (columns). The role of U and V would be reversed
with respect to the illustrated case. Though p ≫ n in this configuration, the size of the dataset employed
within the scope of this work was still reasonable for the SVD procedure to remain fast enough.

The first modes resulting from the temporal (Êα, j ) and spatial (Êϕ,i ) decompositions have then be examined
to assess the variabilities of the incident field of irradiances (section 3).

1V⊤ refers here to the transpose of the real matrix V



3. RESULTS

Results from the modal decomposition of the incident field of irradiances on the different facets of the test
building are presented here. The spatial and temporal decompositions for the first four modes on the east
façade (Fig. 2) and for the first modes on each of the orther surfaces, i.e., west, north, south and roof, (Fig. 3)
have been selected by the authors for visualisation. Their amplitudes have all been normalised between -1
and 1 and centred around 0 using a diverging colour scale to facilitate the analysis. Only modes up to the
fourth rank are investigated, since they capture, by definition, most of the variability (cf. 3.3). It is not
excluded that higher order modes account for interesting behaviours, yet they will not be analysed within
the scope of this preliminary study.
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Fig. 2 Temporal (left column) and spatial (right column) decompositions of the incident field of irradiances
on the east façade of the test building. The first four modes Ê1−4 are displayed row by row in growing order.
Spatial axes are defined with respect to the coordinate system used in Fig. 1.
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Fig. 3 Temporal (left column) and spatial (right column) decompositions of the incident field of irradiances
on the west-, north-, south-facing and roof surfaces of the test building. Only the first modes Ê1 are displayed
here (rows). Spatial axes are defined with respect to the coordinate system used in Fig. 1.

3.1 Temporal decomposition The temporal decomposition for each mode of interest is represented
on the left column in Fig. 2 and 3 by the normalised irradiance received at a given time in a day (24
hours) as a function of a speficic day in the year (365 days). As it could have been expected, a first
common trend to the temporal modes across the different surfaces is that they depict the variabilities in
the distribution of irradiance at different time scales, with the level of details provided by each of them
increasing with their order. Namely, Êα,1, which accounts for the highest explained variance (EV ), generally
provides information about the global annual irradiance distribution and highlights the seasonal repartition
(winter/summer) (Fig. 2, 3 - Êα,1). Subsequent higher-dimensional modes represent finer variations, from
the daily sharing between the morning and the afternoon, including midday in some cases, and up to an
explanation at the hour scale (Fig. 2 - Êα,2−4). Êα,4 for the east, west and south façades further shows the
influence of equinoxes and solstices on the daily irradiance distribution (Fig. 2 - Êα,4).



Rationally, the distribution for each temporal mode is similar yet symmetric with respect to midday for the
east and west façades (Fig. 2, 3). All of the first four dominant modes for both surfaces also share very close
respective variances. Similarly, modes for the south and north sides seem to be complementary (Fig. 3),
taking into account the daily course of the sun. However, the amount of information is interestingly more
concentrated within the first mode for the north than for the south orientation. In general, this trend has
been observed across surfaces of different orientations, with notable differences in the explained variances
provided by modes of a same decomposition rank k.

3.2 Spatial decomposition The spatial decomposition for the same modes as detailed in section 3.1 is
represented on the right column in Fig. 2 and 3 by the normalised irradiance received at a given position on
the considered facet. Overall, results for the spatial decomposition correlate with the above observations in
the temporal domain. However, more similarities have been found between the spatial distributions of the
first dominant modes from the different surfaces. All the first four modes for the east and west façades now
depict almost exactly the same allures (not shown here). Their respective explained variances are also very
similar and close enough to the values of the corresponding modes for the south façade. The total variance
spreads more equally over the four dominant modes here than for the temporal decomposition, the amount
of information held by the first mode alone being lower in the present situation (Fig. 3).

Interestingly, similar modal distributions are encountered across multiple vertical surfaces but at different
ranks k, e.g., Êϕ,3 for the north side is similar to Êϕ,2 for the east and west orientations (not shown here).

The influence of surrounding geometries on the distribution of the field of irradiances is more clearly
highlighted here. This is especially illustrated by the slight variations in the distributions of modes of same
rank k between the east and west surfaces (Fig. 2, 3), which would not have been observed in a completely
symmetric area under clear sky conditions. The differences in the heights and positions of neighbouring
buildings on the western and eastern sides of the considered structure may have induced these variations.

3.3 Scree Plots Finally, scree plots, which express the explained variance as a function of principal
components, have been computed for both the temporal and spatial decompositions for each facet. For all
surfaces and domains, it has been observed that a substantial part of the total explained variance is contained
in the first few components, i.e., modes. In the case of the east-facing façade, modes after the tenth already
account for less than 0.5 % of the total explained variance each (Fig. 4).

4. DISCUSSION & CONCLUSIONS

A novel approach for the analysis of solar radiations variabilities in urban environments by means of Principal
Component Analysis has been proposed. The field of irradiances has been simulated onto the façades and
roof of a cuboidal building within an urban context of heterogeneous structures. First results show that
modal decomposition provides a very efficient tool to analyse the first dominant modes of the variability
distribution in both the temporal and spatial domains.

Overall, a reasonable consistency has been observed between results from the temporal and spatial decom-
positions. Lower-dimensional modes, i.e., with the highest variances, have been found to account for the
variations on wide scales while modes at higher ranks describe the variations on smaller scales. In the
complex urban environment where a plethora of parameters are likely to play a role in the variability of the
solar resource, MOR methods would greatly facilitate the identification of the most influential parameters at
characteristic spatiotemporal scales. Especially, the contribution of specific surrounding geometries to the
disturbance of the incident field of irradiances has been pinpointed by certain spatial modes. The orientations



Fig. 4 Scree plot for the temporal decomposition on the east façade of the test building.

of the evaluation surfaces have clearly been represented in the decomposition, with complementarities and/or
similarities between facets on the same axes (north/south or east/west). Results for the east- and west-facing
façades have presented great consistency across the different decomposition modes. In general, a different
amount of information was provided by modes of same dimensions for the north and south façades, and
compared to the east/west axis. This suggests that specific characteristic scales contribute more to the global
spatiotemporal variations for some orientations than for others. The distribution of certain spatial modes has
also been found to be common to several of the vertical surfaces, but at different orders of decomposition.
This implies that same parameters are involved in the spatial variability of the field of irradiances across the
surfaces, yet to a different extent depending on their orientation. These findings would therefore be of high
relevancy to identify areas subjected to high spatial and temporal variabilities of the solar resource.

Scree plots have further shown that the first few principal components were sufficient to capture a significant
part of the information in our physical model (above 96.5 % and 84,3 % of cumulative EV held by the first
10 components for the temporal and spatial decompositions, respectively), paving the way for the definition
of a reduced order model that would be very close to the original. These results therefore demonstrate that
the use of PCA, and MOR methods in a wider extent, can be very promising approaches to analyse the
spatiotemporal variabilities of the irradiance field, which would be otherwise very complex given the high
spatial and temporal definitions.

This work has led to promising findings but still presents some limitations, which should be pointed out.
The main limitation comes from the numerical model itself. The geometry has been defined simple on
purpose, with a limited number of variables. The objective was here to validate the applicability and
efficiency of MOR methods for the analysis of solar radiations variabilities in a heterogeneous environment.
The consideration of more complex (e.g., shapes, inclination of surfaces), diverse (e.g., vegetation) and
numerous geometries, with non-trivial reflective properties (e.g., specular, semi-transparent), would have
likely impacted the results and the difficulty of their analyses. The influence of clouds has neither been
considered, since a simple clear sky model has been used here. Besides, the analysis has been restricted to
the first four modes for each orientation. Though the authors have sensibly based their decision from the
results of preliminarily computed scree plots, higher-dimensional modes could have provided more insights
on specific aspects.

Future suggested work would be therefore to apply the proposed methodology to more complex numerical



models, with geometrical and physical properties closer to a real urban neighbourhood. Especially, the vari-
ations in common morphological factors like the domain size or the buildings dimensions and arrangement,
which would have an apparent impact on the distribution of incident irradiances, are intended to be investi-
gated by the authors. Non-Lambertian surfaces, e.g., highly specular glazings or semi-transparent materials,
are also common features of modern urban environments, and their effect on the incoming radiations is worth
being examined via the proposed method. The influence of different sky types should also be explored,
to consider the effect of clouds in the simulation of solar radiations (e.g., movement, radiative properties).
The spatiotemporal resolutions for the simulation could also be finer, e.g., minutely and sub-meterly in
the temporal and spatial domains, respectively. Regarding the modal decomposition, other MOR methods
should be investigated. Although the relevancy and efficiency of PCA has been evidenced in this study, other
techniques may prove relevant for this specific problem. For instance, Proper Generalized Decomposition
(PGD) is based on separated representations, e.g., of space and time, and would therefore be a prime candi-
date in such situations [8]. Similarly, Dynamic Mode Decomposition (DMD) [22], which could be sensibly
apprehended as a combination of PCA and Fourier transform, has been proposed specifically to analyse and
capture dynamics of evolving physical fields, e.g., fluid flows [14]. The use of deep neural networks for the
selection and extraction of the optimal features is also of current interest [23], though still mainly employed
for the post-processing of reduced order models. The nature of the decomposition method remains crucial,
as on it depends the meaning of the decomposition modes, so does the underlying physics [14].
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