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Abstract

We propose a renovated approach around the use of Taylor expansions
to provide polynomial approximations. We introduce a coinductive type
scheme and finely-tuned operations that altogether constitute an algebra,
where our multivariate Taylor expansions are first-class objects. As for
applications, beyond providing classical expansions of integro-differential
and algebraic expressions mixed with elementary functions, we demon-
strate that solving ODE and PDE in a direct way, without external solvers,
is also possible. We also discuss the possibility of computing certified er-
rors within our scheme.
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1 Motivations

1.1 Taylor expansions
Our principal motivation is to provide an automatic way of approximating arbi-
trary multivariate numerical expressions, involving elementary functions, inte-
grations, partial derivations and arithmetical operations. In terms of features,
we propose an approach where Taylor expansions are first-class objects of our
programming language, computed lazily on demand at any order. Finally, we
also wish to obtain certified errors, which will by the end include errors of ap-
proximation and numerical errors, expressed in any suitable user-provided error
domain, such as zero-centered intervals, intervals, zonotopes, etc. From a user’s
perspective, a typical workflow is first to compute a certified approximation at
some order of some expression, second to evaluate the maximum error for the
given domains of variables, and maybe third to compute a finer approximation
at some higher order (without recomputing previous values) if the error is too
coarse, and so on, until the approximation meets the user’s expectations in terms
of precision. We postulate that the expressions at hand are indeed analytical
and possess a valid Taylor expansion around a given point and within variables’
domains. If it is not the case, then the error computed at every increasing order
won’t show any sign of diminishing and could even diverge. Last but not least,
our approach yields a direct means to express solutions to ODEs and PDEs
and thus solve them, without complex numerical methods based on domains
discretization.

Furthermore, we aim at bringing as much robustness and correction as possi-
ble to our library through a correct-by-construction approach. The type system
is in charge of the correction as it ensures, at compile time, that dimensions
of various tensors, functions, convolutions and power series conform to their
specifications. This is of a particular importance in a complex and error-prone
context involving a vast number of numerical computations such as ODEs and
PDEs resolution. The type system which validates all dimension related issues
greatly helps in reducing the focus on purely numerical concerns: correctness
of approximation, precision, convergence. Moreover, correction could be proved
more formally with a proof assistant such as COQ. This idea could be adressed
in the future even if this work is likely to be laborious.

As a disclaimer, the current state of our contribution doesn’t allow yet the
computation of certified errors in the presence of differential equations, so we
mainly focus here on infinite Taylor expansions without remainders. Still, as
one of our prominent future goals, certified errors were taken into account in
the design stage of our framework and we discuss them along this paper.

1.2 Applications
Among many possible applications, we more specifically aim at formally verify-
ing systems dealing with complex numerical properties, such as controllers for
embedded systems. Moreover, through certified integration of ODE, we may
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also consider hybrid systems, such as a continuous plant coupled to a discrete
controller.

1.3 Outline
We start by recalling some related works around formalization and mechaniza-
tion of Taylor expansions in section 2. Then, we state a mathematical formu-
lation of our on-demand multivariate Taylor expansions with errors, together
with an implementation of our main data-structure, in section 3. We detail our
implementation of operations that form an algebra for infinite Taylor series, i.e.
without remainders, in section 4. We separately discuss the more complex case
of composition in section 5. In section 6, we present some experiments done on
solving differential equations in a direct way. In section 7, we discuss the specific
issues raised by computing certified errors that allow to deal with finite Taylor
expansions with (certified) remainders. Finally, we open up some perspectives
then conclude, respectively in sections 9 and 10.

2 Related works

2.1 Taylor series
Although Taylor expansions are well known and form a very rich and interest-
ing algebra, their realizations as software items are not widespread. From a
mathematical perspective, some weaknesses may explain this lack of success:
they only support analytical functions, a rather limited class of functions; they
don’t possess good convergence properties, uniform convergence is hardly guar-
anteed for instance; typical applications for polynomial approximations are usu-
ally not concerned with certified errors, mean error or integrated square error
(through various norms) are more important and don’t easily fit into Taylor
expansion schemes. Finally, from a programming perspective, Taylor expan-
sions are: hard to implement as they require many different operations to be
implemented, from low-level pure numbers to high-level abstract Taylor expan-
sions seen as first-class citizens; error-prone with lots of complex floating-point
computations on non-trivial data structures; heavily resource demanding in our
multi-dimensional setting because data structures rapidly grow as the precision
order increases.

Here are a few works dealing with Taylor expansions. In [7], the author
presents an early application of laziness to cleanly obtain Taylor polynomial ap-
proximations. Laziness allows to augment the degree of the resulting polynomial
on demand. Yet, the setting is much simpler as it is strictly one-dimensional
and certified errors are not in scope. With these restrictions, the author obtains
nice formulations of automatic differentiation and polynomial approximations of
classical phenomena in physics. Speaking about implementation, related works
come in many flavors and date back to the now well established folklore of au-
tomatic differentiation (forward or backward modes). As for symmetric tensor
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algebra, which forms a well-suited representation basis for partial derivatives, a
huge menagerie of (mostly C++) libraries exists, for tensors of arbitrary orders
and dimensions (but some libraries put a very low upper-bound on these values).
These implementations are clearly not oriented towards reliability and proof of
correctness, but towards mere efficiency. This also comes at the expense of some
user-friendliness, as memory management and user interface are more complex
and error-prone than in our own library. Still, we may consider interfacing our
code base with a trusted and stable tensor library, for much better performance.

One of the most prominent implementation of Taylor expansions is the COSY
tool, cf. [12, 9]. This tool has been used in industrial-scale engineering and sci-
entific contexts, to modelize and predict the complex dynamics of particles in
accelerators for instance. This tool supports 1D Taylor expansions with interval-
based certified errors. Polynomial degree is not refinable on demand and Taylor
expansions are not handled per se (i.e. not first-class citizens). The authors
managed anyway to implement an error refinement scheme for solved form ordi-
nary differential equations, that allows solving them with tight certified errors.
Experiments show that this tool compares favorably to other traditional ap-
proximations and bounding techniques, such as branch-and-bound approaches
and interval arithmetics, in terms of speed and precision. We also aim at im-
plementing differential equation solving in our multi-dimensional setting.

At the other end of the spectrum, [11] proposes correct-by-construction uni-
variate Taylor expansions with certified errors, which appears as a huge step.
Integration of floating-point errors into this scheme is also a concern addressed
in [10]. Still, apart from its limitation to the 1D case, this approach suffers
from weaknesses: expansion degree is fixed and differential equations cannot be
handled. The underlying algorithm won’t be so easily turned into a co-inductive
(lazy) equivalent version.

And in the middle of the spectrum comes [1], where the author defines a way
to handle multivariate Taylor series and presents its implementation featuring
on demand computation thanks to Scheme laziness. The few points he did
not implement and that we will try to cope with in our library are: errors
certification which is not handled and efficiency which is not optimal. For
instance, the author’s method to multiply multivariate power series is to define
a generic composition between a bivariate function and a power series and to
instantiate it with the multiplication. This method is simply built upon the
chain rule but has some drawbacks. First, the generic equation given can usually
be drastically simplified for instance in the case of multiplication and second,
such a generic scheme implies that some parts of the resulting coefficients will
be computed several times differently. Conversely, in our solution, the pervasive
multiplication operation is implemented with a strong concern on optimality.

Our work and specifically our data-structure is based on the dissertation [13,
Part 2], with the nuance that a single unbounded tree will be used instead of an
infinite sequence of finite trees, each such tree representing a symmetric tensor
of a given order. This choice notably enables the resolution of partial differential
equations, which was impossible in the setting of [13].
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2.2 Differential equations
Iterative methods are pervasive in integrating differential equations because they
often provide an efficient way to find an approximation of an ODE solution.
Some of them own validation aspects, such as [4] which relies on Runge-Kutta
method to integrate ODE with a numerical validation. The main difference
between these methods and our work as a direct method is that we don’t need
these next level iterations. We are able to yield a result in the equivalent of the
first iteration.

3 Formalization
We recall the canonical presentation of a multivariate Taylor expansion at order
R in dimension N . This expansion converges to f(x) when R → +∞ for an
analytical function f only in a chosen neighbourhood of point 0.

f(x) =
∑
|α|<R

Dα
f (0) · x

α

α! +
∑
|α|=R

Dα
f (λ ∗ x) · x

α

α! (1)

In the above formulation, x = (x0, . . . ,xN−1) ∈ RN , α = (α0, . . . , αN−1) ∈
NN indexes the derivation order of f in the symmetric tensor of partial deriva-
tives Dα

f and λ ∈ [0, 1] is an unknown coefficient that characterizes the exact
Taylor remainder. We have to compute derivatives both at point 0 for the
polynomial part and at point λ ∗ x for the error part. We choose to use a sin-
gle co-inductive data-structure that encodes all possible derivatives, indexed by
some α. As for the elements of this structure, we handle 〈value, error〉 pairs.
Our framework is error-agnostic as the value-error domain is user-defined and
only requires arithmetical operations. Several solutions are available in the lit-
erature: zero-centered intervals, intervals, zonotopes, etc. In the remainder, we
only assume that elements of our structures form an algebra (including addition,
multiplication and some elementary functions), disregarding whether they are
pure values or values with errors.

This co-inductive structure, that we coin a “cotensor”, enables to compute
finer approximations on demand and also to lazily represent expansions of so-
lutions to ODEs and PDEs, when they are expressed in solved form, i.e. not
implicit (as it would for instance be the case if the solution were specified as a
zero of a polynomial form in a functional space).

3.1 Data structure
Coefficients are present in each node of a unique tree structure and are written
as so0,...,oN−1

where every oi is the number of occurences of the variable xi in
the path that leads to the considered coefficient so0,...,oN−1

.
The principle is quite simple: at each node, we choose either to keep the

same variable accounting for the final Taylor series, or we drop it and repeat
the same process for lower dimension variables. This is pictured in tree branches
of the following example as xi for the first case and xi for the second case. The
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variable at the root of the tree is Xn if the dimension is n + 1. This tree is
developed below and represents a symmetric cotensor s of dimension 4 :

s0,0,0,0

s0,0,0,0

s0,0,0,0

s0,0,0,0

s1,0,0,0

...

s0,1,0,0

s0,1,0,0

...

s0,2,0,0

...

...

s0,0,1,0

s0,0,1,0

s0,0,1,0

...

s0,1,1,0

...

...

s0,2,0,0

s0,2,0,0

...

...

...

s0,0,0,1

s0,0,0,1

s0,0,0,1

s0,0,0,1

...

s0,1,0,1

...

...

s0,0,1,1

s0,0,1,1

...

...

...

s0,0,0,2

s0,0,0,2

s0,0,0,2

...

...

...

...

x3

x2

x1

x0
x0

x0 x0

x0x0

x1

x1

x0 x0

x0x0

x1

x1

x0x0

x1

x2

x2

x1

x0 x0

x0x0

x1

x1

x0x0

x1

x2

x2

x1

x0x0

x1

x2

x3

x3

x2

x1

x0 x0

x0x0

x1

x1

x0x0

x1

x2

x2

x1

x0x0

x1

x2

x3

x3

x2

x1

x0x0

x1

x2

x3

3.2 Structural decomposition
We will introduce for this co-inductive structure a few notations inspired from
the computation of the quotient and the remainder with respect to variable
Xn. We will call a left cotensor a cotensor which is the left branch of another
cotensor and we will denote Ln+1 the set of left symmetric cotensors and Rn+1

the set of right symmetric cotensors in dimension n+ 1. If V is the set of labels
at the root of the tree, we have the following definitions:

Ln+1 , Ln +Xn.Rn+1

Rn+1 , Ln +Xn.Rn+1 + V
Hence : Rn+1 = Ln+1 + V

We note that the only difference between left and right cotensors is the constant
part v ∈ V and from now, we are going to consider that right case is the general
one and that left case is the specification of the right case with constant part
equal to 0. This will prevent us from writing similar redundant equations for
all algebraic operations we will describe later. A cotensor is, then, considered a
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right cotensor by default, even if it has no parent because it contains a significant
value v ∈ V which is the constant part of the Taylor series. It comes then that
a tree is interpreted as a Taylor series by adding together the term for the left
tree, Xn times the term for the right tree and the label value of the root.

3.3 Implementation
Finally, in terms of OCaml implementation, this decomposition scheme natu-
rally translates into the slightly relaxed following type definition, where Ln and
Rn have been conflated in a single type:

type (’a, _) st =
| Nil: (’a, Nat.zero) st
| Leaf: (’a, ’n Nat.succ) st
| Node: (’a, ’n) st Lazy.t

* ’a
* (’a, ’n Nat.succ) st Lazy.t
-> (’a, ’n Nat.succ) st

and
(’a, ’n) tree = (’a, ’n) st Lazy.t

Here the type of symmetric cotensors tree has two type parameters: the
type of elements ’a and the dimension type ’n. The last parameter not being
constant through recursion, it appears as _ in the type declaration. Then, the
two cases for the dimension N : N = 0 and N 6= 0, are respectively handled with
Nil and Leaf/Node constructors. Leaf is only a special case of Node where all the
coefficients are zeros. Handling this particular case with a different constructor
aims at saving some computations, for instance all polynomial forms will be
represented by finite trees, not by unbounded ones with trailing zeros. And
Nil constructor is used to mark the end of a branch when the dimension has
decreased to 0, namely all the variables has been consumed. Type parameters
of constructors’ arguments behave accordingly to the decomposition of Rn+1.

The Nat.zero and Nat.succ type constructors encode the dimensions of ma-
nipulated cotensors, as we use GADT allowed by OCaml. We use a standard
type-level encoding of Peano numbers and operations that we don’t detail here.
We hereby enforce a correct-by-construction use of our data-structures.

Finally, we assume throughout this presentation that cotensor elements (the
parameter ’a of type (’a, ’n) tree) form a field, with arithmetical operations
on it. It may be in practice a field of coefficients or/and errors. Most opera-
tions of our Taylor algebra are totally agnostic about the real nature of these
coefficients.

4 An algebra of Taylor series
From this section until section 6 included, coefficients of infinite Taylor series
we consider are only made of values (of derivatives), as opposed to remainders

0Generalized Algebraic Data Types
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and errors.

4.1 Component-wise operations
These elements are denoted by VA and VB . Functions “λ. � ” and “ �+ � ” straight-
forwardly witness the vector space structure of cotensors. The Hadamard prod-
uct “ � � � ” is the component-wise product of two cotensors of same dimension.
Hence with the notation An+1 , ALn +Xn.A

R
n+1 + VA :

An+1 +Bn+1 = (ALn +BLn ) +Xn.(A
R
n+1 +BRn+1) + (VA + VB)

λ.An+1 = λ.ALn + λ.Xn.A
R
n+1 + λ.VA

An+1 �Bn+1 = (ALn �BLn ) +Xn.(A
R
n+1 �BRn+1) + (VA ∗ VB)

let rec somme : type n. (R.t, n) tree -> (R.t, n) tree -> (R.t, n) tree =
fun st1 st2 ->
lazy (
match (Lazy.force st1), (Lazy.force st2) with
| Nil , Nil -> Nil
| st1 , Leaf -> st1
| Leaf , st2 -> st2
| Node(st1l, v1, st1r), Node(st2l, v2, st2r) -> Node(somme st1l st2l,

R.(v1 + v2),
somme st1r st2r)

)

let lambda k st = linear_map (R.( * ) k) st

let rec hproduit : type n. (R.t, n) tree -> (R.t, n) tree -> (R.t, n) tree =
fun st1 st2 ->
lazy (
match (Lazy.force st1), (Lazy.force st2) with
| Nil , Nil -> Nil
| _ , Leaf -> Leaf
| Leaf , _ -> Leaf
| Node(st1l, v1, st1r), Node(st2l, v2, st2r) -> Node(hproduit st1l st2l,

R.(v1 * v2),
hproduit st1r st2r)

)

The structure of the implementation of these linear functions are the same.
They are always recursively applying the operator along the trees while wrapping
each step in a lazy call.
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4.2 Multiplication
Let S be the following cotensor :

S(X0, ..., XN ) = (S0 + S1 �X + S2 �X2 + ...+ Sm �Xm + ...) shortened in

= (S0 + S1X + S2X
2 + ...+ SmX

m + ...)

where X = (X0, ..., XN )

This notation is inspired by derivation order; even if we do not consider
order of cotensors; because it will be of a great help when defining the multipli-
cation and introducing the convolution product. Product of Taylor expansions
is really pervasive and appears in many operations (derivation formulas, compo-
sition of Taylor series, etc). It is naturally defined with an explicit convolution.
Concretely:

S(X0, ..., XN )× T (X0, ..., XN ) = (S0 + S1X + ...+ SpX
p + ...)

× (T0 + T1X + ...+ TqX
q + ...)

= R0 +R1X +R2X
2 + ...+RkX

k + ...

where ∀k ∈ N, Rk =

k∑
i=0

SiTk−i

To compute the coefficients at order k, we need to consider every product that
will produce an order k, i.e. every coefficient of ordrer i by every coefficient of
ordre k − i, i ranging from 0 to k.

In our setting, we maintain a typed convolution structure to express com-
putation of the term

∑k
i=0 SiTk−i. This structure, while geared towards static

guarantees and proof of correctness, still allows for some efficient implementa-
tion. Informally, we may specify our structure as an array containing couples
of cotensors of a specific dimension and that will represent absolute paths. The
same structure is used to represent relative paths. We introduce a path notation,
illustrated by the following examples in dimension n:

• () is the considered tree

• (n) is the tree we get when we take the n-th variable (Xn) once in the
considered tree

• (n.n.n−1) when we take the Xn variable twice and then Xn−1 once

The so called “considered tree” is the original tree given in parameter if con-
sidering absolute paths or a specific tree (descendant of the original one) if
considering relative paths. Through the relative paths (left part of the semi-
colon), we will store the number of times we went down a right branch since the
last left branch, namely relative paths are about the current variable and abso-
lute paths are about all previous variables with respect to the order. Initially,
the structure contains a couple of the two original trees given in parameter for
both absolute paths (and the part for relative paths is empty) :

11



() ; ()
() ()

type _ conv_t =
| T : (((R.t, ’n) tree) * ((R.t, ’n) tree)) Seq.t -> ’n conv_t

conv_t is the type of the data structure containing convolution products. We
said above that it could informally be specified as an array containing couple of
cotensors but the definition is actually generic since Seq.t represents a sequence
type which can be then specified as a list, an array or any iterator.

Then, at each step of the algorithm :

• If the current node is a right branch, we will update the relative paths by
adding the current node (k.k here) and shifting the lines as follows :

() (k) ; ... becomes () (k) (k.k) ; ...
(k) () ... (k.k) (k) () ...

• if the current node is a left branch, we will combine the relative paths with
the absolute ones, store the result as the new absolute paths and empty
the new relative paths :

() (n−1) ; () (n) becomes () ; () (n) (n−1) (n−1.n)
(n−1) () (n) () () (n−1.n) (n−1) (n) ()

let distribute_aux : type n. int -> int ->
(R.t, n Nat.succ) tree -> (R.t, n Nat.succ) tree ->
((R.t, n Nat.succ) tree * (R.t, n Nat.succ) tree) Seq.t ->
((R.t, n Nat.succ) tree * (R.t, n Nat.succ) tree) Seq.t =
fun a i t1 t2 res_q ->
(match (Lazy.force (go_through (a-i) t1), Lazy.force (go_through i t2)) with
| Leaf, _ -> res_q
| _, Leaf -> res_q
| new_st1, new_st2 -> S.cons ((lazy new_st1), (lazy new_st2)) res_q)

let distribute_left : type n . int ->
(R.t, n Nat.succ) tree -> (R.t, n Nat.succ) tree ->
(((R.t, n Nat.succ) tree) * ((R.t, n Nat.succ) tree)) Seq.t =
let rec aux =
fun a i t1 t2 acc -> match i with
| -1 -> acc
| _ -> aux a (i-1) t1 t2 (distribute_aux a i t1 t2 acc)
in fun a t1 t2 -> aux a a t1 t2 S.nil

let rec combine : type n. int -> n Nat.succ conv_t -> n Nat.succ conv_t =
fun a (T conv_it) ->
T S.(conv_it >>= fun (t1, t2) -> distribute_left a t1 t2)

12



Each of these functions deals with a particular level of combinatorics of the
distribution. So basically, combining the relative paths with the absolute
ones boils down to combining a integer with a convolution product. These
objects are the parameters of the combine function which distributes the
integer with the elements of the convolution in all different way and which
binds the results at the end. An element of the convolution product is
a couple of trees. The distribute_left function distributes the couple
of trees with all the integers between 0 and the parameter a, once again
binding the results together and finally, the distribute_aux function does
the actual link between a relative path and an absolute one. Associating a
relative path to an absolute one means concatenating them. Speaking in
terms of trees, it means that the relative path begins where the absolute
one ends in the tree.

Folding this structure to compute a term of a product simply consists in combin-
ing relative paths with absolute paths, multiplying cotensors roots column-wise
and then summing these intermediate results altogether with the following func-
tions :

let roots_prod : type n. (R.t, n Nat.succ) tree -> (R.t, n Nat.succ) tree -> R.t =
fun st1 st2 ->
match (Lazy.force st1, Lazy.force st2) with
| Leaf, _ -> zeroR
| _, Leaf -> zeroR
| Node(_, v1, _), Node(_, v2, _) -> R.(v1 * v2)

let prod_conv : type n. n Nat.succ conv_t -> R.t =
fun (T it) -> Seq.fold it R.zero R.(fun acc (t1, t2) -> acc + (roots_prod t1 t2))

4.3 Differential operations
Cotensors of dimension N may not only be structurally decomposed on XN−1
but also on any other Xk, which we would call a non-structural decomposition.
For that purpose, the “ � [ � ]” function specializes a cotensor, i.e. drops some
index by specializing it to a specific dimension k, and therefore represents the
division by a monomial Xk. Conversely, the “ � ↑ � ” function represents the
multiplication by a monomial Xk. For a cotensor of dimension N , they are
defined in terms of polynomials as:

(S[k])(X0, . . . , XN−1) , S(X0,...,XN−1)−S(X0,...,Xk−1,0,Xk+1,...,XN−1)
Xk

(S↑k)(X0, . . . , XN−1) , Xk.S(X0, . . . , XN−1)

Using the same notations as for component-wise operations, we show how
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these operators simply fit the structural decomposition:

S[k] = (SL +XN−1.SR + VS)[k]

=


SR, for k = N − 1
SL+XN−1.SR−SL |Xk←0−XN−1.SR |Xk←0+VS−VS

Xk
= SL[k] +XN−1.SR[k],

for k < N

S↑k =


0 +XN−1.S, for k = N − 1

(SL +XN−1.SR + VS).Xk = SL ↑k +XN−1.(SR ↑k) + VS .Xk,
for k < N

Differential operations introduce partial differentiation and integration in the
cotensor algebra. These differentiation and integration operators respectively
refer to S[ � ] and S ↑ � . They also use the cotensor of integration/derivation
factors “∆k”, where the oi are the variable occurence number, such that:

(∆k)(o0,...,oN−1) , 1 + ok, for
∑
i oi = R

dS(X0,...,XN−1)
dXk

, S[k]�∆k

Xk∫
0

S(X0, . . . , xk, . . . , XN−1)dxk , (S�∆−1k )↑k

Figure 1 illustrates these operations on a cotensor of dimension N = 4, for
k = 2. The set operation removes the red sub-trees and the blue edges and
merges nodes at extremity of blue edges. The lift operation proceeds the other
way by inserting blue edges and creating zero filled red sub-trees.

It yields the following implementation, where set and lift respectively de-
note “ � [ � ]” and “ � ↑ � ” and where left and right respectively return left and
right sub-trees :

let rec set : type n d k. (d, k, n) Nat.add -> (’a, n Nat.succ) tree -> ’a ->
(’a, n Nat.succ) tree =
fun pr st zero ->
lazy (
match pr, (Lazy.force st) with
| _ , Leaf -> Leaf
| Nat.Zadd , Node (stl, v, str) -> Lazy.force str
| Nat.Sadd pr’, Node (stl, v, str) ->
let set_stl = set pr’ stl zero in
let root = match Lazy.force set_stl with
| Leaf -> zero
| Node(_, vl, _) -> vl in
Node (set_stl, root, set pr str zero)
)

let rec lift : type n d k. ’a -> n Nat.succ Nat.isnat -> k Nat.isnat ->
(d, k, n) Nat.add -> (’a, n Nat.succ) tree -> (’a, n Nat.succ) tree =
fun zero n k pr st ->
lazy (
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Figure 1: Illustration of set and lift operations.
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match pr with
| Nat.Zadd -> (match n with
| (Nat.S Nat.Z) -> Node(nil , zero, st)
| (Nat.S (Nat.S _)) -> Node(feuille, zero, st))
| Nat.Sadd pr’ -> let (Nat.S n’) = n in

Node (lift zero n’ k pr’ (left n st), zero, lift zero n k pr (right st))
)

4.4 Differential equations
Within our framework, we are capable of defining the solution to a differential
equation, univariate or multivariate, as a simple recursive value of the imple-
mentation language OCaml(or mutually recursive values, in case of a system of
equations). We assume that the solution is analytical around point 0 and don’t
try to check whether this hypothesis holds.

Nevertheless, the differential equation has first to be homogeneous, i.e. only
refers to the solution function at a single point of evaluation u(x). Second, it
also has to be put in solved form, i.e. under the form u(x) = expr where expr is
any expression of our algebra involving (or not) the unknown u(x), used through
arithmetical and differential operators. Furthermore, it must also be causal for
the coefficients of the infinite Taylor series to be well defined. By causal, we
mean that the computation of any coefficient won’t diverge, i.e. won’t involve in
turn the computation of some other coefficient lying deeper in the tree structure
and so on.

In the univariate case, a simple syntactic criterion can be tested: an expres-
sion expr occurring in the differential equation u(x) = expr is causal whenever
in each branch of the syntax tree of expr that goes from the root down to the un-
known u, the number of integration operators traversed is strictly greater than
the number of derivation operators. The justification is the following: integra-
tion shifts the coefficients series right (inserting a 0 in head position) whereas
the derivation shifts it left. So the dependency between coefficients is guaran-
teed to have finite depth, i.e. coefficients diu

dxi can only depend upon dju
dxj for

j < i, when the criterion holds. The following definition computes the minimal
shift δ performed by any branch of an expression expr:

δ(x) = δ(k) = −∞
δ(u(x)) = 0
δ(f + g) = δ(f ∗ g) = max(δ(f), δ(g))
δ(cos f) = δ(sin f) = . . . = δ(f)

δ( dfdx ) = δ(f) + 1

δ(
∫X

f) = δ(f)− 1

Causality is easily implied by the property δ(expr) < 0, as a derivative at
order α would then depend at most on derivatives at order 0, . . . , α+ δ.

This criterion is very relaxed when compared to the usual syntactic re-
strictions imposed on differential equations, such as the Initial Value Problem

16



pattern: u(x) = u0(x) +
∫ x

expr(u(x), x) where expr cannot differentiate u.
This pattern is used in various tools promoting certified integration, such as
DynIbex[4] or Flow?[3] and even appear in theorems that prove existence of
solutions, such as the Picard-Lindelöf theorem.

In the multivariate case though, no such simple syntactic criterion seems to
apply that would not rule out most interesting differential equations, such as
the heat equation or the wave equation. More investigation is still needed in
that respect. We discuss this topic further in section 6.

5 The composition operator

5.1 Differential method
5.1.1 Principle

The Taylor series algebra with the previous operations still remains basic, and
that is why we are now interested in composing Taylor series with elementary
functions. To do so, we only need to apply elementary functions to arbitrary
arguments, i.e. to compose univariate Taylor series with multivariate ones. A
general composition scheme of Taylor series is also possible in our setting but
out of the scope of our current concerns. This method lies on a differential
decomposition, namely a function is the sum of the integrals of its derivatives
with respect to all its variables, plus a constant term :

H : RN → R, H = H(0) +
∑
i<N

∫ Xi ∂H

∂Xi

∣∣∣Xk=0
k>i

dXi

5.1.2 Example

We need to partially evaluate the derivatives at 0 to avoid counting several times
the parts shared by different variables, as illustrates the following concrete ex-
ample :
let F : R3 → R, F (x, y, z) = x3 + 2x2y + xz + 5y2 + 3yz2

∂f
∂x = 3x2 + 4xy + z

∫ x
0
∂f
∂xdx = x3 + 2x2y + xz

∂f
∂y = 2x2 + 10y + 3z2

∫ y
0
∂f
∂y dy = 2x2y + 5y2 + 3yz2

∂f
∂z = x+ 6yz

∫ z
0
∂f
∂z dz = xz + 3yz2

The blue terms are redundant and that is why we have :

F (x, y, z) = F (0, 0, 0) +

∫ x

0

∂f

∂x
dx+

∫ y

0

∂f

∂y

∣∣∣
x=0

dy +

∫ z

0

∂f

∂z

∣∣∣x=0
y=0

dz
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5.1.3 Composition

As we are in the specific case of composition, we will use the classic chain rule:

∂(f ◦ g)

∂Xi i<N

= (
∂g

∂Xi
)i<N × (f ′ ◦ g)

Hence :
f ◦ g = f ◦ g(0) +

∑
i<N

∫ Xi

(
∂g

∂Xi
× f ′ ◦ g)

∣∣∣Xk=0
k>i

dXi

The computation of the partial derivatives ∂(f◦g)
∂Xi i<N

is done case by case

with respect to the elementary function f at use, each such function having a
well-known derivative f ′. The cases where f = exp, sin, cos, log, atan, xa, . . . are
easily handled. So, according to the above equation, we only need to partially
evaluate these derivatives, to integrate them then and to finally sum the results.

This method will bring us satisfying results as detailed below, but one must
bear in mind that despite the method is very short in terms of code and then
easily implemented, it is not optimal in terms of computation. This differential
method for the composition is not canonical in that it does not compute the
minimum number of operations to produce the coefficients of the result. As a
witness of non canonicity in the definition of composition, the ∆k coefficients will
be used for multiplication and division consecutively, which could be avoided.
Besides, as long as we do not handle certified errors, the method does not need
an additive decomposition of f , i.e. an expression of f(x+ y) in terms of f(x)
and f(y) alone. But it will be the case as soon as we handle the errors and we
will have to deal with this requirement. Fortunately, such decompositions are
known for all elementary functions we intend to use.

5.2 Elementary functions
Elementary functions, limited to one argument functions, are specified as uni-
variate Taylor series. Therefore, as only one branch of the cotensor will be
meaningful, such series are treated separately. This is only a matter of efficiency
and obviously not mandatory. To obtain a Taylor expansion of an elementary
function, we need to be able to compute any n-th derivative. Taylor series for
elementary functions are well known, so the first way to produce such a series
is to compute the coefficients iteratively and lazily with respect to the known
formulas, such as the following ones :

exp(x) =
∑
i∈N

xi

i!

log(1 + x) =
∑
i∈N

−(−x)i
i

(1 + x)p =
∑
i∈N
(
p
i

)
xi

sin(x) =
∑
i∈N

(−1)i
(2i+1)!x

2i+1

cos(x) =
∑
i∈N

(−1)i
(2i)! x

2i

Similar formulations are available for elementary functions not presented here.
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6 Experimentations
Now that the main operations are available in our algebra, we can start using
it. Differential equations are pervasive in dynamical systems and our point is to
propose a direct (i.e. non-iterative) way to solve them. By direct method, we
mean that coefficients are computed once and for all and therefore there is no
need to iterate over their values until a specific precision is reached. Precision
in our case is seen differently: coefficients are computed only once and if the
user wants a finer precision, the user will increase the order of derivation which
means that new and deeper coefficients will be computed.

6.1 Airy equation
To illustrate this direct approach for solving ODEs and PDEs, we will use the
first dimension Airy equation which stands as follows :

f ′′ − xf = 0

As the equation contains a second derivative, we split it for convenience in two
first order equations introducing f_dot as f derivative :

f_dot = f_dot0 +

∫ x

xf

f = f0 +

∫ x

f_dot

let (airy0, airy0’) = (0.35, -0.26)

let rec f = (lazy (Lazy.force (somme (IST.constant airy0)
(pinteg var_x fdot))))

and fdot = (lazy (Lazy.force (somme (IST.constant airy0’)
(pinteg var_x (product x f)))))

Then, thanks to OCaml laziness, we express and solve this mutually recur-
sive system directly, with the following principle :
• According to the second equation, computing the first coefficient of f , the

constant part, means summing the constant part of f0 with the constant
part of

∫
x
f_dot. We know that the constant part of an integral will be

0, whatever the integrand is.

• the first coefficient of f_dot, or equivalently the second coefficient of f , is
computed the same way (no need to evaluate the argument of the integral).

• then the mutual recursion works and the third coefficient of f , or the
second one of f_dot, is simply the result of integrating the constant part
of xf , actually 0. The other coefficients are also computed in finite time.
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So the trick is to stay a step ahead by computing a first coefficient of a
recursive Taylor series without having to evaluate itself, thanks to the integral
operator, and then to keep this advance all along the computation so that
the recursion will always end. Indeed, if the computation scheme respects the
causality, for example in one dimension : computing a coefficient requires only
strictly lower order coefficients, then we can ensure the recursion will end.

Once we get the solution up to a specific order, we evaluate it as a polynomial
function so that we can draw its graph:

Figure 2: our function (at order 150) Figure 3: theoretical result

We can observe that the approximation is reliable on a specific interval and
diverges outside of it. We can have this conclusion because we know the theo-
retical result in this case, but we won’t know it in most cases. This is what will
motivate the necessary handling of certified errors. Intervals of errors, which are
only an example of error representation, will give the user information about
how far the theoretical function could be from the returned approximation.

6.2 Heat equation
In order to explain the principle of causality more precisely and to show a more
general case, we are going to present the 2-dimensional heat equation example:

∂u

∂t
= α

∂2u

∂x2

let u0 = Iter_Elemt.sinus

let rec u = Iter_IST.(lazy (Lazy.force (somme u0 (product alpha
(pinteg var_t u_aux)))))

and u_aux = Iter_IST.(lazy (Lazy.force (pdiff var_x (pdiff var_x u))))

There are 2 different ways of integrating this equation and we chose to in-
tegrate it with respect to variable t so that initial conditions are a function of
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variable x at initial time t = 0. Here is the new form of the equation :

u(x, t) = u0(x) + α×
∫ t ∂2u(x, t)

∂x2

where u0(x) will be a data we have. The causality is respected if computing any
derivative ∂i+ju

∂xi∂tj boils down to computing elements of initial condition u0(x).
And in the case of the heat equation, we can ensure it will be possible thanks
to Schwarz ’s theorem about switching partial derivatives :

∂i+ju

∂xi∂tj
=

∂i+j−1u

∂xi∂tj−1

(
∂u

∂t

)
=

∂i+j−1u

∂xi∂tj−1

(
∂2u

∂x2

)
=

∂i+j+1u

∂xi+2∂tj−1
= ... =

∂i+2ju

∂xi+2j

This graph illustrates the dependencies between the partial derivatives and

we see that all arrows will end up on the vertical axis which represents the
derivatives with respect to x only, namely the different parts of u0(x). The
causality being respected ensures that the recursion will end. This example in 2
dimensions shows how the principle of causality is more flexible than it was pre-
sented with the Airy equation. Indeed, we said that coefficients of specific order
should require strictly lower order coefficients, which is graphically represented
by arrows crossing the blue line from the top right-hand corner down to bottom
left-hand corner. But we state now that it is not a necessary condition as we
can see with the heat equation where higher order coefficients are required but
with respect to other variables. So arrows are allowed to cross the blue line in
the opposite direction as long as they end on the vertical axis.
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Figure 4 shows our heat equation solution developed at order 25. The vertical
axis is the temperature. We set the initial conditions to a sinus, which concretely
means we impose the temperature on one axis to be an alternation of warm and
cold at initial time. The graph converges to a uniform average value along the
time which is consistent with the physical interpretation.

Figure 4: Heat equation solution

What we call order here and denote by R is only the unrolling depth of the
infinite tree we build. The graph in figure 5 shows the computation times (in
seconds, on a common laptop computer) of the heat equation solution according
to order and the graph in figure 6 shows this computation time divided by the
number of coefficients of the solution, which lies in θ(RN ) with N the dimen-
sion, according to [13]. By dividing the computation time by the number of

Figure 5: Computation time Figure 6: Computation time/R2

computed coefficients (normalized to 1 for R = 0), we aimed at evaluating the
amount of additional computation done per useful coefficient, i.e. the “admin-
istrative” overhead induced by the resolution of the equation, due to auxiliary
data structures, memory allocations, etc. We observe only a linear overhead
and despite the relative simplicity of the heat equation, it comforts us in the
decisions taken so far for implementing our framework.
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7 Certified errors
We will now discuss finite Taylor expansions, i.e. considering remainders and
errors, not departing away from infinite Taylor series, as we use the same data-
structure. Also, many operations from previous sections which were coefficients
agnostic can be reused straightforwardly without any modification.

7.1 A simple error model
Differential equations put aside, we are already able to compute certified errors
in our framework. It merely requires the introduction of an arithmetical do-
main for errors. We introduce below a very simple error domain based upon
symmetric zero-centered monotonic error functions. According to equation 1,
where the only points of evaluation are 0 and λ ∗ x, we wish to represent: first,
any derivative at point 0 as the main value; second, (an over-approximation of)
the difference between evaluating a derivative at point 0 and evaluating it at
unknown point λ ∗ x, as the error part.

Let us assume K stands for the value domain. Error functions are then
elements of the following domain E, assuming we work in dimension N :

E , {f ∈ (K+)N → K+ | f(0) = 0, f monotonic}

The error model is then the product K×E. The semantics J � K of an element
of this model represents a function from variable bounds to sets of possible
values:

J〈v, ε〉K , X ∈ (K+)N 7→ {k ∈ K | |k − v| ≤ ε(X)}
The error model has N + 1 constructors: (k,0) for k ∈ K, denoted “k” and

the i ∈ [0, N − 1] indexed family (0,X 7→ Xi), denoted “Xi”. It is endowed
with a K-algebra structure and is further turned into an full-fledged domain
using suitable definitions of elementary functions on K×E, as illustrated below.
Similar definitions may be devised for other elementary functions:

〈v1, ε1〉+ 〈v2, ε2〉 , 〈v1 + v2, ε1 + ε2〉
α× 〈v, ε〉 , 〈α× v, |α| × ε〉
〈v1, ε1〉 × 〈v2, ε2〉 , 〈v1 × v2, |v1| × ε2 + |v2| × ε1 + ε1 × ε2〉
e〈v,ε〉 , 〈ev, ev × (eε − 1)〉
log〈v, ε〉 , 〈log v, log

(
1 + ε

v

)
〉 (v 6= 0)

sin〈v, ε〉 , 〈sin v, | sin v| × (1− cos ε) + | cos v| × | sin ε|〉
cos〈v, ε〉 , 〈cos v, | cos v| × (1− cos ε) + | sin v| × | sin ε|〉
sinh(v, ε) , (sinh v, | sinh v| × (cosh ε− 1) + | cosh v| × | sinh ε|)
cosh(v, ε) , (cosh v, | cosh v| × (cosh ε− 1) + | sinh v| × | sinh ε|)

Finally, all the useful information about the derivative at multi-index α of a
multivariate function f will be represented as the following pair:

〈vfα, εfα(X)〉 where

 vfα = 1
α! .

∂|α|f
∂Xα (0)

εfα(X) ≥ 1
α! . max

λ∈[0,1]
| ∂
|α|f
∂Xα (λ ∗X)− ∂|α|f

∂Xα (0) |
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This error model lets us compute approximations of polynomials with error
bounds as illustrates the example in figure 7.

Figure 7: polynomial approximation

The black graph is the polynomial P = 1
2X

2 −X.
The blue graph is the approximation of P at order 1.
The red graphs are the error bounds of the approximation on interval [−1.5, 1.5].

7.2 Taylor models
Taylor models are then built from cotensors of 〈value, error〉 terms. We consider
a function f ∈ RN → R, assumed analytical at point 0 and note respectively
fα and εα as the value and error at derivation multi-index α.

A Taylor model predicate TM(f,R) at order R in a neighbourhood of point
0 is defined as the following, obtained from equation 1:

TM(f,R) , ∀x,y ∈ RN .x ≤ y =⇒ |f(x)−
|α|≤R∑
α=0

fαx
α| ≤

∑
|α|=R

εα(y)|x|α

A Taylor model for parameters R is then the set of functions f such that
TM(f,R) holds true. In this formulation, the interplay between the two vari-
ables x and y enables to evaluate only once any error function on the bounds y
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of the variation domain for the variable x, since error functions are monotonic.
Our goal is to allow avoiding computations of error functions at each point x,
while still allowing for some precision around 0, since the right-hand side of a
Taylor model inequality is a x-polynomial form that tends to 0 when x→ 0.

7.3 Computing Taylor series with errors
The arithmetical operators of Taylor series, as seen in section 4, only involves
arithmetical operators between coefficients. We demonstrated above that our
error model is indeed endowed with such arithmetical operators. Therefore, the
last ingredients to our error model needed to handle differential equations are
the differential operators.

The case for partial derivatives is transparent and handled similarly as in
section 4.3, as it only involves multiplying by ∆k and shifting coefficients in the
infinite tree structure.

Finally, to address the integration operator, we rely on the following gener-
alized Leibniz’s rule:

∂

∂Xi

Xj∫
0

f =

Xj∫
0

∂f

∂Xi
(i 6= j)

∂

∂Xi

Xi∫
0

f = f

This rule entails that, as for values only, the infinite tree of
∫Xi
0

f is built by
filling nodes with 0 (the value of the integral when Xi = 0), from the root down
until the variable Xi occurs. Then, from that point downward, the remaining
values are built from the ones taken from f at the same position but ignoring
the first occurrence of Xi.

The situation is more complex as regards errors. We have the following, for
α a derivation multi-index not containing Xi:

1
α! . |

∂|α|

∂Xα (
Xi∫
0

f)(λ ∗X)− ∂|α|

∂Xα (
Xi∫
0

f)(0) |

= 1
α! . |

Xi∫
0

(∂
|α|f
∂Xα )(λ ∗X)−

Xi∫
0

(∂
|α|f
∂Xα )(0) |

= 1
α! . |

Xi∫
0

(∂
|α|f
∂Xα )(λ ∗X) |

≤ 1
α! . max

λ∈[0,1]
| ∂
|α|f
∂Xα (λ ∗X) | ∗ | Xi |

≤ (| vfα | +εfα(X))∗ | Xi |

Then, denoting ε′α(X) the error function of the α derivative of
∫Xi f , we get:

ε′α(X) =
1

α!
. max
λ∈[0,1]

| ∂
|α|

∂Xα
(

Xi∫
0

f)(λ∗X)− ∂|α|

∂Xα
(

Xi∫
0

f)(0) |≤ (| vfα | +εfα(X))∗ | Xi |

25



A difference finally appears in the treatement of values versus errors. Values
of
∫Xi f are either 0 or depend upon values of f strictly less deep in the tree

structure. Error terms are not strictly causal as they may depend upon values
and errors of f at the exact same position. This will raise issues when considering
differential equations, as shown in section 7.4.

It yields the following implementation of the lift operator :

let rec lazy_absorb : type n. R.Err.t -> n Nat.isnat -> (R.t, n) tree ->
(R.t, n) tree =
fun err n st ->
lazy (match n with
| Nat.Z -> Nil
| Nat.S n’ -> Node (lazy_absorb err n’ (left n st), R.cons (value_0 st) err,

lazy_absorb err n (right st)))

let lift : ’k Nat.isnat -> (’d, ’k, N.t’) Nat.add ->
(’a, N.t) tree -> (’a, N.t) tree =

fun k pr st ->
let err_k = R.Err.var k (Nat.Sadd pr) in
let rec aux : type n d k. n Nat.isnat -> (d, k, n) Nat.add ->

(’a, n Nat.succ) tree -> (’a, n Nat.succ) tree =
fun n pr st ->
lazy (match n with
| Nat.Z -> Node (nil, R.cons (value_0 st) err_k, st)
| Nat.S n’ ->
match pr with
| Nat.Zadd -> Node (lazy_absorb err_k n (left (Nat.S n) st),

R.cons (value_0 st) err_k,
st)

| Nat.Sadd pr’ -> Node (aux n’ pr’ (left (Nat.S n) st),
R.cons (value_0 st) err_k,
aux n pr (right st)))

in aux (match N.isnat with Nat.S n’ -> n’) pr st

where err_k is the function X 7→ |Xi| and R.cons (value_0 st) err_k repre-
sents the delayed definition of the function X 7→ (| vfα | +εfα(X))∗ | Xi |. This
technical subtlety is necessary to ensure that recursive definitions of error func-
tions, which naturally appear in differential equation solving, won’t diverge at
definition time (divergence at evaluation time is treated in section 7.5). Primi-
tives left, right and value_0 are all lazy accessors to respectively left sub-tree,
right sub-tree and value of their argument. Apart from this extra laziness,
the functions lazy_absorb and lift both amount to applying R.cons uniformly
through the tree. They are very close in nature to the original lift function
from section 4.

It is then possible to compute integration of Taylor series in dimension 1
with bounding errors as shows the example in figure 8.

We notice that the approximation looks like a polynomial of order 3 even if
it has been computed until order 4 because there are no coefficients of order 4.
We mention the fact that the errors computed with integration can be explained
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Figure 8: integration with errors

The black graph is the integral of 2(X4 +X2), which is 2
5X

5 + 2
3X

3.
The blue graph is the approximation of this integral at order 4.
The red graphs are the error bounds of the approximation on interval [−1.5, 1.5].

by the over-approximation computed with the model presented above but can
also be due to the zero-centered error model which has the inconvenient of not
being very precise.

7.4 Issues with recursive definitions
As already stated, dependencies between errors at different derivation orders
do not respect the causality relation fulfilled by pure values. We illustrate
this discrepancy between values and errors, considering the following partial
development of a Taylor series with errors for a bivariate function f :

f(X,Y ) , 〈f0, ε0〉+X.〈fX , εX〉+ Y.〈fY , εY 〉+ . . .

Then, integrating f along X, accounting for errors, yields the following series:∫ X

f = 〈0, |X|.(|f0|+ ε0)〉+X.〈f0, ε0〉+ Y.〈0, |X|.(|fY |+ εY )〉+ . . .

Unfortunately, we remark that the error term |X|.(|f0|+ε0) at order 0, while
still a zero-centered monotonic error function, directly depends on ε0, the error
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function of f at order 0. The same problem occurs at order Y . On the contrary,
the value part of the integrand is always 0, so is independent of f . As we wish to
define f recursively through such an integrand, setting for instance f =

∫X
f ,

we face the necessity to find a different computation scheme for errors than for
values.

7.5 Computing errors in the univariate case
As errors do not behave as values, we need first to reconsider the definition of
causality given in 4.4. The change comes from the integration operator, where
the error term at order α = 0 of

∫X
f depends upon the error term of f at the

same order. Therefore, for a (recursive) differential equation, whereas the value
at order α depends only upon values at order strictly less than α, errors obey a
looser scheme.

Still, any error (and value) depends upon a finite number of other terms.
Indeed, let us assume an equation in solved form u(x) = expr and consider
any path in expr leading to u(x). Since expr is causal, there is strictly more
integration operators than derivation operators in that path, that is a strictly
positive number of integrators I. Let us define M as the maximum of this
quantity I on every such path in expr. Then, the interval [0,M ] is an upper
bound on the set of derivation orders of the solution u(x) that could be mutually
dependent (as regards errors). Above that value, all remaining derivation orders
of u(x) strictly depend upon less deep (and previously computed) coefficients.

Even if the value of M may be approximated through a static analysis, this
is left for future work as we choose to ask the user to provide this value to the
fixpoint engine that will compute errors. The principle is quite simple: the first
M errors will be treated as a vector of functions and we compute a fixpoint
on that vector as a whole, while letting the values being computed as before.
For other errors, we let the original scheme untouched since errors will then
behave as causally as values. Therefore, the conception of the fixpoint engine
only requires a slight adaptation to the original scheme which was trivial since
it consisted in the straightforward definition of a recursive value in OCaml.

Concretely, we need a way to separate and handle theM first errors,M being
user-provided, usually a small integer value. To that end, we use the primitive
continuations defined in [8] as a clean solution. We briefly recall here the princi-
ples at work: a different return type result distinguishes computations of error
functions that return normally with a value – Done r where r is the result – and
interruptions that return a resumable computation instead – Request (i, cont)
where i is the derivation order that was called and interrupted and cont is the
continuation that waits for a value in order to resume.

type result = Done of R.t | Request of (int * (R.t -> result))

The first case is reserved for errors at order above M whereas the second
one allows to adapt the scheme for the M first errors. Indeed, instead of calling
an error function below order M and waiting for it to terminate, which it may
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not do, we interrupt it and then we have to guess a proposed value for the
fixpoint. If the guess is wrong, i.e. doesn’t respect the required inequalities,
we iterate until a correct guess is made that constitutes the return value of the
error function for that call.

According to these principles, we first untie the first error functions, replac-
ing them by interruptions. In formal terms, using the delimited continuations
primitives shift and reset:

untie (k,
∑
i∈N
〈vi, εi〉.Xi) =

∑
i∈[0,k]

〈vi, δi〉.Xi +
∑
i>k

〈vi, εi〉.Xi

where δi(x) = shift (fun k -> Request (i, k))

Then, we tie error functions back by guessing a correct fixpoint value. It
amounts to finding a vector of values e of dimensionM such that ei ≥ expr[ei/εi(x)]:

tie (k,
∑
i∈N
〈vi, εi〉.Xi) =

∑
i∈[0,k]

〈vi, δi〉.Xi +
∑
i>k

〈vi, εi〉.Xi

where δi(x) ≥ match reset εi(x) with Done r -> r | Request (j, k) -> k δj(x)

That is, the guess made for the solution u(x) should be coarser than the one
computed through expr, or equivalently said, expr should be contractive with
respect to errors. This simply transliterates the argument given in [2], which in
turn stems from Schauder’s fixed point theorem.

The complete OCaml code is not given here for the sake of simplicity as it
also includes: heuristics for making a small enough correct guess; memoization
of previously made guesses; and an additional loop around the match . . . with
construct, as evaluation of an error function εi may involve several interruptions
made with shift. Globally, the fixpoint engine is built by composing tie and
untie around expr, with k=M .

let fixpoint :
’k Nat.isnat -> ((R.t, N.t) tree -> (R.t, N.t) tree) -> (R.t, N.t) tree =
fun k expr ->
let rec fix = lazy (Lazy.force (tie k (expr (untie k fix)))) in
fix

8 Application to the Airy equation

8.1 Different orders
We experiment our computation scheme on the problem of finding a certified
approximation to the Airy ODE, introduced in 6.1.

First, we claim that, by straightforwardly applying the various schemes ded-
icated to error computation and especially the integration operator, only the
error function ε0 (at order 0) depends upon itself in the Airy equation. Every
other error function at higher orders can be defined recursively from ε0.

Thus, it allows us to determine the minimal value k = 1 for the number
of error functions that could depend upon each other. We now can make an
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informed guess for the k parameter of the fixpoint function. As a matter of
fact, providing a greater value for k can only produce coarser approximations,
yet without compromising our method. On the contrary, providing a smaller
value (here only k = 0 is possible) would result in a clear runtime error, showing
that the error function ε0 is ill defined.

Figure 9 shows our results about approximating the Airy ODE at different
orders. Our approximations are quite cheap as they only require the computa-
tion of exactly n+ 1 values and at most n+ 1 error bounds at order n for each
choice of interval of certified integration. This amounts, at order 15, the highest
order we tested, to computing only 32 floating point values for the whole chosen
interval. Note that our choice of Taylor model produces approximations not in
the classical form of a tube surrounding the solution, but as a tube “pinched”
at point 0, where the error is known to be zero.

As regards precision, since our error model is quite coarse, as shown in
section 7.1, we are not yet capable of comparing favorably with mature tools
such as Dynibex [4] which can integrate ODE for long time periods while keeping
a very high precision. To mitigate this raw fact, the amount of floating point
numbers computed by these tools is incomparably larger, as they tend to split
the interval of integration in tiny time slices (typically 0.01 seconds) and then
apply in each such slice certified sophisticated Runge-Kutta integration schemes.
The maximum error spans, at successive orders 1, 5, 10 and 15, computed on
the bounds of the integration interval, are approximately 0.322, 0.16, 0.1 and
0.016, which represents at most a deviation of 86.6%, 41.3%, 24.6% and 1.1%
from the function we want to approximate on the whole interval.

9 Perspectives

9.1 Canonical method for composition
As defined in section 5, composition involves the resolution of a partial dif-
ferential equation. This hinders the computation of error bounds. Indeed, as
far as we know, there is no established general method to solve such equations
with certified errors, beyond ad-hoc situations such as elliptic, parabolic, etc,
equations with specific initial conditions.

In order to devise a direct more tractable and non recursive way to compose
Taylor series, following schemes such as Faà di Bruno’s formula, we first need to
handle errors. As in formal power series, composition (f ◦ g) may be achieved
only when g has no constant part. To factorize out the constant part of g (so that
we fall back to evaluation at point 0), we depend on an additive decomposition
of f , when available.

Again, we sum up some decompositions of standard elementary functions.
For every An+1 ∈ Rn+1, we have the following equations, where we remark that
their right-hand sides are built from a constant part (VA) and another term
without a constant part:
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Figure 9: Airy ODE with errors

The black graph is the theoretical solution of Airy ODE.
The grey vertical bars shows the [−.75, 0.75] interval on which errors are com-
puted.
The red graphs are the error bounds of the approximation on interval
[−0.75, 0.75] at orders 1, 5, 10 and 15.
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We are currently developing a canonical composition operator f ◦g following

decomposition schemes that are all well known to strongly involve combinatorial
reasoning. Our preliminary results already show that the administrative content
of such heavy combinatorial computations, such as iterating over partitions,
combinations, permutations and so on, have a great cost and are not yet on a
par with the differential approach in terms of efficiency, at least for the tested
instances. More investigation is required in that respect. We still expect to
obtain an efficient canonical solution, with a simpler error propagation scheme
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and furthermore less computations to reduce such propagation.

9.2 Going further
Many other sensible choices for computing errors are also possible such as arbi-
trary intervals, zonotopes, etc, but we haven’t experimented with these solutions
yet. We chose to stick to the lightweight zero-centered error domain, giving up
some precision to save computation time, mostly because it is much simpler
to implement and also because we rely on on-demand cotensor exploration to
increase precision, by computing deeper coefficients of Taylor expansions. We
nevertheless plan to address the problem of finding a well-suited error domain,
in terms of precision with respect to computation time.

Accounting for numerical errors is also on our roadmap. As a first approach,
we postulate that we would only have to represent every real number with an
interval of lower and upper approximations given as two floating-point num-
bers, lifting every computation from an algebra of real numbers to an algebra of
floating-point intervals. The main question will be to test whether accumulating
numerical errors along a huge number of computations could significantly de-
grade precision, as the derivation order increases, jeopardizing the core feature
of our framework.

Another method, closely related to our own functional language framework
exploiting laziness, would be to consider using a setup for exact real number
algebra, as illustrated for instance in [5]. Besides its lack of efficiency wrt.
floating-point numbers, it would not suffer from a potential untamable accumu-
lation of errors and would also open the way for a complete formal verification
(including tensorial structure and numerical aspects).

As a last remark, veering off from certified errors, we emphasize the fact that
our data-structures and operations are to a large extent unaware of a specific
choice of basis. Thus we could express our analytical functions in another basis
than the monomial one if it better fits our needs, without deeply impacting the
development so far. One such sensible choice is the Poisson basis [6], which is
used for geometric approximation and modelization. This would allow defining
curves, surfaces, hypersurfaces, etc, as solutions of PDE, in a very compact way.

10 Conclusion
With a renovated view on Taylor series, we provide an implementation of a
genuine full-fledged algebra of such series, in the multivariate case. Even if the
work is far from being completed, it has been proven useful already as we are
able to deal smoothly with partial differential equations in solved form, without
any input from domain expert. To the best of our knowledge, implementing
such an algebra of Taylor series with a concern on efficiency through carefully
crafted algorithmics but also on correctness through strong typing has not been
tried before. Indeed, although not presented here, our implementation puts an
emphasis on strong typing, through extensive use of advanced OCaml GADT
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features. This proved really helpful in designing correct-by-construction code,
at least with respect to dimensions and derivation orders, while implementing
complex and error-prone numerical computations.

Also, we are not aware of any implementation of such series that handles
certified errors, even in the univariate case, while respecting our on-demand
lazy computation scheme. This is a first promising step which paves the way
for applying our library in the paradigm of guaranteed integration for instance.
Careful investigations are needed to address the much more complex multivari-
ate case.

The next big challenges to take up are: first, the introduction of a better
composition scheme; second, various error domains and computation schemes
compatible with every construction of our algebra.
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