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Abstract

We will demonstrate that if the curvature of photons is quantized and linked to the Planck
length, then the bending of a photon in a gravitational field must likely be the Planck length
per photon wavelength. If we apply this concept to the Hubble sphere, the longest possible
wavelength that can be bent into the Hubble sphere correspond to a wavelength equal to the
energy that very precisely predicts the CMB temperature. This leads us to the ability to
predict not only the CMB temperature, but also provides a potential mechanism linked to
the Planck scale for explaining why the CMB temperature is what it is. We further discuss
how this is related recent theoretical findings related to the CMB temperature. It seems like
more and more theoretical evidence points towards a solid foundations for that the CMB
temperature clearly can be presicely predicted, not only measured as commonly assumed.
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1 Background on basic circle tangent geometry

As the distance from the tangent to the circumference of the circle will play an important role
in our analysis, we will quickly go through a refreshment on this, even though it is naturally
well-known. In Figure 1, if we want to find the distance b, which is the distance between the
tangent and the circumference of the circle with radius r, then we must have that:

b = r � r0 (1)

Now based on Pythagoras theorem we must have:

r02 = r2 �
⇣a
2

⌘2
(2)

Replacing this value for r0 back into equation (1) gives us the formula for the distance b
from the tangent (tip) to the circumference:

b = r �
r
r2 �

⇣a
2

⌘2
= r �

r
r2 � a2

4
(3)
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Figure 1: The figure illustrate the basic of the geometry of a tangent to a circle and how we can
find the length b if we know r and a as well as a if we know r and b.

The distance b also represents how much the line a must bend over its own distance in
each direction to follow or become part of the circumference of the circle. Furthermore, if b
is known, then we can solve equation 3 for a, which gives:

a = 2
p
2br � b2 (4)

We will in the next section heavily relay on this simple and well known geometry principles
in deriving a formula for predicting the CMB temperature based on that a photon if bent in
a gravitational field must minimum be bent by the Planck length.

2 Quantized bending of light leads to the CMB
temperature

Many physicists [1–4] assume the Planck [5, 6] length is the minimum length and also that
quantum gravity must be related to the Planck scale. Based on this we will conjecture that
a wavelength in a gravitational field must in gravitational field must bend minimum the
Planck length over its own wavelength. If the gravitational field is too weak to bend it a full
Planck length then the photon will not be bent. This we have tried to illustrated in figure
2. The only di↵erence between A) and B) in the figure is that we have drawn the bending as
smooth-bending in B).

So we will conjecture that if a photon is bent in a gravitational field it must be bent
with minimum the Planck length over its own photon wavelength. This could even be the
maximum in addition to the minimum a photon can be bent over its own wavelength. To be
bent two Planck length the photon must travel two photon wavelength in the gravitational
field etc. This seems to be somewhat line with basic logic reasoning from quantum gravity in
that even bending of light must be quantized and linked to the Planck scale, even if we not
can see this particular point have been discussed. However to be more than a conjecture it
should lead to testable predictions, and to our own surprise it seems to do so as we will come
to in this section.

In a gravitational field the Schwarzschild [7] solution predict light bending of

✓ =
4GM

c2r
(5)
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Figure 2: We assume a photon if it is changing direction in a gravitational field (is bent) minimum
must bend (curve) minimum the Planck length. The two figures above illustrates the same, one
smoothly bent and one bent jut at the middle.

For a black hole, we have a radius equal to the Schwarzschild radius r = rs =
2GM

c2
, and then

the light bending becomes

✓ =
4GM

c2rs
= 2 (6)

This means the light beam is bent around 360 degrees. One interpretation of this could
be that photons get trapped in the event horizon or close to it and travel around the black
hole. Alternatively, the more standard solution would be that they fall into the black hole
and end up in the central singularity.

In the recent exact solution to Einstein’s [8] field equation given by Haug and Spavieri
[9], the light bending (when charge is set to zero) is given by

✓ =
4GM

c2r
� 2G2M2

c2r2
(7)

However, the event horizon for a black hole under this metric is rh = GM

c2
= 1

2rs, so this
leads to a light bending at the horizon of the black hole of

✓ =
4GM

c2rh
� 2G2M2

c2r2
h

= 2 (8)

So, just as in the Schwarzschild metric, it seems like a light beam is bent 360 degrees
around the black hole. There is an additional factor that makes this more likely under the
Haug and Spavieri metric. The orbital velocity in the Haug-Spavieri metric at the event
horizon is given by:

vo =

r
GM

rh
=

s
GM
GM

c2

= c (9)

This supports the view that photons could end up orbiting the black hole at the event horizon
itself or very close to it.

Next, we will move on to cosmology. Since the break through discovery by Hubble [10]
and Lemâıtre [11] the Hubble constant, Hubble radius and the Hubble sphere has plaid
important role in cosmology. Even in the ⇤-CDM model, the Hubble radius plays a central
role, particularly in the critical solution of the Friedmann equation [12]. However, also in
other cosmological models, the Hubble radius plays an important role as well. One class of
such models is the so-called RH = ct type cosmological models that are actively discussed to
this day (see [13–18]). Another class of cosmological models assumes that the Hubble sphere
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is actually a special kind of black hole-type universe. This idea was suggested at least as
early as 1972 by Pathria [19] and again in 1994 by Stuckey [20]. Despite being in conflict
with the ⇤-CDM model, the black-hole universe idea is actively discussed to this day [21–23].
It’s important to note that there are many metrics to study here; the Schwarzschild metric
is the best known solution, but can be seen as just a start. We also have for example the
Reissner-Nordström [24, 25] metric, the Kerr [26] metric, the Kerr-Newman [27, 28] metric,
and also the latest Haug-Spavieri metric and also other metrics. There is also the possibility
to combine concepts from RH = ct cosmology with growing black holes, as, for example,
done under the Schwarzschild metric by Tatum et al. [29]. Our point is simply that it is too
early to claim what one will consider to be the best cosmological model in the future. At
this stage, we would personally say that the best approach is to continue investigation of the
Lambda-CDM model, but also the less known alternative cosmological models. Over time,
many researchers can fully explore the di↵erent solutions of Einstein’s field equation, as well
as how di↵erent quantum gravity models can fit into cosmology, first then we will likely be
able to reach some type of optimal cosmological model. We hope this paper can be a small,
but important step in that direction. What we will present cis quite general and could be
consistent with a series of di↵erent cosmoological models.

The Hubble radius can represent di↵erent things in di↵erent cosmological models; it is a
black hole event horizon in some pure black hole cosmological models. It could also simply
be an information horizon of some sort in several cosmological models such as in some classes
of RH = ct models. The following analysis likely best fits the black-hole type models of the
universe, but at this stage, other models such as ⇤-CDM should not be excluded.

If the minimum light bending above zero for a photon per photon wavelength is the Planck
length, then for a photon to be able to orbit the Hubble sphere or not escape the Hubble
sphere, it must have a length as illustrated in Figures 3 and 4.

Figure 3: A photon is passing just along the horizon (surface) of the Hubble sphere. To follow
the sphere a photon with wavelength �̄, the photon needs to curve at least the Planck length while
moving its own photon wavelength to follow the surface.
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Figure 4: The same as the figure 3 but the important details are easier to understand if we just
focus on the Hubble circumference. So for a photon to stay inside the Hubble sphere it must bend
minimum the Planck length while moving its own wavelength to stay inside the Hubble sphere. This
wavelength we can calculate from basic geometry given in section 1, and it is �̄ = 2

p
RH2lp.

Based on section one this means we have the following equation

b = r �
p
r2 � a2/4

lp = RH �
q
R2

H
� �̄2/4 (10)

where RH = c

H0
is the Hubble radius and lp is the Planck length that here represent the

minimum curvature over the wavelength of the photon (particle). Solved for the wavelength
we get

�̄ = 2
p
RH2lp (11)

This could mean longer wavelengths than that can likely escape out of the Hubble sphere.
The temperature related to the energy given by this predicted special wavelength in equation
(11) is given by

T = ~f 1

kb
= ~ c

�̄

1

kb
= ~ c

2
p
RH2lp

1

kb
⇡ 17.11k (12)

If we divide this by 2⇡, we get a temperature of approximately 2.72k. Despite not being
ideal, it is far from abnormal to adjust the end result with a factor like 2⇡. Adler et al.
[30], for example, did so in a paper related to Hawking [31] temperature and simply called it
a “calibration factor.” This is even how the reduced Planck constant came into being, also
known as the Dirac constant. Dirac needed an adjustment of 2⇡ and divided the Planck
constant by 2⇡, which is why it is also known as the Dirac constant. After adjusting for the
“calibration factor,” we get

TCMB = ~f 1

kb2⇡
= ~ c

�̄

1

kb2⇡
= ~ cp

RH2lp

1

kb4⇡
⇡ 2.72+0.082

�0.069k (13)

we have here used a Hubble parameter in calculation of RH given by the recent published
study by Kelly and et. al [32] of 66.6+4.1

�3.3 (km/s)/Mpc. The estimated CMB temperature is
very close to measured CMB temperatures, see for example [33–36]. We are here focusing
on the CMB temperature now, that is from z close to zero. If we examine the Cosmic
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Microwave Background (CMB) temperature from a distance, specifically when the redshift (z)
is significantly higher than zero, we naturally encounter the well-known rule Tk = TCMB(1+
z), which has been extensively tested up to a cosmological redshift of approximately z = 6.
However, the uncertainty in CMB temperature measurements from distant observations is
notably high. For instance, Riechers et al. [37] predicts the CMB temperature based on
measurements at z = 6.34. The one standard deviation estimate then spans a wide range,
from 16.4 to 30.2 Kelvin.

In a recent paper, Haug and Tatum [38] come to the same result simply by conjecturing
that the CMB temperature is the geometric mean temperature of the minimum and maximum
temperature in the Hubble sphere, by considering the minimum and maximum wavelengths.
They simply assume the maximum wavelength in the Hubble sphere is equal to the diameter of
the Hubble sphere or alternatively the circumference. Furthermore, they assume the minimum
wavelength is the Planck length or alternatively the circumference of a Schwarzschild micro
black hole. These two geometric approaches do not seem to contradict each other but rather
appear to be complementary.

This also takes us back to the interesting formula published by Tatum and Seshavatharam
[39, 40] in 2015, which was

TCMB =
~c3

kb8⇡G
p

Mcmp

=
~c

kb4⇡
p
RH2lp

⇡ 2.72+0.082
�0.069k (14)

where Mc is the critical Friedmann universe mass Mc =
c
3

2GH0
, and we use the same Hubble

constant prediction as given above. The last part of this formula is identical to the formula we
have derived here. If one has a formula that can also predict the CMB temperature and not
only measure the CMB temperature, then this clearly must be a breakthrough in cosmology.
However, naturally, only if such a formula is based on a solid foundation. Tatum et al applied
the formula to a growing black hole universe rooted in the Schwarzschild metric.

Tatum et al. arrived at this formula somewhat heuristically (as is often done at an initial

break through) by modifying the Hawking temperature formula THw = ~c3
kb8⇡GM

, by replacing

M with
p
Mcmp. This has hardly gained any attention in the research community. The

reason for this is likely that they had demonstrated no derivation of their formula so it was
unclear if it truly could be correct despite giving the correct CMB temperature. Further it was
published in a very low-ranked journal. Now, eight years after its first publication, we know
this formula is consistent with simple geometric approaches rooted in sound reasoning, such
as a photon minimum must be bent by the Planck length if it is bent in a gravitational field.
Additionally, the formula has recently been proven to be derived by the Stefan-Boltzmann
law, see [41]. We shortly below list the recent findings in CMB temperature that:

3 Conclusion

If one assumes that a photon, when bent in a gravitational field, must be bent by the Planck
length, then in the Hubble sphere, it seems like photons with microwavelengths are unlikely
to move out of the Hubble sphere. They are trapped inside the sphere and may even be
possibly captured from the outside of the sphere. This geometric quantum approach seems
to lead to a formula that can very precisely predict the CMB temperature.
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