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In this work, we concern the well-known Lie group theory to find symmetries of differential equations with ψ-Caputo fractional derivative of variable order. In this sense, we discuss the Leibniz-type rule and the chain-type rule for the ψ-Caputo fractional derivative of variable order. In the end, we apply the results obtained in the fractional Harry Dym-type equation to find its symmetries and we present a solution for fractional Harry Dym-type equation with constant order.

Introduction and motivation

Nowadays, in many areas of research, in particular, exact sciences, the use of arbitrary order calculus, famously known as Fractional Calculus (FC), has been widely considered, due to the fact that it provides new interpretations for classical models, as well as enabling alternatives in the formulation of phenomena models, whether they come from physics, chemistry, biology or engineering [START_REF] Machado | Recent history of fractional calculus[END_REF]. Given this context, throughout the development of the various concepts that supported FC, numerous differential operators emerged, which gained the label of fractional derivative. There are many definitions in the literature and each of them are based on attempts to solve a class of differential equations or even arise with the purpose of generalizing an already known fractional derivative [START_REF] Teodoro | A review of definitions of fractional derivatives and other operators[END_REF][START_REF] Valério | How many fractional derivatives are there?[END_REF]. Among the most used fractional derivative formulations with a singular kernel are those in the sense of Riemann-Liouville, Caputo, Grünwald-Letnikov and Hadamard [START_REF] Oliveira | A review of definitions for fractional derivatives and integral[END_REF]. However, the various generalizations of the fractional operators mentioned above have gained prominence in articles. It is worth mentioning that in most cases these generalizations are premised on recovering already established fractional derivatives.

In [START_REF] Samko | Fractional integrals and derivatives[END_REF], the definition of the fractional derivative of a function with respect to another function is proposed, and it is also pointed out that from this definition it is possible to recover the known fractional derivatives, such as the Riemann-Liouville fractional derivative or the Caputo fractional derivative. Furthermore, in the paper [START_REF] Samko | Integration and differentiation to a variable fractional order[END_REF] the definition of fractional derivative of variable order was introduced and throughout the paper the authors left several questions that were considered for the study of fractional operators of variable order.

In [START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF] the authors introduced the ψ-Hilfer fractional derivative and presented several properties of this operator that generalized several other operators. In another published work, the same authors in [START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] present the Leibniz-type rule for the ψ-Hilfer fractional derivative. Even presenting the more general Leibniz-type rule, that is, in the case of the broad fractional derivative, some particular cases, such as the Leibniz-type rule for the ψ-Riemann-Liouville fractional derivative and for ψ-Caputo fractional derivative are references in this paper.

The Leibniz-type rule is important for several applications, in particular, for the construction of infinitesimal prolongations, in order to find Lie symmetries of fractional differential equations [START_REF] Zhang | Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework[END_REF]. In this sense, it is necessary to obtain these framework of the Leibniz-type rule and, based on them, present a framework for Lie symmetries of fractional operators. For the study of this paper, we present the Leibniz-type rule for ψ-Caputo of variable order.

The Lie Groups concept emerged in the 19th century with Sophus Lie, who used an idea similar to that used by Abel and Galois in the study of algebraic equations. This way, Sophus Lie used the concept of groups in his investigation of differential equations [START_REF] Oliveri | Lie symmetries of differential equations: classical results and recent contributions[END_REF]. Several researchers have contributed and still contribute to expanding the understanding of Lie symmetries for the study of differential equations. Furthermore, there is a large literature that provides introductory and advanced concepts regarding the use of this tool to understand models involving differential equations [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF][START_REF] Ovsiannikov | Group analysis of differential equations[END_REF][START_REF] Olver | Applications of Lie groups to differential equations[END_REF]. According to Ibragimov, the importance of Lie group analysis cannot be overemphasized-it helps to solve very important differential equations used in mathematical models in many and diverse fields [START_REF] Luo | Symmetries and Applications of Differential Equations[END_REF]. Over the years, the theory built, which, firstly, for differential equations with integer derivatives, began to be used for fractional operators [START_REF] Buckwar | Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations[END_REF].

In 2007 Gazizov et al. [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF], discuss an appropriate algorithm for finding Lie symmetries for Riemann-Liouville and Caputo fractional derivatives. As a result, from the effervescent growth of research on Lie symmetries for fractional equations, many important works emerged, for example, the paper [START_REF] Leo | A theorem on the existence of symmetries of fractional pdes[END_REF] which was published in 2014 and the article [START_REF] Leo | A foundational approach to the Lie theory for fractional order partial differential equations[END_REF] published in 2017.

In the paper [START_REF] Bakkyaraj | Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative[END_REF] the authors found the infinitesimal prolongation for fractional differential equations in which the fractional derivative used is in the Caputo sense involving m dependent variables and n independent variables. In the work [START_REF] Iskenderoglu | Symmetry analysis of initial and boundary value problems for fractional differential equations in Caputo sense[END_REF], the researchers investigated Lie symmetries for initial and boundary value problems using Caputo derivatives. On the other hand, in [START_REF] Zhang | Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework[END_REF] carried out an approach to the use fractional differential equations that involve the Caputo operator are smaller than those that work with the fractional derivative in the Riemann-Liouville sense. In our assessment, this, perhaps, is due to the fact that Leibniz's rule for Caputo is different when the initial conditions for the functions are non-zero.

In the work [START_REF] Costa | Complete infinitesimal prolongation of the Riemann-Liouville and Caputo derivatives[END_REF] researchers proposed extending the concept of prolongation to the Riemann-Liouville and Caputo derivatives of constant order α and presented a detailed construction for the infinitesimal prolongation. In the paper [START_REF] Oliveira | The point symmetry space-fractional porous medium equation in terms the Riesz-fractional derivative[END_REF] the authors explain the concept of infinitesimal prolongation for fractional derivatives in the sense of Riesz and Weyl, in addition, they apply the proposed theory to the equation for porous media. It is worth mentioning that the work [START_REF] Zhang | Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework[END_REF] is the first to present the Lie symmetry method for fractional derivatives with variable order, in this case for Caputo fractional derivative with variable order.

Motivated by the results highlighted above, in this paper we believe that the results obtained are best described as follows:

At first, we are interested in presenting Leibniz-type rule of variable-order for the ψ-Riemann-Liouville fractional integral and for the ψ-Caputo fractional derivative, in particular, the chain rule type for ψ-Caputo fractional derivative. The objective of discussing such results serves as a tool in the construction of the next objectives. However, it is worth highlighting that it is not an easy task, much less trivial, to work with fractional operators, especially when the order is variable, as it requires more care with the properties of the operators, this becomes clear during the work.

On the other hand, as a consequence and motivation of the new properties carried out in the first stage, we will consider the fractional partial differential equation of the form

(1.1) C D α(t);ψ(t) a + u = E [U ] ,
where u = u(x, t) denotes the unknown function, and E [U ] = E(x, t, u, u x , u xx , u xt , . . .) is the function that depends on x, t, and all derivatives of integer order u.

In this second moment, we will approach the infinitesimal generator and the extensions for the problem (4.1), among other properties involving Lie symmetries. To do this, we will use the results discussed in the first stage. It is worth highlighting here that the order of the fractional derivative α(t), although it allows functions to be chosen as a particular case, there is the semigroup problem that such a derivative does not satisfy, in fact all fractional derivatives of variable order. This problem is overcome in the discussion of extensions. Finally, in order to elucidate the results discussed, we carried out a study of the fractional Harry Dym-type equation in the form

(1.2) C D α(t);ψ(t) a + u = u 3 u xxx , with, 0 < α(t) < 1, where C D α(t);ψ(t) a + (•) is presented in Definition (3.1).
Let ∆ be a differential function written as

(1.3) ∆ = C D α(t);ψ(t) a + u -u 3 u xxx
A natural consequence of the results obtained here is that in the limit α(t) → 1, we obtain the entire case. Furthermore, we highlight the wide class of particular cases based on the particular choice of the parameters α(t) and the function ψ(t).

Otherwise, the article is organized as follows. In Section 2, we present some important results from the theory of Fractional Calculus. In Section 3, we present the Leibniz-type rule for fractional derivative in the sense of ψ-Caputo fractional derivative of variable order. Making use of the concepts from the previous section, in Section 4, we present the framework for Lie symmetry of partial differential equations in ψ-Caputo fractional derivative variable order. Finally, in the last one section, we apply the concepts presented in fractional Harry Dym-type equation.

Mathematical background: Preliminaries results

Let

[a, b] (0 < a < b < ∞) be a finite interval on the half-axis R + and C [a, b], AC n [a, b], C n [a, b
] be the spaces of continuous functions, n-times absolutely continuous, n-times continuously differentiable functions on [a, b], respectively [START_REF] Kilbas | Fractional integrals and derivatives (theory and applications[END_REF][START_REF] Vanterler Da | On the ψ-Hilfer fractional derivative[END_REF].

The space of the continuous function f on [a, b] with the norm is defined by

(2.1) ∥f ∥ C[a,b] = max t∈[a,b] |f (t)|.
The weighted space C γ;ψ[a,b] of functions f on (a , b ] is defined by

(2.2) C γ;ψ [a, b] = {f : (a , b ] → R; (ψ(t) -ψ(a)) γ f (t) ∈ C [a, b]} , 0 ≤ γ < 1,
with the norm,

(2.3) ∥f ∥ C γ;ψ [a,b] = ∥(ψ(t) -ψ(a)) γ f ∥ = max t∈[a,b] | (ψ(t) -ψ(a)) γ f (t)|.
The weighted space

C n γ;ψ [a, b] of functions f on (a , b ] is defined by (2.4) C n γ;ψ [a, b] = f : (a , b ] → R; (ψ(t) -ψ(a)) γ f (t) ∈ C n-1 [a, b] ; f (n) (t) ∈ C γ;ψ [a, b] , 0 ≤ γ < 1,
with the norm

(2.5) ∥f ∥ C n γ;ψ [a,b] = n-1 k=0 ∥f ∥ C[a,b] + ∥f (n) ∥ γ;ψ[a,b] = max t∈[a,b] | (ψ(t) -ψ(a)) γ f (t)|, where C 0 γ [a, b] = C γ [a, b] . The weighted space C α γ;ψ [a, b] of functions f on (a , b ] is defined by (2.6) C α γ;ψ [a, b] = f ∈ C γ [a, b] ; RL D α;ψ(t) a + f ∈ C γ [a, b] , γ = α + β(1 -α).
With these spaces exposed, it is possible to list the definitions. 

I α;ψ(t) a + f (t) = 1 Γ(α) t a ψ ′ (t)(ψ(t) -ψ(s)) α-1 f (s)ds, (2.7) 

and

(2.8)

I α;ψ(t) b - f (t) = 1 Γ(α) b t ψ ′ (t)(ψ(t) -ψ(s)) α-1 f (s)ds.
On the other hand, the ψ-Riemann-Liouville fractional derivative of f (or Riemann-Liouville fractional derivative of f with respect to ψ) of order α ( left-sided and right-sided ) is defined,respectively, as

(2.9) RL D α;ψ(t) a + f (t) = 1 Γ(m -α) 1 ψ ′ (t) d dt m t a (ψ(t) -ψ(s)) m-α-1 ψ ′ (s)f (s)ds.

and

(2.10)

RL D α;ψ(t) b - f (t) = 1 Γ(m -α) - 1 ψ ′ (t) d dt m b t (ψ(t) -ψ(s)) m-α-1 ψ ′ (s)f (s)ds.
Note that, taking ψ(t) = t in Eq.(2.7) and Eq.(2.9), yields (2.11)

I α a + f (t) = 1 Γ(α) t a (t -s)) α-1 f (s)ds,

and

(2.12)

RL D α a + f (t) = 1 Γ(m -α) d dt m t a (t -s) m-α-1 f (s)ds,
the classical Riemann-Liouville fractional derivative and integral sense.

Lemma 2.2. [START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] Admitting the sets defined above and the conditions for the functions f and ψ(t) in Definition 2.1 we can rewrite the Eq.(2.7) as:

(2.13)

I α;ψ(t) a + f (t) = ∞ m=0 -α m f [m] ψ (t) [ψ(t) -ψ(a)] α+m Γ(α + m + 1) ,
where t > a.

From the result of the Lemma 2.2 the proof about the integral of the product of two functions arises as a consequence.

Lemma 2.3. [START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] Let f and g integrable functions on the interval [a, b], α > 0 be and consider a function

ψ ∈ C 1 ([a, b] , R), such that, it is increasing with ψ ′ (t) ̸ = 0 for all t ∈ [a, b]. Then, (2.14) I α;ψ(t) a + (f g)(t) = ∞ k=0 -α k f [k] ψ (t) I α+k;ψ(t) a + g(t).
The Lemma 2.3 is a necessary tool to proof Leibniz rule for the ψ-Riemann-Liouville fractional derivative. From that, follow the result. Proposition 2.4. [START_REF] Vanterler Da | Leibniz type rule: ψ-Hilfer fractional operator[END_REF] [Leibniz type rule for ψ-Riemann-Liouville fractional derivative] Let α ∈ (n -1, n) be, n ∈ N, f, g an integrable functions defined on [a, b] and ψ ∈ C 1 ([a, b] , R) a function such that ψ is increasing and ψ ′ (t) ̸ = 0 for all t ∈ [a, b]. Then, the Leibniz type rule for the ψ-Riemann-Liouville fractional derivative is given by

RL D α;ψ(t) a + (f g) (t) = ∞ m=0 α k f [m] ψ RL D α-m;ψ(t) a + g(t), with f [m] ψ = 1 ψ ′ (t) d dt m f (t). Definition 2.5. [1] Let n -1 < α(t) < n, n ∈ N, I is the interval -∞ ≤ a < b ≤ ∞, f , ψ ∈ C n (a, b
) two functions such that ψ is increasing and ψ ′ (t) ̸ = 0, for all t ∈ I. The left-right ψ-Caputo fractional derivative of f of order α are given by

C D α;ψ(t) a + f (t) = I n-α;ψ(t) a + 1 ψ ′ (t) d dt n f (t) and (2.15) C D α;ψ(t) b - f (t) = I n-α;ψ(t) b - 1 ψ ′ (t) d dt n f (t), respectively. Theorem 2.6. If f ∈ C n [a, b] and n -1 < α(t) < n, then (2.16) C D α;ψ(t) a + f (t) = RL D α;ψ(t) a + f (t) - m-1 k=0 1 k! (ψ(t) -ψ(a)) k f [k] ψ (a) , and 
(2.17) C D α;ψ(t) b - f (t) = RL D α;ψ(t) b - f (t) - m-1 k=0 1 k! (ψ(b) -ψ(t)) k f [k] ψ (b) . Theorem 2.7. [38] Let f, ψ ∈ C n+1 ([a, b] , R) be two functions and C D α;ψ(t) a + (•) the ψ-Caputo fractional derivative of order α(t) (n -1 < α(t) < n). Hence, we have that C D α;ψ(t) a + f (t) C γ;ψ ≤ K ∥f ∥ C n γ;ψ
, where

K = (ψ(b) -ψ(a)) n-α Γ(n)Γ(2 -α) . Proposition 2.8. [38] [Leibniz type rule for ψ-Caputo fractional derivative] Let α ∈ (n -1, n) be, n ∈ N, f, g an integrable functions defined on [a, b] and ψ ∈ C 1 ([a, b] , R) a function such that ψ is increasing and ψ ′ (t) ̸ = 0 for all t ∈ [a, b].
Then, the Leibniz type rule for the ψ-Caputo fractional derivative is given by

C D α;ψ(t) a + (f g) (t) = RL D α;ψ(t) a + (f g) (t) - m-1 k=0 (f g) [k] ψ (a) Γ(k -α + 1) [ψ(x) -ψ(a)] k-α , with (f g) [m] ψ (a) = 1 ψ ′ (t) d dt m (f g)(a)• Definition 2.9. [33, 39] Let α(t) > 0 be a real number -∞ ≤ a < b ≤ ∞, f an integrable function defined on [a, b] and ψ ∈ C 1 ([a, b] , R) be functions such that ψ is increasing and ψ ′ (t) ̸ = 0 for all t ∈ [a, b].
Then, the ψ-Riemann-Liouville fractional integral of variable order α(t) to left and to right is defined,respectively, as

(2.18) I α(t);ψ(t) a + f (t) = 1 Γ(α(t)) t a ψ ′ (t)(ψ(t) -ψ(s)) α(t)-1 f (s)ds,

and

(2. [START_REF] Kilbas | Fractional integrals and derivatives (theory and applications[END_REF])

I α(t);ψ(t) b - f (t) = 1 Γ(α(t)) b t ψ ′ (t)(ψ(t) -ψ(s)) α(t)-1 f (s)ds.
2.1. Leibniz-type rule of variable-order ψ-Riemann-Liouville fractional integral. Proposition 2.10. Admitting the sets defined above and the conditions for the functions f and ψ(t) in Definition 2.9 we can rewrite the Eq.(2.18) as:

(2.20) I α(t);ψ(t) a + f (t) = ∞ m=0 -α(t) m f [m] ψ (t) [ψ(t) -ψ(a)] α(t)+m Γ(α(t) + m + 1) , where (2.21) -α(t) m = (-1) m Γ(α(t) + m) Γ(m)Γ(1 + α(t)) .
Proof. Suppose that the function f can be written as

(2.22) f (s) = ∞ m=0 f [m] ψ (t) [ψ(s) -ψ(t)] m .
Substituting the function f , as written in Eq.(2.22), into the fractional integral of the function f , with respect to the function ψ, according to the Definition 2.9 and Eq.(2.21), yields

I α(t);ψ(t) a + f (t) = 1 Γ(α(t)) t a ψ ′ (t)(ψ(t) -ψ(s)) α(t)-1 ∞ m=0 f [m] ψ (t) [ψ(s) -ψ(t)] α(t)+m ds, = 1 Γ(α(t)) ∞ m=0 (-1) m f [m] ψ (t) n! t a ψ ′ (t)(ψ(t) -ψ(s)) α(t)-1+m ds = 1 Γ(α(t)) ∞ m=0 (-1) m f [m] ψ (t) n! -[ψ(t) -ψ(s)] α(t)+m α(t) + m t a = 1 Γ(α(t)) ∞ m=0 (-1) m f [m] ψ (t) n! [ψ(t) -ψ(a)] α(t)+m α(t) + m = ∞ m=0 -α(t) m f [m] ψ (t) [ψ(t) -ψ(a)] α(t)+m Γ(α(t) + m + 1) . (2.23) □ Lemma 2.11. Let f and g integrable functions on the interval [a, b] be, α(t) > 0 and additionally consider a function ψ ∈ C 1 ([a, b] , R), such that, it is increasing with ψ ′ (t) ̸ = 0 for all t ∈ [a, b]. Then, (2.24) I α(t);ψ(t) a + (f g)(t) = ∞ k=0 -α(t) k f [k] ψ (t) I α(t)+k;ψ(t) a + g(t).
Proof. Indeed, we have

I α(t);ψ(t) a + (f g)(t) = ∞ m=0 -α(t) m (f g) [m] ψ (t) [ψ(t) -ψ(a)] α(t)+m Γ(α(t) + m + 1) = ∞ m=0 -α(t) m m k=0 m k f [k] ψ (t)g [m-k] ψ (t) [ψ(t) -ψ(a)] α(t)+m Γ(α(t) + m + 1) = ∞ k=0 ∞ m=k -α(t) m m k f [k] ψ (t)g [m-k] ψ (t) [ψ(t) -ψ(a)] α(t)+m Γ(α(t) + m + 1) = ∞ k=0 f [k] ψ (t) ∞ m=k -α(t) m m k g [m-k] ψ (t) [ψ(t) -ψ(a)] α(t)+m Γ(α(t) + m + 1) • (2.25)
Introducing the change of indices m → m + k in the second sum, we obtain (2.26)

I α(t);ψ(t) a + (f g)(t) = ∞ k=0 f [k] ψ ∞ m=0 -α(t) m + k m + k k g [m] ψ (t) [ψ(t) -ψ(a)] α(t)+m+k Γ(α(t) + m + 1 + k) .
Using equality

α(t) m + k m + k k = α(t) k α(t) -k m ,
in Eq.(2.26) and Eq.(2.20), it's follows that

I α(t);ψ(t) a + (f g)(t) = ∞ k=0 f [k] ψ (t) ∞ m=0 -α(t) k -α(t) -k m g [m] ψ (t) [ψ(t) -ψ(a)] α(t)+m+k Γ(α(t) + m + 1 + k) = ∞ k=0 -α(t) k f [k] ψ ∞ m=0 -α(t) -k m g [m] ψ (t) [ψ(t) -ψ(a)] α(t)+m+k Γ(α(t) + m + 1 + k) = ∞ k=0 -α(t) k f [k] ψ (t) I α(t)+k;ψ(t) a + g(t), (2.27) 
which concludes the prove. □

3.

Leibniz type rule for ψ-Caputo derivative of variable order

Definition 3.1. [39] Let n -1 < α(t) < n, n ∈ N, I is the interval -∞ ≤ a < b ≤ ∞, f , ψ ∈ C n (a, b
) two functions such that ψ is increasing and ψ ′ (t) ̸ = 0, for all t ∈ I. The left-right ψ-Caputo fractional derivative of f of order α are given by

C D α(t);ψ(t) a + f (t) = I n-α(t);ψ(t) a + 1 ψ ′ (t) d dt n f (t) and (3.1) C D α(t);ψ(t) b - f (t) = I n-α(t);ψ(t) b - 1 ψ ′ (t) d dt n f (t).
Proposition 3.2. The recursive relation between the n(> 2)th and m(< n)th variable ψ-Caputo fractional derivative (VPCFD) is formulated by

(3.2) C D α(t);ψ(t) a + f (t) = I m-α(t);ψ(t) a + f [m] ψ (t) - n-1 k=m (ψ(t) -ψ(a)) k-α(t) Γ(k + 1 -α(t)) D k;ψ(t) a + f (t) t=a .
Proof. Indeed, from definition of VPCFD and integration by parts, we get

C D α(t);ψ(t) a + f (t) = I m-α(t);ψ(t) a + f [m] ψ (t), = 1 Γ(m -α(t)) t a ψ ′ (s) (ψ(t) -ψ(s)) m-1-α(t) f [m] ψ (s)ds = 1 Γ(m -α(t)) - f [m] ψ (s) (ψ(t) -ψ(s)) m-α(t) m -α(t) s=t s=a + 1 Γ(m + 1 -α(t)) t a ψ ′ (s) (ψ(t) -ψ(s)) m-α(t) f [m] ψ (s)ds = f [m+1] ψ (a) (ψ(t) -ψ(a)) m-α(t) Γ(m + 1 -α(t)) + I m+1-α(t);ψ(t) a + f [m+1] ψ (t) = f [m+1] ψ (a) (ψ(t) -ψ(a)) m-α(t) Γ(m + 1 -α(t)) + • • • • • • • • • (n-m)×integration by parts = n-1 k=m (ψ(t) -ψ(a)) k-α(t) f [k] ψ (a) Γ(k + 1 -α(t)) + I n-α(t);ψ(t) a + f [n] ψ (t).
Therefore,

I n-α(t);ψ(t) a + f [n] ψ (t) = I m-α(t);ψ(t) a + f [m] ψ (t) - n-1 k=m (ψ(t) -ψ(a)) k-α(t) f [k] ψ (a) Γ(k + 1 -α(t)) . □ Theorem 3.3 (Leibniz type rule of ψ-Caputo variable order). Let 0 < n -1 < α(t) < n, n ∈ N, I is the interval -∞ ≤ a < b ≤ ∞, f ∈ C ∞ (a, b), g analytic function in [a, b] and ψ ∈ C n (a, b), such that, ψ is increasing and ψ ′ (t) ̸ = 0, for all t ∈ I. Then, C D α(t);ψ(t) a + (f g)(t) = ∞ k=0 α(t) k f [k] ψ C D α(t)-k;ψ(t) a + g(t) - n-1 j=1 (ψ(t) -ψ(a)) j-α(t) Γ(j + 1 -α(t)) D j;ψ(t) a + (f (t)g(t)) t=a -g(a) ∞ k=0 α(t) -1 k (ψ(t) -ψ(a)) k-α(t) Γ(k + 1 -α(t)) D k;ψ(t) a + f (t). (3.3) Proof. Consider the relation (3.2), we can written, C D α(t);ψ(t) a + (f g)(t) = I 1-α(t);ψ(t) a + (f g) [1] ψ (t) - n-1 j=1 (ψ(t) -ψ(a)) j-α(t) Γ(j + 1 -α(t)) D j;ψ(t) a + (f g)(t) t=a = I 1-α(t);ψ(t) a + f [1] ψ g + f g [1] ψ (t) - n-1 j=1 (ψ(t) -ψ(a)) j-α(t) Γ(j + 1 -α(t)) D j;ψ(t) a + (f g)(t) t=a = I 1-α(t);ψ(t) a + f [1]
ψ g (t)

(I) + I 1-α(t);ψ(t) a + f g [1] ψ (t) (II) - n-1 j=1 (ψ(t) -ψ(a)) j-α(t) Γ(j + 1 -α(t)) D j;ψ(t) a + (f g)(t) t=a . (3.4)
In Eq.(3.4) in the expressions (I) and (II) applying the Proposition 2.11, yields

(I) = I 1-α(t);ψ(t) a + f [1] ψ g (t) = ∞ k=0 α(t) -1 k f [k+1] ψ (t) I 1-(α(t)-k);ψ(t) a + g(t) = ∞ k=1 α(t) -1 k -1 f [k] ψ (t) I 1-(α(t)-k+1);ψ(t) a + g(t), (3.5) and (II) = I 1-α(t);ψ(t) a + f g [1] ψ (t) = ∞ k=0 α(t) -1 k f [k] ψ (t) I 1-α(t)+k;ψ(t) a + g [1] ψ (t) = f (t) I 1-α(t);ψ(t) a + g [1] ψ (t) + ∞ k=1 α(t) -1 k f [k] ψ (t) I 1-(α(t)-k);ψ(t) a + g [1] ψ (t) (III) . (3.6)
Using Definition 2.18 the expression (III), it becomes

(III) = I 1-(α(t)-k);ψ(t) a + g [1] ψ (t) = 1 Γ(1 -(α(t) -k)) t a ψ ′ (s) [ψ(t) -ψ(s)] k-α(t) g [1]
ψ (s) ds

= 1 Γ(1 -(α(t) -k)) (ψ(t) -ψ(s)) k-α(t) g(s) t a + (k -α(t)) t a ψ ′ (s) (ψ(t) -ψ(s)) k-α-1 ds = I 1-(α(t)-k+1);ψ(t) a + g(t) -g(a) (ψ(t) -ψ(a)) k-α(t) Γ(1 -(α(t) -k)) . (3.7)
Therefore, using Eq.(3.7) in Eq.(3.6), yields

I 1-α(t);ψ(t) a + f g [1] ψ (t) = f (t) I 1-α(t);ψ(t) a + g [1] ψ (t) + ∞ k=1 α(t) -1 k f [k] ψ (t) × × I 1-(α(t)-k+1);ψ(t) a + g(t) -g(a) (ψ(t) -ψ(a)) k-α(t) Γ(1 -(α(t) -k)) . (3.8)
Using the Eq.(3.5) and Eq.(3.8) in Eq.(3.4), we get

C D α(t);ψ(t) a + (f g)(t) = ∞ k=1 α(t) -1 k -1 f [k] ψ (t) I 1-(α(t)-k+1);ψ(t) a + g(t) + f (t) I 1-α(t);ψ(t) a + g [1] ψ (t) + ∞ k=1 α(t) -1 k f [k] ψ (t) × I 1-(α(t)-k+1);ψ(t) a + g(t) -g(a) (ψ(t) -ψ(a)) k-α(t) Γ(1 -(α(t) -k)) - n-1 j=1 (ψ(t) -ψ(a)) j-α(t) Γ(k + 1 -α(t)) D j;ψ(t) a + (f g)(t) t=a . (3.9)
Furthermore, applying the identity

(3.10) α(t) k = α(t) -1 k + α(t) -1 k -1 ,
in Eq.(3.9), yields 

C D α(t);ψ(t) a + (f g)(t) = ∞ k=0 α(t) k f [k] ψ C D α(t)-k;ψ(t) a + g(t) - n-1 j=1 (ψ(t) -ψ(a)) j-α(t) Γ(j + 1 -α(t)) D j;ψ(t) a + (f (t)g(t)) t=a -g(a) ∞ k=0 α(t) -1 k (ψ(t) -ψ(a)) k-α(t) Γ(k + 1 -α(t)) D k;ψ(t) a + f (t). ( 3 
C D α(t);ψ(t) a + (f g)(t) = ∞ k=0 α(t) k f [k] ψ C D α(t)-k;ψ(t) a + g(t) -g(a) ∞ k=0 α(t) -1 k (ψ(t) -ψ(a)) k-α(t) Γ(k + 1 -α(t)) D k;ψ(t) a + f (t).
(3.12)

Corollary 3.5. Let f (t) ∈ C ∞ [(a, b) , R] be and 0 < α(t) < 1, then C D α(t);ψ(t) a + f (t) = ∞ k=1 α(t) -1 k -1 (ψ(t) -ψ(a)) k-α(t) Γ(k + 1 -α(t)) f [k] ψ (t).
Proof. Taking g(t) = 1, we obtain 

C D α(t);ψ(t) a + (f (t) • 1) = I 1-α(t);ψ(t) a + f [1] ψ • 1 (t) = ∞ k=0 α(t) -1 k f [k+1] ψ (t) I 1-(α(t)-k);ψ(t) a + (1) = ∞ k=1 α(t) -1 k -1 f [k] ψ (t) I 1-(α(t)-k+1);ψ(t) a + (1) = ∞ k=1 α(t) -1 k -1 (ψ(t) -ψ(a)) k-α(t) Γ(k + 1 -α(t)) f [k] ψ (t).

□

The next theorem is the formulation of the chain rule for ψ-Caputo fractional derivative of variable order. Between the years 1855 and 1857 Faà di Bruno developed in [START_REF] Di | Note sur une nouvelle formule de calcul différentiel[END_REF][START_REF] Bruno | Sullo sviluppo delle funzioni[END_REF][START_REF] Johnson | The curious history of faà di Bruno's formula[END_REF] an approach that generalizes the formulation of derivatives for composite functions. In the paper [START_REF] Ishteva | On the Caputo operator of fractional calculus and C-Laguerre functions[END_REF], the authors used the Faà di Bruno's formula and Heaviside function to demonstrate the chain rule for Caputo fractional derivative. Authors in [START_REF] Zhang | Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework[END_REF] demonstrated the chain rule for Caputo fractional derivative of variable order using the Faà di Bruno's formula and a recurrence relation for Caputo fractional derivative of variable order.

In this sense, we prove below the chain rule for the ψ-Caputo fractional derivative of variable order. This is because, which is very useful tool for the purpose of establishing a framework for finding Lie symmetries in the following section. 

∈ C ∞ ([a, b] ; R), -∞ < a ≤ b < ∞. Consider α(t) ∈ C 1 (n -1, n) , n ∈ N, then C D α(t);ψ(t) a + [f (g(t))] = ∞ k=1 α(t) -1 k -1 [ψ(t) -ψ(a)] k-α(t) Γ(k + 1 -α(t)) B k (t) - n-1 j=1 [ψ(t) -ψ(a)] k-α(t) Γ(j + 1 -α(t)) B j (a),
where Proof. Suppose that φ(t) = f (g(t)) and by Proposition 3.2, yields

B k (t) = 1 ψ ′ (t) k k! k j=1 f [j] (g(t)) k r=1 1 b r ! g [r] (t)
(3.13) C D α(t);ψ(t) a + φ(t) = I 1-α(t);ψ(t) a + φ [1] ψ (t) (IV ) - n-1 k=1 (ψ(t) -ψ(a)) k-α(t) Γ(k + 1 -α(t)) D k;ψ(t) a + φ(t) t=a ,
in the fractional integral (IV ) using Eq.(3.5) with g(t) = 1, we get

I 1-α(t);ψ(t) a + φ [1] ψ (t) = ∞ k=1 α(t) -1 k -1 φ [k] ψ (t) I 1-(α(t)-k+1);ψ(t) a + (1) . (3.14) Note that, φ [k] ψ (t) = 1 ψ ′ (t) d dt k φ(t) = 1 ψ ′ (t) k d k dt k φ(t) . (3.15)
Applying Faà di Bruno formula in Eq.(3.15) and replacing φ(t) = f (g(t)), yields 

φ [k] ψ (t) = 1 ψ ′ (t) k k! k j=1 f [j] (g(t)) k r=1 1 b r ! g [r] (t)
∞ k=1 α(t) -1 k -1   1 ψ ′ (t) k k! k j=1 f [j] (g(t)) k r=1 1 b r ! g [r] (t) r! br   I 1-(α(t)-k+1);ψ(t) a +
(1) , (3.17) finally, using the Eq.(3.17) in Eq.(3.14), we conclude the proof of the theorem. □

Lie symmetry for fractional partial differential equations in the ψ-Caputo of variable order

Consider a fractional partial differential equation of the form

(4.1) C D α(t);ψ(t) a + u = E [U ] ,
where u = u(x, t) denotes the unknown function, and E [U ] = E(x, t, u, u x , u xx , u xt , . . .) is the function that depends on x, t, and all derivatives of integer order u. Furthermore, C D

α(t);ψ(t) a + (•) is ψ-Caputo fractional derivative of order 0 < α(t) ≤ 1.
Let us assume that Eq.(4.1) is invariant under ϵ > 0, a continuous transformation parameter. So we can write (2) xx + O(ϵ 2 ) . . . where the infinitesimals τ = τ (x, t, u), ξ = ξ(x, t, u) and η = η(x, t, u) and η α(t);ψ(t) is the extended infinitesimal coefficients of variable order α(t) [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF][START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF]. Furthermore,

t = t + ϵτ (x, t, u) + O(ϵ 2 ), x = x + ϵξ(x, t, u) + O(ϵ 2 ), ū = u + ϵη(x, t, u) + O(ϵ 2 ), C D α(t);ψ(t) a + u = C D α(t);ψ(t) a + u + ϵη α(t);ψ(t) + O(ϵ 2 ), (4.2) ∂ ū ∂ x = ∂u ∂x + ϵη (1) x + O(ϵ 2 ), ∂ 2 ū ∂ x2 = ∂ 2 u ∂x 2 + ϵη
(4.3) τ = dt dϵ ϵ=0 , ξ = dx dϵ ϵ=0 , η = du dϵ ϵ=0 ,
which leads us to conclude that calculating the Lie point transformation group (4.2) at which the differential equation becomes invariant is similar to calculating the infinitesimal generator [START_REF] Leo | A foundational approach to the Lie theory for fractional order partial differential equations[END_REF].

Definition 4.1.

[34] The infinitesimal generator admitted by Eq.(4.1) is given by (4.4)

X ψ = ξ 1 (x, ψ(t), u) ∂ ∂x + τ 1 (x, ψ(t), u) ∂ ∂ψ(t) + η 1 (x, ψ(t), u) ∂ ∂ u , in space-(x, ψ(t), u), where u = u(x, ψ(t)), ξ 1 ≡ X(x) = ξ, τ 1 ≡ X(ψ(t)) = τ ψ ′ (t) and η 1 ≡ X( u) = η.
Therefore, we get (4.5)

X ψ = ξ 1 (x, ψ(t), u) ∂ ∂x + τ 1 (x, ψ(t), u) ∂ ∂ψ(t) + η 1 (x, ψ(t), u) ∂ ∂ u .
Note that equality is valid for application in their respective coordinates [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF].

In the paper [START_REF] Gazizov | Fractional differential equations: change of variables and nonlocal symmetries[END_REF] this approach to changing coordinates is presented in which for each function ψ(t) it is possible to rewrite the symmetries. This was inspired by classical theory of the Lie Symmetry [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF][START_REF] Olver | Introduction to partial differential equations[END_REF].

For the ψ-Caputo fractional derivative variable order the extended infinitesimal generator is given by

(4.6) P r ([α(t);ψ(t)],l) X ψ [•] = X ψ [•] + η α;ψ(t) ∂ ∂(∂ α(t);ψ(t) u) [•] + l i=1 η (i) ∂ ∂u i [•] ,
where

η (i) := D i x (η -ξu x -τ u ψ ) + ξu i+1 + τ u iψ , (4.7)
hereafter, we consider (4.7) as the infinitesimal prolongation of i order of η with respect to variable x and presented by [START_REF] Bluman | Applications of symmetry methods to partial differential equations[END_REF][START_REF] Olver | Applications of Lie groups to differential equations[END_REF][START_REF] Zhang | Symmetry structure of multi-dimensional time-fractional partial differential equations[END_REF].

Furthermore, u iψ = ∂ i+1 u ∂x i ∂ψ , i = 0, 1, • • • , l and η (0) = η.
In addition, we get

D i := ∂ ∂x i + u i ∂ ∂u + u ij ∂ ∂u j + • • • .
In consequence of the invariance condition [START_REF] Leo | A foundational approach to the Lie theory for fractional order partial differential equations[END_REF], yields

(4.8) P r ([α(t);ψ(t)],l) X C D α(t);ψ(t) a u -E(U ) C D α(t);ψ(t) a u-E(U )=0 = 0. Definition 4.2. Let 0 < α(t) < 1, I is the interval -∞ ≤ a < b ≤ ∞, ψ ∈ C n (a, b)
function such that ψ is increasing and ψ ′ (t) ̸ = 0, for all t ∈ I. The ψ-Caputo fractional total derivative of variable order α is given by

D α(t);ψ(t) a + ( • ) = ∞ k=0 α(t) k [ψ(t) -ψ(a)] k-α(t) Γ(k -α(t) + 1) D [k] ψ ( • ) . (4.9) Note that, D [m] ψ ( • ) = 1 ψ ′ (t) d dt m D m t ( • )
, where D m t is total derivative of m order with respect to t. It might also be noted, D 0 t (u) = u and D m+1 t u = D t (D m t u), furthermore D t , for two independent variables is defined as

D t = ∂ t + u ψ ∂ u + u xt ∂ ux + u tt ∂ ut + • • • .
Replacing α(t) = α, ψ(t) = t and a = 0 in Eq.(4.9), it's possible recover to Caputo fractional total derivative given in [START_REF] Bakkyaraj | Lie symmetry analysis of system of nonlinear fractional partial differential equations with Caputo fractional derivative[END_REF][START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF][START_REF] Leo | A foundational approach to the Lie theory for fractional order partial differential equations[END_REF].

Lemma 4.3. Let f (t) ∈ C ∞ ([a, b] , R) and g(t)
analytic in [a, b] be and 0 < α(t) < 1, then the Leibniz type rule for ψ-Caputo fractional total derivative of variable order in Eq.(4.9) holds, (4.10)

D α(t);ψ(t) a + (f • g) (t) = ∞ s=0 α(t) s D s;ψ(t) (f ) D α(t)-1-s;ψ(t) a + (g) + ∞ r=0 α(t) r D r;ψ(t) (g) D α(t)-1-r;ψ(t) a + (f ) .
Proof. Applying variable order total derivative in Eq.(4.9), yields

D α(t);ψ(t) a + (f • g) = ∞ k=0 α(t) k [ψ(t) -ψ(a)] k-α(t) Γ(k -α(t) + 1) D [k] ψ (f • g) = ∞ k=0 α(t) k [ψ(t) -ψ(a)] k-α(t) Γ(k -α(t) + 1) k s=0 k s D s;ψ(t) f D k-s;ψ(t) g = ∞ k=1 α(t) k -1 [ψ(t) -ψ(a)] k-α(t)-1 Γ(k -α(t)) k s=0 k i D s;ψ(t) f D k-s;ψ(t) g = ∞ k=1 α(t) k -1 [ψ(t) -ψ(a)] k-α(t)-1 Γ(k -α(t)) k s=1 k s D s;ψ(t) f D k-i;ψ(t) g + f D α(t)-1;ψ(t) g = k s=1 D i;ψ(t) f ∞ k=1 α(t) k -1 k i [ψ(t) -ψ(a)] k-α(t)-1 Γ(k -α(t)) D k-s;ψ(t) g + f D α(t)-1;ψ(t) g ( * ) = ∞ s=1 ∞ r=1 α(t) s + r -1 s + r s [ψ(t) -ψ(a)] s+r-α(t)-1 Γ(s + r -α(t)) D s;ψ(t) f D r;ψ(t) g + f D α(t)-1;ψ(t) g + gD α(t)-1;ψ(t) f = ∞ s=1 α(t) s ∞ r=1 α(t) -s r -1 [ψ(t) -ψ(a)] s+r-α(t)-1 D s;ψ(t) f D r;ψ(t) g Γ(s + r -α(t)) + f D α(t)-1;ψ(t) g + ∞ r=1 α(t) r ∞ s=1 α(t) -r s -1 [ψ(t) -ψ(a)] s+r-α(t)-1 D s;ψ(t) f D r;ψ(t) g Γ(s + r -α(t)) + gD α(t)-1;ψ(t) f = ∞ s=0 α(t) s D s;ψ(t) (f ) D α(t)-1-s;ψ(t) a + (g) + ∞ r=0 α(t) r D r;ψ(t) (g) D α(t)-1-r;ψ(t) a + (f ) ,
where, ( * ) it means k = s + r.

□ Lemma 4.4. Let S m (t, a) = α(t) -1 m -1 (ψ(t) -ψ(a)) m-α(t) Γ(m + 1 -α(t)) be and 0 < α(t) < 1 with t ∈ [a, b], (a > 0), t = t + ϵτ + O(ϵ 2 ) and a = a + ϵτ + O(ϵ 2 ), then S m (t, a) = S m (t, a) + ϵ S ′ m (t, a) ψ ′ (t)τ -ψ ′ (a)τ + O(ϵ 2 ) and τ = τ (x, ψ(t), u) t=a is valid for all ϵ > 0. Proof. Let R m [•] = α(t) -1 m -1 [•] m-α(t) Γ(m + 1 -α(t))
and C m (t, a) = ψ(t) -ψ(a) be functions. Therefore, we can write S m (t, a) = (R m • C m ) (t, a). Furthermore, we have,

S m (t, a) = (R m • C m ) t, a = S m t + ϵτ + O(ϵ 2 ), a + ϵτ + O(ϵ 2 ) = S m (t, a) + ϵ ∂ ∂ϵ S m (t, a) ∂ ∂ϵ C m (t, a) ϵ=0 + O(ϵ 2 ) = S m (t, a) + ϵ ∂ ∂ϵ S m (t, a) ∂C m (t, a) ∂t ∂t ∂ϵ ϵ=0 + ∂C m (t, a) ∂a ∂a ∂ϵ ϵ=0 + O(ϵ 2 ) = S m (t, a) + ϵS ′ m (t, a) ψ ′ (t)τ + ψ ′ (a)τ + O(ϵ 2 ).
□ Proposition 4.5. Let Eq.(4.5) be a infinitesimal generator admitted by Eq.( 4.1) with ψ-Caputo fractional derivative of variable order, then the α(t)-th, 0 < α(t) < 1, extended infinitesimal is given by

(4.11) η α(t);ψ(t) = C D α(t);ψ(t) a + (η -ξu x -τ u t ) + ξ C D α(t);ψ(t) a u x + τ ψ ′ (t) D 1,ψ(t) C D α(t);ψ(t) a u + ω(x, ψ(t), u)
where ω(x, t, u) = ψ ′ (a)τ D 1,ψ(t) C D α(t);ψ(t) a -C D α(t)+1;ψ(t) a u, and τ = τ (x, t, u) t=a .

Proof. Indeed, note that

η α;ψ(t) = d dϵ C D α;ψ(t) a (u) ϵ=0
. Applying Lemma 4.4 and from Eq.(4.2), we obtain (4.12) D m;ψ(t) u(x, t) = D m;ψ(t) u(x, t) + ϵη (m;ψ) + O(ϵ 2 ), where

η (m;ψ(t)) = D m,ψ(t) (η -ξu x -τ u t ) + ξD m;ψ(t) u x + τ D m+1;ψ(t) u = 1 ψ ′ (t) m D m t (η -ξu x -τ u t ) + ξD m t u x + τ D m+1 t u , yields, η α;ψ(t) = d dϵ ∞ m=1 S m D k,ψ(t) u + ϵ(S m η k,ψ(t) + S ′ m D k,ψ(t) u) + O(ϵ 2 ) ϵ=0 = ∞ m=1 S m η m,ψ(t) + S ′ m D m,ψ(t) u , = C D α(t);ψ(t) a + (η -ξu x -τ u t ) + ξ C D α(t);ψ(t) a u x + C D α(t);ψ(t) a u t + ψ ′ τ ∞ m=1 S [1] m,ψ D m,ψ t u + ψ ′ (a)τ ∞ m=1 S [1] m,ψ D m,ψ t u. (4.13)
Applying Leibniz-type rule in Corollary 3.4 to the last two terms of Eq.(4.13), we obtain

η α;ψ(t) = C D α(t);ψ(t) a + (η -ξu x -τ u t ) + ξ C D α(t);ψ(t) a u x + ψ ′ τ D 1,ψ(t) C D α(t);ψ(t) a + u + ψ ′ (a)τ D 1,ψ(t) C D α(t);ψ(t) a -C D α(t)+1;ψ(t) a u,
where τ = τ (x, t, u) t=a , and thus, we complete the proof. □ Proposition 4.6. The more detailed expression for C D

α(t);ψ(t) a + (η) is given by C D α(t);ψ(t) a + (η) = C D α(t);ψ(t) a + (η) + η u C D α(t);ψ(t) a + u -u C D α(t);ψ(t) a + (η u ) + ∞ s=1 α(t) s D s;ψ(t) (η u ) C D α(t)-s;ψ(t) a + u -u(a, x) ∞ s=1 α(t) -1 s [ψ(t) -ψ(a)] s-α(t) Γ(s + 1 -α(t)) D s;ψ(t) (η u ) . (4.14)
Proof. Firstly, note that C D α(t);ψ(t) a + (η) in Eq.(4.11) can be written as

(4.15) C D α(t);ψ(t) a + (η • 1) .
Applying Leibniz type rule presented in the Lemma 4.3 into Eq.( 4.15), one has

C D α(t);ψ(t) a + (η • 1) = ∞ s=1 α(t) -1 s -1 [ψ(t) -ψ(a)] s-α(t)-1 Γ(s -α(t)) D s;ψ(t) (η) . (4.16)
Using the generalized chain rule (3.6) in D s;ψ(t) (η), yields

D s;ψ(t) (η) = 1 ψ ′ s s n=0 n p=0 p q=0 1 p! s n p q (-u) q ∂ n ∂t n u p-q ∂ s-n+p η ∂t s-n ∂u p , (4.17) 
the Eq.(4.17) can be written by selecting terms that have derivatives in u and are linear in u [START_REF] Gazizov | Group-invariant solutions of fractional differential equations[END_REF][START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF][START_REF] Sahadevan | Invariant analysis of time fractional generalized Burgers and Korteweg-de Vries equations[END_REF][START_REF] Zhang | Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework[END_REF]. Precisely, these terms are obtained when p = 0 and p = 1. In this way, yields

(i) p = 0 : 1 ψ ′ ∂ ∂t s η; (4.18) (ii) p = 1 : s n=1 s n ∂ n ∂t n (u) ∂ s-n ∂t s-n ∂η ∂u . (4.19) 
Therefore, using Eq.(4.18) and Eq.(4.19) in Eq.(4.16) and the remainder terms in Eq.(4.17), we get

∞ s=1 α(t) -1 s -1 [ψ(t) -ψ(a)] s-α(t)-1 Γ(s -α(t)) 1 ψ ′ ∂ ∂t s η + s n=1 s n ∂ n ∂t n (u) ∂ s-n ∂t s-n ∂η ∂u + µ, or yet, C D α(t);ψ(t) a + (η) + ∞ s=1 α(t) -1 s -1 [ψ(t) -ψ(a)] s-α(t)-1 Γ(s -α(t)) ∂ s ∂t s u ∂η ∂u -u ∂ s ∂t s ∂η ∂u + µ. Furthermore, C D α(t);ψ(t) a + (η) + C D α(t);ψ(t) a + u ∂η ∂u -u C D α(t);ψ(t) a + ∂η ∂u + µ, (4.20) 
where

µ = 1 ψ ′ s ∞ s=2 α(t) s [ψ(t) -ψ(a)] s-α(t) Γ(s + 1 -α(t)) s n=2 n p=2 p q=2 1 p! s n p q (-u) q ∂ n ∂t n u p-q ∂ s-n+p η ∂t s-n ∂u p . (4.21) 
In Eq.(4.20) the term in brackets applying Leibniz rule can be written as

C D α(t);ψ(t) a + u ∂η ∂u -u C D α(t);ψ(t) a + ∂η ∂u = ∞ s=0 α(t) s D s;ψ(t) ∂η ∂u C D α(t)-s;ψ(t) a + u -u(a, x) ∞ s=1 α(t) -1 s [ψ(t) -ψ(a)] s-α(t) Γ(s + 1 -α(t)) D s;ψ(t) ∂η ∂u -u C D α(t);ψ(t) a + ∂η ∂u . (4.22)
This completes the proof. □ Theorem 4.7. The extension of the extension for the ψ-Caputo fractional derivative of variable order 0 < α(t) < 1 is given by

η α;ψ(t) = C D α(t);ψ(t) a + (η) + η u + (1 -α(t)) D 1,ψ(t) τ C D α(t);ψ(t) a + u -u C D α(t);ψ(t) a + (η u ) + ∞ s=1 α(t) s D s;ψ(t) (η u ) - α(t) -1 s + 1 D s+1,ψ(t) τ C D α(t)-s;ψ(t) a + u - ∞ s=1 α(t) -1 s D s,ψ(t) ξ C D α(t)-s;ψ(t) a + u x - ∞ r=0 α(t) -1 r D r,ψ(t) u x C D α(t)-r;ψ(t) a + ξ + D r+1,ψ(t) u C D α(t)-r;ψ(t) a + τ + τ ψ ′ D 1,ψ(t) C D α(t);ψ(t) a + u -C D α(t)+1;ψ(t) a + u -u(a, x) ∞ s=1 α(t) -1 s [ψ(t) -ψ(a)] s-α(t) Γ(s + 1 -α(t)) D s;ψ(t) (η u ) + µ + ω(x, ψ(t), u), (4.23) 
where µ is given by Eq.(4.21) and ω(x, ψ(t), u) in Proposition 4.5.

Proof 

C D α(t);ψ(t) a + (ξu x ) = ξ C D α(t);ψ(t) a + (u x ) + ∞ s=1 α(t) -1 s D s;ψ(t) (ξ) D α(t)-s;ψ(t) a + (u x ) + ∞ r=0 α(t) -1 r D r;ψ(t) (u x ) D α(t)-r;ψ(t) a + (ξ) , (4.24) 
and Proof. Indeed, we have

C D α(t);ψ(t) a + (τ u t ) = τ C D α(t)+1;ψ(t) a + (u) + ∞ s=1 α(t) -1 s D s;ψ(t) (τ ) D α(t)-s;ψ(t) a + (u t ) + ∞ r=0 α(t) -1 r D r;ψ(t) (u t ) D α(t)-r;ψ(t) a + (τ ) . (4.25) Furthermore, note that D α(t)-s;ψ(t) a + (u) = D α(t)-s;ψ(t) a + (u) , D α(t)-s;ψ(t) a + (u x ) = D α(t)-s;ψ(t) a + (u x ) .
τ ψ ′ D 1,ψ(t) C D α(t);ψ(t) a + u -C D α(t)+1;ψ(t) a + u = τ ψ ′ D 1,ψ(t) C D α(t);ψ(t) a + u -τ ψ ′ C D α(t)+1;ψ(t) a + u = ψ ′ (a)τ D 1,ψ(t) C D α(t);ψ(t) a -ψ ′ (a)τ C D α(t)+1;ψ(t) a u = ψ ′ (a)τ D 1,ψ(t) C D α(t);ψ(t) a -C D α(t)+1;ψ(t) a u,
where τ = τ (x, ψ(t), u) t=a .

Note that, the second order fractional derivative in Eq.(4.23) occurs only in term above, because 0 < α(t) < 1 and, therefore, by the uniqueness of C D α(t);ψ(t) a u in Eq.(4.23), if η α(t),ψ(t) = 0, then ψ ′ (a)τ = 0, however as ψ ′ (a) ̸ = 0, since in interval where the fractional derivative is defined for ψ-Caputo fractional derivative of variable order, therefore we conclude that τ (x, a, u) = 0 or u(a, x) = 0. □ Remark 4.9. It is worth mentioning that in published works on Lie symmetries for fractional differential equations, in general, one of the conditions imposed is that τ (x, t, u) t=0 = 0, however when carrying out the calculations we can notice that this imposition does not need to be made, since it arises naturally. Theorem 4.10. Let X ψ be the infinitesimal generator given by Eq.(4.5) admitted by Eq.(4.1), i.e., which makes it invariant, then X ψ has the form (4.26)

X ψ = ξ ∂ ∂x + τ (ψ(t)) ∂ ∂ψ(t) + η(x, ψ(t), u) ∂ ∂ u
where η(x, ψ(t), u) satisfies

η [1] uψ = 0, C D α(t);ψ(t) a + (η) + η u + α(t)D 1;ψ(t) τ E -ξE x -τ 1 E [1] ψ -ηE u - l i=1 η (i) E ui = 0,
where η (i) is defined in Eq.(4.7).

Proof.

Consider ∆ = C D α(t);ψ(t) a + u -E [U ], then P r ([α(t);ψ(t)],l) X ψ (∆) ∆=0 = X ψ (∆) + η α;ψ(t) ∂∆ ∂(∂ α(t);ψ(t) u) + l i=1 η (i) ∂∆ ∂u i = η α;ψ(t) -ξE x -τ 1 E [1] ψ -ηE u - l i=1 η (i) E ui = 0, (4.27) 
where η (i) is given by Eq.(4.7) and η α;ψ(t) is defined in Proposition 4.5.

Substituting Eq.(4.7) and Proposition 4.5 in Eq.(4.27), note that the coefficients for the term C D

α(t)-s;ψ(t) a + u x are C D α(t)-s;ψ(t) a + u x : α(t) s D s,ψ(t) ξ = 0, k = 1, 2, • • • .
Since 0 < α(t) < 1, we have in the case s = 1

D 1,ψ(t) ξ = ξ [1] ψ + ξ u u [1] ψ = 0.
In this sense, we have ξ [START_REF] Almeida | A caputo fractional derivative of a function with respect to another function[END_REF] ψ = ξ u = 0, i.e., ξ = ξ(x).

Now, the coefficient of u

[l-1] ψ(t) = 1 ψ ′ (t) d dt ∂ l u ∂x l-1 in
the sum in Eq.(4.27), which uniquely appears in η (l) = D (l)

x (η -ξu x -τ 1 u t ) + ξu l + ξu l+1 + τ 1 u lt , where

D l x (ψ ′ τ 1 u [1] ψ(t) ) = ψ ′ l j=0 l j D j x τ 1 D l-j x u [1] ψ(t) ,
then the coefficient of u (l-1)t in Eq.(4.27) is E u l D x τ = 0 which means

D x τ 1 = (τ 1 ) x + u x (τ 1 ) u = 0, since E u l ̸ = 0. Therefore, implies (τ 1 ) x = (τ 1 ) u = 0, i.e. τ 1 = τ 1 (ψ(t)).
In this way, taking coefficient of C D α(t)-s;ψ(t) a + (η u ) and in the case s = 1, we get D 1;ψ(t) (η u ) = η [START_REF] Almeida | A caputo fractional derivative of a function with respect to another function[END_REF] uψ = 0. Furthermore, note that derivatives with respect to t of function u appear only in µ, therefore µ = 0. □

Application for fractional Harry Dym equation

In this section we apply the framework developed in the previous sections. In this case we consider the Harry Dym equation (HDE), which was discovered in an unpublished article by H. Dym between 1973 and 1974, but its first appearance in the literature occurred in 1975 in a paper by M.D. Kruskal [START_REF]Nonlinear wave equations, Dynamical Systems, Theory and Applications[END_REF]. The HDE is a nonlinear partial differential equation, whose completely-integrable systems, Backlund transformations and infinitely many conservation laws. It is worth mentioning that it does not possess Painlevé property. Furthermore, HDE can be connected to KdV equation via the reciprocal transformation [START_REF] Huang | Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative[END_REF][START_REF] Brunelli | On the nonlocal equations and nonlocal charges associated with the Harry Dym hierarchy[END_REF]. In the work [START_REF] Kumar | A fractional model of Harry Dym equation and its approximate solution[END_REF] the authors present the approximate analytical solution of time fractional HDE using homotopy perturbation method. In [START_REF] Huang | Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative[END_REF] the authors used Lie Symmetry analysis for application of the similarity solutions to fractional Harry Dym equation. On the other hand, the authors discuss the general case of a fractional nonlinear partial differential equation using similarity reductions and recover results associated with Harry Dym-type equations [START_REF] Costa | On the fractional Harry Dym equation[END_REF]. Finally, In [START_REF] Wang | Lie point symmetry analysis of the Harry-Dym type equation with Riemann-Liouville fractional derivative[END_REF] 

P r ([α(t);ψ(t)],l) X ψ [∆] ∆=0 = X ψ [∆] + η α;ψ(t) ∂ ∂(∂ α(t);ψ(t) u) [∆] + l i=1 η (i) ∂ ∂u i [∆] = 0, or yet, P r ([α(t);ψ(t)],l) X ψ [∆] ∆=0 = C D α(t);ψ(t) a + (η) + η u + α(t)D 1,ψ(t) τ u 3 u xxx -ξ(x) ∂ ∂x u 3 u xxx -τ (ψ(t))D 1,ψ(t) u 3 u xxx -η ∂ ∂u u 3 u xxx -η (1) ∂ ∂u x u 3 u xxx -η (2) ∂ ∂u xx u 3 u xxx -η (3) ∂ ∂u xxx u 3 u xxx = 0. (5.4) 
Note that, both of the following expressions ∂ ∂u x u 3 u xxx and ∂ ∂u xx u 3 u xxx are equal to zero. Furthermore, computing the terms in the derivatives with respect to the variable u and and knowing that η (3) is given by [3, 28]

η (3) = η xxx + (3η xxu + η ux -ξ xxx )u x + (3η uux + η uu -3ξ xxu -ξ ux )u 2 x + (η u -3ξ x )u xxx + (η uuu -3ξ uux -ξ uu )u 3 x + (2η ux -3ξ xx )u xx + (2η uu -8ξ ux )u x u xx -5ξ uu u 2 x u xx -ξ uuu u 4 x -4ξ u u x u xxx -τ xxx u t -3τ xxu u x u t -3τ uux u 2 x u t -2τ ux u xx u t -2τ uu u x u xx u t -τ uuu u 3 x u t -τ u u xxx u t -τ ux u x u t -τ uu u 2 x u t -3ξ u u 2 xx -3τ xx u xt -6τ xu u x u xt -3τ uu u 2 x u xt -3τ u u xx u xt -3τ x u xxt -3τ u u x u xxt . Therefore, C D α(t);ψ(t) a + (η) -η xxx u 3 + α(t)D 1,ψ(t) τ -3ξ x u 3 + 3ηu 2 u xxx + (3η xxu + η ux -ξ xxx ) u 3 u x + (3η uux + η uu ) u 3 u 2 x + η uuu u 3 u 3 x + (2η ux -3ξ xx ) u 3 u xx + 2η uu u 3 u x u xx = 0.
Thus, we can write as the system below

           C D α(t);ψ(t) a + (η) -η xxx u 3 = 0 (3η xxu + η ux -ξ xxx ) + (3η uux + η uu ) = 0 η uuu + (2η ux -3ξ xx ) = 0 η uu = 0 η [1] uψ = 0.
(5.5) Finally, we obtain four symmetries, the trivial ones given by X 

1 = ∂ ∂x , X 2 = ∂ ∂ψ and X 3 = x ∂ ∂x + u ∂ ∂u , X 4 = Φ(ψ(t)) ∂ ∂ψ - u 3 
w = X 1 + X 2 = c ∂ ∂x + ∂ ∂ψ
, with c ̸ = 0, we get the following characteristic equation dψ = dx c , integrating, yields x ± cψ(t) = k, now using k as a similarity transformation, for u(x, t) solution for Eq.(5.1) , we have u(x, t) = f (x ± cψ(t)), the well-known traveling wave solution. As a particular case, i.e., for ψ(t) = t, it becomes u(x, t) = f (x ± ct) which has its expression given in the article [START_REF] Costa | On the fractional Harry Dym equation[END_REF].

5.1. Similarity reduction and travelling wave solution. In Eq.(5.1) taking α(t) = α, we get HD equation in terms of the ψ-Caputo fractional derivative, yields

(5.6) C D α;ψ(t) a + u = u 3 u xxx , with, 0 < α < 1,
Admitting a traveling wave solution from the symmetry X w to (5.6) given by

(5.7) u(x, ψ(t)) = x h U (ζ), ζ = 1 ± c (ψ(t) -ψ(a))
x where h is a constant associated with the degree of homogeneity of the function and c is the wave velocity, a constant.

C D α;ψ(t) a + u = 1 Γ(1 -α) t a ψ ′ (s)(ψ(t) -ψ(s)) -α D 1;ψ(t) u(x, ψ(s))ds = 1 Γ(1 -α) t a ψ ′ (s)(ψ(t) -ψ(s)) -α D 1;ψ(t) x d U 1 ± c (ψ(s) -ψ(a)) x ds = x d Γ(1 -α) t a ψ ′ (s)(ψ(t) -ψ(s)) -α D 1;ψ(t) U 1 ± c (ψ(s) -ψ(a)) x ds.
Introducing the variable κ = 1 ± c(ψ(s)-ψ(a))

x we have that κ → ζ when (ψ(s) -ψ(a)) → (ψ(t) -ψ(a)) and κ → 1 when s → 0. Adding the relations we get The third order spatial derivatives can be written as with 0 < α ≤ 1. In the sequence we will discuss the analytical solutions of Eq.(5.13). . This solution is called a wavefront solution; it is monotonic and has finite propagation 1 . In our case, we look for unlimited wavefronts. Therefore, the explicit form of the solution is given by u(x, ψ(t)) = (±1) α/3 Γ(κ -2)c α Γ(1 + κ -α) The solution given by Eq.(5.15) preserves the translation along the x-axis, i.e. u(x, t) is also a solution, with x = x + x 0 ,i.e., considering the fractional differential equation C D α;ψ(t) a + u(x, ψ(t)) = u 3 (x, t) ∂ 3 ∂x 3 u(x, t), with x = x + x 0 , (5.16) and using Eq.(5.15) we obtain the solution, which is given by u(x, ψ(t)) = (±1) α/3 Γ(σ -2)c α Γ(1 + σ -α) .

ζ -κ = 1 ± c (ψ(t) -ψ(a)) x -1 ± c (ψ ( 
Using this property we can rewrite the solution in a more general form as u(x, ψ(t)) = Γ(σ -2)(±c) α Γ(1 + σ -α) (5.17 1 A detailed study of wavefronts on difusive processes can be found in [START_REF] Gilding | Travelling waves in nonlinear diffusion-convection reaction[END_REF].

Considerations

In recent years, there has been an increasing use of Lie symmetries in order to find exact solutions to fractional differential equations [START_REF] Zhang | Symmetry structure of multi-dimensional time-fractional partial differential equations[END_REF]. This, of course, led to the development of several tools for the most diverse formulations of fractional operators. We highlight that the Leibniz-type rule and the chain-type rule are key operations for the purpose of finding the Sophus Lie algorithm in the sense of fractional derivative. Therefore, in this work we present a version of the Leibniz-type rule and the chain-type rule for the ψ-Caputo fractional derivative of variable order. With this, it was possible to present the application of Lie group theory. It is worth mentioning that when the order is variable, several additional difficulties arise for the computations of the infinitesimal prolongation and, consequently, for the application of the fractional operator in the space of infinite-dimensional jets. However, from the work [START_REF] Zhang | Leibniz-type rule of variable-order fractional derivative and application to build Lie symmetry framework[END_REF] and this one we can say that it opens up many possibilities for the application of Lie theory in CF that has been developed since the paper [START_REF] Gazizov | Continuous transformation groups of fractional differential equations[END_REF] for constant order. We believe that there are many considerations to be made in the case of variable order and also adaptations for the calculations of symmetries of fractional differential equations.

Definition 2 . 1 . [ 38 ]

 2138 Let α > 0 be a real number -∞ ≤ a < b ≤ ∞, f an integrable function defined on [a, b] and ψ ∈ C 1 ([a, b] , R) be functions such that ψ is increasing and ψ ′ (t) ̸ = 0 for all t ∈ [a, b]. Then, the ψ-Riemann-Liouville fractional integral of f (or Riemann-Liouville fractional integral of f with respect to ψ) of order α (left-sided and right-sided) is defined, respectively, as

. 11 )Corollary 3 . 4 .

 1134 Therefore, we have completed the proof.□ Let f (t) ∈ C ∞ [(a, b) , R] and g(t)analytic in [a, b] be and 0 < α(t) < 1, then Leibniz type rule of ψ-Caputo fractional derivative of variable order is

  LIE SYMMETRY FOR FRACTIONAL DIFFERENTIAL EQUATIONS IN THE ψ-CAPUTO VARIABLE ORDER SENSE AND APPLICATIONS9

Theorem 3 . 6 (

 36 Chain rule type for ψ-Caputo fractional derivative variable order). Let f be an analytic function on the interval [a, b] and g

  the sum compute over all combinations of non-negative integer values of b 1 , • • • , b k such that k r=1 rb r = k and k r=1 b r = j.

  the sum compute over all combinations of non-negative integer values of b 1 , • • • , b k such that k r=1 rb r = k and k r=1 b r = j. Substituting Eq.(3.16) in Eq.(3.14), we get

Corollary 4 . 8 .

 48 Replacing, Eq.(4.24), Eq.(4.25), Proposition 4.14 into Proposition 4.11 and rearranging the common terms of fractional derivatives and fractional integrals, we complete the proof.□ Considering the same hypotheses in Theorem 4.7, if η α(t),ψ(t) = 0, then τ (x, ψ(t), u) t=a = 0 or u(a, x) = 0.

1 ( 1 (

 11 s) -ψ(a)) x = = ± c x (ψ(t) -ψ(s)). As ∂ ∂s = ∂κ ∂s d dκ , then D 1;ψ(t) = ± c x D 1;ψ(t) κ. Substituting these results into the ψ-Caputo derivative we obtain α c α x d-α Γ(1 -α) ζ ζ -κ) 1-α D m;ψ(t) κ[U (κ)]dκ = (±1) α c α x d-α Γ(1 -α) ζ ζ -κ) -α U (1) (κ)dκ. (5.8)We now calculate the spatial derivative:

1 ( 3 . 1 (

 131 ∂ 3 ∂x 3 u(x, ψ(t)) = ∂ 3 ∂x 3 [x d U (ζ)] = ∂ 2 ∂x 2 ∂ ∂x (x d U (ζ)) = ∂ 2 ∂x 2 dx d-1 U (ζ) + x d ∂ ∂x U (ζ) = x d-3 (d -2) + (1 -ζ) ∂ ∂ζ (d -1) + (1 -ζ) ∂ ∂ζ d + (1 -ζ) ∂ ∂ζ U (ζ).(5.10) Substituting Eq.(5.8) and Eq.(5.10) into Eq.(5.6) we have(±1) α c α x d-α Γ(1 -α) ζ ζ -κ) -α U (1) (κ)dκ = = x d(1+3)-3 U 3 (ζ) (d -2) + (1 -Thus we can write (±1) α c α Γ(m -α) ζ ζ -κ) -α U (1) (τ )dκ = = U 3 (ζ) (d -2) + (1 -

5. 2 .

 2 Analytical solutions. In order to solve Eq.(5.13) we consider a function U (ζ) with the following form:U (ζ) = 0, ζ ≥ 0, Zζ σ , ζ < 0, (5.14) with σ > 1 and Z = (±1) α Γ(κ -2)c α Γ(1 + κ -α) 1/3

  c (ψ(t) -ψ(a)))

  c (ψ(t) -ψ(a))) 3-α 3

3 =

 3 + x ± c (ψ(t) -ψ(a))) c (ψ(t) -ψ(a))) [a 0 + b 0 (x ± c (ψ(t) -ψ(a)))]

  Γ(σ -2)(±c) α Γ(1 + σ -α) 1 3-α x 0 b 0 = Γ(σ -2)(±c) α Γ(1 + σ -α) 1 3-α .

  . Applying the Leibniz type rule in Lemma 4.3 to the terms C D

	α(t);ψ(t) a +	(ξu x ) and C D	α(t);ψ(t) a +	(τ u t ) in
	Proposition 4.11, we get			

  researchers investigated Lie symmetries for the fractional Harry Dym type equation in the Riemann-Liouville sense.

	Consider the fractional Harry Dym-type equation
	(5.1)	C D a + α(t);ψ(t)	u = u 3 u xxx , with, 0 < α(t) < 1,
	where C D a + α(t);ψ(t)	(•) is presented in Definition 3.1. Let ∆ be a differential function written as
	(5.2)	∆ = C D a + α(t);ψ(t)	u -u 3 u xxx .
	Using (4.6) and (4.8), yields	
	(5.3)		

  Note that, if α(t) = α, ψ(t) = t and a = 0, we recover one of the Lie symmetries of Harry Dym equation for classical Caputo fractional derivative. It is worth mentioning that in the papers[START_REF] Huang | Symmetries and exact solutions of the time fractional Harry-Dym equation with Riemann-Liouville derivative[END_REF][START_REF] Wang | Lie point symmetry analysis of the Harry-Dym type equation with Riemann-Liouville fractional derivative[END_REF] the authors found the symmetries for Harry Dym-type equation for the classical Riemann-Liouville fractional derivative.

	Remark 5.1. Remark 5.2. Taking direct sum X				
	∂ ∂u	, where Φ(ψ(t)) =	a	t	dψ α(t)	.
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