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Introduction

An important result in deformation theory asserts that every deformation problem over a field of characteristic 0 can be encoded by a differential graded Lie algebra (see [START_REF] Lurie | Derived Algebraic Geometry X: Formal Moduli Problems[END_REF] and [START_REF] Pridham | Unifying derived deformation theories[END_REF]). More precisely, any deformation problem can be described by a solution of the Maurer-Cartan equation:

d(x) + 1 2 [x, x] = 0,
in some differential graded Lie algebra. The group obtained by the integration of the differential graded Lie algebra into a Lie group, called the gauge group, moreover acts on the Maurer-Cartan set. The orbits of this action give isomorphism classes of deformation problems.

In [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF], Dotsenko-Shadrin-Vallette showed that if the differential graded Lie algebra comes from a differential graded pre-Lie algebra, then the Maurer-Cartan equation, the gauge group and its action on the Maurer-Cartan set can be described in terms of pre-Lie operations. A differential graded pre-Lie algebra is a vector space L with a bilinear operation ⋆ : L ⊗ L -→ L such that (x ⋆ y) ⋆ z -x ⋆ (y ⋆ z) = (-1) |y||z| ((x ⋆ z) ⋆ y -x ⋆ (z ⋆ y)), and which satisfies the Leibniz rule with respect to the differential. Every differential graded pre-Lie algebra is in particular a differential graded Lie algebra with the graded commutator: [x, y] = x ⋆ y -(-1) |x||y| y ⋆ x. Dotsenko-Shadrin-Vallette showed in particular that given a pre-Lie algebra L, the pre-Lie exponential map exp : L 0 -→ (1 + L 0 ) induces an isomorphism between the gauge group and the group (1 + L 0 , ⊚, 1) with ⊚ the circular product defined by

a ⊚ (1 + b) = n≥0 1 n! a{b, ..., b n },
where -{-, ..., -} denote the symmetric braces determined by the pre-Lie structure ⋆, starting with x{y} = x ⋆ y. Then, by writing the Maurer-Cartan equation as a zero-square equation, they prove that the action of the gauge group on the Maurer-Cartan set can be computed in terms of the circular product ⊚ as e λ .α = (e λ ⋆ α) ⊚ e -λ , allowing us to have an easier way to compute the Deligne groupoid associated to any differential graded pre-Lie algebra over a field of characteristic 0.

The aim of this paper is to develop a deformation theory in positive characteristic which generalizes the deformation theory controlled by pre-Lie algebras over a field of characteristic 0 developed in [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF]. Our idea is to use differential graded pre-Lie algebras with divided powers.

The notion of a pre-Lie algebra with divided powers (or Γ(PreLie, -)-algebra) has been studied by Cesaro in [START_REF] Cesaro | On Pre-Lie algebras with divided symmetries[END_REF]. He showed in particular that every pre-Lie algebra with divided powers comes equipped with weighted brace operations -{-, ..., -} r1,...,rn , for each collection of integers r 1 , ..., r n ≥ 0, which satisfy similar identities as the quantities x{y 1 , ..., y n } r1,...,rn = 1 i r i ! x{y 1 , ..., y 1 r1 , ..., y n , ..., y n rn } in a pre-Lie algebra over a field of characteristic 0 (see [START_REF] Cesaro | On Pre-Lie algebras with divided symmetries[END_REF]Propositions 5.9-5.10] for a precise list of these identities).

Every differential graded pre-Lie algebra with divided powers L comes equipped with analogous weighted brace operations -{-, ..., -} r1,...,rn which satisfy a graded version of the identities satisfied by weighted braces in the non graded framework. In this context, we have an analogue of the Maurer-Cartan equation:

d(x) + x{x} 1 = 0.
With suitable convergence hypothesis, we also get that the circular product ⊚ can be written as

a ⊚ (1 + b) = n≥0 a{b} n
and gives rise to a group structure on 1 + L 0 . This group is called the gauge group of L. As in characteristic 0, we also show that this group acts on the Maurer-Cartan set of L.

Theorem A. Let K be a ring.

(i) In any differential graded pre-Lie algebra with divided powers L, the circular product ⊚, defined as above, endows the set 1 + L 0 with a group structure.

(ii) Suppose that µ{α, α} 1,1 = 0 for every µ ∈ L 0 and α ∈ L with odd degree. If we denote by d the differential of L, then this group acts on the Maurer-Cartan set via the formula

(1 + µ).α = (α + µ{α} 1 -d(µ)) ⊚ (1 + µ) ⊚-1 .
We prove that this new deformation theory satisfies an analogue of the Goldman-Millson theorem given in [11, §2.4]. Let Deligne(L, A) be the Deligne groupoid of the dg pre-Lie algebra with divided powers L ⊗ m A , where L is a dg pre-Lie algebra with divided powers and m A the maximal ideal of a local artinian K-algebra A. We precisely get the following result.

Theorem B. Let K be a noetherian integral domain. Let L and L be two Γ(PreLie, -)-algebras. Suppose that L and L are free as K-modules and that there is no 2-torsion. Let φ : L -→ L be a morphism of Γ(PreLie, -)-algebras such that H 0 (φ) and H 1 (φ) are isomorphisms and H 2 (φ) a monomorphism. Then for every local artinian K-algebra A, the induced functor φ * : Deligne(L, A) -→ Deligne(L, A) is an equivalence of groupoids.

Other approaches to generalize the usual deformation theory in the positive characteristic framework have been proposed recently in the literature. We have for instance a deformation theory in an associative context, via A ∞ -algebras, which is used to study deformations of group representations (see [START_REF] Milham | On the Goldman-Millson theorem for A ∞ -algebras in arbitrary characteristic[END_REF]). Another approach is given by (spectral) partition Lie algebras to get a full generalization of the Lurie-Pridham correspondence in the setting of a field with positive characteristic (see [START_REF] Brantner | PD operads and explicit partition Lie algebras[END_REF][START_REF] Brantner | Deformation theory and partition Lie algebras[END_REF]).

The main motivation for the approach developed in this paper is that operadic deformation problems are expressed in terms of pre-Lie structures. The goal is then to compute the π 0 of a mapping space Map(B c (C), P), where we take any augmented dg operad P on the target and the operad B c (C) given by the cobar of a dg coaugmented cooperad C on the source. Recall simply that B c (C) defines a cofibrant operad when C is cofibrant as a symmetric sequence (Σ * -cofibrant).

It is well known that, over a field of characteristic 0, the π 0 of this mapping space is the set of isomorphism classes of the Deligne groupoid of the Lie algebra Hom Σ (C, P). Using the pre-Lie algebra structure of Hom Σ (C, P), this can be seen as a consequence of the computations in [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF]. To extend this result, we first show that Hom Σ (C, P) admits a structure of dg pre-Lie algebra with divided powers given in terms of the dg brace algebra structure of Hom(C, P). Then we get the following statement.

Theorem C. Let K be a field. Suppose that C is a Σ * -cofibrant coaugmented dg cooperad which comes with a weight decomposition and P an augmented dg operad. We then have an isomorphism:

π 0 (Map(B c (C), P)) ≃ π 0 Deligne(Hom Σ (C, P)),
where π 0 Deligne(Hom Σ (C, P)) denotes the set of isomorphism classes of the Deligne groupoid.

This theorem gives a first step for the calculation of the homotopy groups of a mapping space Map(B c (C), P) over any field.

In the first part of this paper, we recall some definitions and properties on pre-Lie algebras and pre-Lie algebras with divided powers: in §1.1 we briefly review the definition of the notion of a pre-Lie algebra and the construction of the corresponding operad; in §1.2, we review the definition of a pre-Lie algebra with divided powers and of the weighted brace operations.

In the second part, we develop the deformation theory for differential graded pre-Lie algebras with divided powers: in §2.1, we study pre-Lie algebras with divided powers in the dg framework; in §2.2, we define the circular product and prove assertion (i) of Theorem A; in §2.3, we define the Maurer-Cartan set and prove assertion (ii) of Theorem A; in §2.4, we finally prove our analogue of the Goldman-Millson theorem (Theorem B) for this new deformation theory.

We conclude this article with our application of this deformation theory for operadic deformation problems: in §3.1, we introduce some basic definitions on symmetric sequences and operads which will be useful to write our formulas; in §3.2, we study the structure of differential graded pre-Lie algebra with divided powers of the convolution operad; in §3.3, we finally give a proof of Theorem C. tree operad, of which we also recall the definition in this subsection.

In §1.2, we give recollections on the notion of a pre-Lie algebra with divided powers. These objects can be seen as pre-Lie algebras with some extra operations. We will focus on some of these operations called weighted braces that will mimic the quantities which appear in the definition of the circular product.

1.1 Pre-Lie algebras and the rooted tree operad

We will use the following basic definitions. Definition 1.1. A pre-Lie algebra on a ring K is a K-module L endowed with a bilinear morphism

⋆ : L ⊗ L -→ L such that (x ⋆ y) ⋆ z -x ⋆ (y ⋆ z) = (x ⋆ z) ⋆ y -x ⋆ (z ⋆ y).
Any pre-Lie algebra structure on L gives rise to multilinear operations denoted by -{-, ..., -}, called symmetric braces, and defined by induction on the length of the brace by

a{} = a, a{b 1 } = a ⋆ b 1 , ∀n ≥ 1, a{b 1 , ..., b n } = a{b 1 , ..., b n-1 }{b n } - n-1 i=1 a{b 1 , ..., b i-1 , b i {b n }, b i+1 ..., b n-1 }, for all a, b 1 , ..., b n ∈ L.
For our purpose, it will be more convenient to see pre-Lie algebras as algebras over an operad. This operad can be described in terms of rooted trees as follows.

Definition 1.2. (see [5, §1.5]) We call n-rooted tree a non-planar tree with n vertices equipped with a numbering from 1 to n, together with a distinguished vertex called the root. By convention, we chose to put the root at the bottom in any representation of a tree.

We let RT (n) to be the set of all trees with n vertices, and PreLie(n

) = K[RT (n)].
The collection PreLie is endowed with an operad structure. The action of Σ n on PreLie(n) for all n ≥ 1 is given by the permutation of the indices attached to the vertices. The i-th partial composition S • i T ∈ PreLie(p + q -1) of S ∈ RT (p) and T ∈ RT (q) is given by the sum of all the possible trees obtained by putting T in the vertex i of S, with the obvious choice of the numbering (see an example in [5, §1.5]). This operad is also called the rooted tree operad.

One can show that the algebras over the rooted tree operad are precisely the pre-lie algebras (see [5, §1.9]). In particular, the symmetric braces are given by

T n (x, y 1 , ..., y n ) = x{y 1 , ..., y n },
where T n is the following tree, the corolla with n leaves:

T n = 1 2 3 n + 1 ... ,
and T n (x, y 1 , ..., y n ) denotes the application of T n ∈ PreLie(n + 1) on the tensor x ⊗ y 1 ⊗ ... ⊗ y n .

Pre-Lie algebras with divided powers

In this part, we recall the notion of a pre-Lie algebra with divided powers. We obtain this definition as a particular case of a general construction, for algebras over an operad, which we briefly recall.

Every operad P on a suitable monoidal category C gives a functor S(P, -) : C -→ C, called the Schur functor, defined by

S(P, V ) = n≥0 P(n) ⊗ Σn V ⊗n ,
where we consider, in the direct sum, the coinvariants of P(n) ⊗ V ⊗n under the diagonal action of Σ n given by its action on P(n) and its action by permutation on the tensor product V ⊗n . This functor defines a monad and the category of algebras over this monad is the usual category of algebras over the operad P. In particular, pre-Lie algebras in the sense of Definition 1.1 are identified with S(PreLie, -)-algebras.

In the above definition, one can chose to take invariants instead of coinvariants. We obtain a new functor Γ(P, -) : C -→ C defined by

Γ(P, V ) = n≥0 P(n) ⊗ Σn V ⊗n .
If P(0) = 0, this functor also gives a monad (see [8, §1.1.18]). The algebras over this monad are called P-algebras with divided powers. The motivation for this terminology comes from the fact that, in the case of the commutative operad P = Com, the Γ(Com, -)-algebras are precisely the usual commutative and associative algebras over K with divided powers.

Note that if K is a field of characteristic 0, the above monads are in fact isomorphic, with an isomorphism given by the trace map T r : S(P, V ) -→ Γ(P, V ). This morphism is no longer an isomorphism in general when char(K) ̸ = 0.

In the case C = KM od and P = PreLie, if V is free, we however have an isomorphism of modules given by the orbit morphism O : S(PreLie, V ) -→ Γ(PreLie, V ) defined as follows. Let n ≥ 1 and t ∈ PreLie(n) ⊗ V ⊗n be a basis element. We set

O(t) = σ∈Σn/Stab(t) σ.t,
where Stab(t) is the stabilizer of t under the diagonal action of Σ n on PreLie(n) ⊗ V ⊗n . The map O is then extended by linearity on PreLie(n) ⊗ V ⊗n . Theorem 1.3. (A. Cesaro, [START_REF] Cesaro | On Pre-Lie algebras with divided symmetries[END_REF]) Every pre-Lie algebra with divided powers L comes equipped with operations -{-, ..., -} r1,...,rn : L ×n+1 -→ L called weighted braces which satisfy the following identities:

(i) x{y σ(1) , ..., y σ(n) } r σ(1) ,...,r σ(n) = x{y 1 , ..., y n } r1,...,rn , (ii) x{y 1 , ..., y i-1 , y i , y i+1 , ..., y n } r1,...,ri-1,0,ri+1,...,rn = x{y 1 , ..., y i-1 , y i+1 , ..., y n } r1,...,ri- 

for all n, m ≥ 0, r 1 , ..., r n , s 1 , ..., s m ≥ 0, 1 ≤ i ≤ n, σ ∈ Σ n and x, y 1 , ..., y n , z 1 , ..., z m ∈ L.
Note that the formula (vi) is written in a form that uses fractions for more convenience, but can be reduced to Z using the other formulas. The process works as follows. Let i such that 1 ≤ i ≤ n.

In the sum, we first fix β 1 , ..., β m and α p,q j for 1 ≤ j ≤ m, 1 ≤ q ≤ r j and p ̸ = i. We obtain a sum with (α i, 1 1 , ..., α i,1 m , ..., α i,ri 1 , ..., α i,ri m ) as variables. We identify this last tuple with a tuple of tuples of the form ((α i, 1 1 , ..., α i,1 m ); ...; (α i,ri 1 , ..., α i,ri m )). Let u be one of these tuples and suppose u = ( u 1 , ..., u 1 t1 , ..., u q , ..., u q tq ) up to permutation. Note that, if u 1 , ..., u q are given, we exactly have

r i ! t 1 !...t q !
such terms occurring in the sum. Then, by using the symmetry formula (i), the formula (iv) and by summing over all such tuples, we have in the sum: 

1 j (r j )! r i ! t 1 !...t q ! t 1 !...t q ! x{y 1 {z 1 , ..., z m } α 1,1 1 ,...,α 1,1 m , ..., y 1 {z 1 , ..., z m } α 1,
y i {z 1 , ..., z m } u k = y i {z 1 , ..., z m } α1,...,αm if u k = (α 1 , ..., α m ).
Hence, it gives:

1 j̸ =i (r j )! x{y 1 {z 1 , ..., z m } α 1,1 1 ,...,α 1,1 m , ..., y 1 {z 1 , ..., z m } α 1,r 1 1 ,...,α 1,r 1 m , ..., y i {z 1 , ..., z m } u1 , ..., y i {z 1 , ..., z m } uq , ... ..., y n {z 1 , ..., z m } α n,1 1 ,...,α n,1 m , ..., y n {z 1 , ..., z m } α n,rn 1 ,...,α n,rn m , z 1 , ..., z m } 1,.
..,t1,...,tq,...,1,β1,...,βm .

By iterating this argument on the other terms, we obtain an expression over Z.

The reader can find an example of such a reduction of the formula (vi) in [START_REF] Cesaro | On Pre-Lie algebras with divided symmetries[END_REF]Example 5.11], as well as a proof of the previous theorem (see [START_REF] Cesaro | On Pre-Lie algebras with divided symmetries[END_REF]).

We give the explicit construction of the weighted braces.

Construction 1.4. We regard the weighted braces x{y 1 , ..., y n } r1,...,rn as the action of the corolla

F i ri on the tensor x ⊗ y 1 ⊗ ... ⊗ y 1 r1 ⊗... ⊗ y n ⊗ ... ⊗ y n rn
where we distinguish all the y i 's. If y i ̸ = y j for all i ̸ = j, then we precisely set

x{y 1 , ..., y n } r1,...,rn = γ(OF i ri (x ⊗ y 1 ⊗ ... ⊗ y 1 r1 ⊗... ⊗ y n ⊗ ... ⊗ y n rn )),
where γ is the Γ(PreLie, -)-algebra structure on L.

In order to include the case where some of the y i 's might be the same, let E n to be the free Kmodule generated by a basis e, e 1 , ..., e n . We have an obvious morphism ψ x,y1,...,yn : Γ(PreLie, E n ) -→ Γ(PreLie, L) which sends e to x and each e i to y i . We then take the orbit map at the source and apply this morphism next to have a good definition of the weighted braces.

Remark 1.5. The converse of the previous theorem is also true, provided that L is free as a Kmodule. In fact, by using the same arguments as in [3, Construction 5.14], we can more generally assert that if we have brace operations -{-, ..., -} r1,...,rn : L ×n+1 -→ M which satisfy formulas (i) -(vi) where L and M are K-modules with L free, then these operations extend to a morphism Γ(PreLie, L) -→ M .

Deformation theory of Γ(PreLie, -)-algebras

The main goal of this section is to extend the results proved by Dotsenko-Shadrin-Valette in [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF] in the context of a ring of positive characteristic. The main idea is that formulas which define the circular product and the gauge action can be written in terms of weighted brace operations.

In §2.1, we revisit the definition of pre-Lie algebras with divided powers in the dg framework. In particular, we give the analogue of the weighted brace operations. We then make explicit an example of differential graded pre-Lie algebras with divided powers given by differential graded brace algebras.

In §2.2, we define the circular product ⊚ in terms of weighted brace operations that will generalize the one given in [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF]. We then show that this induces a group called the gauge group associated to the Γ(PreLie, -)-algebra.

In §2.3, we define the Maurer-Cartan equation in a Γ(PreLie, -)-algebra, and then the Maurer-Cartan set. We also see that the gauge group acts on the Maurer-Cartan set by a similar formula given in [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF].

In §2.4, we finally motivate this new deformation theory with an analogue of the Goldman-Millson theorem. This theorem, in particular, has the advantage to be true on integers.

Differential graded pre-Lie algebras with divided powers

As we are dealing with differential graded modules, our first goal is to define and study differential graded pre-Lie algebras with divided powers.

In the following sections, we assume that dg modules are equipped with a cohomological grading convention. We will denote by ⊗ the usual tensor product of graded modules over any ring K. This induces a symmetric monoidal category that we will denote by dgKM od. If there is no possible confusion, then we will denote by ± any sign produced by the Koszul sign rule.

Weighted braces on Γ(PreLie, -)-algebras

Our main goal here is to extend [START_REF] Cesaro | On Pre-Lie algebras with divided symmetries[END_REF]Proposition 5.13] in the context of dg modules. We first begin by a basic definition. Definition 2.1. A differential graded pre-Lie algebra is an algebra over the monad S(PreLie, -) : dgKM od -→ dgKM od.

Equivalently, we can easily see that a differential graded pre-Lie algebra is a graded module L = n≥0 L n endowed with a morphism of graded modules ⋆ :

L ⊗ L -→ L such that (x ⋆ y) ⋆ z -x ⋆ (y ⋆ z) = ±((x ⋆ z) ⋆ y -x ⋆ (z ⋆ y)) and a differential d : L n -→ L n+1 , which satisfies d(x ⋆ y) = d(x) ⋆ y ± x ⋆ d(y),
where ± is the sign yielded by the permutation of x and d.

We now define the notion of a pre-Lie algebra with divided powers in the dg framework. Definition 2.2. A differential graded pre-Lie algebra with divided powers is an algebra over the monad Γ(PreLie, -) : dgKM od -→ dgKM od.

As in the non graded case, we have the orbit map

O : S(PreLie, L) -→ Γ(PreLie, L),
for every Γ(PreLie, -)-algebra L that is free as a K-module, which is defined by the same formula as in §1.2. More precisely, we use the diagonal action of Σ n on PreLie(n) ⊗ V ⊗n where Σ n acts on V ⊗n by permuting the elements of the tensor and produces a sign given by the Koszul sign rule. Proposition 2.3. Let K be a ring. A (differential) graded pre-Lie algebra with divided powers L = n≥0 L n over K comes equipped with operations, called weighted braces, which have the following form.

-If char(K) = 2, weighted braces are maps -{-, ..., -} r1,...,rn : L ×(n+1) -→ L, defined for any collection of integers r 1 , ..., r n ≥ 0, which satisfy all formulas of Theorem 1.3 and preserve the grading in the sense that L k {L k1 , ..., L kn } r1,...,rn ⊂ L k+k1r1+...+knrn .

-If char(K) ̸ = 2, by setting L ev = n≥0 L 2n and L odd = n≥0 L 2n+1 , weighted braces are maps -{-, ...,p , -, ...,q } r1,...,rp,1,...,1 : L × (L ev ) ×p × (L odd ) ×q -→ L, defined for any collection of integers p, q, r 1 , ..., r p ≥ 0, which satisfy all formulas of Theorem 1.3 with a sign and preserve the grading.

Proof. We basically do the same thing as in [ ))),

where γ is the Γ(PreLie, -)-algebra structure on L.

One can check, in both cases, that all the desired formulas are satisfied. □

As in the non graded case, the converse is also true provided that L is free as a K-module in each degree.

We also see that weighted braces satisfy the Leibniz rule with respect to the differential. Proof. This proposition follows directly from the definition of the weighted braces and the commutation of d with the monadic composition. □

We then deduce from Propositions 2.3 and 2.4 that every differential graded pre-Lie algebra with divided powers is in particular a differential graded pre-Lie algebra, with Remark 2.6. Every morphism of Γ(PreLie, -)-algebras preserves the weighted braces:

x ⋆ y = x{y} 1 . Remark 2.5. If Q ⊂ K and if L is a differential graded pre-Lie algebra,
f (x{y 1 , ..., y n } r1,...,rn ) = f (x){f (y 1 ), ..., f (y n )} r1,...,rn .

In the following sections, we deal with a convergence hypothesis to give a sense to series. There are several ways to give such hypothesis. For this paper, we will suppose that L is complete with respect to some filtration ... ⊂ F n L ⊂ F n-1 L ⊂ ... ⊂ F 1 L = L in the sense that L = lim n≥1 L/F n L in dgKM od. We also assume that the filtration is compatible with the weighted braces:

F k L{F k1 L, ..., F kn L} r1,...,rn ⊂ F k+k1r1+...+knrn L.
Moreover, we will formally extend the weighted braces to L + = K1 ⊕ L by y{1} 1 = y and, for n ≥ 1,

1{y 1 , ..., y n } = y 1 if n = 1 0 if n > 1 .
We can extend the previous filtration to L + by setting F 0 L = L + . One can easily check that weighted braces still preserve this new filtration, and we obviously have that L + is complete with respect to this filtration.

Example: differential graded brace algebras

We give an example of dg pre-Lie algebra with divided powers which are given by dg brace algebras, following the idea of the proof in the non graded framework in [START_REF] Cesaro | On Pre-Lie algebras with divided symmetries[END_REF]. and such that f ⟨⟩ = f and

f ⟨g 1 , ..., g n ⟩⟨h 1 , ..., h r ⟩ = ±f ⟨Y 1 , y 1 ⟨Y 2 ⟩, ..., Y 2n-1 , y n ⟨Y 2n ⟩, Y 2n+1 ⟩,
where the sum is over all consecutive subsets Y 1 ⊔ Y 2 ⊔ ... ⊔ Y 2n+1 = {h 1 , ..., h r }, and the sign is yielded by the permutation of the y i 's with the h j 's.

The operad which governs brace algebras is denoted by Brace, and is defined, in arity n, as the K-module spanned by the planar n-trees, i.e. trees with an order on the set of inputs for each vertex (see [3, §6.1] or [4, §2] for some details on the operad Brace).

This operad allows us to represent all operations in brace algebras by the action of a planar tree, or by a planar tree labeled with the inputs. For instance, we have

f g1 h1 h2 g2 g3 h3 = 1 2 3 4 5 6 7 (f ⊗ g 1 ⊗ h 1 ⊗ h 2 ⊗ g 2 ⊗ g 3 ⊗ h 3 ) = f ⟨g 1 ⟨h 1 , h 2 ⟩, g 2 , g 3 ⟨h 3 ⟩⟩.
Remark 2.8. Because the action of the symmetric groups on Brace is free, we have that the trace map induces an isomorphism of monads S(Brace, -) -→ Γ(Brace, -).

We have an inclusion i : PreLie → Brace defined by the symmetrization of trees. Namely, i is obtained by summing over all possible ways to write a given tree t as a planar tree. For instance: .

The map i induces a morphism of monads that can be used to define a Γ(PreLie, -)-algebra structure on every dg brace algebra L, given by the following composition:

Γ(PreLie, L) Γ(Brace, L) S(Brace, L) L ≃ .
We also can explicitly compute the weighted braces.

Theorem 2.9. Every dg brace algebra L is endowed with a Γ(PreLie, -)-algebra structure. Moreover, weighted braces -{-, ..., -} r1,...,rn are explicitly given by f {g 1 , ..., g n } r1,...,rn = σ∈Sh(r1,...,rn)

±f ⟨h σ -1 (1) , ..., h σ -1 (r) ⟩,
where we set r = i r i and (h 1 , ..., h r ) = (g 1 , ..., g 1 r1 , ..., g n , ..., g n rn

) and where ± is the sign induced by the permutations of g i with g j when i ̸ = j.

Proof. Weighted braces are given by elements of the form x = OT i ri (f, g 1 , ..., g 1 r1 , ..., g n , ..., g n rn ) ∈ Γ(PreLie, L). For more convenience, we will set (h 1 , ..., h r+1 ) = (f, g 1 , ..., g 1 r1 , ..., g n , ..., g n rn ) (note that we have added f here so that these h i 's are different from the h i 's of the theorem).

We precisely have:

x = σ∈Σn/ i Σr i ±(σ.T r )(h σ -1 (1) , ..., h σ -1 (r+1) ) because Stab(T r (f, g 1 , ..., g 1 r1 , ... g n , ..., g n rn )) = i Σ ri . Now, because Σ n / i Σ ri is

in bijection with

Sh(1, r 1 , ..., r n ), we can rewrite x as

x = σ∈Sh(1,r1,...,rn) ±(σ.T r )(h σ -1 (1) , ..., h σ -1 (r+1) ).
We now embed PreLie into Brace. The tree T r can be seen in Brace as s∈Σr σ.T r where T r is the planar tree

T r = 1 2 3 r + 1
... and where we embed Σ r into Σ r+1 by fixing 1. We then have, in Γ(Brace, L),

x = σ∈Sh(1,r1,...,rn) s∈Σr ±(σs.T r )(h σ -1 (1) , ..., h σ -1 (r+1) ).

Using that every s ∈ Σ r admits a unique decomposition of the form s = ω.µ where ω ∈ Sh(r 1 , ..., r n ) and µ ∈ i Σ ri , we obtain x = σ∈Sh(1,r1,...,rn) ω∈Sh(r1,...,rn) µ∈ i Σr i ±(σµω.T r )(h σ -1 (1) , ..., h σ -1 (r+1) ).

We now need to compute y = T r -1 (x). We claim that y = ω∈Sh(r1,...,rn) (ω.T r )(f, g 1 , ..., g 1 r1 , ..., g n , ..., g n rn

)
where again we embed Σ r → Σ r+1 by fixing 1.

We compute

T r(y) = ω∈Sh(r1,...,rn) τ ∈Σr+1 ±(τ ω.T r )(h τ -1 (1) , ..., h τ -1 (r+1) ).

Similarly as before, we use that every τ ∈ Σ r+1 admits a unique decomposition of the form τ = σ.µ where σ ∈ Sh(1, r 1 , ..., r n ) and µ ∈ i Σ ri . Then: T r(y) = ω∈Sh(r1,...,rn) σ∈Sh(1,r1,...,rn) µ∈ i Σr i ±(σµω.T r )(h σ -1 (1) , ..., h σ -1 (r+1) ) = x, which gives the result. □

In particular, we can easily compute weighted braces in the case n = 1:

f {g} r = f ⟨g, ..., g r ⟩.
Remark 2.10. Let P be an operad. It is well known that n P(n) is endowed with a brace algebra structure (see [START_REF] Cesaro | On Pre-Lie algebras with divided symmetries[END_REF]). If we denote by γ : P • P -→ P the operadic composition, the brace algebra structure of n P(n) can be written as

p⟨q 1 , ..., q n ⟩ = σ γ(p ⊗ 1 ⊗ ...1 ⊗ q 1 ⊗ 1 ⊗ ... ⊗ 1 ⊗ q n ⊗ 1 ⊗ ... ⊗ 1 ⊗ σ)
where we sum on all pointed unshuffle permutations σ of type (1, ..., 1, m 1 , 1, ..., 1, m n , 1, ..., 1) with p ∈ P(r), g i ∈ P(m i ). By convention, the term in the sum is 0 if n ≥ r + 1.

Consider now the sub module n P (n) Σ . It is not preserved by the brace operations in general, however the Γ(PreLie, -) operations induced by the brace algebra structure of n P(n) preserves n P(n) Σn so that n P(n) Σn is also is Γ(PreLie, -)-algebra.

The gauge group

We can now define an analogue of the circular product given in [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF] using the weighted brace operations.

Definition 2.11. Let α ∈ L + and µ ∈ L 0 . We set

α ⊚ (1 + µ) = +∞ n=0 α{µ} n .
Note that this quantity is well defined according to our convergence hypothesis.

By applying this definition in the case Q ⊂ K and using the weighted braces given by Remark 2.5, we retrieve the usual circular product given in [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF].

Remark 2.12. One can see that we have 1

⊚ (1 + µ) = 1 + µ = (1 + µ) ⊚ 1 so that 1 is a unit element for ⊚. We thus have ∀µ, ν ∈ L 0 , (1 + µ) ⊚ (1 + ν) = 1 + ν + +∞ n=0 µ{ν} n ,
which shows that ⊚ preserves 1 + L 0 . Lemma 2.13. The circular product ⊚ is associative, in the sense that for all α ∈ L + and µ, ν ∈ L 0 ,

(α ⊚ (1 + µ)) ⊚ (1 + ν) = α ⊚ ((1 + µ) ⊚ (1 + ν)).
Proof. Let α ∈ L + and µ, ν ∈ L 0 . We first have

(α ⊚ (1 + µ)) ⊚ (1 + ν) = +∞ n=0 α{µ} n ⊚ (1 + ν) = +∞ n,p=0 α{µ} n {ν} p .
On the other hand, we have

α ⊚ ((1 + µ) ⊚ (1 + ν)) = α ⊚ 1 + ν + +∞ n=0 µ{ν} n = +∞ p=0 α ν + +∞ n=0 µ{ν} n p .
We thus need to prove that To prove this identity, we use formula (vi) of Theorem 1.3: In this sum, because of the symmetry, some terms occur several times. For a given p and β, we count the number of partitions of p -β = α 1 + ... + α n of the particular form r 1 α 1 + ... + r q α q . We get n( α 1 , ..., α n ) = n! r1!...rq! for this number. We then have 1 r 1 !...r q ! α{µ{ν} α 1 , ..., µ{ν} α 1 , ....., µ{ν} α q , ..., µ{ν} α q , ν} 1,...,1,β = α{µ{ν} α 1 , ..., µ{ν} α q , ν} r1,...,rq,β .

α{µ} n {ν} p = p=β+ n i=1 α i 1 n! α{µ{ν} α 1 , ...,
We conclude by formula (v) of Theorem 1.

□

We now need to find an explicit inverse for a given element 1 -µ with µ ∈ L 0 .

Definition 2.14. Let t be a non-labeled tree with n vertices and µ ∈ L 0 . We set

Ot(µ) = γ(Ot(µ ⊗n )),
for some choice of labeling of t.

Note that because O is Σ-invariant, this quantity does not depend on the choice of a labeling for t. For example, let t be the non-labeled tree t = .

Then Ot(µ) = µ{µ{µ} 2 , µ{µ} 3 , µ} 2,1,1 .

Lemma 2.15. For every µ ∈ L 0 , the element 1 -µ has an inverse in 1 + L 0 for the circular product ⊚ given by

(1 -µ) ⊚-1 = 1 + t∈rRT * Ot(µ),
where rRT * is the set of trees without any labeling and with at least one vertex.

Proof. We first see that this defines a right-inverse for 1 -µ. Indeed, we first have that

(1 -µ) ⊚ 1 + t∈rRT * Ot(µ) = 1 + t∈rRT * Ot(µ) - +∞ k=0 µ t∈rRT * Ot(µ) k .
Then, as every t ∈ rRT * can be uniquely described by its root and branches, we have that every term in the first sum at the right hand side can be uniquely described by an element from the second sum, and vice versa. Formulas from Theorem 1.3 thus give the result.

We now need to prove that it is a left inverse, which is slightly more difficult. We compute

1 + t∈rRT * Ot(µ) ⊚ (1 -µ) = 1 -µ + t∈rRT * Ot(µ) + k≥1 t∈rRT * Ot(µ) {-µ} k .
We focus on one term Ot(µ) from the first sum, for some tree t ∈ rRT * . We say that a vertex of t is extremal if it is not the root of t and if it is connected to one and only one other vertex in t. We denote by m t the number of extremal vertices.

If m t = 0, then t is the trivial tree: Ot(µ) = µ. This term does not appear in the second sum (because k ≥ 1) and vanishes with -µ.

If m t ̸ = 0, the idea is to fix a number 1 ≤ k ≤ m t , and to see which trees we can obtain if we remove k extremal vertices of t. These trees will occur in the second sum and give (-1) k Ot(µ) by adding k copies of -µ. Let X t be the set of extremal vertices of t. Let X t,k be the set of non ordered subsets of X t with k elements. When we remove k extremal vertices, we need to take into account that we can obtain the same tree by removing a different non ordered set of k extremal vertices. For example, if we take the previous tree t = and if we look at the first branch, removing the vertex at the left gives the same tree as removing the vertex at the right. Let t 1 k ,...,t p k k be all the different trees that we can get from t by removing k extremal vertices. We denote by X t i k t,k the subset of X t,k formed by all the vertices that lead to t i k when removing them from t. We then have a disjoint union

X t,k = p k i=1 X t i k t,k .
Each terms Ot i k (µ){-µ} k will then give, among other terms, (-1) k Card(X

t i k t,k )Ot(µ).
When we take the sum over i, we obtain (-1) k Card(X t,k )Ot(µ) = (-1) k m t k Ot(µ). By taking the sum over k, we therefore obtain -Ot(µ) which vanishes with Ot(µ) given by the first sum. □ From Lemma 2.13 and Lemma 2.15, we deduce assertion (i) of Theorem A:

Theorem 2.16. The triple Γ = (1 + L 0 , ⊚, 1) is a group called the gauge group of L.

Maurer-Cartan elements and the Deligne groupoid

We now aim to prove assertion (ii) of Theorem A. We first make explicit the definition of the Maurer-Cartan set. Definition 2.17. A given α ∈ L 1 is a Maurer-Cartan element if it satisfies the Maurer-Cartan equation:

d(α) + α{α} 1 = 0.
We let MC(L) to be the set of all Maurer-Cartan elements of L.

Remark 2.18. In the case Q ⊂ K, we retrieve the classical definition:

d(α) + 1 2 [α, α] = 0,
written with the dg Lie algebra structure on L.

As in the case of characteristic zero, we expect the gauge group to act on the Maurer-Cartan set. Before seeing that, we define a new operation.

Definition 2.19. Let α ∈ L + , β ∈ L and 1 + µ ∈ Γ. We set α ⊚ (1 + µ; β) = +∞ n=0 α{µ, β} n,1 .
Lemma 2.20. We have the following identities:

(α ⊚ (1 + µ)){β} 1 = α ⊚ (1 + µ; β + µ{β} 1 ), α{β} 1 ⊚ (1 + µ) = α ⊚ (1 + µ; β ⊚ (1 + µ)), d(α ⊚ (1 + µ)) = d(α) ⊚ (1 + µ) + (-1) |α| α ⊚ (1 + µ; d(µ)).
Proof. By applying formula (vi) of Theorem 1.3, we find that

(α ⊚ (1 + µ)){β} 1 = +∞ n=0 α{µ} n {β} 1 = +∞ n=0 α{µ, β} n,1 + +∞ n=1 α{µ, µ{β} 1 } n-1,1 = +∞ n=0 α{µ, β + µ{β} 1 } n,1 = α ⊚ (1 + µ; β + µ{β} 1 ),
as well as

α{β} 1 ⊚ (1 + µ) = +∞ m=0 α{β} 1 {µ} m = +∞ p,q=0 α{β{µ} p , µ} 1,q = α ⊚ (1 + µ; β ⊚ (1 + µ)).
Finally, by using the compatibility of d with weighted braces, we obtain,

d(α ⊚ (1 + µ)) = +∞ n=0 d(α){µ} n + (-1) |α| +∞ n=1 α{µ, d(µ)} n-1,1 = d(α) ⊚ (1 + µ) + (-1) |α| α ⊚ (1 + µ; d(µ)),
which concludes the proof of the lemma. □

We can now prove assertion (ii) of Theorem A.

Theorem 2.21. Suppose that µ{α, α} 1,1 = 0 for every µ ∈ L 0 and α ∈ L with odd degree. Then the gauge group Γ acts on the Maurer-Cartan set MC(L) by

(1 + µ).α = (α + µ{α} 1 -d(µ)) ⊚ (1 + µ) ⊚-1
for all (1 + µ) ∈ Γ and α ∈ MC(L).

Note that this theorem is false if we do not assume µ{α, α} 1,1 = 0 for µ ∈ L 0 and α ∈ L with odd degree. The reason is that if we set β = (1 + µ).α following the assertion of the theorem, then the proof of the theorem will exactly give the equality d(β) + β{β} 1 = (µ{α, α} 1,1 ) ⊚ (1 + µ) ⊚-1 . This hypothesis then assures that the action preserves MC(L).

In most cases, this hypothesis is satisfied. We denote three particular situations where this is satisfied:

-if char(K) = 2, because µ{α, α} 1,1 = 2µ{α} 2 = 0; -if L has no 2-torsion (e.g. if 2 ∈ K × ), because by symmetry µ{α, α} 1,1 = -µ{α, α} 1,1 ;
-if the Γ(PreLie, -)-algebra structure of L is induced by a brace algebra structure (in the sense of Theorem 2.9).

Proof. We first need to prove that β = (1 + µ).α is indeed a Maurer-Cartan element. For this, we first remark that applying d on each side of the equality d(µ) = α + µ{α} 1 -β ⊚ (1 + µ), and by using that d(α) = -α{α} 1 and the previous lemma, we have

d(β) ⊚ (1 + µ) = -α{α} 1 -µ{α{α} 1 } 1 + d(µ){α} 1 + β ⊚ (1 + µ; d(µ)).
Moreover, again by the previous lemma, we have

d(µ){α} 1 = α{α} 1 + µ{α} 1 {α} 1 -β ⊚ (1 + µ){α} 1 = α{α} 1 + µ{α{α} 1 } 1 + µ{α, α} 1,1 -β ⊚ (1 + µ; α) -β ⊚ (1 + µ; µ{α} 1 ). Then d(β) ⊚ (1 + µ) = β ⊚ (1 + µ; d(µ)) -β ⊚ (1 + µ; α) -β ⊚ (1 + µ; µ{α} 1 ),
with the remark that µ{α, α} 1,1 = 0.

Finally,

d(β) ⊚ (1 + µ) = -β ⊚ (1 + µ; β ⊚ (1 + µ)).
By the previous lemma, this gives

d(β) ⊚ (1 + µ) = -β{β} 1 ⊚ (1 + µ)
and then (d(β)+β{β} 1 )⊚(1+µ) = 0, that is to say d(β)+β{β} 1 = 0 by composing with (1+µ) ⊚-1 on the right. We thus have proved that β ∈ MC(L).

We now need to check that we have indeed an action of Γ on MC(L). We have that 1 + 0 acts trivially on MC(L), so we just need to prove that ((

1 + ν) ⊚ (1 + µ)).α = (1 + ν).((1 + µ).α).
By hypothesis, we have the following equations:

d(µ) = α + µ{α} 1 -β ⊚ (1 + µ), d(ν) = β + ν{β} 1 -γ ⊚ (1 + ν). Let 1 + λ = (1 + ν) ⊚ (1 + µ) = 1 + µ + ν ⊚ (1 + µ). We compute: α + λ{α} 1 -γ ⊚ (1 + λ) = α + µ{α} 1 + ν ⊚ (1 + µ){α} 1 + d(ν) ⊚ (1 + µ) -β ⊚ (1 + µ) -ν{β} 1 ⊚ (1 + µ) = d(µ) + d(ν) ⊚ (1 + µ) + ν ⊚ (1 + µ; α) +ν ⊚ (1 + µ; µ{α} 1 ) -ν ⊚ (1 + µ; β ⊚ (1 + µ))
by the previous lemma. We then have

α + λ{α} 1 -γ ⊚ (1 + ν) ⊚ (1 + µ) = d(µ) + d(ν) ⊚ (1 + µ) + ν ⊚ (1 + µ; d(µ)) = d(λ),
which proves the theorem. □

We can link these results to the pre-Lie deformation theory developed in [START_REF] Dotsenko | Pre-Lie deformation theory[END_REF] by Dotsenko-Shadrin-Vallette. Indeed, recall that on a differential graded Lie algebra L, we can formally add an element δ which will make the differential internal in the sense that d(µ) = [δ, µ] for all µ ∈ L. Then, when looking at L = L ⊕ Kδ, the Maurer-Cartan equation is reduced to a square-zero equation:

[α, α] = 0.
Moreover, the action of an element λ in the usual gauge group is described by the formula λ.α = (e λ ⋆ α) ⊚ e -λ , which can be written, by doing the variables substitution 1 + µ = e λ , as

(1 + µ).α = (α + µ{α} 1 ) ⊚ (1 + µ) ⊚-1 .
To retrieve our formula, do the final last variable substitution α = α+δ and use that δ{x 1 , ..., x n } = 0 as soon as n ≥ 2 to have (1 + µ).α = (α + µ{α} 1 -d(µ)) ⊚ (1 + µ) ⊚-1 , which is the precise action we have defined in the previous theorem.

We end this section with the definition of the Deligne groupoid.

Proposition-Definition 2.22. Let L be a Γ(PreLie, -)-algebra such that µ{α, α} 1,1 = 0 for every µ ∈ L 0 and α ∈ L with odd degree. We let Deligne(L) to be the category with MC(L) as set of objects and

Mor Deligne(L) (α, β) = {(1 + µ) ∈ Γ | (1 + µ).α = β}.
Then Deligne(L) is a groupoid called the Deligne groupoid of L.

Proof. It is a corollary of the previous theorem. □

An integral Goldman-Millson theorem

We conclude this part with an analogue of the Goldman-Millson theorem. This theorem allows us to give a link between two particular groupoids when changing a dg Lie algebra L to another one L which is quasi-isomorphic to L (see [11, §2.4]).

From now, we suppose that every Γ(PreLie)-algebras in this section are free as K-modules and without 2-torsion. Let A be a local artinian K-algebra with maximal ideal m A . Let L be a Γ(PreLie, -)-algebra (without any convergence hypothesis). Then L ⊗ A is also a Γ(PreLie, -)algebra with the following definitions:

(L ⊗ A) k = L k ⊗ A, γ(Ot(x 1 ⊗ a 1 , ..., x n ⊗ a n )) = γ(Ot(x 1 , ..., x n )) ⊗ a 1 ...a n , d(x ⊗ a) = dx ⊗ a.
To retrieve our convergence hypothesis, we can consider the sub Γ(PreLie, -)-algebra L ⊗ m A . This Γ(PreLie, -)-algebra has a filtration satisfying our convergence hypothesis given by

F n (L ⊗ m A ) = L ⊗ m n A
which is 0 for n big enough, because m A is nilpotent. In particular, our series will be reduced to finite sums. We can now prove Theorem B.

Theorem 2.23. Let K be a noetherian integral domain. Let L and L be two Γ(PreLie, -)-algebras. Suppose that L and L are free as K-modules and that there is no 2-torsion. Let φ : L -→ L be a morphism of Γ(PreLie, -)-algebras such that H 0 (φ) and H 1 (φ) are isomorphisms, and H 2 (φ) is a monomorphism. Then for all local artinian K-algebras A, the induced functor φ * : Deligne(L, A) -→ Deligne(L, A) is an equivalence of groupoids.

Proof. It is easy to check that all the proof given in [11, §2.5- §2.11] remains valid when changing the commutator [x, y] to x ⋆ y -±y ⋆ x.

We only note that the lemma given in [11, §2.8] can be rephrased in our context by the following assertion: for all α ∈ L 1 ⊗ m A , η ∈ L 0 ⊗ m A and u ∈ L 0 ⊗ I, we have

(1 + u + η).α = (1 + η).α -d(u).
It is a simple calculation, using the fact that I.I ⊂ I.m A = 0:

(β -d(u)) ⊚ (1 + u + η) = +∞ n=0 (β -d(u)){u + η} n = +∞ n=0 n k=0 (β -d(u)){u, η} k,n-k = β -d(u) + +∞ n=1 β{η} n = β ⊚ (1 + η) -d(u) = α + η{α} 1 -d(η) -d(u) = α + (u + η){α} 1 -d(u + η).
The other parts of the proof can be easily transposed in a Γ(PreLie, -)-algebra version and remain valid. □ Definition 2.24. Two Γ(PreLie, -)-algebras L and L are quasi-isomorphic if there exists a zig-zag of morphisms of Γ(PreLie, -)-algebras

L = L 0 -→ L 1 ←-... -→ L m-1 ←-L m = L
in which each morphism induces an isomorphism in cohomology. which is natural in A.

Application in homotopy theory for operads

The goal of this section is to establish Theorem C, which gives a computation of π 0 (Map(B c (C), P)) where C is a Σ * -cofibrant coaugmented cooperad, P an augmented operad and B c the cobar construction (see [START_REF] Benoit Fresse | Homotopy of operads & Grothendieck-Teichmüller groups[END_REF] or [START_REF] Loday | Algebraic Operads[END_REF] for a definition of this construction). In the case of a field of characteristic 0, it can be expressed in terms of the Deligne groupoid with the structure of dg Lie algebra of Hom Σ (C, P). We extend this result using a structure of Γ(PreLie, -)-algebra that underlies this dg Lie algebra structure.

In §3.1, we define infinitesimal k-composition and k-decomposition that generalize the usual infinitesimal composition and decomposition operations given in [12, §6.1]. These operations will be used in the next section to write more easily weighted brace operations of the convolution operad.

In §3.2, we recall the definition of the convolution operad Hom(C, P), as given in [12, §6.4.1], and study the Γ(PreLie, -)-algebra structure of Hom Σ (C, P). This structure will be induced by a dg brace algebra structure on Hom(C, P) given by its operadic composition. In the same way that infinitesimal composition and decomposition can be used to express the pre-Lie algebra structure of the convolution operad (see [START_REF] Loday | Algebraic Operads[END_REF]Proposition 6.4.5]), we will use infinitesimal k-composition and k-decomposition to compute weighted brace operations of the convolution operad.

In §3.3, we just use a cylinder object of B c (C) given by Fresse in [9, §5.1] to get our result: the quotient of Hom Σ (C, P) by the gauge action gives π 0 (Map(B c (C), P)).

Infinitesimal compositions and decompositions of an operad and a cooperad

We first introduce some definitions which will be useful for the computations.

Let M and N two symmetric sequences. Recall that we have a monoidal structure on the category of symmetric sequences defined by

M • N (n) = k≥0 M (k) ⊗ Σ k i1+...+i k =n Ind Σn Σi 1 ×...×Σi k (N (i 1 ) ⊗ ... ⊗ N (i k )) ,
with as unit the symmetric sequence I defined by

I(n) = K if n = 1 0 if n ̸ = 1 .
Every elements of M • N (n) can be identified as a tree of the form:

x y 1 i * i * y n i * i * ... ... ... 0 ,
where x ∈ M , y 1 , ..., y n ∈ N .

We now generalize the definition of the infinitesimal composition/decomposition defined in [START_REF] Loday | Algebraic Operads[END_REF], in order to write some formulas in a more convenient way. One can easily check that if we have morphisms of symmetric sequences f : M -→ M and g : N -→ N , then we have a morphism f

• (k) g : M • (k) N -→ M • (k) N given by f • (id I ⊕ g).
Let P an operad with composition γ : P • P -→ P and unit η : I -→ P, and let C a cooperad with coproduct ∆ : C -→ C • C and counit ε : C -→ I. We will suppose that P is augmented, i.e. the unit η : I -→ P admits a retraction π : P -→ I. Equivalently, there exists an operad P with P ≃ I ⊕ P such that the first projection on P is given by π. Similarly, we suppose that C is coaugmented, i.e. the counit ε : C -→ I admits a section s : I -→ C. Equivalently, there exists a cooperad C with C ≃ I ⊕ C such that the first projection is given by ε.

The following definition gives an extension of the usual infinitesimal composition and decomposition operations given in [12, §6.1] for k = 1.

Definition 3.2. Let k ≥ 1.
-We define the infinitesimal k-composition in P as

γ (k) : P • (k) P(n) P • P(n) P(n), γ
where the first map is the inclusion of P • (k) P in P • P.

-We define the infinitesimal k-decomposition in C as

∆ (k) : C(n) C • C(n) C • (k) C(n), ∆
where the last map is the projection of

C • C onto C • (k) C.
Because C is coaugmented, we have that the coproduct ∆ : C -→ C •C preserves the isomorphism C ≃ I ⊕ C in the following sense. We have the isomorphism

C • C ≃ I • I ⊕ C • I ⊕ I • C ⊕ k≥1 C • (k) C.
Then, we get that the restriction of ∆ on I and on C are such that ∆ :

I -→ I • I and ∆ : C -→ C • I ⊕ I • C ⊕ k≥1 C • (k) C. We can then define the infinitesimal k-decompositions on C by ∆ (0) : C C • I ⊕ I • C ⊕ k≥1 C • (k) C C • I ⊕ I • C, ∆ (k) : C C • I ⊕ I • C ⊕ k≥1 C • (k) C C • (k) C, ∆ ∆ for all k ≥ 1.
Beware that these notations are in fact abusive and have nothing to do with the infinitesimal k-decompositions ∆ (k) : C -→ C • (k) C of the cooperad C, which will not be needed in this paper.

Γ(PreLie, -)-algebra structure of the convolution operad

Let M and N be two symmetric sequences of differential graded K-modules. We define a new symmetric sequence Hom(M, N ) in dg K-modules by Hom(M, N )(n) = Hom(M (n), N (n)), the differential graded module formed by the homogeneous morphisms f : M (n) -→ N (n). The differential on Hom(M, N ) is given by

d(f ) = d M • f -(-1) deg(f ) f • d N , for all f ∈ Hom(M, N ). The action of Σ n on Hom(M (n), N (n)) is defined by ∀x ∈ M (n), f σ (x) = σ -1 f (σx),
for all σ ∈ Σ n . Proposition 3.3. (see [START_REF] Loday | Algebraic Operads[END_REF]) Let C a cooperad and P an operad. Then Hom(C, P) has the structure of a dg operad called the convolution operad of C and P.

We recall the operad structure on Hom(C, P). For f ∈ Hom(C, P)(k), g 1 ∈ Hom(C, P)(i 1 ), ..., g k ∈ Hom(C, P)(i k ) the composition γ(f ⊗ g 1 ⊗ ... ⊗ g k ⊗ id) is given by the composite

C(n) C • C(n) C(k) ⊗ C(i 1 ) ⊗ ... ⊗ C(i k ) ⊗ K[id] P(k) ⊗ P(i 1 ) ⊗ ... ⊗ P(i k ) ⊗ K[id] P • P(n) P(n) ∆ f ⊗g1⊗...⊗g k ⊗id γ where n = p i p and, for all σ ∈ Σ n , γ(f ⊗ g 1 ⊗ ... ⊗ g k ⊗ σ) = γ(f ⊗ g 1 ⊗ ... ⊗ g k ⊗ id) σ .
We now suppose that P and C are connected in the sense that P(0) = C(0) = 0 and P(1) = C(1) = K.

We have a dg brace algebra structure on Hom(C, P). Lemma 3.4. Let f ∈ Hom(C, P)(r) and g 1 ∈ Hom(C, P)(p 1 ), ..., g n ∈ Hom(C, P)(p n ). We define the (non symmetric) braces as f ⟨g 1 , ..., g n ⟩ = 1≤i1<...<in≤m σ1,...,σn

((...((f • in g n ) σn • in-1 g n-1 ) σn-1 ...) • i1 g 1 ) σ1
if n ≤ r, where each σ i is a pointed unshuffle permutation of the form (1, ..., p i , ..., 1) with p i placed at the same position as g i in f , and 0 if n > r. Then this definition endows Hom(C, P) with a differential graded brace algebra structure.

Proof. When n ≤ r, we have in fact that

f ⟨g 1 , ..., g n ⟩ = 1≤i1<...<in≤m σ γ(f ⊗ 1 ⊗ ... ⊗ 1 ⊗ g 1 ⊗ 1 ⊗ ... ⊗ 1 ⊗ g n ⊗ 1 ⊗ ... ⊗ 1 ⊗ σ),
where the second sum is taken over all pointed unshuffles σ of type (1, ..., 1, p 1 , 1, ..., 1, p n , 1, ..., 1).

The lemma follows from the structure of dg operad of the convolution operad. □

We denote, for all n ≥ 0, by Hom Σn (M (n), N (n)) the submodule of Hom(M (n), N (n)) formed by all morphisms which commute with the action of Σ n . We let Hom Σ (C, P) = n≥0 Hom Σn (C(n), P(n)).

By Theorem 2.9 and Remark 2.10, Hom Σ (C, P) is endowed with a Γ(PreLie, -)-algebra structure. Moreover, we have a unit element 1 ∈ Hom Σ (I, P) given by η : I -→ P.

We can explicitly describe the weighted braces with one input in terms of infinitesimal decompositions and compositions. We now extend the computation of π 0 (Map(B c (C), P)) on a field K with positive characteristic.

Recall first that we can give an explicit cylinder object for B c (C), where B c is the cobar construction of C, when C is Σ * -cofibrant (see for instance [START_REF] Benoit Fresse | Operadic cobar constructions, cylinder objects and homotopy morphisms of algebras over operads[END_REF] or [START_REF] Loday | Algebraic Operads[END_REF]). Explicitly, let K = Kσ 0 ⊕ Kσ 1 ⊕ σ 01 where deg(σ 0 ) = deg(σ 1 ) = -1, deg(σ 01 ) = 0 and d(σ 01 ) = σ 1 -σ 0 . Then there exists a derivation of operads ∂ such that the free dg operad (F(K ⊗ C), ∂) is a cylinder object for B c (C). We refer to [9, §5.1] for an explicit construction of ∂ and a proof of the previous statement. Theorem 3.7. Suppose that C is Σ * -cofibrant. We then have an isomorphism: π 0 (Map(B c (C), P)) ≃ π 0 Deligne(Hom Σ (C, P)).

Proof. It is well known (see [START_REF] Benoit Fresse | Homotopy of operads & Grothendieck-Teichmüller groups[END_REF] for instance) that π 0 (Map(B c (C), P)) ≃ (M or(B c (C), P), ∼ h ) where ∼ h is the homotopy relation. Recall also that the data of a Maurer-Cartan element α in Hom Σ (C, P) is equivalent to give a morphism of operads ϕ α from B c (C) to P (see [START_REF] Benoit Fresse | Operadic cobar constructions, cylinder objects and homotopy morphisms of algebras over operads[END_REF] or [START_REF] Loday | Algebraic Operads[END_REF]). We just need to show that the action of the gauge group on the Maurer-Cartan set of Hom Σ (C, P) from one Maurer-Cartan α to an other one β is equivalent to give a homotopy from ϕ α to ϕ β .

Let 1 + λ be an element of the gauge group. We define a morphism h : Cyl(B c (C)) -→ P via h : K ⊗ C -→ F(K ⊗ C) by setting h(σ 0 ⊗ γ) = α(γ),

h(σ 1 ⊗ γ) = β(γ), h(σ 01 ⊗ γ) = λ(γ),
where γ is some element of C. We claim that (1 + λ).α = β if and only if h is a homotopy from ϕ α to ϕ β . Accordingly, we must prove the equivalence

d(λ) = α + λ{α} -β ⊚ (1 + λ) ⇔ d(h) = 0
where δ is the differential of M or(B c (C), P).

Because α and β are Maurer-Cartan elements, and by definition of ∂, the second equality is always satisfied for σ ε ⊗ γ with ε = 0, 1 and γ ∈ C. We just need to check this equality on terms σ 01 ⊗ γ for any γ ∈ C: We then have the desired equivalence. □

Proposition 2 . 4 .

 24 For all differential graded pre-Lie algebras with divided powers L = n≥0 L n , the differential d is compatible with the weighted braces in the sense that d(x{y 1 , ..., y n } r1,...,rn ) = d(x){y 1 , ..., y n } r1,...,rn + n k=1 (-1) ε k x{y 1 , ..., y k , d(y k ), ..., y n } r1,...,r k -1,1,...,rn , where ε k = |x| + |y 1 | + ... + |y k-1 |.

1 i r i ! x{y 1

 11 then L is a differential graded pre-Lie algebra with divided powers whose weighted braces are explicitly given by x{y 1 , ..., y n } r1,...,rn = , ..., y 1 r1 , ..., y n , ..., y n rn } in terms of symmetric braces.

Definition 2 . 7 .

 27 A differential graded brace algebra is a differential graded module L endowed with brace operations -⟨-, ..., -⟩ : L ⊗n+1 -→ L which are compatible with the differential d: d(f ⟨g 1 , ..., g n ⟩) = d(f )⟨g 1 , ..., g n ⟩ + n k=1 ±f ⟨g 1 , ..., d(g k ), ..., g n ⟩,

Let

  Deligne(L, A) = Deligne(L ⊗ m A ) the associated Deligne groupoid. As in [11, §2.3], we remark that Deligne(-, -) defines a bifunctor such that, for all morphisms of Γ(PreLie, -)-algebras φ : L -→ L and for all morphisms of algebras ψ : A -→ A, we have the following diagram

Corollary 2 .

 2 25. If L and L are isomorphic, then for all local artinian K-algebras A, the groupoids Deligne(L, A) and Deligne(L, A) are equivalent. More precisely, we have a zig-zag of equivalence of groupoids Deligne(L, A) -→ Deligne(L 1 , A) ←-... -→ Deligne(L m-1 , A) ←-Deligne(L, A)

Definition 3 . 1 .

 31 Let M and N two symmetric sequences. Suppose that N ≃ I ⊕ N for some other symmetric sequence N . For all k ≥ 0, we define a new symmetric sequence denoted by M • (k) N called the k-infinitesimal composite of M and N defined, in each arity n, as the submodule of M • N (n) spanned by trees where exactly k elements at level 2 are in N , and the others in I.

  We now consider an augmented operad P ≃ I ⊕ P and a coaugmented cooperad C ≃ I ⊕ C. Assume that we have a decomposition by weight C ≃ k≥1 C(k) . This hypothesis is satisfied, for instance, for the coaugmentation of a Koszul cooperad P ! . We thus have an isomorphismHom Σ (C, P) ≃ k≥1 Hom Σ (C (k) , P)which is compatible with the Γ(PreLie, -)-algebra structure on Hom Σ (C, P). We then define a filtration on Hom Σ (C, P) byF n (Hom Σ (C, P)) = k≥n Hom Σ (C (k) , P)such that Hom Σ (C, P) is complete for this filtration.Because C and P are connected, the isomorphism and the filtration extend to Hom Σ (C, P) ≃ Hom Σ (I, P) × k≥1 Hom Σ (C (k) , P).

Lemma 3 . 5 .⊗ 1 ⊗⊗ 1 ⊗Theorem 3 . 6 . 3 . 3

 35113633 Let f , g ∈ Hom Σ (C, P). Then f {g} k is given by the compositeC C • (k) C P • (k) P P ∆ (k) f • (k) g γ (k).Proof. By definition, we have thatf {g} k = f ⟨g, ..., g k ⟩ = 1≤i1<...<i k ≤n σ1,...,σ k ((...((f • i k g) σ k ...) σ k-1 )• i1 g) σ1where f ∈ Hom Σ (C, P)(n). This can be written in terms of the operad structure on Hom Σ (C, P) byf {g} k = 1≤i1<...<i k ≤n σ γ(f ⊗ 1 ⊗ ... ⊗ 1 ⊗ g i1 ... ⊗ 1 ⊗ g i k ... ⊗ 1 ⊗ σ)which gives the desired identity. □In particular, we find that the pre-Lie algebra structuref ⋆ g = f ⟨g⟩ = n i=1 σ (f • i g) σis given by the composite The circular product of two elements f = 1 + f , g = 1 + g of the gauge group of Hom Σ (C, P) is given by f ⊚ g : Because f |I = g |I = 1, we have that f ⊚ g |I = 1. We thus need to show the equality on C. Recall that we have infinitesimal decompositions on C denoted by ∆ (0) and ∆ (k) for k ≥ 1 such that ∆ |C = ∆ (0) ⊕ k≥1 ∆ (k) . The map ∆ (0) will give f + g, and each ∆ (k) will give f {g} k according to the previous lemma. We thus have that the composite in the statement of the theorem gives1 + f + n≥0 f {g} n which is exactly f ⊚ g.□ Computation of π 0 (Map(B c (C), P))

  d(h)(σ 01 ⊗ γ) = d(h(σ 01 ⊗ γ)) -h(∂(σ 01 ⊗ d(γ))) = d(λ(γ)) -λ(d(γ)) -α(γ) + β(γ) -λ{α} 1 (γ) + (β ⊚ (1 + λ)(γ) -β(γ)) = d(λ)(γ) -α(γ) -λ{α} 1 (γ) + β ⊚ (1 + λ)(γ).

  1,ri+1,...,rn , (iii) x{y 1 , ..., λy i , ..., y n } r1,...,ri,...,rn = λ ri x{y 1 , ..., y i , ..., y n } r1,...,ri,...,rn , (iv) x{y 1 , ..., y i , y i , ..., y n } r1,...,ri,ri+1,...,rn = r i + r i+1 r i x{y 1 , ..., y i , ..., y n } r1,...,ri-1,ri+ri+1,ri+2,...,rn , (v) x{y 1 , ..., y i + y i , ..., y n } r1,...,ri,...,rn = , ..., z m } 1,...,1,β1,...,βm ,

			ri		
			x{y 1 , ..., y i , y i , ..., y n } r1,...,s,ri-s,...,rn ,
			s=0		
	(vi) x{y 1 , ..., y n } r1,...,rn {z 1 , ..., z m } s1,...,sm =		
	i si=βi+ α .,.	1 j (r j )!	x{y 1 {z 1 , ..., z m } α 1,1 1 ,...,α 1,1 m , ..., y 1 {z 1 , ..., z m } α 1,r 1 1	,...,α 1,r 1 m	,
	..., y n {z 1 , ..., z m } α n,1 1 ,...,α n,1 m , ..., y n {z 1 , ..., z m } α n,rn 1	,...,α n,rn m	, z 1

  3, Proposition 5.10]. Let x, y 1 , ..., y n ∈ L. Let E n be the graded K-module generated by e, e 1 , ..., e n with matching degrees. We have an obvious morphism of graded modules from E n to L sending x to e and y i to e i . This gives rise by functoriality to a morphism ψ x,y1,...,yn : Γ(PreLie, E n ) -→ Γ(PreLie, L). Let p = , ..., y n } r1,...,rn := γ(ψ x,y1,...,yn (OF p (e ⊗ e 1 ⊗ ... ⊗ e 1

	n
	r i . We set
	i=1
	x{y 1

r1 ⊗... ⊗ e n ⊗ ... ⊗ e n rn

  µ{ν} α n , ν} 1,...,1,β , , ..., µ{ν} α n , ν} 1,...,1,β .

	which gives						
	+∞ n,p=0	α{µ} n {ν} p =	+∞ n=0	+∞ p=0	p β=0 p-β= n i=1 α i	1 n!	α{µ{ν} α 1
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