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Martin Černýa, Michel Grabischb

aDepartment of Applied Mathematics, Charles University, Prague, Czech Republic
bSorbonne Economics Centre, Pantheon-Sorbonne University, Paris, France

Abstract

The computation of a solution concept of a cooperative game usually employs
values of all coalitions. However, in some applications, the values of some
of the coalitions might be unknown due to high costs associated with their
determination or simply because it is not possible to determine them exactly.
We introduce a method to approximate standard solution concepts based only
on partial characteristic function of the cooperative game. In this paper, we
build on our previous results and generalise the results of our methods to a
significantly larger class of structures of incomplete information.

Keywords: Cooperative game, Incomplete game, Shapley value, Core,
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1. Introduction

Cooperative game theory, as introduced by von Neumann and Morgen-
stern [1] in order to model the strength and power of coalitions, has been
largely developed in the last fifty years (see, e.g., the monograph of Peleg
and Sudhölter [2]), especially the branch of cooperative games with trans-
ferable utility (the so-called TU-games), where players can transfer freely
money/utility inside a given coalition. Applications of cooperative games are
numerous, mainly in economics (fair division of a benefit/cost, bankruptcy
problems, etc.), social choice (voting games), but also more recently in ar-
tificial intelligence and machine learning (e.g., the SHAP method [3], based
on the well-known Shapley value [4]).

Mathematically speaking, TU-games are set functions on a finite universe,
vanishing on the empty set. They are therefore closely related to discrete
mathematics in general, in particular combinatorial optimization (see, e.g.,
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the monograph of Fujishige [5]), hypergraphs, Boolean and pseudo-Boolean
functions (see Crama and Hammer [6]), and some notions of combinatorics
like the Möbius function [7].

Considering a TU-game v on a set of n players N , its definition requires
to know v(S) for any coalition S ⊆ N . Usually, in an economic context v(S)
is interpreted as the maximal benefit the coalition S can achieve without
the help of the players in N \ S, and is called the worth of S. In a voting
context, v(S) is perceived as the power of coalition S in an election process.
As n grows, it becomes more and more unlikely that in practice, v(S) can
be known for every coalition S. Incomplete games, which is the topic of
the present paper, precisely deals with this situation. An incomplete game
v is known only on a subcollection K of 2N . In reality, v(S) for S ̸∈ K is
defined but remains unknown (this is in opposition with the so-called games
with restricted cooperation (see, e.g., [8]), where coalitions outside a given
subcollection K are “forbidden”, and v is not defined on these coalitions).

Incomplete cooperative games were introduced by Willson [9] in 1993.
After introducing the concept, he focused on a value of incomplete games
based on the definition of the Shapley value. More than two decades later,
Inuiguchi and Masuya renewed the research [10], focusing on superadditiv-
ity of extensions, with Masuya continuing in the research of the Shapley
value [11]. Further, Bok et al. [12] studied convexity and positivity, Bok
and Černý [13] studied 1-convexity, Yu [14] extended incomplete games to
games with coalition structure, focusing on proportional Owen value, and
Černý [15] was dealing with approximations of solution concepts such as the
core, the (pre-)kernel and others on minimal incomplete games.

There are two natural questions with incomplete games. The first ques-
tion is: What could be the unknown values v(S), S ̸∈ K? A particular
assignment for these values defines an extension of the incomplete game.
The question makes sense only in the case where one imposes some restric-
tion on the game v, otherwise, any value for v(S) can be taken. Common
restrictions are: the game should be monotonic (i.e., nondecreasing with
respect to set inclusion), superadditive or subadditive, convex or concave
(a.k.a. super/submodular), positive (i.e., with nonnegative Möbius trans-
form), etc. Each of these restrictions corresponds to classical and useful fam-
ilies of games. Monotonic games correspond to capacities [16], and are central
in decision theory. Superadditivity is considered as a basic requirement for a
TU-game v when v(S) represents a benefit. Convex games are special super-
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additive games, having remarkable properties, both in game theory and in
decision theory. Lastly, positive games are special convex games which form
the basis of Dempster-Shafer theory [17] for modelling uncertainty.

The second question is: Since usual solution concepts of TU-games (the
core, the Shapley value, etc.) cannot be calculated on incomplete games,
considering all possible extensions in a given family of games, what would
be these solutions for each extension? If a solution is set-valued like the
core, we may consider the intersection over all extensions, or the union of the
solutions. If a solution is point-valued like the Shapley value, we may obtain
an interval when considering all extensions.

The paper addresses both questions in full detail for a specific family
of incomplete games, which we call player-centered. In a player-centered
incomplete game, the subcollection K is the set of all coalitions containing a
given player, say i. Such games represent the situation where the information
on v(S) is gathered by player i, who ignores the worth of coalitions where he
is not present. Put differently, the game is viewed through the eyes of player
i. This kind of situation arises every time players reveal their strategy only to
members of the coalition they belong to, as it could be the case for example
if players are competing firms, or generally in any competitive context.

The paper is organized as follows. Section 2 presents the basic notions
of classical TU-games, solution concepts, and introduces incomplete games.
Section 3 presents the player-centered incomplete games and studies their
extensions. Three types of extensions are considered: positive extensions
(with positive games), convex and superadditive extensions, and monotone
extensions. Theorems 5, 7, 8 show that in each case, an incomplete game has
an extension with any of the above-mentioned properties if and only if these
properties hold for the known values. The geometric structure of the set
of extensions (extreme points, extreme rays) is also studied in this section.
Theorems 6 and 9 give a full description of the sets of positive and monotonic
extensions and there are minor results on the sets of convex and superadditve
extensions. In Section 4 we study how the main solutions concepts (the core,
the Shapley value, the τ -value) can be approximated, depending on the kind
of extension which is considered. Results on the core are summarised in
Theorem 10, results on the Shapley value in Theorems 11–14 and the results
on the τ -value in Theorems 15 and 16. For all three solution concepts, the
results are connected to two special extensions of the incomplete game, which
represent extreme cases for what values can be chosen for the extension.
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2. Preliminaries

Throughout the paper, N is a finite set of n elements (the set of players).
The set of permutations on N is denoted by Σn. We denote by 2N the power
set of N . The lattice closure LC(K) of K ⊆ 2N in the partially ordered set
(2N ,⊆) is the inclusion-minimal subset of 2N that contains K and that is
closed under the operations of union and intersection of sets. We denote the
bounds of a real closed interval a by the upper and lower bar, i.e., a = [a, a].

Definition 1. [18] Let P ⊆ Rn be a polyhedron. We say that e ∈ P is an
extreme point (of P ) if for every x ∈ Rn, we have (e + x) ∈ P ∧ (e − x) ∈
P =⇒ x = 0.

Theorem 1. A nonzero element x of a polyhedron P ⊆ Rn is an extreme
point if and only if there are n linearly independent constraints binding at x.

2.1. Classical cooperative games

For more on cooperative games outside the scope of this text, see, e.g.,
[19, 2, 20].

Definition 2. A cooperative game is an ordered pair (N, v), where N is
the set of players and v : 2N → R is its characteristic function. Further,
v(∅) = 0.

We denote the set of n-person cooperative games by Γn. Sets S ⊆ N are
called coalitions, while v(S) is called the worth of S. We often replace {i}
with i. To denote the size of coalitions e.g. N,S, T , we use n, s, t, respectively.
We often write v instead of (N, v) whenever there is no confusion over the
player set and associate the characteristic functions v : 2N → R with vectors
v ∈ R2|N|−1. For x ∈ Rn and S ⊆ N , x(S) :=

∑
i∈S xi.

Definition 3. Let (N, v) be a cooperative game. The game is

1. monotone if it satisfies v(S) ≤ v(T ), S ⊆ T ⊆ N ;

2. superadditive if v(S) + v(T ) ≤ v(T ∪ S), S, T ⊆ N,S ∩ T = ∅;
3. convex if v(S) + v(T ) ≤ v(T ∪ S) + v(T ∩ S), S, T ⊆ N .

We denote the set of all monotonic, superadditive and convex n-person games
by Mn, Sn and Cn, respectively.
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The Möbius transform of (N, v) is defined for every T ⊆ N by

mv(T ) :=
∑
S⊆T

(−1)|T |−|S|v(S).

The Möbius transform is often referred to as H-dividend or Harsanyi dividend
in the literature.

Definition 4. A cooperative game (N, v) is positive if mv(T ) ≥ 0 for every
T ⊆ N . We denote the set of all positive cooperative n-person games by P n.

Shapley [4] showed that every v ∈ Γn can be uniquely expressed as a lin-
ear combination v =

∑
∅≠T⊆N mv(T )uT , where (N, uT ) are unanimity games

defined as

uT (S) :=

{
1 if T ⊆ S,

0 otherwise.

Equivalently, v(S) =
∑

∅≠T⊆S m
v(T ). Unanimity games are themselves pos-

itive games and positive games are convex. Also, a cooperative game (N, v)
is convex if and only if for every A,B ⊆ N,A ⊆ B such that |A| = 2, it
satisfies ∑

T∈[A:B]

mv(T ) ≥ 0 (1)

where [A : B] = {T ⊆ N | A ⊆ T ⊆ B} [19].

2.2. Solution concepts and payoff vectors

The main task of cooperative game theory is to propose and study meth-
ods to distribute v(N) among the players. Payoff vectors are vectors x ∈ Rn,
where xi represents payoff of player i, X(v) := {x ∈ Rn | x(N) = v(N)} is
the set of preimputations and I(v) := {x ∈ X(v) | xi ≥ v(i) for every i ∈ N}
is the set of imputations. Special payoff vectors are the upper vector bv ∈ Rn

defined by bvi := v(N) − v(N \ i) and the lower vector av defined as avi =
maxS:i∈S v(S) − bv(S). We also make use of the gap function gv : 2N → R,
defined as gv(S) := bv(S)− v(S).

Definition 5. The core Core(v) of a cooperative game (N, v) is defined as

Core(v) := {x ∈ X(v) | x(S) ≥ v(S) for every S ⊆ N}.
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The property x(S) ≥ v(S) for every S ⊆ N is called coalitional rationality.
The core of a superadditive game might be empty, but it is always nonempty
for convex games.

Definition 6. The Shapley value ϕ : Γn → Rn is defined as

ϕi(v) :=
∑

S⊆N\i

s!(n− s− 1)!

n!
(v(S ∪ i)− v(S)).

We often denote γS = s!(n−s−1)!
n!

. The Shapley value is linear, meaning

ϕ(αv + βw) = αϕ(v) + βϕ(w), α, β ∈ R, v, w ∈ Γn. (2)

In terms of Möbius transform, it can be expressed as

ϕi(v) =
∑

S⊆N,i∈S

mv(S)

|S|
. (3)

Definition 7. The τ -value τ(v) of a cooperative game (N, v) is the unique
convex combination of av and bv satisfying

∑
i∈N τi(v) = v(N).

The τ -value does not exist for a cooperative game in general, however, for
convex games, it always exists and can by expressed by an explicit formula.

Theorem 2. [21] For a convex (N, v), the τ -value can be expressed as

τi(v) = bvi −
gv(N)∑
i∈N gv(i)

gv(i).

In terms of Möbius transform, this can be rewritten as

τi(v) = mv(i) +

∑
S⊆N,|S|>1m

v(S)∑
S⊆N,|S|>1 s ·mv(S)

∑
S⊆N,|S|>1,i∈S

mv(S). (4)

2.3. Incomplete cooperative games

Definition 8. (Incomplete game) An incomplete game is a tuple (N,K, v)
where N is the set of players, K ⊆ 2N is the set of coalitions with known
values and v : K → R is the characteristic function. Further, ∅ ∈ K and
v(∅) = 0.
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We denote the set of n-person incomplete games with K by Γn(K). Fur-
ther, Kc := 2N \ K. Incomplete games represent partial information about
cooperation of players. This means that the formation of S ∈ Kc is possi-
ble even though we do not know its value. This distinguishes the approach
from the theory of games with restricted cooperation, where the formation
of S ∈ Kc is impossible. This class of games and its differences/similarities
with incomplete games are described in Section 2.4.

Since the formation of S ∈ Kc is possible in our approach, we would like
to consider S when determining the payoff distribution. One way to do this
is to impose bounds on the worth of S, based on the properties of the game.
Imagine our knowledge about an underlying complete game (N, v) is repre-
sented by (N,K, v) and we also know that (N, v) satisfies further properties,
e.g., convexity. Based on this, we can consider the set of possible candidates
for (N, v). The idea is formally captured in the following definition.

Definition 9. (C-extension) Let C ⊆ Γn be a class of n-person coopera-
tive games. The game (N,w) ∈ C is a C-extension of an incomplete game
(N,K, v) if w(S) = v(S) for every S ∈ K.

By C(K, v) or simply C(v) we denote the set of C-extensions of an incom-
plete game (N,K, v). We write C(v)-extension when we want to emphasize
(N,K, v). We say that (N,K, v) is C-extendable if C(v) is nonempty. The
set of all C-extendable incomplete games with fixed K is denoted by C(K).

From the inclusion relations betweenMn, Sn, Cn and P n, it holdsMn(v) ⊇
P n(v) and Sn(v) ⊇ Cn(v) ⊇ P n(v). Further, sets Mn(v), Sn(v), Cn(v) and
P n(v) are described by systems of linear equalities and inequalities, there-
fore they form polyhedra. Polyhedra can be also described by their extreme
points and extreme rays (see [18] on fundamentals of convex sets). We focus
on finding this alternative description in the next section. In the rest of this
subsection, we collect previous results on Cn-extendability and properties of
the sets of P n-extensions. Following is a modification of Theorem 7 from [22].

Theorem 3. [22] Let (N,K, v) be an incomplete cooperative game and

F := LC(K) ∩ {S ⊆ N | there are S, S ∈ K such that S ⊆ S ⊆ S},

where LC(K) is the lattice closure of K. Then (N,K, v) is Cn-extendable if
and only if there is convex w : F → R such that w(S) = v(S) for S ∈ K.
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The last result concerns a characterisation of extreme games of P n(v).
For a game (N,w), denote by E(w) := {T ⊆ N | mw(T ) = 0} the set of
coalitions with zero Möbius transform.

Theorem 4. [12] Let (N,K, v) be a P n-extendable incomplete game. Then
(N, e) is an extreme game of the set of P n-extensions if and only if there is
no P n-extension (N,w) such that E(e) ⊊ E(w).

2.4. Games with restricted cooperation

Incomplete games may be seen as similar to games with restricted coop-
eration, but they differ in a fundamental way. There are two main types of
games with restricted cooperation. The first type was introduced by Faigle
[25]. Given a collection K of coalitions (called feasible), games are defined
on K instead of 2N , exactly as in our case. However, it is considered in [25]
that coalitions outside K cannot form, while for incomplete games, they can
form but their worth is unknown. As a consequence, all solutions concepts
(Shapley value, core, nucleolus, etc.) must be redefined, as only coalitions in
K can be used, and they have quite different properties than their counter-
part for classical games (e.g., the core may become unbounded). There is a
vast literature on this topic, see, e.g., papers by Algaba et al. [26, 27], Bilbao
[28, 29], Grabisch et al. [30, 31, 32].

The second type was initiated by Myerson [33], in which players are re-
lated by a communication graph. Then feasible coalitions are those which
are connected in the graph. The Myerson game is a game v on 2N , whose
worth for coalitions in K (set of connected coalitions) are given, and for a
coalition S outside K, its worth is simply the sum of the worths v(T ) taken
over all T ∈ K included in S. In our terminology, v is an extension of the
game defined on K. The difference with our approach is that Myerson con-
siders only one extension while we consider a whole family. This branch has
also generated an abundant literature (see Algaba et al. [34] for a survey).

3. Player-centered incomplete games

In this section, we restrict to player-centered incomplete games. We say
that an incomplete game (N,K, v) is player-centered if K has the form K =
{S ⊆ N | i ∈ S}∪{∅} for some player i. To stress the role of player i, we may
refer to the game as i-centered. Unless otherwise specified, all player-centered
games in the following will be considered as i-centered.
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The structure of K allows player-centered incomplete games to inherit
properties of their complete counterparts. Namely, since K is closed under
finite intersections and unions, we call (N,K, v) convex if v(S) + v(T ) ≤
v(S ∩ T ) + v(S ∪ T ) for every S, T ∈ K. In a similar manner, one can
define superadditivity and monotonicity of (N,K, v). The closedness of K
on subsets allows to define the Möbius transform mv of a player-centered
game (N,K, v) as mv(S) :=

∑
T⊆S,T∈K(−1)|S|−|T |v(T ) for any S ∈ K. We

call (N,K, v) positive, if mv(S) ≥ 0 for all S ∈ K.
We investigate different sets of extensions, namely positive, convex, su-

peradditive and monotonic ones. The dimension of any of the sets of C-
extensions that we study is bounded from above by |Kc| = 2n−1 − 1. This
is because any extension can be represented as a vector w ∈ R2n−1 where
2n−1 values are fixed. Equivalently, we can view the game as the vector of
its Möbius transform mw ∈ 2n − 1, where again, the Möbius transform of
2n−1 coalitions has to be fixed. This view will be important when applying
Theorem 1 to extreme points of sets.

We will see in this section that if an incomplete game lies in a class C,
which is one of the mentioned classes, it is also C-extendable. Throughout
this section, we employ extensions (N, v0) and (N, v1) of (N,K, v), which are
defined in terms of Möbius transform as mv0(i) = mv1(i) := v(i) and for
S ̸= {i} as

mv0(S) :=

{
0 if S ∈ K,

mv(S ∪ i) if S ∈ Kc,
mv1(S) :=

{
mv(S) if S ∈ K,

0 if S ∈ Kc.
(5)

Equivalently, in terms of (N,K, v) the games are defined as

v0(S) :=

{
v(S) if S ∈ K,

v(S ∪ i) if S ∈ Kc,
and v1(S) :=

{
v(S) if S ∈ K,

0 if S ∈ Kc.
(6)

These extensions reflect player i’s marginal contribution to the game. For
every coalition S ⊆ N \i, v0(S∪i)−v0(S) = 0 and v1(S∪i)−v1(S) = v(S∪i).
Thus, in case of (N, v0) player i does not contribute to the game as opposed
to (N, v1), where his contribution to S ∪ i is in a sense maximal because it is
equal to the value of the coalition.

3.1. Positive extensions

In this section, we show that (N,K, v) is P n-extendable if and only if it
is positive, and we describe the extreme points of the set of P n-extensions.
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Theorem 5. A player-centered incomplete game (N,K, v) is P n-extendable
if and only if it is positive.

Proof. If (N,K, v) is positive, so is extension (N, v1) defined in (6), thus
(N,K, v) is P n-extendable. If (N,K, v) is P n-extendable, let (N, p) be a
P n(v)-extension. By induction on |S|, we show for S ∈ K that mv(S) =
mp(S) +mp(S \ i) ≥ 0. For S = {i}, we have

v(i) = mv(i) = mp(i) +mp(∅) ≥ 0.

Further fix S ∈ K and suppose for all its subsets T ∈ K, T ⊊ S that it
holds mv(T ) = mp(T ) + mp(T \ i) ≥ 0. From v(S) = p(S), it follows∑

T⊆S,T∈K mv(T ) =
∑

T⊆S m
p(T ) which equals∑

T⊊S,T∈K

(mp(T ) +mp(T \ i)) +mp(S) +mp(S \ i).

By induction hypothesis, mv(S) = mp(S) +mp(S \ i) ≥ 0 follows.

For every P n-extension (N, p), it holds mv(S∪i) = mp(S∪i)+mp(S) ≥ 0
for every S ∈ Kc. Following are P n-extensions for which exactly one of the
values mp(S ∪ i), mp(S), for every S ∈ Kc, is non-zero. For x ∈ {0, 1}Kc

, we
define (N, vx) via its Möbius transform for every S ∈ Kc as

mvx(S) :=

{
mv(S ∪ i) if xS = 0,

0 if xS = 1,
mvx(S ∪ i) :=

{
0 if xS = 0,

mv(S ∪ i) if xS = 1,
(7)

with mvx(i) := v(i) and mvx(∅) = 0. Each entry xS of the vector x distin-
guishes which one of coalitions S and S ∪ i has surplus equal to mv(S ∪ i)
and which one is equal to 0. In other words, we decide if the surplus of the
coalition is due to player i or if he is useless for this coalition. Notice, v0 = vx
where x = 0 and v1 = vx where x = 1. In the next theorem, we show that
these games form the vertices of the set of P n-extensions.

Proposition 1. For a P n-extendable player-centered incomplete game
(N,K, v), the games (N, vx) defined in (7) are the only extreme points of the
set of P n-extensions.

Proof. For S ∈ K, we have

vx(S) =
∑
T⊆S,

mvx(T ) = mv(i) +
∑

T⊆S,T∈Kc

[mvx(T ) +mvx(T ∪ i)] .
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As mvx(T ) +mvx(T ∪ i) = mv(T ∪ i) for every S ∈ Kc, it holds

vx(S) = mv(i) +
∑

T⊆S,S∈Kc

mv(T ∪ i) =
∑

T⊆S,T∈K

mv(T ) = v(S).

therefore (N, vx) are extensions of (N,K, v). Further, because mvx(T ) = 0
for 2n−1 − 1 coalitions, by Theorem 1, games (N, vx) are extreme points of
the set of P n-extensions.

To show there is no other extreme point, we employ Theorem 4. For
a contradiction, suppose there is an extreme point (N, e) which is different
from all (N, vx). This means there is S ∈ Kc such that both

me(S) > 0 and me(S ∪ i) > 0.

We can define (N, e′) by its Möbius transform as

me′(T ) :=


me(S) +me(S ∪ i) if T = S,

0 if T = S ∪ i,

me(T ) otherwise.

Game (N, e′) is clearly positive. Also, it is an extension of (N,K, v), because
for T ∈ K,

e′(T ) =
∑
T ′⊆T

me′(T ′) =
∑
T ′⊆T

me(T ′) = e(T ).

But because E(e′) ⊊ E(e), by Theorem 4, (N, e) is not an extreme game.

We note that the number of vertices of the set of P n-extensions is at most
2|K

c|, depending on values of (N,K, v). Also, if (N,w) is additive, there is
only one P n-extension.

We present another way to express the set of P n-extensions. Let (N, vα)
be a P n-extension defined as vα =

∑
x∈{0,1}|Kc| αxvx, where αx ≥ 0 for every

x and
∑

x∈{0,1}|Kc| αx = 1. It can be expressed in terms of Möbius transform
for every S ∈ Kc as

mvα(S) = mv(S ∪ i)
∑

x:xS=0

αx, mvα(S ∪ i) = mv(S ∪ i)
∑

x:xS=1

αx, (8)

mvα(∅) = 0, and mvα(i) = v(i). We may denote βS :=
∑

x:xS=0 αx, which
reduces (8) to

mvα(S) = βSm
v(S ∪ i) and mvα(S ∪ i) = (1− βS)m

v(S ∪ i).
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Therefore, we have

vα =
∑

∅≠S⊆N

mvα(S)uS = mv(i)u{i} +
∑
S∈Kc

mv(S ∪ i) [βSuS + (1− βS)uS∪i] .

We will show that choosing βS ∈ [0, 1] for every S ∈ Kc yields a P n-extension.

Theorem 6. For a P n-extendable i-centered incomplete game (N,K, v), ev-
ery P n-extension (N, p) can be expressed as

p = mv(i)u{i} +
∑
S∈Kc

mv(S ∪ i) [βSuS + (1− βS)uS∪i] (9)

where βS ∈ [0, 1] for every S ∈ Kc.

Proof. Denote by P the set of games (N, p) defined in (9) for every βS ∈ [0, 1]
and S ∈ Kc. We already showed P n(v) ⊆ P and it is immediate that p ∈ P
is positive. It remains to show that p is an extension of (N,K, v). For S ∈ K,
we have

p(S) =
∑
T⊆S

mp(S) = mv(i) +
∑

T⊆S,T∈Kc

(mp(T ) +mp(T ∪ i))

which is equal to

mv(i) +
∑

T⊆S,T∈Kc

[βTm
v(T ∪ i) + (1− βT )m

v(T ∪ i)]

or to
mv(i) +

∑
T⊆S,T∈Kc

mv(T ∪ i) = v(S).

3.2. Convex and superadditive extensions

In this section, we show that (N,K, v) is always Sn-extendable and we also
show that Cn-extendability is equivalent to convexity of (N,K, v). Further,
if nonempty, both sets are always unbounded. It even holds for two different
i-centered games that the sets of extreme rays of the set of Sn-extensions (as
well as Cn-extensions) are the same. By restricting to monotonicity of both
sets of extensions, both sets become bounded and we obtain a nice hierarchy
with the sets of P n-extensions and Mn-extensions.
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Theorem 7. A player-centered incomplete game (N,K, v) is Cn-extendable
if and only if it is convex.

Proof. Follows from Theorem 3.

Proposition 2. A player-centered incomplete game (N,K, v) is Sn-extendable.

Proof. According to Definitions 3 and 9, the Sn(v)-extension (N,w) has to
satisfy tree types of conditions:

w(S) + w(T ) ≤ w(S ∪ T ) for S, T ∈ Kc such that S ∩ T = ∅, (10)

w(S) ≤ v(S ∪ T )− v(T ) for S ∈ Kc, T ∈ K \ {∅} such that S ∩ T = ∅, (11)

w(S) = v(S) for S ∈ K. (12)

Notice that for S, T ∈ K, no conditions have to be satisfied, because S ∩T ̸=
∅. We can express Kc ∪ {∅} = 2N\i, thus Conditions (10) are satisfied by
any additive game β ∈ Rn−1. To show that Conditions (11) are satisfied, we
define

βk := min
S∈Kc,T∈K\{∅},

S∩T=∅

v(S ∪ T )− v(T )

n

and denote by S∗, T ∗ coalitions for which the minimum is attained. For
disjoint S ∈ Kc, T ∈ K \ {∅}, it holds

β(S∗) =
s

n
(v(S∗ ∪ T ∗)− v(T ∗)) ≤ s

n
(v(S ∪ T )− v(S)) ≤ v(S ∪ T )− v(T ).

Finally, we define (N,w) as

w(S) :=

{
v(S) if S ∈ K,

β(S) if S ∈ Kc.

From its construction, it follows (N,w) is Sn(v)-extension.

We proceed with the analysis of the recession cone of the set of Cn-
extensions. Let K be fixed, i-centered. In this section we use the notation
Cn(K, v) for the set of convex extensions of (N,K, v). This set is defined by
the following set of inequalities:

w(S) + w(T )− w(S ∩ T )− w(S ∪ T ) ≤ 0, S, T ⊆ N (13)

w(S) = v(S), S ∈ K. (14)

13



As v is given, observe that this implies that the dimension of Cn(K, v) is at
most |Kc| = 2n−1 − 1.

The recession cone of Cn(K, v) is simply Cn(K, 0). Taking advantage that
w(S) = 0 for all S ∈ K, we can project Cn(K, 0) into RKc

. Then (13) reduces
to

w(S) + w(T )− w(S ∩ T )− w(S ∪ T ) ≤ 0, S, T ∈ Kc

w(S)− w(S ∩ T ) ≤ 0, S ∈ Kc, T ∈ K.

As T ∈ K, T ̸= ∅, {i} is equivalent to T = T ′ ∪ {i} with T ′ ∈ Kc, and since
T = ∅, T = {i} entail w(S ∩ T ) = w(∅) = 0, we get

w(S) + w(T )− w(S ∩ T )− w(S ∪ T ) ≤ 0, S, T ∈ Kc

w(S)− w(S ′) ≤ 0, S, S ′ ∈ Kc, S ′ ⊆ S

w(S) ≤ 0, S ∈ Kc.

Getting rid of redundant inequalities, we finally get

w(S \ {j}) + w(S \ {k})− w(S \ {j, k})− w(S) ≤ 0, S ∈ Kc, j, k ∈ S, |S| > 2
(15)

w({j}) + w({k})− w({j, k}) ≤ 0, j, k ̸= i (16)

w({j}) ≤ 0, j ̸= i (17)

w(S)− w(S \ {j}) ≤ 0, S ∈ Kc, |S| > 1, j ∈ S.
(18)

(for the first set of inequalities, see Grabisch and Kroupa [23])

Lemma 1. Cn(K, 0) is pointed (i.e., it contains no line).

Proof. Recall that a cone defined by Ax ≤ 0 is pointed iff Ax = 0 has 0 as
unique solution. From (17) we get w({j}) = 0 for all {j} ∈ Kc. Then from
(18), we obtain w({j, k}) = 0 for all {j, k} ∈ Kc. Reusing (18), we finally
obtain that w(S) = 0 for all S ∈ Kc.

We define (N, eS0), S0 ∈ Kc, as eS0(T ) := 0 for all T ∈ K, and for T ∈ Kc:

meS0 (T ) :=

{
(−1)|T |, if T ⊆ S0

0, otherwise.
(19)
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Lemma 2. For S0 ∈ Kc, eS0 belong to Cn(K, 0).

Proof. The recession cone of the set of Cn-extensions of (N,K, v) can be
expressed as

{e ∈ R2n−1 | Ce ≤ 0}

where rows of Ce ≤ 0 correspond to

e(S) + e(T ) ≤ e(S ∩ T ) + e(S ∪ T ) (20)

for S, T ⊆ N and
e(S) = 0 (21)

for S ∈ K. To prove (N, eS0) is in the recession cone, we have to prove it is
convex (which is equivalent to conditions (20) and conditions (21)). By (1),
the game (N, eS0) is convex if and only if for all A,B ⊆ N satisfying A ⊆ B,
|A| = 2, it holds ∑

T∈[A:B]

meS0 (T ) ≥ 0.

First, if B ̸⊆ S0 ∪ i, then from (19), it follows that meS0 (T ) = 0 for every
T ∈ [A : B], thus ∑

T∈[A:B]

meS0 (T ) = 0.

Second, if B ⊆ S0 ∪ i, then meS0 (T ) = (−1)T for every T ∈ [A : B]. Denote
by C = B \ A. Then

∑
T∈[A:B]

meS0 (T ) =
∑

A⊆T⊆B

(−1)|T | =

|C|∑
t=0

(−1)t
(
|C|
t

)
= 0.

Game (N, eS0) is therefore convex. Further, for T ∈ Kc, we have

eS0(T ∪ i) =
∑

X⊆T∪i

meS0 (X).

From the definition of (N, eS0), when X ̸⊆ S ∪ i, then meS0 (X) = 0, thus for
A = (S ∩ T ) ∪ i, we have

eS(T ∪ i) =
∑
X⊆A

meS(X).
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This expression is almost equal to counting the difference between the number
of even and odd subsets. The difference is that we do not add 1 for the empty
coalition ∅ and also for {i}, meS0 (i) = 0, therefore we also do not add −1,
thus

∑
X⊆A meS0 (X) = 0, which concludes the proof.

Lemma 3. For any S0 ∈ Kc, eS0 is an extreme ray of Cn(K, 0).

Proof. It remains to show that eS0 is extreme. This amounts to showing that
the set of solutions to A=x = 0 is a 1-dim vector space, where A= is the set
of tight inequalities for eS0 .

It is convenient to rewrite the system defining Cn(K, 0) in terms of the
Möbius transform of w, denoted by mw. We obtain:

−
∑
T⊆S
T∋j,k

mw(T ) ≤ 0, S ∈ Kc, j, k ∈ S, |S| > 2 (22)

−mw({j, k}) ≤ 0, {j, k} ∈ Kc (23)

mw({j}) ≤ 0, {j} ∈ Kc (24)∑
T⊆S
T∋j

mw(T ) ≤ 0, S ∈ Kc, |S| > 1, j ∈ S. (25)

Let us check which inequalities are tight.

1. Ineq. (22): If {j, k} ̸⊆ S0, then no T ⊆ S0 can contain j, k, hence
all terms in the sum are zero, and the inequality is tight. Now, if
{j, k} ⊆ S0, then ∑

T⊆S
T∋j,k

meS0 (T ) =
∑

T⊆S∩S0
T∋j,k

(−1)|T | = 0,

except when S ∩ S0 = {j, k}. In summary, (22) is always tight, except
when S ∩ S0 = {j, k}.

2. Clearly, (23) is tight iff {j, k} ̸⊆ S0.

3. (24) is tight iff j ̸∈ S0.

4. Ineq. (25): If j ̸∈ S0, then all terms of the sum are zero and the
inequality is tight. If j ∈ S0, then we obtain∑

T⊆S
T∋j

meS0 (T ) =
∑

T⊆S∩S0
T∋j

(−1)|T | = 0.
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except when |S ∩S0| = 1. Hence, in all cases except when |S ∩S0| = 1,
the inequality is tight.

In summary, the system of tight inequalities is formed by all equalities
(22) except when S∩S0 = {j, k}, all equalities (25) except when S∩S0 = {j},
and the system

mw({j}) = 0, j ̸∈ S0 (26)

mw({j, k}) = 0, {j, k} ̸⊆ S0. (27)

Consider first the case |S0| = 1, say, S0 = {1}. Then by (26) and (27), mw(T )
is determined (=0) for |T | = 1, 2, except mw({1}). Observe that no other
equation contains mw({1}), so that it remains undetermined. Now, consider
T s.t. |T | = 3. Using (22) with S = T yields mw(T ) = 0. Hence we obtain
mw(T ) = 0 for all T such that |T | = 3. Iterating the process, we finally get
that mw(T ) = 0 for all T such that |T | ≥ 2. As a conclusion, the set of
solutions has dimension 1.

Consider then that |S0| > 1, w.l.o.g., S0 = {1, . . . , p}. We show that
all mw(T ) can be expressed in terms of mw({1}). By (26) and (27), mw(T )
is determined (=0) for all T s.t. |T | = 1, 2, except when T ⊆ S0. Ob-
serve that no equation (22) contains mw({1}) and no equation (25) contains
mw({1}) alone. Consider S = {1, k} ⊆ S0 and j = 1. Applying (25) yields
mw({1, k}) = −mw({1}). Taking now j = k and S = {1, k} in (25) yields
mw({k}) = mw({1}). This in turn permits to determine all mw({k, l}),
{k, l} ⊆ S0 by taking S = {k, l} and j = k in (25). In this way, we can de-
termine all values of mw(T ) for pairs and singletons in S0. By repeated use
of (25), one can then determine all values of mw(T ) with T ⊆ S0, proceeding
with |T | = 3 first, then |T | = 4, etc.

It remains to consider the case T ̸⊆ S0. Suppose |T ∩ S0| ≤ 1. Starting
from |T | = 3 and letting S = T and choosing arbitrary j, k in (22) yields
mw(T ) = 0. Repeating the process with step by step higher cardinalities
yields mw(T ) = 0 for all such T . Suppose now |T ∩S0| > 1. Then start with
T such that |T \ S0| = 1, and use (25) with S = T and j ∈ T ∩ S0. As m

w is
determined for all subsets of S0, this determines the value of mw(T ). Then
mw is determined for all T such that |T \ S0| = 1. Repeating the process
with higher cardinalities of T \ S0 determines the value of mw(T ) for all T .
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Finally, we turn our attention towards bounding the set Cn(K, v). The
following lemma shows that the set is bounded if and only if the values of
the singletons are bounded.

Lemma 4. Let (N, e) be an extreme ray of the recession cone Cn(K, 0). Then
there is {k} ∈ Kc such that e({k}) < 0.

Proof. Suppose e({k}) = 0 for all {k} ∈ Kc. There is S ∈ Kc such that
e(S) < 0, otherwise (N, e) is not an extreme ray. However, from convexity
(actually, superadditivity is enough), this leads to a contradiction, because

0 =
∑
k∈S

e({k}) ≤ e(S) < 0.

In a similar manner, we can show that every i-centered incomplete game
has the same recession cone of Sn-extensions, denoted by Sn(K, 0). It is
pointed and nonempty because it contains (N,−uk) where uk is a unanimity
game. These actually form a subset of extreme rays, however we omit the
proof.

Lemma 5. Let (N, e) be an extreme ray of the recession cone Sn(K, 0). Then
there is {k} ∈ Kc such that e({k}) < 0.

Proof. Follows from the proof of Lemma 4.

For both Sn-extensions and Cn-extensions, games (N, eS0) and (N,−uk)
are not their only extreme rays. In Table 1, we give an overview of the
number of extreme rays of sets of Sn-extensions and Cn-extensions. These
results were achieved numerically.

Unboundedness of both sets pose possible problems for approximations
of solution concepts. By Lemmata 4,5, both sets are bounded if and only if
values of singletons are bounded. One way to solve this problem is to impose
zero-normalisation to the extensions, which in combination with superaddi-
tivity implies monotonicity. We will proceed with a slightly more general
case, where we restrict only to monotonicity. We denote by Sn

+ and Cn
+ the

sets of monotonic Sn-extensions, respectively monotonic Cn-extensions. Fi-
nally, we discuss the question of Sn

+-extendability and Cn
+-extendability. Of

course, both extendabilities imply monotonicity of (N,K, v) together with
superadditivity and convexity, respectively. The opposite direction is sum-
marised in the following theorem.
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Table 1: Number of extreme rays of Sn(v) and Cn(v) in comparison with extreme rays of
form (N,−uk) and (N, eS).

n 1 2 3 4 5
rays(Sn) 0 1 4 22 3120
(N,−uk) 0 1 2 3 4
rays(Cn) 0 1 3 8 41
(N, eS0) 0 1 3 7 15

Proposition 3. If a player-centered incomplete game (N,K, v) is monotonic,
then it is Sn

+-extendable. If it is also convex, then it is Cn
+-extendable.

Proof. Consider (N, v1) defined in (6). For S, T ⊆ N , condition

v1(S) + v1(T ) ≤ v1(S ∩ T ) + v1(S ∪ T )

is equal to

v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ) for S, T ∈ K, (28)

v(S) ≤ v(S ∪ T ) for S ∈ K, T ∈ Kc, and (29)

0 ≤ 0 for S ∈ Kc, T ∈ Kc. (30)

Conditions (30) are always satisfied. Conditions (29) are satisfied if (N,K, v)
is monotonic (means (N, v1) is S

n
+-extension) and Conditions (28) are satis-

fied if (N,K, v) is convex.

3.3. Monotonic extensions

To initiate the analysis of monotonic extensions, we recall extensions
(N, v0) and (N, v1) being defined as

v0(S) =

{
v(S) if S ∈ K,

v(S ∪ i) if S ∈ Kc,
and v1(S) =

{
v(S) if S ∈ K,

0 if S ∈ Kc.
(31)

It is not difficult to see that if for S, T ∈ K, S ⊆ T it holds v(S) ≤ v(T ),
then both extensions are monotonic.

Theorem 8. A player-centered incomplete game (N,K, v) is Mn-extendable
if and only if it is monotonic.
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Proof. The forward implication is immediate. The opposite implication fol-
lows from monotonicity of extensions (N, v0) and (N, v1), which is satisfied
when (N,K, v) is monotonic.

From monotonicity, it must hold for every Mn-extension (N,w) and every
S ∈ Kc that 0 ≤ w(S) ≤ w(S ∪ i), or in terms of (N, v0), (N, v1) as

v0(S) ≤ w(S) ≤ v1(S).

Immediately, it follows that these games satisfy the definition of extreme
games. In the following theorem, we characterise all the vertices of Mn(v).
The idea is as follows. Choose an ordering σ of coalitions from Kc and denote
them according to the ordering as S1, S2, . . . , S|Kc|. Now, in each step, decide
if for coalition Si, we set its worth to the minimal or the maximal possible
value. The worth can be easily determined by taking either the maximum
over all already defined worths of subsets or the minimum of the worths
of already defined supersets. Intuitively, these games are extreme points
because their worths are extremal. Formally, let σ ∈ Σ|Kc| and let us denote
Lσ(S) = {A ∈ Kc | σ(A) < σ(S)} ∪ K the set of all predecessors of S under
σ. Now, for x ∈ {0, 1}Kc

, let (N, vσ,x) be a cooperative game defined for
S ∈ K as vσ,x(S) := v(S) and for S ∈ Kc as

vσ,x(S) :=

 min
A∈Lσ(S),S⊊A

vσ,x(A) if xS = 1,

max
A∈Lσ(S),A⊊S

vσ,x(A) if xS = 0.
(32)

The permutation σ represents the ordering described in the above process
and the value xS represents the decision to either set the worth of S to the
minimal or the maximal possible value.

Proposition 4. For a Mn-extendable player-centered (N,K, v), it holds games
(N, vσ,x) defined in (32) are extreme games of Mn(v).

Proof. The game (N, vσ,x) is clearly an extension. By induction on k, we show
that (N,Lσ(Sk), vσ,x) is monotonic. Suppose (N,Lσ(Sk), v) is monotonic and
xSk

= 1. For T ∈ Lσ(Sk), Sk ⊊ T , we have

vσ,x(Sk) ≤ min
A∈Lσ(Sk),Sk⊊A

vσ,x(A) ≤ vσ,x(T ).
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For T ∈ Lσ(Sk), T ⊊ Sk, let S∗ ∈ Lσ(Sk) such that vσ,x(Sk) = vσ,x(S
∗).

Since Sk ⊊ S∗, we have T ⊊ S∗. From monotonicity of (N,Lσ(Sk), v), it
follows

vσ,x(T ) ≤ vσ,x(S
∗) = vσ,x(Sk).

As the case where xS = 0 can be handled in a similar manner, mono-
tonicity of (N,Lσ(Sk+1), vσ,x) follows. For the initial step of the induction,
(N,Lσ(S1), vσ,x) = (N,K, v), which is monotonic by assumption.

Finally, we show extremality. From the recursive construction of (N, vσ,x),
for every S ∈ Kc we have T ∈ K (notice also ∅ ∈ K) such that

vσ,x(S) = v(T ).

This gives us |Kc| equalities, thus by Theorem 1, (N, vσ,x) is an extreme point
of the set of Mn-extensions.

To prove these are the only extreme games, we need the following lemma.

Lemma 6. Let (N, e) be an extreme game of the set of Mn-extensions of
a Mn-extendable player-centered incomplete game. Then for every S ∈ Kc,
there is either k ∈ S such that

e(S) = e(S \ k)

or there is j ∈ N \ S such that

e(S) = e(S ∪ j).

Proof. Suppose there is neither k nor j satisfying the assertion above for
some S. It means there is ε > 0 such that

e(S \ k) ≤ e(S) + ε ≤ e(S ∪ j)

and
e(S \ k) ≤ e(S)− ε ≤ e(S ∪ j)

for every k and j. Define (N, e+) where e+(S) := e(S)+ ε and e+(T ) := e(T )
otherwise. Similarly, we can define (N, e−). Both games are Mn-extensions,
which is in contradiction with Definition 1.

Theorem 9. For a Mn-extendable player-centered incomplete game (N,K, v),
it holds

Mn(v) = conv
{
vσ,x | σ ∈ Σ|Kc|, x ∈ {0, 1}Kc}

.
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Proof. Let (N, e) be an extreme game of Mn(v). We construct σ and x such
that vσ,x = e. We proceed iteratively and in each step, we construct a set
of coalitions Li. For the initial step, L0 = K. Next, we collect all coalitions
S ∈ Kc such that there is S \ k ∈ K or S ∪ j ∈ K satisfying

e(S) = e(S \ k) or e(S) = e(S ∪ j).

To distinguish between two possible cases we denote by

L+
1 = {S ∈ Kc | ∃S ∪ j ∈ L0 : e(S) = e(S ∪ j)}

and
L−

1 = {S ∈ Kc \ L+
1 | ∃S \ k ∈ L0 : e(S) = e(S \ k)}

and L1 = L+
1 ∪ L−

1 . Notice that it holds L−
1 = ∅. In each following step,

we construct Li in a similar manner, considering only coalitions S not yet
included by already constructed sets and coalitions S \ k, S ∪ j ∈ Li−1.
Formally,

L+
i = {S ∈ Kc \ (L1 ∪ · · · ∪ Li−1) | ∃S ∪ j ∈ Li−1, e(S) = e(S ∪ j)}

and

L−
i = {S ∈ Kc \ (L1 ∪ . . .Li−1 ∪ L+

i ) | ∃S \ k ∈ Li−1, e(S) = e(S \ k)}.

We remark L+
i ∩ L−

i = ∅ and denote L = ∪∞
i=0Li.

First, we show that every S ⊆ N is contained in L. For a contradiction,
if S /∈ L, it must hold S ∈ Kc. We construct sets L(S) and Li(S) in a similar
manner as L and Li with the only distinction that L0(S) = {S} and L0 = K.
It holds for every A,B ∈ L(S) that e(A) = e(S) and for every X, Y /∈ L(S)
such that X ⊊ A and A ⊊ Y , it holds

e(X) < e(A) and e(A) < e(Y ). (33)

Fix ε > 0 such that

e(X) < e(A)− ε and e(A) + ε < e(Y ). (34)

Such ε exists, because for every A ∈ L(S), we have X = ∅ and Y = N
satisfying condition (34). Define (N, e+), (N, e−) as

(e+)(T ) :=

{
e(T ) + ε if T ∈ L(S),
e(T ) if T /∈ L(S),

(e−)(T ) :=

{
e(T )− ε if T ∈ L(S),
e(T ) if T /∈ L(S).
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These games are extensions because L(S) ⊆ Kc and they are Mn-extensions
because they satisy (34) and because (N, e) is monotonic. By definition of
extreme points, (N, e) is not an extreme game of Mn(v), a contradiction.

Now, choose σ ∈ Σ|Kc| satisfying

σ(S) < σ(T ) ⇐⇒ S ∈ Li, T ∈ Lj where 0 < i < j (35)

and construct x ∈ {0, 1}Kc
such that

xS :=

{
1 if S ∈

⋃∞
i=1 L

+
i ,

0 if S ∈
⋃∞

i=1 L
−
i .

Finally we show vσ,x = e. For S ∈ K, it holds vσ,x(S) = e(S) = v(S). Further,
denote by S1, S2, . . . , S|Kc| the ordering of coalitions in Kc according to σ.
Now suppose that for Sk, it holds vσ,x(T ) = e(T ) for every T ∈ L(S). Further,
suppose Sk ∈ L+

i and xSk
= 1. This means that there exists Sk ∪ j ∈ Li−1

such that
e(Sk) = e(Sk ∪ j) = vσ,x(Sk ∪ j). (36)

and since Li−1 ⊆ L(Sk), we have

vσ,x(Sk) = min
A∈Lσ(Sk),Sk⊊A

vσ,x(A) ≤ vσ,x(Sk ∪ j). (37)

If vσ,x(Sk) < vσ,x(Sk ∪ j), there is X ∈ Lσ(Sk) such that Sk ⊊ X and

vσ,x(Sk) = vσ,x(X). (38)

As vσ,x(X) = e(X), we have

e(X) = vσ,x(Sk) < vσ,x(Sk ∪ j) = e(Sk),

which contradicts e(Sk) ≤ e(X). Thus it must hold vσ,x(Sk) = e(Sk). For
other cases, where xS = 0 and S ∈ L−

i , the analysis is similar.

We remark multiple pairs (σ, x) may describe the same extreme game.
The ambiguity arises, e.g., from choosing permutation σ according to (35),
however, this is not the only reason.
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4. Approximations of solution concepts

Imagine that we want to determine a solution S(v∗) of a cooperative game
(N, v∗). However we have only partial knowledge about the game which is
represented by an incomplete game (N,K, v). From its nature, we know
that (N, v∗) lies in C ⊆ Γn. The set of C-extensions of (N,K, v) represents
the set of possible candidates for (N, v∗), and (N, v∗) is among these games.
This means that by computing S(w) for every C-extension (N,w), we also
compute S(v∗). The only problem is that we cannot distinguish which one of
the C-extensions is (N, v∗). Nevertheless, by considering the union of S(w)
for all C-extensions (N,w), we are sure that S(v∗) is contained in this set.
Similarly, if we consider the intersection of all solutions S(w), we have a set
of payoff vectors which is guaranteed to be a subset of S(v∗). The idea is
formally captured by the following definition.

Definition 10. Let (N,K, v) be a C-extendable incomplete game and S : C →
2R

n
a solution concept on C ⊆ Γn. Then by weak solution ∪S(C,K) : C(K) →

2R
n
, we mean

∪S(C,K)(v) :=
⋃

w∈C(v)

S(w).

We write ∪S(C) instead of ∪S(C,K)(v) whenever K and v is apparent
from the context. In a similar way, we can define the strong solution ∩S(C,K)
where the union is replaced by the intersection. It is clear from the definition
that

∩S(C,K)(v) ⊆ S(v∗) ⊆ ∪S(C,K)(v) (39)

and the difference between the sets depends heavily on both C and K. If for
example K = 2N , all three sets coincide. If on the contrary K = {∅}, for
most of the standard solution concepts, the relations become ∅ ⊆ S(v∗) ⊆
Rn. Also, the more restrictive C is, the less C-extensions are considered,
thus the stronger the approximations are. The ultimate goal is to find a
compromise between information provided by (C,K) and the strength of the
approximations.

So far, these approximations were studied for minimal incomplete games,
a class of incomplete games with K = {{i} | i ∈ N} ∪ {∅, N}. It was shown
for most of the standard solution concepts that unless we restrict to P n-
extensions, we get bounds of the form ∅ ⊆ S(v∗) ⊆ I(v). Interestingly, the
core did not get better approximations even when restricted to P n-extensions.
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In this section, we analyse the weak and strong variants of the core, and
the weak variant of the Shapley value and the τ -value for player-centered
incomplete games.

4.1. The core

In the case of the core, by considering ∪Core and , we are able to get
nontrivial bounds on Core(v∗). More interestingly, these sets are attained
for specific extensions, meaning that without further information, they are
in a sense the best possible approximations.

Theorem 10. Let (N,K, v) be an i-centered incomplete game. If

1. (N,K, v) is Mn-extendable, then

(a) ∪Core(Mn) = Core(v1),

2. (N,K, v) is P n-extendable, then

(a) ∩Core(P n) = Core(v0), and
(b) ∪Core(P n) = Core(v1).

Proof. For an extension (N,w) of (N,K, v), the core can be expressed as

Core(w) = {x ∈ X(v) | xi ≥ v(i), x(S ∪ i) ≥ v(S ∪ i), x(S) ≥ w(S),∀S ∈ Kc} .

Therefore, the only distinction between the cores of two different extensions
is based on conditions

x(S) ≥ w(S) for S ∈ Kc.

If we consider two extensions (N,w1), (N,w2) which differ only in a value of
one fixed coalition S ∈ Kc such that w1(S) > w2(S), then it holds Core(w1) ⊆
Core(w2). This means that if there is a C-extension (N, v) such that for every
S ∈ Kc,

v(S) ≥ max
w∈C(v)

w(S)

then Core(v) = ∩Core(C). Similarly, a C-extension (N, v) such that for
every S ∈ Kc,

v(S) ≤ min
w∈C(v)

w(S)

would satisfy Core(v) = ∪Core(C). For both sets of Mn-extensions and
P n-extensions such games exist (if the sets are nonempty) and it holds that
v = v0 and v = v1.
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As it always holds that P n(v) ⊆ Cn
+(v) ⊆ Sn

+(v) ⊆ Mn(v), Theorem 10
also shows that

1. ∩Core(Cn
+) = Core(v0) and ∪Core(Cn

+) = Core(v1) if (N,K, v) is Cn
+-

extendable,

2. ∩Core(Sn
+) = Core(v0) and ∪Core(Sn

+) = Core(v1) if (N,K, v) is Sn
+-

extendable.

4.2. The Shapley value

In this section, we investigate the weak Shapley value. We show that for
player i, the range of its possible payoffs does not depend on the class of
C-extensions, however, for the rest of the players, the range may differ. For
a player-centered game (N,K, v), we define its Shapley value ϕ(v) as

ϕk(v) :=
∑

S∈K,k /∈S

γS (v(S ∪ k)− v(S)) , k ∈ N

where γS := s!(n−s−1)!
n!

. For an extension (N,w) of (N,K, v) and every k ∈ N ,
we have
ϕk(w) =

∑
S⊆N\k γS (w(S ∪ k)− w(S)), which can be rewritten for k ̸= i as∑

S∈K,k /∈S

γS (v(S ∪ k)− v(S)) +
∑

S∈Kc,k /∈S

γS (w(S ∪ k)− w(S)) .

We see that the value of the first sum is always equal to ϕk(v). Thus, it
remains to determine the range of the second sum when we consider all C-
extensions.

Theorem 11. For a Mn-extendable i-centered incomplete game (N,K, v), it
holds for every k ∈ N \ i that

∪ϕk(M
n) =

ϕk(v), ϕk(v) +
∑

S∈K,k /∈S

γSv(S ∪ k)

 .

Proof. To determine the range of ∪ϕk(M
n), it is enough to determine the

range of ∑
S∈Kc,k /∈S

γS (w(S ∪ k)− w(S)) (40)
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across all Mn-extensions (N,w). From monotonicity of w, w(S∪k)−w(S) ≥
0, therefore the sum in (40) is bounded from below by 0. For (N, v0), we
have v0(S ∪ k) = v0(S) for every S ∈ Kc, thus∑

S∈Kc,k /∈S

γS (v0(S ∪ k)− v0(S)) = 0.

It therefore yields the lower bound of ∪ϕk(M
n). For the upper bound, we

can rewrite (40) as ∑
S∈Kc,k∈S

γSw(S)−
∑

S∈Kc,k /∈S

γSw(S). (41)

The maximum across all Mn-extensions of the sum in (40) is smaller or
equal to the maximum of the first sum minus the minimum of the second
sum in (41). Both the maximum and the minimum in (41) can be attained
at the same time by choosing the extreme game (N, vσ,x) where

xS =

{
1 if k ∈ S,

0 if k /∈ S.

Notice that any permutation σ ∈ Σ|Kc| yields the same game,

vσ,x(S) =

{
v(S ∪ i) if k ∈ S,

0 if k /∈ S.

For this extension, expression (41) is equal to∑
S∈Kc,k∈S

γSv(S ∪ i), or equivalently
∑

S∈K,k /∈S

γSv(S ∪ k),

which concludes the proof.

For player i, we can express

ϕi(w) =
∑

S⊆N\i

γS (w(S ∪ i)− w(S)) =
∑
S∈K

γS\iv(S)−
∑
S∈Kc

γSw(S). (42)

Yet again, the value of the first sum is fixed and all that remains is to
determine the range of the second sum.

27



Theorem 12. For a Mn-extendable player-centered incomplete game (N,K, v),
it holds

∪ϕi(M
n)(v) = [ϕi(v0), ϕi(v1)] .

Proof. To maximise the Shapley value of player i, we have to minimise sum∑
S∈Kc

γSw(S) (43)

across the set of all Mn-extensions. From monotonicity, the sum is clearly
non-negative, and for (N, v1), it is equal to 0. To minimise (42), we max-
imise (43). This can be done by taking (N, v0), where v0(S) = v(S ∪ i). It
follows,

ϕi(v0) =
∑

S⊆N\i

γS (v0(S ∪ i)− v0(S)) = v(i).

In the proof of Theorem 12, the bounds of ∪ϕi(M
n) were attained for

games (N, v0) and (N, v1), which are positive if (N,K, v) is positive. There-
fore, the same argument can be derived for ∪ϕi(P

n).

Theorem 13. For a P n-extendable player-centered incomplete game (N,K, v),
it holds

∪ϕi(P
n) = ∪ϕi(M

n).

Proof. Follows from the proof of Theorem 12.

It remains to determine ∪ϕk(P
n). In this case, we cannot use the same

argument as in proof of Theorem 11, because the Mn-extension attaining
the upper bound is never positive. Therefore, we will proceed in a different
manner, expressing the Shapley value of every P n-extensions, first. We de-
note by (N, vα) a P n-extension defined as a convex combination of vertices
of P n(v), vα =

∑
x∈{0,1}|Kc| αxvx where αx ≥ 0∀x and

∑
x αx = 1.

Lemma 7. Let (N, vα) be a P n-extension of i-centered incomplete game
(N,K, v). Then ϕ(vα) can be expressed as

ϕk(vα) =
∑

S∈Kc,k∈S

mv(S ∪ i)

( ∑
x:xS=1

αx

|S ∪ i|
+
∑

x:xS=0

αx

|S|

)
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for every k ∈ N \ i and

ϕi(vα) = mv(i) +
∑
S∈Kc

mv(S ∪ i)

( ∑
x:xS=1

αx

|S ∪ i|

)
.

Proof. First, we express the Shapley value of an extreme game (N, vx). For
the sake of brevity, in the rest of the proof, we substitute

∑
x for

∑
x∈{0,1}|Kc| .

It follows for every player k ∈ N \ i that ϕk(vx) =
∑

S⊆N,k∈S
mvx (S)

|S| which
further equals to∑

S∈Kc,k∈S

(
mvx(S ∪ i)

|S ∪ i|
+

mvx(S)

|S|

)
=

∑
S∈Kc,k∈S

mv(S ∪ i)

|S|+ xS

.

Now for P n-extensions (N, vα), we have ϕ(vα) =
∑

x αxϕ(vx), which can be
expressed as∑

x

αx

∑
S∈Kc,k∈S

mv(S ∪ i)

|S|+ xS

=
∑

S∈Kc,k∈S

∑
x

αxm
v(S ∪ i)

|S|+ xS

(44)

or ∑
S∈Kc,k∈S

mv(S ∪ i)
∑
x

αx

|S|+ xS

(45)

For player i, we have

ϕi(vx) = mv(i) +
∑
S∈Kc

mvx(S ∪ i)

|S ∪ i|
=
∑
S∈Kc

xS
mvx(S ∪ i)

|S ∪ i|
.

For (N, vα), by similar modifications as in (44), (45), we conclude

ϕi(vα) = mv(i) +
∑
S∈Kc

mv(S ∪ i)

( ∑
x:xS=1

αx

|S ∪ i|

)
.

Theorem 14. Let (N,K, v) be a P n-extendable i-centered incomplete coop-
erative game. Then it holds for every k ∈ N \ i that

∪ϕk(P
n) = [ϕk(v1), ϕk(v0)] .
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Proof. From Lemma 7, we see that for player k ∈ N \ i, the payoff under the
Shapley value varies based on the sum∑

x:xS=1

αx

|S|+ 1
+
∑

x:xS=0

αx

|S|
.

The larger the value of the expression, the larger the payoff. It follows that
the minimum is attained for x = 1 and the maximum for x = 0, which
corresponds to games (N, v1) and (N, v0), respectively.

Theorems 12,11,13,14, imply

∪ϕi(M
n) = ∪ϕi(S

n
+) = ϕi(C

n
+) = ∪ϕi(P

n)

for P n-extendable player-centered (N,K, v). For k ∈ N \ i, only

∪ϕk(M
n) = ∪ϕk(S

n
+) = ∪ϕk(C

n
+) = ∪ϕk(P

n)

holds for P n-extendable player-centered incomplete game, but

∪ϕk(M
n) = ∪ϕk(P

n) +
∑

S∈K,k /∈S

v(S).

We do not show an exact upper bound for ∪ϕk(S
n
+) and ∪ϕk(C

n
+), how-

ever, from numerical experiments it seems that both bounds may differ from
∪ϕk(M

n) and ∪ϕk(P
n).

4.3. The τ -value

In this section, we restrict to zero-normalised P n-extensions, i.e., P n-
extensions (N,w) satisfying w(k) = 0 for every k ∈ N . We denote the set of
zero-normalised positive extensions by P n

0 -extensions. An i-centered incom-
plete game (N,K, v) is P n

0 -extendable if and only if v(i) = 0 and (N,K, v)
is positive. Further, if we modify (9), any P n

0 (v)-extension (N,w) can be
expressed as

w =
∑
S∈Kc

mv(S ∪ i) [βSuS + (1− βS)uS∪i] (46)

where β{k} = 0 for every k ∈ N \ i and βS ∈ [0, 1]. Now, formula (4) from
Theorem 2 simplifies for every P n

0 -extension (N,w) to

τk(w) =

∑
S⊆N mw(S)∑

S⊆N |S|mw(S)

∑
S⊆N,k∈S

mw(S), (47)
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or since v(N) = w(N), to

τk(w) =
v(N)∑

S⊆N |S|mw(S)

∑
S⊆N,k∈S

mw(S). (48)

Theorem 15. For a P n
0 -extendable i-centered incomplete game (N,K, v) it

holds for every k ∈ N , k ̸= i, that

∪τk(v) = [τk(v1), τk(v0)] .

Proof. Let (N,w) be a P n
0 -extension and k ∈ N \i fixed. From (46), it follows

mw(S) = βSm
v(S ∪ i) and mw(S ∪ i) = (1− βS)m

v(S ∪ i)

for every S ∈ Kc. It follows that mw(S) +mw(S ∪ i) = mv(S ∪ i), thus∑
S⊆N,k∈S

mw(S) =
∑

S∈Kc,k∈S

[mw(S) +mw(S ∪ i)] =
∑

S∈K,k∈S

mv(S).

Further, ∑
S⊆N

|S| ·mw(S) =
∑
S∈Kc

[s ·mw(S) + (s+ 1) ·mw(S ∪ i)]

or equivalently, ∑
S∈Kc

mv(S ∪ i) (s+ 1− βS) . (49)

We see that τk(w) varies over the set of P n-extensions based on the value of
the sum in (49).

This sum is maximal if and only if βS = 0 for every S ∈ Kc and minimal
if and only if βS = 1 for every S ∈ Kc. Then τk is minimal if and only if
the sum is maximal and vice versa. A P n-extension, where βS = 0 for every
S ∈ Kc (minimal τk) equals (N, v1) and if βS = 1 for every S ∈ Kc (maximal
τk), it is equal to (N, v0).

Theorem 16. For a P n
0 -extendable i-centered incomplete game (N,K, v) it

holds
∪τi(v) = [τi(v0), τi(v1)] .
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Proof. We can rewrite (48) as

τi(w) = v(N)

∑
S⊆N,i∈S m

w(S)∑
S⊆N |S|mw(S)

.

From (46), it follows∑
S⊆N,i∈S

mw(S) =
∑
S∈Kc

(1− βS)m
v(S ∪ i)

and we already showed in the proof of Theorem 15 that∑
S⊆N

|S|mw(S) =
∑
S∈Kc

mv(S ∪ i) (s+ 1− βS) .

By substituting a =
∑

S∈Kc(1 − βS)m
v(S ∪ i) and b =

∑
S∈Kc s ·mv(S ∪ i),

we get

τi(w) =
a

a+ b
.

Now, for another P n
0 -extension (N, u), denote by βu

S for every S ∈ Kc its
coefficients with respect to (46). Further, fix T ∈ Kc and choose (N, u) such
that βS = βu

S for every S ∈ Kc \ {T} and set βu
T ̸= βT . If we denote by

c = (βT − βu
T )m

v(T ∪ i), we can express

τi(u) =
a+ c

a+ b+ c
.

Now τi(w) ≤ τi(u) if and only if

a

a+ b
≤ a+ c

a+ b+ c
.

As

a

a+ b
=

a2 + ab+ ac

(a+ b)(a+ b+ c)
and

a+ c

a+ b+ c
=

a2 + ab+ ac+ bc

(a+ b)(a+ b+ c)
,

we see that τi(w) ≤ τi(u) if and only if c > 0 which means βT > βu
T . This

implies that the maximal τi is attained for βS = 0 for every S ∈ Kc, which
yields game (N, v1), while the minimal τi is reached for βS = 1 for every
S ∈ Kc, which yields game (N, v0).
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5. Conclusions

Based on our methods introduced in [15], we derived approximations of
standard solution concepts of cooperative games with partial information.
We focused on the case where known information is centered around one
specific player and we investigated different sets of C-extensions and analysed
approximations of the core, the Shapley value and the τ -value. We showed
there are two extensions (N, v0), (N, v1) (defined in (6)) playing the key role
in the description of the approximations. Intuitively, they reflect contribution
of the player around which the incomplete game is centered. There are two
structures of K, which are connected to the case studied in this paper, which
we would like to address in the near future:

1. K ⊆ 2N : S, T ∈ K =⇒ S ∪ T ∈ K,

2. K = {S ⊆ N | i /∈ S} for a fixed i ∈ N .

The first structure is a generalisation of Ki studied in this text and was
studied under the scope of restricted games (see [24]). The second structure
represents a game on N\i. The question of C-extendability is then equivalent
to adding player i to the game in such a way that the game remains in C.
We believe there might be close relations between games with this structure
and games with Ki.

The next big step regarding the approximations is to derive tools to fur-
ther analyse the strength of the approximations. So far, we considered only
the inclusion as a measure that one approximation is better than another.
For example, if there is a C-extension for which the solution concept is equal
exactly to the weak solution (see proof of Theorem 28), the approximation is
clearly the best possible we can get if we consider that the underlying game is
from C. But consider weak solutions of one-point solution concepts. Clearly,
the smaller the weak solution (in volume, range of values, ...), the better
approximation we are getting. We also want to address these questions in
near future.
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