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Abstract

Capacity is an important tool in decision-making under risk and uncertainty
and multi-criteria decision-making. When learning a capacity-based model, it is
important to be able to generate uniformly a capacity. Due to the monotonicity
constraints of a capacity, this task reveals to be very difficult. The classical Random
Node Generator (RNG) algorithm is a fast-running speed capacity generator, how-
ever with poor performance. In this paper, we firstly present an exact algorithm for
generating a n elements’ general capacity, usable when n < 5. Then, we present an
improvement of the classical RNG by studying the distribution of the value of each
element of a capacity. Furthermore, we divide it into two cases, the first one is the
case without any conditions, and the second one is the case when some elements have
been generated. Experimental results show that the performance of this improved
algorithm is much better than the classical RNG while keeping a very reasonable
computation time.

Keywords: random generation, capacity, linear extension

1 Introduction

Capacities and the Choquet integral are widely used in decision making, especially in
decision with multiple criteria, where the capacity models the importance of groups of
criteria while the Choquet integral is used as a versatile aggregation operator [7, 9].
It is often useful in practice to be able to randomly generate capacities, in a uniform
way (measure of performance of models, evaluation of an elicitation technique, learn-
ing/identification phase, etc.). This problem reveals to be surprisingly difficult, because
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of the monotonicity constraints defining capacities, so that naive approaches yield poor
performance and give highly biased distributions.

The theoretical perfect solution to the random generation problem is however known:
since the set of capacities is an order polytope, generating capacities in a uniform way
amounts to generating all linear extensions of the Boolean lattice (2N ,⊆) [23]. This
leads to the exact capacity generator (ECG), which we have implemented. However,
the number of linear extensions of (2N ,⊆) grows tremendously fast with n := |N |, and
is even not known beyond n = 8. Therefore, approximate solutions have to be found.
One way is to generate a sufficiently representative subset of linear extensions: this is
the approach taken by Karzanov and Khachiyan using Markov Chains [14], Combarro et
al [4,5], and also the authors of paper [10]. Another way is to find some simple heuristic
for directly generating one by one all the coefficients of a capacity, for example, the
random node generator of Havens and Pinar [12]. This generator is very fast but has
poor performance, due to the fact that for simplicity the coefficients of a capacity are
supposed to follow a uniform distribution on some interval. However, the theoretical
distribution of a coefficient is very complex and relies also on linear extensions.

The first aim of this paper is to provide an improvement of the random node generator
of Havens and Pinar, called IRNG, by taking advantage of some properties of the exact
distribution of the coefficients of a capacity. We show that distributions obtained by
our method are much closer to the exact distributions or those obtained by the Markov
Chain method, while demanding a small computation time, which is much lower than
the time required by the Markov Chain method.

Our second aim is motivated by the fact that, in practice, it is often necessary to
generate a set of capacities in a uniform way but subject to some constraints, which
could come from some preference information given by the decision maker, or when
using the approach of Stochastic Multiobjective Acceptability Analysis (SMAA) [1,18].
A naive solution to this problem is the acceptance and rejection method, which amounts
to generating capacities and keeping only those which satisfy the constraints. Indeed,
the acceptance rate would be in most cases too small to make the method tractable.
Therefore, one has to take into account the constraints directly into the generation
method. Incorporating arbitrary linear constraints on capacity coefficients into ECG or
IRNG seems however to be infeasible. We have therefore restricted to constraints where
two capacity coefficients are compared, or one coefficient is compared to some value, and
proposed a modification of ECG and IRNG in order to take into account these types
of constraints. As preferential information leads in general to more complex constraints
than the two types we restrict to, there is still a acceptance and rejection step in our
approach, but with a much better acceptance rate than with the naive method.

The paper is organized as follows: Section 2 gives the necessary background on mul-
ticriteria decision making, capacities, and the random generation of capacities. Section
3 presents the exact method based on linear extensions (ECG algorithm) and the im-
provement of the Random Node Generator (IRNG algorithm) based on the study of
the theoretical distribution of the coefficients of a capacity. Section 4 is devoted to
the experimental results on the comparison of IRNG with the original Random Node
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Generator and the Markov Chain method. In Section 5, we study how to incorporate
constraints into our ECG and IRNG algorithms. Experimental results are given to show
the advantage on the naive approach. Section 6 concludes the paper.

2 Background

2.1 Multi-Criteria Decision Aiding

Multi-Criteria Decision Aiding (MCDA) consists in modeling the preferences of a Deci-
sion Maker (DM) regarding alternatives on the basis of multiple and conflicting criteria.
We denote by N = {1, . . . , n} the set of criteria. Each criterion i ∈ N is associated
with an attribute Xi, and the alternatives are thus elements of the Cartesian product
X = X1 × · · · × Xn. The preference relation of the DM is denoted by ≿ where x ≿ y
(for x, y ∈ X) means that the DM prefers x over y. In general, we look for a numerical
representation [17] u : X → R of the preference relation such that:

∀x, y ∈ X , x ⪰ y ⇔ u(x) ≥ u(y). (1)

Without loss of generality, we consider scale [0, 1], where 0 (resp. 1) means that the cri-
terion is not satisfied at all (resp. perfectly satisfactory). Hence u : X → [0, 1]. Function
u is often written in a decomposable form [15], where we first normalize the attributes
by introducing a utility function mapping each attribute into the satisfaction scale [0, 1],
and then aggregate the normalized scores to produce the overall score. These two steps
are in general handled separately, and for the purpose of this paper, we only consider the
second step, that is the aggregation step. Hence, in order to avoid cumbersome notation,
we assume that the input scores are already normalized, that is X1 = · · · = Xn = [0, 1]
and X = [0, 1]N . Hence u(x) = F (x1, . . . , xn), where F : [0, 1]n → [0, 1] is an aggregation
function.

The most classical aggregation function is the weighted sum F (x1, . . . , xn) =
∑

i∈N wixi.
This model assumes that all criteria are independent, which is often violated in real ap-
plications. We consider thus a more versatile aggregation function called the Choquet
integral. A capacity on N is a set function µ : 2N → [0, 1] such that µ(∅) = 0, µ(N) = 1
(normalization) and µ(A) ≤ µ(B) whenever A ⊆ B (monotonicity) [6]. The set of
capacities on N is denoted by C(N).

The Choquet integral is a generalization of the weighted sum, taking into account
the weights µ [6]:

Cµ(x) =

n∑
k=1

(
xτ(k) − xτ(k−1)

)
µ({τ(k), . . . , τ(n)}), (2)

where τ is a permutation on N such that xτ(1) ≤ xτ(2) ≤ · · · ≤ xτ(n), and with the
notation xτ(0) := 0. Capacity µ can be nicely interpreted as the overall score of a
particular alternative:

Cµ(1B, 0N\B) = µ(B), (3)
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where, for x, y ∈ X, (xB, yN\B) denotes an alternative taking the value xi when i ∈ B
and yi otherwise. Alternative (1B, 0N\B) is called binary alternative and is denoted by
aB.

Capacity µ is elicited from preference information provided by the DM. It typically
consists of

• a set P of pairs of alternatives (a, b) ∈ X2 such that a is strictly preferred to b for
the DM, and

• a set I of pairs of alternatives (a, b) ∈ X2 such that a is indifferent to b for the
DM.

We consider then the set of capacities that are compatible with the preference informa-
tion P, I of the DM:

C(N ;P, I) = {µ ∈ C(N) : Cµ(a) ≥ Cµ(b) + ε ∀(a, b) ∈ P and Cµ(a) = Cµ(b) ∀(a, b) ∈ I}

where ε > 0 is a fixed threshold. Usually, the capacity which is chosen in this set is a
solution of an optimization problem under constraint C(N ;P, I) [8], where the objective
function to maximize can be for example the entropy of µ [16].

2.2 Need of random capacity generator

The need to have a (unbiased) generator of capacities arise in many problems. Genetic
algorithms are classical techniques to learn a capacity [20]. They start from a uniform
population of capacities and require thus a random generator of capacities. Another
application is for the experimental evaluation of an elicitation technique [13]. To this
end, one needs a random generator of capacities, from which one can generate preference
information.

Having a generator of (unbiased) capacities compatible with the preferential informa-
tion is also quite important in decision. This is particularly the case with the recommen-
dation regarding a discrete set A ⊂ X of options. Ideally, one would like to make a robust
recommendation, which occurs when there exists a ∈ A such that for all b ∈ A \ {a} and
all µ ∈ C(N ;P, I), Cµ(a) ≥ Cµ(b) [2, 11]. Unfortunately, this condition is very strong
and is far from being satisfied in most cases. A weaker version consists in counting the
proportion of capacities in C(N ;P, I) for which an alternative dominates another one,
as depicted in Stochastic Multiobjective Acceptability Analysis (SMAA) [1,18]. As this
ratio cannot be computed theoretically, having a good numerical approximation of this
quantity relies on an unbiased random generator of C(N ;P, I). Note that SMAA tradi-
tionnally uses the Hit and Run random generator of a polytope, which does not provide
any guarantee to be unbiased.

2.3 Random generator of linear extensions

Let P be a finite set, endowed with a partial order ≼. We say that (P,≼) is a (finite)
poset. We recall the following notions:
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• x ∈ P is maximal if x ≼ y with y ∈ P implies x = y. We denote by Max(P,≼)
(simply Max(P )) the set of maximal elements of P .

• A linear extension of (P,≼) is a total order ⩽ on P which is compatible with the
partial order ≼ in the following sense: x ≼ y implies x ⩽ y.

• The order polytope [23] associated to (P,≼), denoted by O(P ), is the set

O(P ) = {f : P −→ [0, 1] | f(x) ⩽ f(y) if x ≼ y}.

It is known from Stanley [23] that linear extensions induce a triangulation of O(P ) into
simplices of equal volume. Therefore, generating in a random uniform way an element
of O(P ) amounts to generating all linear extensions, or to generating them randomly
according to a uniform distribution.

We apply this result to capacities. It is easy to see that the set C(N) of capacities
is an order polytope, whose underlying poset is (2N \ {∅, N},⊆). Therefore, the prob-
lem of randomly generating capacities according to a uniform distribution amounts to
generating the linear extensions of the poset (2N \ {∅, N},⊆). For example, for a 3
elements’ capacity, ({1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}) is a linear extension of the poset
(2{1,2,3} \{∅, {1, 2, 3}},⊆). However, the number of linear extensions of (2N \{∅, N},⊆)
increases tremendously fast, and is unknown beyond n = 8.

3 Capacity Generators: Random Node generator based on
Beta distribution

3.1 Exact Capacity Generator

When n ≤ 4, it is possible to have an exact algorithm generating all linear extensions, and
therefore to generate capacities in a uniform way. We propose below such an algorithm
(Exact-capacity-generator (ECG)), which is recursive and performs a Depth-First-
Search (DFS) finding maximal elements of a poset, which will form the tail of the list
describing the linear extension. The following dendrogram of Figure 1 (right) illustrates
the process of the algorithm for a 3 elements’ capacity. The maximal element is {1, 2, 3},
which is the root of the dendrogram (Figure 1, right), then we continue to find the set of
maximal elements of the poset deprived of node {1, 2, 3}, which is {{1, 2}, {1, 3}, {2, 3}},
that is the second level of dendrogram. Next, we continue to find the set of maximal
elements when each node in the second level of the dendrogram is removed. We repeat
the above steps until there is only one element left in the poset to obtain the whole
dendrogram.

Algorithm 1

Exact-capacity-generator(n, k)
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1 2 3

12 13 23

∅

123

12 13 23

123

· · · · · ·

13 23

1 23 2 13
· · · · · ·

12 23 12 13

Figure 1: Case n = 3. Left: representation of the poset (2N ,⊆). Right: Dendrogram of
the maximal elements when running the procedure for generating all linear extensions
using the DFS algorithm.

Input: n, k integers.
% k is the number of all linear extensions and n = |N |.
Output: k generated capacities on 2N

% AllLinear is an empty array which will contain all linear extensions
1: count← 0

% P is an array containing the poset 2N \ {∅, N}
2: All-linear-extension(P,AllLinear, count)
3: repeat k times
4: Select uniformly one linear extension of AllLinear
5: Generate uniformly 2n− 2 numbers between 0 and 1, sort them from
smallest to largest, and assign them to the selected linear extension
end repeat

Algorithm 2

All-linear-extension(P,AllLinearExtensions, count)

%AllLinearExtensions stores all linear extensions of P and count stores the
number of linear extensions
Input: an array P containing a poset of size n, an array AllLinearExtensions
and count
Output: All linear extensions of poset P
6: If |P | = 1 then

% When the bottom of dendrogram is reached, add an empty linear

6



extension to AllLinearExtensions.
7: Append a zeros array of size n to AllLinearExtensions
8: AllLinearExtensions[count− 1][n− 1]← P [0]
9: count← count + 1
end if

10: For i in Max(P ) do
11: Remove i from P

% recursion algorithm
12: All-linear-extension(P,AllLinearExtensions, count)
13: AllLinearExtensions[count− 1][size of P ]← i
14: Re-insert i to the end of poset P
end for

When n > 4, approximate methods have to be used, either generating randomly
linear extensions, or based on other principles. In the first category, two methods gen-
erate linear extensions with the exact distribution. The first one is the Markov Chain
method [14] (see description in Appendix), and the second one is the method of De Loof
et al. [19]. The latter uses the lattice of ideals I(P ) of the poset P under consideration,
and is based on the fact that a linear extension corresponds to a path in I(P ). This
permits to count the number of linear extensions of P and of any subposet of P , which
in turn yields the exact probabilities of choosing the next element when constructing a
linear extension. The method is applicable till n = 5 (see [4]), because beyond the size
of I(2N ) becomes too large. We mention also the 2-layer approximation method [10],
yielding approximate distributions. In the second category, we find the Random Node
generator (RNG) algorithm introduced by T. C. Havens and A. J. Pinar in [12]. The core
idea of this approach is to randomly select one element S ∈ 2N among all elements and
then draw it with a uniform law between the maximum and minimum values allowed by
the monotonicity constraints. This operation is repeated until all elements in 2N have
assigned values.

The most significant advantage of this method is its low complexity and fast running
speed. However, theoretically, the capacities generated by it are not uniform, because
firstly the range of values for µ(S) is highly dependent on the rank in which the element
S is selected, and secondly the exact distribution of µ(S) is far from being a uniform
distribution. Therefore, this capacity generator has a lot of theoretical undesirabilities.

As an illustration, we compare the performance of the RNG with ECG. The following
figures show the distribution of µ(S) generated by the RNG and ECG.

From Figures 2 and 3, we notice that the discrepancy between the distribution of
these two groups of µ is significant, and thus we may conclude that the uniformity of
the capacity obtained by the Random-Node generator is not satisfactory. In the next
subsections, we study the theoretical distribution of µ(S) and propose an improvement
of the Random-Node generator.
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μ({1}) μ({2}) μ({3}) μ({4})

μ({1,2}) μ({1,4})μ({1,3})

μ({2,3}) μ({2,4}) μ({3,4})

μ({1,2,4}) μ({1,3,4}) μ({2,3,4})μ({1,2,3})

Figure 2: Case n = 4. Histograms of the values of µ(S), S ∈ 2N \ {N,∅}, generated by
RNG (compare with Fig. 3 where the exact generator has been used).

3.2 Theoretical distribution of µ

The main idea for improving the random node generator algorithm is to use a more
realistic probabilistic distribution on the generation of the capacity of the current subset
S. Let us first describe the probability distribution of such a term.

To this end, let us consider a set of i.i.d random variables µ1, µ2, . . . , µm that
follow the uniform law between 0 and 1. We sort the µi into the order statistics µ(1) ≤
µ(2) · · · ≤ µ(m). Then µ(k) follows the Beta distribution µ(k) ∼ Beta(k,m− k + 1). If we
take α = k, β = m− k + 1, then the formula for the density of µ(k) is as follows:

fµ(k)
(x) =

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1,

where Γ(α) =
∫∞
0 tα−1e−tdt, with α > 0.

In order to apply this result to capacities, we need to know the rank of µ(S) within
all terms of a capacity. We denote by Rk(S) the rank of element S (S ∈ 2N ) in a linear
extension of poset (2N ,⊆). Each element of 2N has a rank in each linear extension
corresponding to the poset, among them ∅ is always located at the minimal rank, i.e.,
Rk(∅) = 0 and N is always located at the maximal rank, i.e., Rk(N) = 2n − 1.
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μ({1}) μ({2}) μ({3}) μ({4})

μ({1,2}) μ({1,4})μ({1,3})

μ({2,4})μ({2,3}) μ({3,4})

μ({1,2,3}) μ({1,2,4}) μ({1,3,4}) μ({2,3,4})

Figure 3: Case n = 4. Histograms of the values of µ(S), S ∈ 2N \ {N,∅}, generated by
ECG.
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Then the cumulative distribution function of µ(S), i.e. P(µ(S) ≤ x) for 0 < x < 1,
considers the beta distribution over all possible rankings of µ(S)

Fµ(S)(x) = P(µ(S) ≤ x) =

max(Rk(S))∑
i=min(Rk(S))

P(µ(S) ≤ x|Rk(S) = i)× P(Rk(S) = i)

=

max(Rk(S))∑
i=min(Rk(S))

P(µ(i) ≤ x)× P(Rk(S) = i)

=

max(Rk(S))∑
i=min(Rk(S))

Fµ(i)
(x)× P(Rk(S) = i),

with Fµ(i)
(x) the cumulative distribution function of Beta(i, 2n−1− i), min(Rk(S)) the

smallest possible ranking of µ(S) and max(Rk(S)) the largest possible ranking of µ(S).
These bounds on the ranking of µ(S) are simply obtained by the monotonicity condition,
counting the minimal number of terms ranked before and after µ(S). We obtain

min(Rk(S)) = |{T ⊆ S , T ̸= ∅}| = 2|S| − 1

max(Rk(S)) = 2n − |{T ⊇ S , T ⊆ N}| = 2n − 2|N\S|.

The density of µ(S) is thus:

fµ(S)(x) =

max(Rk(S))∑
i=min(Rk(S))

fµ(i)
(x)× P(Rk(S) = i) (4)

with µ(i) ∼ Beta(i, 2n − 1− i).

Density (4) is correct when µ(S) is not constrained by other terms of the capacity.
When we use the RNG to generate a capacity, we should adjust the above distribution
due to its monotonicity. Supposing we have already generated the elements S1, . . . , Sp

with the values µ(S1) = a1, . . . , µ(Sp) = ap, we wish to draw the distribution of µ(S) for
a new subset S. Compared to (4), the knowledge of a1, . . . , ap provides constraints on
both the numerical value of µ(S) and also its ranking. Following the monotonicity condi-
tions, we first note that the value of µ(S) shall belong to interval [Minpµ(S),Maxpµ(S)]
where

Minpµ(S) = max
j∈{1,...,p} , Sj⊆S

aj and Maxpµ(S) = min
j∈{1,...,p} , Sj⊇S

aj .

Moreover, as illustrated by the following example, the smallest and largest possible
rankings of µ(S) are also constrained by a1, . . . , ap.

Example 1. Assume that we have already generated the following terms µ({1, 2}) =
0.1, µ({1, 3}) = 0.2 and µ({4, 5}) = 0.3, and consider now S = {1, 4, 5} with N =
{1, 2, 3, 4, 5}. Subset {1, 2} and all its subsets are thus ranked before {4, 5}. The same
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holds for {1, 3}. In total, the subsets that are necessarily ranked before S are the follow-
ing: {1}, {2}, {1, 2}, {3}, {1, 3}, {4}, {5}, {4, 5}, {1, 4}, {1, 5}. Hence S has rank at least
11.

Generalizing the previous example,

Sp(S) = {Sj , j ∈ {1, . . . , p} s.t. ∃i ∈ {1, . . . , p} , Si ⊆ S and aj ≤ ai} ∪ {S}

is the set of already generated subsets that are necessarily ranked before S (including
S), and

Sp(S) = {Sj , j ∈ {1, . . . , p} s.t. ∃i ∈ {1, . . . , p} , Si ⊇ S and aj ≥ ai} ∪ {S}

is the set of already generated subsets that are necessarily ranked after S (including S).
The smallest possible ranking MinpRk(S) of S is thus given by the number of subsets
of Sp(S). It is not simply the sum of the subsets of the elements of Sp(S) as there are
common subsets. In Ex. 1, subset {1} is a subset of {1, 2}, {1, 3} and {1, 4, 5}, and it
shall not be counted three times. To this end, we use the Poincaré sieve formula. This
formula provides the number of elements of the union of an arbitrary number of sets:

|∪qi=1Ai| =
q∑

k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤q

|Ai1 ∩Ai2 ∩ · · · ∩Aik |

 .

We apply this formula to Aj = 2Sj\{∅}, where Sp(S) := {S1, . . . , Sq}. As Ai1∩· · ·∩Aik =

2
Si1

∩···∩Sik \ {∅}, we obtain

MinpRk(S) =
∣∣{T ⊆ Sj , T ̸= ∅ and j ∈ {1, . . . , q}

∣∣
=

q∑
k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤q

(
2

∣∣∣Si1
∩Si2

∩···∩Sik

∣∣∣ − 1

) . (5)

Example 2 (Ex. 1 continued). We obtain Minpµ({1, 4, 5}) = 0.3. Moreover, we have
Sp({1, 4, 5}) =

{
{1, 2}, {1, 3}, {4, 5}, {1, 4, 5}

}
. Applying (5), the smallest possible rank-

ing of {1, 4, 5} is(
2|{1,2}| − 1

)
+
(

2|{1,3}| − 1
)

+
(

2|{4,5}| − 1
)

+
(

2|{1,4,5}| − 1
)

−
(

2|{1}| − 1
)
−
(

2|{1}| − 1
)
−
(

2|{1}| − 1
)
−
(

2|{4,5}| − 1
)

+
(

2|{1}| − 1
)

= 3 + 3 + 3 + 7− 1− 1− 1− 3 + 1 = 11.

Hence we recover that S has rank at least 11.
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Likewise, the largest possible ranking MaxpRk(S) of S is given by

2n − 1−
∣∣{T ⊇ Sj , T ̸= N and j ∈ {1, . . . , q′}

∣∣ ,
where Sp(S) := {S1, . . . , Sq′}. Applying the Poincaré sieve formula to Aj = {T ⊆
Sj , T ̸= N}, we obtain |Ai1 ∩ · · · ∩ Aik | = |{T ⊇ Si1 , . . . , Sik , T ̸= N}| = |{T ⊇
Si1 ∪ · · · ∪ Sik , T ̸= N}| = 2|N\(Si1

∪···∪Sik
)| − 1 and

MaxpRk(S) = 2n − 1−
∣∣{T ⊇ Sj , T ̸= N and j ∈ {1, . . . , q′}

∣∣
= 2n − 1−

q′∑
k=1

(−1)k−1
∑

1≤i1<i2<···<ik≤q′

(
2|N\(Si1

∪···∪Sik
)| − 1

) . (6)

Example 3. Assume that we have already generated the following terms µ({1, 2, 3}) =
0.9, µ({1, 3, 4}) = 0.8 and µ({1, 2, 4, 5}) = 0.7, and consider now S = {1, 2, 5} with
N = {1, 2, 3, 4, 5}. We obtain Maxpµ({1, 2, 5}) = 0.7. Moreover, we have Sp({1, 2, 5}) ={
{1, 2, 3}, {1, 3, 4}, {1, 2, 4, 5}, {1, 2, 5}

}
. The subsets (excluding N) ranked after {1, 2, 5}

are {1, 2, 5}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 2, 3}, {1, 2, 3, 4}, {1, 3, 4}, {1, 3, 4, 5}. We obtain 7
subsets.

Applying (6), the largest possible ranking of {1, 2, 5} is

25 − 1−
(

2|{3,4}| − 1
)
−
(

2|{4,5}| − 1
)
−
(

2|{2,5}| − 1
)
−
(

2|{3}| − 1
)

+
(

2|{5}| − 1
)

+
(

2|{4}| − 1
)
−
(

2|{3}| − 1
)

= 25 − 1− 3− 3− 3− 1 + 3 = 2n − 1− 7 = 24

Summarizing, the distribution of µ(S) becomes a conditional distribution:

P(µ(S) ≤ x|µ(S1) = a1, . . . , µ(Sp) = ap) (7)

=

maxpRk(S)∑
i=minpRk(S)

P(Rk(S) = i|µ(S1) = a1, . . . , µ(Sp) = ap)

× P(µ(S) = µ(i) ≤ x|µ(S1) = a1, . . . , µ(Sp) = ap)

with

P(Rk(S) = i|µ(S1) = a1, . . . , µ(Sp) = ap)

≈ P(Rk(S) = i|MinpRk(S) ≤ Rk(S) ≤ MaxpRk(S))

=


P(Rk(S)=i)∑maxpRk(S)

j=minpRk(S)
P(Rk(S)=j)

if MinpRk(S) ≤ i ≤ MaxpRk(S)

0 else
(8)
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and

P(µ(S) = µ(i) ≤ x|µ(S1) = a1, . . . , µ(Sp) = ap)

= P(µ(i) ≤ x|Minpµ(S) ≤ µ(i) ≤ Maxpµ(S)). (9)

In the approximation leading to (8), we assume that the probability that Rk(S) = i does
not depend on the numerical values of a1, . . . , ap. We assume that it is proportionnal
to P(Rk(S) = i) (the probability that Rk(S) = i in the unconstrained case, i.e. when
there are no constraints on terms of the capacity except the monotonicity conditions)
when i lies in the admissible range, and is equal to 0 otherwise.

3.3 The improved random node generator

Thanks to the previous considerations and Equations (7), (8) and (9), we are in a position
to propose an improvement of the random node generator, which we call IRNG.

As explained, our improvement consists in replacing the uniform distribution of µ(S)
in the interval [Minpµ(S),Maxpµ(S)] by the distribution given by (7), computed through
(8) and (9).

According to Equation (9), when we assign a value to µ(S), it should be between
Minpµ(S) and Maxpµ(S). If this is not satisfied, we need to reject it and reassign a new
value to µ(S).

As for Equation (8), it is necessary to know the probability P(Rk(S) = i) for a given
subset S to be ranked at ith position in a linear extension. This probability is stored in
array probability (where probability[S][i] = P(Rk(S) = i)) in the following algorithm.
We denote by CDFS

prob(i) =
∑i

j=0 probability[S][j] the cumulative distribution function
of array probability. As the set of linear extensions is not practically reachable beyond
n = 5 and not known beyond n = 8, no practical expression of this probability can be
obtained, and it must be estimated. Therefore, the critical issue for the precision of
the IRNG algorithm is how to get these probabilities. Our proposition is to use off line
some well-performing method to generate randomly in a uniform way linear extensions
of (2N \ {∅, N},⊆), like the Markov chain method [14], generating a sufficient number
of linear extensions from which P(Rk(S) = i) could be estimated, for every subset S
and every rank i 1. Once we have obtained these probabilities, we store them in a file2

so that they can be used repeatedly.

1We compared the impact on IRNG for n = 4 by varying the quality of ranking probabilities. When
employing the exact method to determine the ranking probabilities, the sum of Kullback-Leibler di-
vergence (KLD) is around 0.40. When employing the Markov chain method with a high number of
interations (T= 1000), the sum of KLD is 0.42, which is very close to the case of exact probabilities.
Now, with a low number of iterations (T = 50) insufficient for a good convergence of the Markov chain,
we obtain for the sum of KLD the value of 1.61. Therefore, it is evident that the quality of ranking
probabilities has a significant impact on the outcomes of IRNG.

2The reader can find as supplementary material of this article the files of probabilities for n = 3 and
n = 4.
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Algorithm 3

Improved-Random-Node-generator (IRNG)(P, probability)

Input: a poset P of 2N\{∅, N}, a two dimensional array named probability[S][j]
containing the probability of element (subset) S ∈ 2N \{∅, N} to be at rank
j.
Output: capacity µ in C(N) generated with approximation method
1: AssignedElement,AssignedValue ←[ ],[ ]
2: µ← a zero array of size 2n − 2

%AssignedElement and AssignedValue store the elements S1, . . . , Sp

%and element’s value a1, . . . ,p that have been already assigned
3: L← an array of elements of 2N \ {∅, N} in random order
4: p← 0
5: for S in L do
6: Compute Minpµ([S]),Maxpµ([S]) and MinpRk(S), MaxpRk(S)

% MinpRk(S), MaxpRk(S) the ranking restrictions of S
% and Minpµ([S]),Maxpµ([S]) the minimum and maximum value of

µ([S])
7: beta← 0
8: Prmin ← CDFS

prob(MinpRk(S)))

9: Prmax ← CDFS
prob(MaxpRk(S)))

10: While beta ≥ Maxpµ([S]) or beta ≤ Minpµ([S]) do
% Capacity should obey monotonicity

11: r ∼ U([0, 1])
12: r ← Prmin + (Prmax − Prmin) ∗ r
13: Rank ← MinpRk(S))
14: Pr← Prmin

15: While r > Pr do
16: Pr← CDFS

prob(Rank)
17: Rank ← Rank + 1

end while
18: beta ∼ Beta(Rank, 2n − 1−Rank).

end while
19: µ[S]← beta
20: Append µ[S] to Assignedvalue
21: Append S to AssignedElement
22: p← p + 1
end for

Let us analyze the computational complexity of one run to IRNG. The 2n−2 subsets
are ordered in array L. In l.5, we sweep these elements with an index p from p = 1 to
p = 2n − 2. At iteration p (l.6− 22), the complexity is given by the successive steps:
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• l.6: the computation of Minpµ([S]) and Maxpµ([S]) requires p operations;

• l.6: the computation of MinpRk(S) and MaxpRk(S) requires 2q + 2q
′ ≤ 2p opera-

tions (see (5) and (6));

• l.8− 9: the computation of Prmin and Prmax requires at most 2n operations;

• Complexity of the While loop in l.10: For Rank ∈ {MinpRk(S), . . . ,MaxpRk(S)}
fixed, we generate a number beta according to distribution Beta(Rank, 2n − 1 −
Rank). We need to rerun the While loop if beta does not belong to interval

[Minpµ([S]),Maxpµ([S])]. Let CDFRank,2n−1−Rank
Beta (·) be the CDF of the beta dis-

tribution. Then the probability of rejecting beta under Rank is

Preject(Rank) =1− CDFRank,2n−1−Rank
Beta (Maxpµ([S]))

+ CDFRank,2n−1−Rank
Beta (Minpµ([S])).

Hence the probability of rejection in a While loop is

Preject =

MaxpRk(S)∑
Rank=MinpRk(S)

̂probability[S][Rank]× Preject(Rank),

where

̂probability[S][Rank] =
probability[S][Rank]∑MaxpRk(S)

k=MinpRk(S) probability[S][k]
.

We conclude that the probability that one needs to run ℓ times the While loop to
have an acceptance (i.e. the While loop rejects ℓ− 1 times the generated beta, and
accepts it juste after) is

Preject(ℓ) = Preject
ℓ−1 × (1− Preject). (10)

This number obviously depends on the probability of the beta distribution to be
outside interval [Minpµ([S]),Maxpµ([S])]. We see that Preject(ℓ) decreases expo-
nentially to zero with ℓ.

The While loop in l.15 is run at most 2n times. Then the complexity of l.10− 18
is ℓ× 2n, where ℓ is the number of times to converge to in the While loop at l.10.

In total, the complexity of one run of IRNG is O(2n). The main uncertainty in the
computation time is the number of times M the While loop in l.10 is run. In the worst
case, it could be large if interval [Minpµ([S]),Maxpµ([S])] is very small and Rank is not
well adapted to this interval. This situation occurs with a low probability.
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Figure 4: Case n = 4. Histograms of the values of µ(S), S ∈ 2N \ {N,∅}, generated by
IRNG (compare with Fig. 3 where the exact generator has been used).

μ({1}) μ({2}) μ({3}) μ({4})

μ({1,2}) μ({1,4})μ({1,3})

μ({2,3}) μ({2,4}) μ({3,4})

μ({1,2,3}) μ({1,2,4}) μ({1,3,4}) μ({2,3,4})

Figure 5: Case n = 4. Histograms of the values of µ(S), S ∈ 2N \ {N,∅}, generated by
the Markov chain generator with the number of iterations (T ) equal to 1000 (compare
with Fig. 3).

4 Experimental results for IRNG

We compare the performance of the IRNG with the RNG and Markov Chain generator.
When n = 4, we apply ECG to obtain P(Rk(S) = i), while the Markov chain generator
is applied when n = 5. Figure 4 shows the distribution of µ(S) generated by the IRNG
for n = 4.

From Figure 4, we notice that the distribution of µ generated by the IRNG is much
closer to the exact distribution than the one generated with the classical RNG (Fig. 2),
and Figure 5 shows the distribution of µ generated by the Markov Chain generator.

Next, we further compare their performance by calculating the Kullback-Leibler di-
vergence (also called Relative entropy) between the distributions of µ(S) obtained by
the exact generator and those obtained by the considered generators, which could be
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used to estimate the similarity of two distributions.
Recall the definition of Kullback-Leibler divergence (KLD for short):

DKL(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)

with p and q two discrete probability distributions defined on the same probability space
X.

In our experiments, we need to compare the distribution of µ(S) generated by the
considered generators with the exact distribution of µ(S). We replace q by the exact
distribution of µ(S) and p by the distribution of µ(S) obtained by one of these three
generators and then compare their value. The smaller the value, the higher the similarity
with the exact distribution (shown in Table 1).

Table 2 shows the CPU time of different capacity generators (we have used Python
implementations of the algorithms described above and have conducted the experiments
on a 3.2 GHz PC with 16 GB of RAM). For the execution time of IRNG, the time
required to compute the probabilities in Equation (8) is not taken into account, as they
are computed once for all off line.

capacity generator µ({1}) µ({2}) µ({3}) µ({4})
RNG 0.4220 0.3651 0.3708 0.3947
IRNG 0.0332 0.0373 0.0343 0.0351

Markov Chain 0.0115 0.0109 0.0097 0.0073

capacity generator µ({1, 2}) µ({1, 3}) µ({1, 4}) µ({2, 3}) µ({2, 4}) µ({3, 4})
RNG 0.6677 0.6322 0.7401 0.6522 0.6836 0.6375
IRNG 0.0180 0.0237 0.0232 0.0267 0.0268 0.0306

Markov Chain 0.0093 0.0090 0.0110 0.0108 0.0090 0.0102

capacity generator µ({1, 2, 3}) µ({1, 2, 4}) µ({1, 3, 4}) µ({2, 3, 4})
RNG 0.3985 0.3818 0.3691 0.3701
IRNG 0.0265 0.0317 0.0284 0.0267

Markov Chain 0.0089 0.0072 0.0081 0.0094

Table 1: Kullback-Leibler divergence between the histograms produced by the considered
generators and those produced by the exact generator

From Table 1, we compute the sum of the KLD for µ(S) (∀S ∈ 2N \{∅, N}) for each
generator. We obtain that the value for RNG is 7.086, for IRNG is 0.40 and for Markov
Chain is 0.132. As can be seen from these results, IRNG is approximately twenty times
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better than the original RNG method, and yields a sum of KLD of the same order of
magnitude of that of the Markov Chain method.

Compared to the RNG, the distribution of µ obtained from the IRNG is considerably
improved and does not differ significantly from the distribution obtained with the Markov
chain generator.

Method four elements’ capacity five elements’ capacity

RNG 0.425 1.130
IRNG 2.142 16.135

Markov Chain Generator 17.7 161.33

Table 2: Comparison of CPU time (measured in second) for generating 10,000 capaci-
ties. Among them, the number of iterations (T ) used for the Markov Chain Generator
is 1,000 when n = 4, and 9,000 when n = 5.

Unlike RNG, IRNG needs to compute MinpRk(S) and MaxpRk(S) for each S. There-
fore, IRNG is theoretically more complex than RNG, and this difference is reflected in
the computation time. However, from Table 2, this difference remains negligible in view
of the time required by the Markov chain method, and it can be seen that IRNG is
much faster than the Markov Chain Generator. This definitely shows the advantage of
IRNG, whose performance is dramatically better than that of RNG. To further evaluate
the performance and the computational time of IRNG and the Markov Chain genera-
tor, we systematically vary the number of iterations (T ) of Markov Chain method and
compute the sum of KLD for n = 4. The experimental results are summarized in Table
3.

T 100 150 160 170 180 190 200 250

Sum of KLD 0.85 0.55 0.51 0.47 0.44 0.41 0.38 0.28
Time 1.7s 2.6s 2.8s 3.0s 3.1s 3.3s 3.5s 4.3s

Table 3: Sum of KLD between the distribution of µ generated by Markov Chain method
with different values of T and the exact distribution. Computation for 10,000 samples
and n = 4

For the IRNG, the sum of KLD is approximately 0.40, and the computational time
required is 2.1s. We observe that when the CPU times of both methods are equivalent
(T = 120), the performance of IRNG surpasses that of the Markov Chain method.
Indeed, with T = 120, the sum of KLD is around 0.72. On the other hand, if the same
accuracy is required, the MC method needs a computation time of 3.3s (T = 190), which
is longer, but of the same order of magnitude.

For n = 5, we have computed the sum of KLD between each pair of distributions of
µ(S) and µ(S′) with |S| = |S′|, thus checking the symmetry property. Results are shown
on Table 4. We observed that for IRNG, the sum of KLD is approximately 2.3, and the
computational time is around 15.8s. Consequently, when considering the performance
of both methods to be consistent, it is evident that the Markov Chain method requires
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T 100 500 2000 4000 6000 7000 8000

Sum of KLD 152.3 58.4 9.6 3.3 2.4 2.3 2.4
Time 1.7s 8.9s 35.7s 71.4s 106.8s 124.5s 142.6

Table 4: Sum of KLD between each pair of distributions of µ(S) and µ(S′) with
|S| = |S′| for a sample size of 10,000 (n = 5)

significantly more computational time than IRNG, namely 124.5s. Conversely, when
aiming to maintain consistent time costs for both methods, the performance of the
Markov Chain method is notably inferior to that of IRNG.

5 Capacity generators with preference information

In this section, we would like to add some additional restrictions to the ECG and IRNG,
so that they could be applied in a multi-criteria decision problem based on Choquet
integral preference model.

5.1 Statement of the problem

Consider a discrete multiple criteria decision problem with n criteria where the decision
is based on a Choquet integral, as described in Section 2.1. The capacity is obtained
from preference information provided by the DM, in terms of indifference statements I
and strict preference statements P regarding some alternatives in a set of m alternatives
denoted by A. We denote these preference information constraints as the system (SR):

(SR)

{
Cµ(a) = Cµ(b), with (a, b) ∈ I
Cµ(a) ≥ Cµ(b) + ϵ, with (a, b) ∈ P.

In the above system, we set the value of ϵ > 0 to be sufficiently small to ensure that
there is no equality implied by the system of inequalities.

The purpose of this section is to randomly generate a set of capacities compatible
with system (SR), in a uniform way.

The simplest method for generating capacities compatible with (SR) is acceptance
and rejection, i.e., accepting only those generated capacities which are compatible with
the system (SR). The ratio of accepted capacities among all capacities is called the
acceptance rate. Although this method is easily implementable, it will fail to succeed in
practice if the acceptance rate is too small. In order to study this issue more explicitly,
we introduce the following notation:

• We denote the volume of the polytope consisting of the capacities compatible with
(SR) as VSR

, and the volume of capacities on 2N as VC(N).

• We denote by ran(SR) the acceptance rate of generating an n elements’ capacity

compatible with (SR), i.e., ran(SR) =
VSR
VC(N)

.
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Since it does not exist a closed-form formula giving VSR
, we cannot obtain a general

conclusion about ran(SR). Nevertheless, through the following example, we illustrate that
the value of ran(SR) could be quite low.

Example 4. Suppose there are three criteria (n = 3) and 6 alternatives (m = 6), with
utility value as shown in the following table.

Table 5: 3 criteria alternatives
item criterion 1 criterion 2 criterion 3

a1 6 8 7
a2 7 1 8
a3 4 3 8
a4 4 9 7
a5 9 1 5
a6 9 4 3

Suppose the DM has the following preference information: P1 = {(a5, a2), (a2, a3), (a6, a4)},
that is, a5 ≻ a2 ≻ a3, and a6 ≻ a4. The system of preference information becomes:

(SR1)


Cµ(a5) ≥ Cµ(a2) + ϵ
Cµ(a2) ≥ Cµ(a3) + ϵ
Cµ(a6) ≥ Cµ(a4) + ϵ.

The volume of the capacities compatible with (SR1) (computed by software VINCI
3) is 6.50e-03, and the volume VC(N) is 6.67e-02 for n = 3. Hence, the acceptance
rate of the above example is 0.097, which means that if we would like to generate 10,000
capacities compatible with SR1, we need ultimately to generate approximately 103, 092
general capacities, which shall take quite a lot of time.

The above example shows that it is necessary to revise the algorithms of IRNG and
ECG presented in section 3 in order to increase the acceptance rate by incorporating some
constraints into the algorithms. However, the problem we encounter at this stage is that
it would be too difficult to incorporate constraints like 4µ({1}) ≥ µ({3})+2µ({1, 3})+ ϵ
(first inequality of (SR1)) in the algorithms, since the links among these three variables
µ({1}), µ({3}), µ({1, 3}) are too complex.

5.2 An approximation method

Our idea is basically to handle constraints between at most two variables, and limiting
to very simple ones, in such a way that these rough constraints determine a polytope
including the “true” polytope determined by the constraints (SR), and as small as pos-
sible.

3https://www.multiprecision.org/vinci/home.html
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We propose to restrict to two types of constraints, namely constraint 1 and con-
straint 2.

(SC)

{
µ(S) ≤ µ(S′) + α, or µ(S) ≥ µ(S′) + α, with S′, S ∈ 2N and α ∈ R (constraint 1)
µ(S) ≤ c, µ(S) = c or µ(S) ≥ c, with c constant and S ∈ 2N(constraint 2)

As it will become clear later, algorithm IRNG is able to handle both types of con-
straints. However, the principle of ECG is to enumerate all linear extensions, and then
randomly select one of them. The value of µ(S) is not involved in the process, therefore
constraint 2 would be impossible to add directly in the algorithm, while constraint 1
could only be added directly when α = 0.

We call generically (SC) a set of constraints of this type. We explain below how
to get a system (SC) from a system (SR), but we can already draw some important
considerations. Denote by VSC

the volume of the polytope determined by the system
(SC), supposing that the latter polytope contains the polytope of capacities determined
by (SR). As the two polytopes differ in general, we still need to apply the acceptance
and rejection method to select only capacities compatible with (SR). Therefore, there

is an acceptance rate ran(SC) =
VSR
VSC

. If
VSR
VSC

is much larger than
VSR
VC(N)

(acceptance rate

ran(SR) of the naive approach), then we have succeeded in reducing considerably the
computation time of the algorithm.

We distinguish two types of alternative.

5.2.1 Case of binary alternatives.

Binary alternatives are special alternatives which utility values are limited to 0 and
1, and are denoted by aB for B ⊆ N – see Section 2.1 and Example 5 below. Binary
alternatives are quite useful in practice. They represent efficient ways to elicit a capacity.
They are central in particular in the MACBETH approach [3] and its extension to the
Choquet integral [21, 22]. These alternatives are cognitively simple to represent for a
DM as they are only good or bad with respect to all criteria.

By (3), the value of the Choquet integral for alternative aB is simply

Cµ(aB) = µ(B).

Therefore, the preferential information on binary alternatives induce only constraints of
the type µ(B) ≤ µ(B′), i.e., constraints of type constraint 1 with α = 0.

Example 5. : Suppose there are three criteria and 5 binary alternatives shown in the
following table. We use the Choquet integral to describe the preference of DM for these
five alternatives. We obtain Cµ(a{1,3}) = µ({1, 3}), Cµ(a{1,2}) = µ({1, 2}), Cµ(a{2,3}) =
µ({2, 3}) and Cµ(a{2}) = µ({2}). Since µ({2}) ≤ µ({2, 3}), µ({2}) ≤ µ({1, 2}), alter-
native a{2} is dominated by alternatives a{1,2} and a{2,3}, it could be ranked directly as
the least favourite alternative. Suppose the DM prefers a{1,3} over a{1,2}, then we have
µ({1, 3}) ≥ µ({1, 2}), which is of the type constraint 1 with α = 0.
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Table 6: 3 criteria binary alternatives
item criteria 1 criteria 2 criteria 3

a{1,3} 1 0 1

a{1,2} 1 1 0

a{2,3} 0 1 1

a{2} 0 1 0

aN 1 1 1

5.2.2 Case of arbitrary alternatives

Now let us consider the case where the utility value is not limited to 0 or 1. Firstly,
observe that if two alternatives a, b are indifferent, we have Cµ(a) = Cµ(b). Through
this equation, one variable µ(S) (S ∈ 2N ) could be expressed in terms of the others in
the equation and hence can be eliminated. Then, without loss of generality, one may
consider that we have only strict preference information. In the same way, variable
µ(N) = 1 is eliminated.

The basic idea to get a system (SC) of constraints which determines a smallest
possible polytope is to get the minimal and maximal values of every non-eliminated
variable µ(S) by linear programming, taking as constraints those given by (SR) plus the
monotonicity constraints, and similarly minimal values and maximal values of differences
µ(S)−µ(S′), for every possible S, S′. For example, the corresponding linear program to
obtain the minimal value of µ(S) for a fixed S reads:

(LPmin
S )


Min µ(S)

subject to Cµ(a) ≥ Cµ(b) + ϵ for (a, b) ∈ P
µ(S′) ≥ µ(S′′), S′ ⊇ S′′

with ϵ positive, S′, S′′ ∈ 2N \ {∅, N}. Similarly, for obtaining other inequalities in the
system (SC), we simply replace the linear objective function with Maxµ(S), Min [µ(S)−
µ(S′)] and Max [µ(S) − µ(S′)] respectively, for all non-eliminated variables µ(S), µ(S′).
This yields at most (2n−1 − 1) ∗ (2n − 1) linear programs to solve, whose values permit
to get the system (SC). Denoting the minimum value of µ(S) by vSmin, the maximum

value of µ(S) by vSmax, the minimum value of µ(S) − µ(S′) by vS,S
′

min and the maximum

value of µ(S)− µ(S′) by vS,S
′

max, we obtain

(SC)

{
vS,S

′

min ≤ µ(S)− µ(S′) ≤ vS,S
′

max, ∀S, S′ ∈ 2N \ {∅, N} and S ̸= S′ (constraint 1)
vSmin ≤ µ(S) ≤ vSmax, ∀S ∈ 2N \ {∅, N} (constraint 2)

Example 4 continued: We take ϵ = 0.01 for the system (SR1), and then construct the
family of linear programs to obtain the system (SC1). For example, for a given S = {1},
and S′ = {2}, we specify Min[µ({1}) − µ({2})] as the linear objective function, and the
linear program reads as follows :
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(LPmin
({1},{2}))


Min [µ({1})− µ({2})]

subject to Cµ(ai) ≥ Cµ(aj) + 0.01 for (ai, aj) ∈ P1

µ(S) ≥ µ(S′) ∀S ⊇ S′

To obtain the solution of the above linear program, we use the solver GUROBI, and
the result is Min[µ({1})− µ({2})] = 0, implying that µ{1} − µ{2} ≥ 0. Then we replace
the objective function to obtain the remaining linear programs. After solving 42 linear
programs, we obtain the following system of inequalities as the solution:

(SC1)



0.2 ≤ µ{1} ≤ 1; 0 ≤ µ{2} ≤ 1; 0 ≤ µ{3} ≤ 1
0.2 ≤ µ{1, 2} ≤ 1; 0.4 ≤ µ{1, 3} ≤ 1; 0 ≤ µ{2, 3} ≤ 1
0 ≤ µ{1} − µ{2} ≤ 1; −0.25 ≤ µ{1} − µ{3} ≤ 1; −0.8 ≤ µ{1} − µ{1, 2} ≤ 0
−0.5 ≤ µ{1} − µ{1, 3} ≤ 0; −0.4 ≤ µ{1} − µ{2, 3} ≤ 1; −1 ≤ µ{2} − µ{3} ≤ 1
−1 ≤ µ{2} − µ{1, 2} ≤ 0; −1 ≤ µ{2} − µ{1, 3} ≤ 0; −1 ≤ µ{2} − µ{2, 3} ≤ 0
−1 ≤ µ{3} − µ{1, 2} ≤ 0.25; −1 ≤ µ{3} − µ{1, 3} ≤ 0; −1 ≤ µ{3} − µ{2, 3} ≤ 0
−0.5 ≤ µ{1, 2} − µ{1, 3} ≤ 0.6;−0.33 ≤ µ{1, 2} − µ{2, 3} ≤ 1.0;−0.4 ≤ µ{1, 3} − µ{2, 3} ≤ 1.0

The numbers marked in blue are obtained from (SR1), and the numbers in black are
the monotonicity and normalization constraint of a capacity. Then we use the software
VINCI to compute the volume of (SC1), which is 1.75e-02, which gives an acceptance
rate ran(SC) = 0.371. Compared with the original acceptance rate ran(SR) = 0.097, it has
been improved by a factor three.

5.3 ECG with preference information

Now we would like to incorporate the system (SC) to ECG, restricting to constraint 1
with α = 0. The principle of the ECG algorithm is to find the set of maximal elements
at each step. If there exist element S, S′ ∈ 2N with S ̸⊂ S′ and µ(S) ≤ µ(S′), element
S should be ranked before element S′, hence element S cannot be selected in the set of
maximal elements till element S′ is removed from the poset.

For example, if we add a constraint like µ({1, 3}) ≥ µ({1, 2}) to the algorithm, at
each stage when we find the set of maximal elements, {1, 2} cannot be in the set until
{1, 3} has been removed from the poset (2N ,⊆) (shown in Figure 6 left). If we add a
constraint µ({3}) ≥ µ({1, 2}) into the algorithm, at each stage, element {1, 2} cannot
be in the set until all the elements that contain {3} have been removed from the poset
(2N ,⊆) (shown in Figure 6 right).
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Figure 6: Left constraint: µ({1, 3}) ≥ µ({1, 2}). Right constraint: µ({3}) ≥ µ({1, 2})
(which implies µ({1, 3}) ≥ µ({1, 2}) and µ({2, 3}) ≥ µ({1, 2}))

Revised algorithm

For the revised ECG algorithm, based on the original algorithm, we simply modify the
maximal set (Max(P )) and add two arrays describing the DM’s preference information,
called the dominant and the dominated arrays. For a given preferential information
(a, b) ∈ P , we put a in the dominant array and b in the dominated array at the same
position. For example, if we have µ({1}) ≤ µ({2}) as the first restriction, then the
first element of the dominated array is {1}, and the first element of the dominant array
is {2}. Referring to Example 4 (system (SC1)), we could only add µ({1}) ≤ µ({2})
and µ({2}) ≤ µ({1, 3}) to ECG. Therefore, the dominant array would be [{2}, {1, 3}]
and the dominated array would be [{1}, {2}]. We denote by S the set belonging to
the dominated array, and by S′ the corresponding set in the dominant array. This
revised algorithm focuses on the fact that if S ∈ Max(P ) and it exist S′′ ∈ Max(P ) with
S′′ ⊇ S′, then S should be eliminated from Max(P ). Compared to the original algorithm,
the modifications are highlighted in blue.

All-linear-extension(P,AllLinearExtensions, count, dominated, dominant)
Input: an array P containing a poset of size n, an array AllLinearExtensions, count,
an array of dominated element and an array of dominant element
Output: All constraint linear extensions of poset P
If |P | = 1 then

% When the bottom of a dendrogram is reached, add an empty linear
extension to AllLinearExtensions.

Append a zeros array of size n to AllLinearExtensions
AllLinearExtensions[count− 1][n− 1]← P [0]
count← count + 1

end if
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% Remove the dominated elements from Max(P ).
For i in range of length dominated do

For S in Max(P ) do
If S ⊇ dominant[i] and dominated[i] in Max(P ) :

Remove dominated[i] from Max(P )
break

For i in Max(P ) do
Remove i from P
% recursion algorithm
All-linear-extension(P,AllLinearExtensions, count, dominated, dominant)
AllLinearExtensions[count− 1][size of P ]← i
Re-insert i to the end of poset P

end for

Experimental Results

We compare the execution time of the revised and original ECG with acceptance and
rejection. For the experimental results, we add one by one the constraints listed below,
i.e., µ({1}) ≥ µ({2}) the first time, then µ({1, 3}) ≥ µ({4}) in addition the second time,
etc. 

µ({1}) ≥ µ({2})
µ({1, 3}) ≥ µ({4})
µ({2, 3}) ≥ µ({3, 4})
µ({1, 2, 3}) ≥ µ({2, 4})
µ({1, 2, 4}) ≥ µ({2, 3, 4})

Table 7 gives the computation times required by the revised ECG algorithm. They are
to be compared with the computation time for the original ECG with acceptance and
rejection, which is always around 14s, not depending on the number of constraints.

number
of

restric-
tions

1 2 3 4 5

Time 6.8s 6.0s 3.0s 2.8s 1.4s

Table 7: Computational time for revised ECG when n = 4

The original ECG needs to generate all the linear extensions corresponding to poset
(2N ,⊆) and then filter them, whereas the revised algorithm only needs to generate the
linear extensions that satisfy the constraints. Therefore, when we add more restrictions,
the fewer the number of linear extensions, the less time the algorithm spends.
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5.4 IRNG with preference information

We present in this section the revised algorithm of IRNG when incorporating the in-
equalities of the system (SC), and illustrate it with Example 4. Throughout this section,
we order the subsets of 2N \ {∅, N} by the cardinal-lexicographic order, that is, in in-
creasing cardinality and using the lexicographic order for sets of same cardinality (e.g.,
for n = 4 we obtain 1, 2, 3, 4, 12, 13, 14, . . . , 34, 123, 124, 134, 234, omitting braces
and commas). We denote by Ord(S) the rank of set S in this order (e.g., Ord(13) = 6
when n = 4). Hence we have always Ord({1}) = 1 and Ord(N \ {1}) = 2n− 2. We take

the convention that in vS,S
′

min and vS,S
′

max, always Ord(S) < Ord(S′).
Similar to ECG, the procedure of revised IRNG does not change, except that we need

to reconsider Maxpµ(S), Minpµ(S), MaxpRk(S) and MinpRk(S) presented in Section 3.2.
We introduce the following notation:

• Recall the value of already generated elements S1, . . . , Sp are µ(S1) = a1, . . . , µ(Sp) =
ap.

• We denote Maxpµ(S), Minpµ(S) for revised IRNG by Maxrpµ(S) Minrpµ(S).

• We denote the maximum and minimum values obtained from the inequalities of
constraint 1 in the system (SC) as Maxc1p µ(S) and Minc1p µ(S), where:

Minc1p µ(S) = max
j∈{1,...,p}

[(v
S,Sj

min + aj)1Ord(S)<Ord(Sj), (−v
Sj ,S
max + aj)1Ord(S)>Ord(Sj)].

Maxc1p µ(S) = min
j∈{1,...,p}

[(v
S,Sj
max + aj)1Ord(S)<Ord(Sj), (−v

Sj ,S
min + aj)1Ord(S)>Ord(Sj)].

Then Minrpµ(S) and Maxrpµ(S) becomes:

Minrpµ(S) = max(Minpµ(S), vSmin,Minc1p µ(S)).

Maxrpµ(S) = min(Maxpµ(S), vSmax,Maxc1p µ(S)).

with v
S,Sj

min , v
S,Sj
max, vSmin and vSmax defined in section 5.2.2.

Example 4 continued: We incorporate the preference information into the algorithm
in the form of the following two-dimensional array denoted as MinMax. Then we use
the system (SC1) to show the complete process of computing Maxrpµ(S) and Minrpµ(S).

Table 8: Minimum and Maximum value of system (3)

µ({1}) µ({2}) µ({3}) µ({1, 2}) µ({1, 3}) µ({2, 3}) µ({1})−
µ({2})

µ({1})−
µ({3})

. . .

Min 0.2 0 0 0.2 0.4 0 0 -0.25 . . .
Max 1 1 1 1 1 1 1 1 . . .
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Let us suppose that we first randomly select element {2} from 2N \{N, ∅} as the first

one, and assign a value a1 to it following the IRNG algorithm with Maxrµ({2}) = v
{2}
max

and Minrµ({2}) = v
{2}
min. Then we randomly select the second element {1, 3}, we need

to find the value of v
{1,3}
min , v

{1,3}
max , v

{2},{1,3}
min and v

{2},{1,3}
max from Table 8 which are 0.4, 1,

−1 and 0, thus obtaining Minr1µ({1, 3}) = max(0.4, a1), and Maxr1µ({1, 3}) = min(1, 1 +
a1) = 1. Then we assign a value a2 to it following the IRNG algorithm and a2 should be
between max(0.4, a1) and 1.

node min max value

{2} 0 1 a1
{1, 3} max(0.4, a1) 1 a2
· · · · · · · · · · · ·

As this process continues, the subsequent element shall always be compared with each
of the preceding ones to find Minrpµ(S) and Maxrpµ(S).

It is worth noting that if vS,S
′

max ≤ 0 or vS,S
′

min ≥ 0, we obtain that the element S should
be ranked before element S′ or after S′, respectively. We formalize the order relation
between µ(S) and µ(S′) by the quantity

R(S, S′) =

{
vS,S

′
max, if Ord(S) < Ord(S′)

−vS
′,S

min , if Ord(S) > Ord(S′).

If R(S, S′) ≤ 0, then µ(S) ≤ µ(S′). In such cases, MinpRk(S) and MaxpRk(S) should
also be recalculated. Taking Example 1 presented in Section 3.2, consider now S = {2, 3}
with N = {1, 2, 3, 4, 5}, and suppose we have v

{1,3},{2,3}
max ≤ 0 from the system (SC).

Then the subset {1, 3} should be ranked before {2, 3}. As we have µ({1, 2}) ≤ µ({1, 3})
from the example, the subsets that are necessarily ranked before S are the following:
{1}, {3}, {1, 3}, {2}, {1, 2}. Then we apply (6) to obtain the smallest possible ranking of
{2, 3}. To generalise Sp(S), Sp(S) with constraint (denoted as Sc

p(S) and S
c
p(S)), we

have

Sc
p(S) = {Sj , j ∈ {1, . . . , p} s.t. ∃i ∈ {1, . . . , p}, {Si ⊆ S or R(Si, S) ≤ 0} and aj ≤ ai}∪{S}

is the set of already generated subsets that are necessarily ranked before S, and

S
c
p(S) = {Sj , j ∈ {1, . . . , p} s.t. ∃i ∈ {1, . . . , p}, {Si ⊇ S or R(S, Si) ≤ 0} and aj ≥ ai}∪{S}

is the set of already generated subsets that are necessarily ranked after S.
Observe that the condition defining these collections are milder, therefore in general

Sc
p(S) and S

c
p(S) are larger than the original ones without constraints.

In the end, we apply formulas (5) and (6) to obtain MaxpRk(S) and MinpRk(S) with
constraint denoted as MaxrpRk(S) and MinrpRk(S).
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Experimental result

Since it takes more time to compute Minrpµ([S]) and Maxrpµ([S]) than in the original
method, this revised algorithm could be slower, as shown in Table 9. Due to the dif-
ference between the polytopes induced by (SR) and (SC), we still need to apply the
acceptance and rejection method after generating capacities by the revised algorithm.
For Example 4 of Section 5.2.2, we generate 10,000 capacities compatible with the pref-
erence information (SR1), and the computation times are shown in the following table.

Table 9: Computational time for generating 10,000 capacities in Example 4
revised IRNG IRNG

before acceptance
and rejection

1.6s 0.75s

after acceptance and
rejection

6.7s 9.9s

From the table, we see that the revised IRNG algorithm takes about 2 times longer
to generate a capacity than the original one. Therefore, if the ratio of the two acceptance
rates is more than two, the revised IRNG is faster than the original method. Recall that
the original acceptance rate of the system (SR1) is around 10% and the new acceptance
rate of the system (SR1) from the system (SC1) is around 37%, hence the revised IRNG
is faster than IRNG for Example 4.

For n = 4, let us use the same example as for the revised ECG’s experimental result,
by gradually adding the following restrictions:

µ({1}) ≥ µ({2})
µ({1, 3}) ≥ µ({4})
µ({2, 3}) ≥ µ({3, 4})
µ({1, 2, 3}) ≥ µ({2, 4})
µ({1, 2, 4}) ≥ µ({2, 3, 4})

The computation times for revised IRNG and original IRNG are shown in the following
table.

Table 10: Computational time for revised IRNG and IRNG when n = 4
number

of
restric-
tions

1 2 3 4 5

Revised
IRNG

9.73s 11.66s 11.20s 12.62s 12.07s

IRNG 7.86s 9.33s 19.13s 21.47s 45.00s
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From the Table 10, we notice that with the increase in the ratio of the two acceptance
rates, revised IRNG is much faster than the original IRNG.

6 Concluding remarks

We have proposed an improved version of the random node generator of Havens and
Pinar, by investigating in a deeper way the probability distribution of the coefficients
µ(S). The results show that our algorithm yields distributions much closer to the exact
ones, compared to the original random node generator, while keeping a very reasonable
computation time, much smaller than the one required by the Markov Chain method.

In a second part, we have incorporated simple constraints on the capacity coefficients
into our algorithms. This permits to take into account some preferential information
given by the Decision Maker. We have shown that we can considerably improve the
generation time compared to the naive approach of acceptance and rejection.

Further studies will be devoted to the generation of special families of capacities, like
supermodular, k-additive capacities, etc.
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[20] T. Magoč and F. Modave. Optimization of the Choquet Integral Using Genetic
Algorithm, pages 97–109. Springer International Publishing, Cham, 2014.

[21] B. Mayag, M. Grabisch, and Ch. Labreuche. A characterization of the 2-additive
Choquet integral through cardinal information. Fuzzy Sets and Systems, 184:84–
105, 2011.

[22] B. Mayag, M. Grabisch, and Ch. Labreuche. A representation of preferences by
the Choquet integral with respect to a 2-additive capacity. Theory and Decision,
71:297–324, 2011.

[23] R.Stanley. Two poset polytopes. Discrete and Computational Geometry, (1):9–23,
1986.

A The Markov Chain method

This method is due to Karzanov and Khachiyan [14]. Consider a given poset P , and
E the set of linear extensions of P . Two linear extensions X1, X2 ∈ E are said to be
neighbors, if X2 can be obtained by a single transposition of two consecutive elements in
X1, that is X1 = (x1, x2, . . . , xi, xi+1, . . . , x|P |) and X2 = (x1, x2, . . . , xi+1, xi, . . . , x|P |)
for i ∈ [1, |P |−1]. Consider a Markov chain with E being the set of states. The transition
probability between two states X1 and X2 is given by:

p(X1, X2) =


1/(2|P | − 2) If X1 and X2 are neighbors

1− n(X1)/(2|P | − 2) If X1=X2

0 otherwise

where n(X1) denotes the number of neighbors of X1. The Markov chain with the above
transition matrix describes a random walk through the simplices, and this random walk
starts at an arbitrary simplex X0 in the triangulation, then there is a move to a new sim-
plex with probability 1

2n−2 . Karzanov and Khachiyan proved that the transition matrix
induces an ergodic time-reversible Markov chain with uniform stationary distribution,
that means for an arbitrary initial probability distribution on E, after T steps (T big
enough), the distribution converges to the uniform distribution on E. Thus, for a given
poset P and sufficiently large T , the following algorithm gives a nearly uniform generator
of linear extensions of the poset.

Algorithm Classical Karzanov-Khachiyan chain
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1. Input X0 as the initial state (an arbitrary linear extension).

2. Randomly select r ∈ {0, 1}.

3. If r = 1, randomly select i from {1, 2, 3, . . . , |P | − 1}.

4. Interchange the value of ith position and (i + 1)th position of X0, if the new X0

belongs to the set of linear extensions E.

5. Repeat T times Step 2,3,4, and output new X0.
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