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Abstract

Besides accuracy, recent studies on machine learning models have been addressing the question on

how the obtained results can be interpreted. Indeed, while complex machine learning models are able

to provide very good results in terms of accuracy even in challenging applications, it is difficult to

interpret them. Aiming at providing some interpretability for such models, one of the most famous

methods, called SHAP, borrows the Shapley value concept from game theory in order to locally

explain the predicted outcome of an instance of interest. As the SHAP values calculation needs

previous computations on all possible coalitions of attributes, its computational cost can be very

high. Therefore, a SHAP-based method called Kernel SHAP adopts a strategy that approximates

such values with less computational effort. However, we see two weaknesses in Kernel SHAP: its

formulation is difficult to understand and it does not consider further game theory assumptions

that could reduce the computational cost. Therefore, in this paper, we propose a novel approach

that addresses such weaknesses. Firstly, we provide a straightforward formulation of a SHAP-based

method for local interpretability by using the Choquet integral, which leads to both Shapley values

and Shapley interaction indices. Thereafter, we propose to adopt the concept of k-additive games

from game theory, which contributes to reduce the computational effort when estimating the SHAP

values. The obtained results attest that our proposal needs less computations on coalitions of

attributes to approximate the SHAP values.
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1. Introduction

In the last decade, Machine Learning (ML) models have been used to deal with problems that

directly affect people’s life, such as consumer credit scoring (Kruppa et al., 2013), cybersecurity (Xin

et al., 2018), disease detection (Ahsan & Siddique, 2022) and patient care evaluation (Ben-Israel

et al., 2020). Aiming at dealing with such problems, complex ML models have been proposed to

achieve good solutions in terms of accuracy. Examples include random forests (Fawagreh et al.,

2014; Biau & Scornet, 2016), deep neural networks (LeCun et al., 2015; Goodfellow et al., 2016)

and gradient boosting algorithms (Bentéjac et al., 2021). Despite the good performance towards

accuracy, they act as black box models, as the obtained results (predictions and/or classifications)

are difficult to be interpreted. Therefore, there is an inherent trade-off between adopting an accurate

model, whose structure is frequently complex, or an interpretable model, such as linear/logistic

regression (Molnar, 2021).

Interpretability plays an important role in machine learning-based automatic decisions and has

been discussed in several recent works in the ML community (Lipton, 2018; Gilpin et al., 2018; Car-

valho et al., 2019; Molnar, 2021; Setzu et al., 2021). As stated by Miller (2019), interpretability can

be defined as “the degree to which an observer can understand the cause of a decision”. Therefore,

we can argue that interpretability is as important as accuracy in automatic decisions as it can show

if the model can or cannot be trusted. For example, assume a situation in which a person asks for

a credit to his/her bank manager. Moreover, suppose that, after an internal analysis based on a

machine learning model, the bank system classifies that person as a possible default and, as a con-

sequence, he/she would not receive the credit. He/she will naturally ask to the bank manager why

such a classification was achieved. If the machine is a black box, the manager would not be able to

explain such a classification and, therefore, the client may not trust the algorithm. In this situation,

a local interpretation would be suitable to understand how each characteristic (e.g., salary, presence

or absence of previous default, etc...) contributes towards the default credit classification.

There are practically two main types of interpretability in machine learning: global and local

ones (see (Molnar, 2021) for a further discussion on them). The aim of global interpretability

methods consists in explaining the trained model as a whole. In other words, one attempts to

explaint the average behavior of a trained machine by taking all samples. An example of such a

method is the partial dependence plot (Molnar, 2021), whose goal is to provide the marginal effects

that each feature has in the predicted outcome. On the other hand, methods for local interpretability

attempts to explain, for a specific instance of interest (e.g., a person asking for a credit), how each
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attribute’s value contributes to achieve the associated prediction or classification. In this paper, we

deal with local interpretability. Moreover, we consider a model-agnostic approach, i.e., a method

that can be applied to interpret the prediction or classification of any machine learning model.

Among the model-agnostic methods proposed in the literature, two are of interest in this paper:

LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016) and SHAP (SHapley

Additive exPlanations) (Lundberg & Lee, 2017). In summary, the idea in LIME to explain the

prediction of a specific instance of interest consists in, locally, adjusting an interpretable function

(e.g., a linear model) based on a set of perturbed samples in the neighborhood of such an instance.

When adjusting this linear function, one considers an exponential kernel that ensures that closer

are the perturbed samples from the instance of interest, greater are their importance in the learning

procedure. Although this function may not be complex enough to explain the model as a whole, it

can locally provide a good understanding of the contribution of each attribute towards the model

prediction. The other approach, called SHAP, brings concepts from game theory to provide local

interpretability. The idea is to explain a prediction by means of the Shapley value (Shapley, 1953)

associated with each attribute value. An interesting aspect in such an approach, which leads to

the SHAP values1, is that it satisfies desired properties in interpretability, such as local accuracy,

missingness and consistency (Lundberg & Lee, 2017). For that reason, the classical SHAP and its

extended versions have been largely used in the literature (Lundberg et al., 2020; Chen et al., 2021;

Aas et al., 2021).

Although the Shapley value (as well as the SHAP value in SHAP method) appears as an in-

teresting solution for model-agnostic machine learning interpretability, there is a drawback in its

calculation. As it lies on the marginal contribution of each attribute by taking into account all

possible coalitions of attributes, the number of evaluations increases exponentially with the number

of attributes. Precisely, if we have m attributes, we need 2m evaluations to calculate the Shap-

ley values. This makes the calculation impracticable in situations where m is large. In order to

soften this inconvenience, one may adopt some approaches that approximate the Shapley values,

such as the Shapley sampling values strategy (Štrumbelj & Kononenko, 2010, 2014) or the Kernel

SHAP (Lundberg & Lee, 2017). We address the latter in this paper.

The Kernel SHAP was also proposed in the original SHAP paper (Lundberg & Lee, 2017). It

1In this paper, as the SHAP values are referred to as the Shapley values obtained by means of the SHAP formu-

lation, we will frequently adopt SHAP values or Shapley values interchangeably in the context of machine learning

interpretability.
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provides a link between LIME and the use of SHAP values for local machine learning interpretabil-

ity. Although the authors provide this link by assuming an additive function as the interpretable

model and a specific kernel, the formulation is not straightforward and there is a lack of details

in the proof. With respect to the SHAP values calculation, in order to reduce the computational

effort, the authors adopted a clever strategy that selects the evaluations that are most promising to

approximate such values. However, this strategy does not reduce the number of evaluations needed

for an exact SHAP values calculation. Indeed, although one is only interested in estimating the

SHAP values, implicitly, there are 2m unknown parameters associated with the set of evaluations.

Moreover, the authors do not assume further game theory concepts that could reduce such a number

and speed up the convergence.

Aiming at providing a straightforward formulation of a Kernel SHAP-based method and speeding

up the SHAP values approximation, in this paper, we propose to adopt game theory-based concepts

frequently used in multicriteria decision making: the Choquet integral (Choquet, 1954; Grabisch,

1996; Grabisch & Labreuche, 2010) and k-additive games (Grabisch, 1997b). Instead of assuming an

additive function as the interpretable model, as a first contribution of this paper, we show that the

use of the non-additive function called Choquet integral also leads to the same desired properties

for local interpretability. Indeed, we can directly associate the Choquet integral parameters to

the Shapley indices, which include both Shapley values and Shapley interaction indices. While

the Shapley values indicate the marginal contribution of each attribute, individually, the Shapley

interaction indices provide the understanding about how they interact between them (positively or

negatively). This is of interest in ML interpretability as it indicates if the simultaneous presence of

two characteristics has a higher (or lower) contribution than both of them separately. It is worth

mentioning that Lundberg et al. (2020) also discuss how the SHAP method could be adapted to

find the Shapley interaction indices. However, in our proposal, they are obtained automatically.

Besides the aforementioned formulation, we can also assume some degree of additivity about

the Choquet integral which contributes to reduce its number of parameters. In this context, as

a second contribution, we propose to adopt a k-additive Choquet integral. The use of k-additive

models (such as 2-additive or 3-additive ones) significantly reduces the number of parameters and

has proved flexible enough to achieve good results in terms of generalization (Grabisch et al., 2002,

2006; Pelegrina et al., 2020). For instance, the number of parameters in the 2-additive and the 3-

additive models are m(m+1)/2 and m(m2+5)/6, respectively. Therefore, by reducing the number

of parameters in our proposal, we avoid over-parametrization, which can be the case in Kernel
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SHAP as, implicitly, there are 2m unknown parameters. As attested by numerical experiments, our

proposal requires a lower number of evaluations (and, consequently, a lower computational time) to

approximate the SHAP values.

The rest of this paper is organized as follows. Section 2 contains the theoretical aspects of

Shapley values and the adopted Choquet integral. We also provide a description of LIME and

SHAP as model-agnostic methods for local interpretability. In Section 3, we present our Choquet

integral-based formulation that leads to the Shapley values and interaction indices, and how the

concept of k-additive games can be used to reduce the computational effort when estimating the

SHAP values. Thereafter, in Section 4, we conduct some numerical experiments in order to attest our

proposal. Finally, in Section 5, we present our concluding remarks and discuss future perspectives.

2. Background

In this section, we present some theoretical aspects that will be used in this work. We start by

some concepts frequently used in game theory and multicriteria decision making. Thereafter, we

discuss both LIME and SHAP as well as the SHAP values approximation strategy used in Kernel

SHAP.

It is worth recalling that, in this paper, we deal with local interpretability. Therefore, we consider

a classical machine learning scenario where a model f(·) (e.g., a black box model) has been trained

based on a set of ntr training data (X,y), where X = [x1, . . . ,xntr ] and y = [y1, . . . , yntr ] represent

the inputs and the outputs (e.g., predicted values or a classes), respectively. Our aim consists in

explaining the predicted outcome f(x∗) of the instance of interest x∗ = [x∗1, . . . , x
∗
m], where m is

the number of attributes. Therefore, how f(·) was trained is not important in this paper. We only

consider that we are able to use the model f(·) in order to predict the outcome of any instance.

2.1. Shapley values and k-additive games

In cooperative game theory, a coalitional game is defined by a set M = {1, 2, . . . ,m} of m players

and a function υ : P(M) → R, where P(M) is the power set of M , that maps subsets of players

to real numbers. For a coalition of players A, υ(A) represents the payoff that this coalition can

obtain by cooperation. By definition, one assumes υ(∅) = 0, i.e., there is no payoff when there is

no coalition.

The Shapley value (or Shapley power index) is a well-known solution concept in cooperative

game theory (Shapley, 1953). In summary, the Shapley value of a player j indicates its (positive or
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negative) marginal contribution in the game payoff when taking into account all possible coalitions

of players in M . It is defined as follows:

ϕj =
∑

A⊆M\{j}

(m− |A| − 1)! |A|!
m!

[υ(A ∪ {j})− υ(A)] , (1)

where |A| represents the cardinality of subset A. An interesting property of the Shapley value

(called efficiency, which will be further discussed in this paper) is that
∑m

j=1 ϕj = υ(M) − υ(∅).

For this reason, the Shapley value is a convenient way of sharing the payoff of the grand coalition

between the players.

Similarly as in Equation (1), one may also measure the marginal effect of a coalition {j, j′} in

the payoffs. In this case, one obtains the Shapley interaction index (Murofushi & Soneda, 1993;

Grabisch, 1997a), which is defined by

Ij,j′ =
∑

A⊆M\{j,j′}

(m− |A| − 2)! |A|!
(m− 1)!

[
υ(A ∪

{
j, j′

}
)− υ(A ∪ {j})− υ(A ∪

{
j′
}
) + υ(A)

]
(2)

and can be interpreted as the interaction degree of coalition {j, j′} by taking into account all possible

coalitions of players in M . The sign of Ij,j′ , together with the sign2 of ζ = υ(M) − υ(∅), indicate

the type of interaction between players j, j′:

• If ζIj,j′ < 0, there is a negative interaction (also called redundant effect) between players j, j′.

• If ζIj,j′ > 0, there is a positive interaction (also called complementary effect) between players

j, j′.

• If Ij,j′ = 0, there is no interaction between players j, j′.

Besides ϕj and Ij,j′ , one may also define the interaction index for any A ⊆ M . In this case, the

(generalized) interaction index is defined by (Grabisch, 1997a)

I(A) =
∑

D⊆M\A

(m− |D| − |A|)! |D|!
(m− |A|+ 1)!

∑
D′⊆A

(−1)|A|−|D′| υ(D ∪D′)

 . (3)

However, one does not have a clear interpretation as for ϕj and Ij,j′ .

2Note that the use of ζ in machine learning local interpretability is important to properly interpret the interaction

indices. For instance, if υ(M) > υ(∅), Ij,j′ > 0 indicates a positive interaction between players j, j′. However, if

υ(M) < υ(∅), there exists a positive interaction between players j, j′ if Ij,j′ < 0.
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It is important to remark that, given the interaction indices I(A), one may recover the payoffs

υ(A) through the linear transformation

υ(A) =
∑
D⊆M

γ
|D|
|A∩D|I(D), (4)

where γ
|D|
|A∩D| is defined by

γr
′

r =

r∑
l=0

(
r

l

)
ηr′−l, (5)

with

ηr = −
r−1∑
r′=0

ηr′

r − r′ + 1

(
r

r′

)
(6)

being the Bernoulli numbers and η0 = 1. As the relation between the game and the interaction in-

dices is linear, it is common to represent the aforementioned transformations using matrix notation.

Assume, for instance, that the vectors υ = [υ(∅), υ({1}), . . . , υ({m}), υ({1, 2}), . . . , υ({m− 1,m}), . . . ,

υ({1, . . . ,m})] and I = [I(∅), ϕ1, . . . , ϕm, I1,2, . . . , Im−1,m, . . . , I({1, . . . ,m})] are represented in a

cardinal-lexicographic order (i.e., the elements are sorted according to their cardinality and, for

each cardinality, based on the lexicographic order). The transformation from the interaction indices

to υ can be represented by υ = TI, where T ∈ R2m×2m is the transformation matrix. For example,

in a game with 3 players, we have

T =



1 −1/2 −1/2 −1/2 1/6 1/6 1/6 0

1 1/2 −1/2 −1/2 −1/3 −1/3 1/6 1/6

1 −1/2 1/2 −1/2 −1/3 1/6 −1/3 1/6

1 −1/2 −1/2 1/2 1/6 −1/3 −1/3 1/6

1 1/2 1/2 −1/2 1/6 −1/3 −1/3 −1/6

1 1/2 −1/2 1/2 −1/3 1/6 −1/3 −1/6

1 −1/2 1/2 1/2 −1/3 −1/3 1/6 −1/6

1 1/2 1/2 1/2 1/6 1/6 1/6 0



.

Another concept in game theory directly associated with the interaction indices is the k-additive

games. We say that a game is k-additive if I(A) = 0 for all A such that |A| > k. As it will be

further detailed in the next section, an advantage of such games is that one reduces the number of

parameters to be defined. In the example with 3 players, for instance, if one assumes a 2-additive

game, the last column of T can be removed since I(1, 2, 3) = 0.
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2.2. The Choquet integral

The (discrete) Choquet integral (Choquet, 1954) is a non-additive (more precisely, a piecewise

linear) aggregation function that models interactions among attributes. It is defined on a set

of parameters associated with all possible coalitions of attributes. It has been largely used in

multicriteria decision making problems (Grabisch, 1996; Grabisch & Labreuche, 2010) and, in such

situations, the parameters associated with the Choquet integral are called capacity coefficients. A

capacity is a set function µ : 2M → R+ satisfying the axioms of normalization (µ(∅) = 0 and

µ(M) = 1) and monotonicity (if A ⊆ D ⊆ M , µ(A) ≤ µ(D) ≤ µ(M)). However, the Choquet

integral is not restricted to capacities (Grabisch, 2016). Indeed, it can be defined by means of a

game υ : 2M → R satisfying υ(∅) = 0. The Choquet integral definition based on a game υ is given

as follows:

fCI(x) =

m∑
j=1

(x(j) − x(j−1))υ({(j), . . . , (m)}), (7)

where ·(j) indicates a permutation of the indices j such that 0 ≤ x(1) ≤ x(j) ≤ . . . ≤ x(m) ≤ 1 (with

x(0) = 0).

As the Choquet integral is defined by means of a game, one may define it in terms of Shapley

values and interaction indices. Therefore, one has a clear interpretation about the marginal con-

tribution of each feature in the aggregation procedure as well as the interaction degree between

them. For instance, if two attributes have a positive (resp. negative) interaction, the payoff of

such a coalition is (resp. is not) greater than the sum of its individual payoffs. Moreover, one may

also consider the case of a k-additive game and, therefore, a k-additive Choquet integral (Grabisch,

1997b). For example, if one assumes a 2-additive game, (7) can be formulated as follows:

fCI(x) =
∑
j

xj

ϕj −
1

2

∑
j′

∣∣Ij,j′∣∣
+

∑
Ij,j′<0

(xj ∨ xj′)
∣∣Ij,j′∣∣+ ∑

Ij,j′>0

(xj ∧ xj′)Ij,j′ , (8)

where ∨ and ∧ represent the maximum and the minimum operators, respectively. Note that, when

learning the Choquet integral parameters, if one assumes a 2-additive model, one reduces the number

of parameters from 2m to m(m+1)/2. Therefore, 2-additive and, more generally, k-additive models

emerge as a strategy that reduces the computational complexity in optimization tasks and provides

a more interpretable model (since one has less parameters to interpret). Moreover, it is also known

from multicriteria decision making applications (Grabisch et al., 2002, 2006; Pelegrina et al., 2020)

that, even if one adopts a 2-additive model, the Choquet integral is still being flexible enough to
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model inter-attributes relations and can achieve a high level of generalization. Surely, greater the

k, greater the flexibility to model inter-attributes relations.

It is important to remark that, if one assumes a 1-additive game, the Choquet integral boils

down to the weighted arithmetic mean.

2.3. Model-agnostic methods for local interpretability

We describe in this section two famous model-agnostic methods for local interpretability: LIME

and SHAP. At first, we briefly present the idea behind tabular LIME (i.e., LIME for tabular data).

Then, we further discuss the SHAP method, specially the Kernel SHAP strategy. It is worth men-

tioning that, differently from (Ribeiro et al., 2016; Lundberg & Lee, 2017), we here adopt a notation

based on set theory in order to clearly define the elements used in the considered approaches.

2.3.1. LIME

The main idea of LIME (Ribeiro et al., 2016) for local explanations is to locally approximate a

(generally) complex function f(·) (frequently obtained by a black box model) by an interpretable

model g(·). For this purpose, in order to explain the outcome f(x∗) of an instance x∗, one firstly

generates a set of q perturbed samples zl, l = 1, . . . , q, in the neighborhood of x∗. For each sample

zl, one also defines a binary vector z′l such that z′l,j = 1 if zl,j is close enough3 to x∗j , or z′l,j = 0

otherwise. Once all samples have been generated, LIME deals with the following optimization

problem:

min
g∈G

L(f, g, πx∗) + Ω(g), (9)

where L(f, g, πx∗) is the loss function, πx∗ is a proximity measure between the instance to be

explained and the perturbed samples and Ω(g) is a measure of complexity of the interpretable

model g(·). In tabular LIME, the authors used the exponential kernel for the proximity measure,

which leads to the expression

πx∗(z′l) = exp

(
−∥1− z′l∥2

α2

)
, (10)

where ∥ · ∥ is the Euclidean norm, 1 is a vector of 1’s and α is a positive bandwidth parameter

(as default, the authors assumed α =
√
0.75m). By assuming a weighted least squared function for

3In order to define how close zl,j is from x∗
j , for each attribute, LIME equally splits the training data (by taking

the quantiles of the training data) into predefined bins. If zl,j is on the same bin as x∗
j , z

′
l,j = 1, or z′l,j = 0 otherwise.

For further details about this procedure, the interested reader may refer to (Garreau & von Luxburg, 2020).
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L(f, g, πx∗), a linear function g(z′) = β0 + βT z′ (where β = (β1, . . . , βm)) and letting Ω(β) = λ∥β∥2

represent a regularization term with λ > 0, LIME can be formulated as follows:

min
β0,β1,...,βm

q∑
l=1

πx∗(z′l)
(
f(zl)−

(
β0 + βT z′l

))2
+ λ∥β∥2. (11)

After solving (11), one can visualize the obtained parameters β and, therefore, interpret the (positive

or negative) contribution of each attribute in the predicted outcome in the vicinity of x∗.

2.3.2. SHAP

Differently from LIME, the purpose of SHAP is to use the Shapley values in order to locally

explain a prediction. The idea is to associate to each attribute its marginal contribution in the

predicted outcome. In this section, we present a summary of the idea behind SHAP. Moreover, we

discuss the Kernel SHAP, which is a kernel-based approach for approximating the SHAP values by

using the LIME formulation. For further details, the interested reader may refer to (Lundberg &

Lee, 2017; Lundberg et al., 2018, 2020; Aas et al., 2021).

The idea that brings Shapley values into interpretability methods in machine learning consists

in associating players and payoffs in game theory to attributes and values of a subset of attributes

in the model prediction, respectively. Before presenting the idea behind SHAP, let us define the

characteristic vector of A. Recall that M = {1, . . . ,m} represents the set of m attributes. For any

A ⊆ M , 1A ∈ {0, 1}m denotes the characteristic vector of A, i.e., a binary vector such that the j-th

coordinate is 1, if j ∈ A, and 0, otherwise. For example, for M = {1, 2, 3}, 1{2,3} = [0, 1, 1] means

a coalition of attributes {2, 3}.

Based on the aforementioned definition, in order to explain the predicted outcome f(x∗) of an

instance x∗, the authors decompose f(x∗) by assuming the additive feature attribution function

given by

f(x∗) = g(1M ) = ϕ0 +
∑
j∈M

ϕj . (12)

Moreover, they argue that the only possible explanation model g(·) that follows Equation (12)

and satisfies the local accuracy, missingness and consistency properties (see Appendix A for the

definitions) consists in defining ϕ0 = E [f(x)], i.e., the (overall) expected prediction when one does

not know any attribute value from x∗, and the (exact) SHAP values ϕj , j = 1, . . . ,m, given by

ϕj(f,x
∗) =

∑
A⊆M\{j}

(m− |A| − 1)! |A|!
m!

[
f̂x∗(A ∪ {j})− f̂x∗(A)

]
, (13)
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where f̂x∗(A) is the expected model prediction given the knowledge on the attributes values of x∗

that are present in coalition A, that is:

f̂x∗(A) = E
[
f (x) |xj = x∗j ∀ j ∈ A

]
. (14)

Note in Equation (14) that one has missing values for all attributes j′ ∈ A, where A is the com-

plement set of A (if A = M , then f̂x∗(M) = E [f (x∗)] = f (x∗) and there are no missing values).

In this case, in order to calculate the expected prediction, one randomly samples these missing

values from the training data. In this paper, as well as in the Kernel SHAP method, we assume

independence among attributes. Therefore, the expected prediction can be calculated as follows:

f̂x∗(A) =
1

q

q∑
l=1

f
(
x∗
A,xl,A

)
, (15)

where xl,A, l = 1, . . . , q, are samples from the training data. Note that, in comparison with the

game theory formulation presented in Equation (1), f̂x∗(A) represents the payoff υ(A). Moreover,

when all attributes are missing, i.e., A = ∅, one has f̂x∗(∅) = E [f (x)] = ϕ0.

Among the properties satisfied by the SHAP values, the local accuracy plays an important role

in local interpretability and differentiate SHAP from the original LIME formulation (as presented

in Section 2.3.1). It states that one can decompose the predicted outcome f(x∗) by the sum of

the SHAP values and the overall expected prediction ϕ0, i.e., f(x
∗) = ϕ0 +

∑m
j=1 ϕj . Therefore,

one may interpret the SHAP values as the contribution of each attribute when one moves from the

overall expected prediction when all attributes are missing to the actual outcome f(x∗).

2.3.3. Kernel SHAP

An important remark in the exact SHAP values calculation is that one needs to sample all 2m

possible coalitions of attributes and calculate its expected model prediction. Therefore, this pro-

cedure may be computationally heavy for a large number of attributes. In order to overcome this

inconvenience, the authors proposed a SHAP value-based formulation called Kernel SHAP (Lund-

berg & Lee, 2017). Kernel SHAP emerges as the formulation of LIME method that leads to the

SHAP values. For instance, the authors claimed that if one assumes

• Ω(g) = 0,

• π(A) = (m−1)

(m
|A|)|A|(m−|A|) ,

• L(f, g, π) =
∑

A∈M π(A)
(
f̂x∗(A)− g(1A)

)2
, where g(1A) = ϕ0 +

∑
j∈A ϕj and M ⊆ P(M)

(recall that P(M) is the power set of M),

11



the solution of the weighted least square problem

min
ϕ0,ϕ1,...,ϕm

∑
A∈M

(m− 1)(
m
|A|
)
|A| (m− |A|)

f̂x∗(A)−

ϕ0 +
∑
j∈A

ϕj

2

(16)

leads to the SHAP values. Note that, differently from the LIME formulation, π(A) in Kernel SHAP

only depends on coalition A. Moreover, π(A) tends to infinity when A = M . Therefore, in the

optimal solution, f̂x∗(M) = f(x∗) = g(1M ) = ϕ0 +
∑m

j=1 ϕj . This ensures that f(x∗) is explained

by the sum of the SHAP values and the overall expected prediction E [f(x)]. Similarly, when A = ∅,

the associated π(∅) also tends to infinity. This ensures that f̂x∗(∅) = E [f(x)] = g(1∅) = ϕ0. In

practice, we replace these infinite values by a big constant (e.g., 106).

As (16) is a weighted least square problem, one may easily represent it (as well as its solution)

by means of matrices and vectors (we borrow such a formulation from (Aas et al., 2021)). Suppose

that nM represents the number of elements in M (i.e., the number of coalitions considered in the

optimization problem (16)). Let us also define ϕ = [ϕ0, ϕ1, . . . , ϕm] and Z ∈ {0, 1}nM×(m+1) as the

matrix such that the first column is 1 for every row and the remaining m+1 columns are composed,

in each row, by all 1A, A ∈ M. Moreover, assume that f ∈ RnM×1 and W ∈ RnM×nM are the

vector of evaluations f̂x∗(A) and the diagonal matrix whose elements are given by π(A), respectively,

associated with all A ∈ M. For example, in a problem with 3 attributes (M = {1, 2, 3}) and using

∅, {1}, {2}, {1, 3} and M as the coalitions of attributes, we have the following:

ϕ =


ϕ0

ϕ1

ϕ2

ϕ3

 , Z =



1 0 0 0

1 1 0 0

1 0 1 0

1 1 0 1

1 1 1 1


, f =



f̂x∗(∅)

f̂x∗({1})

f̂x∗({2})

f̂x∗({1, 3})

f̂x∗(M)


and W =



106 0 0 0 0

0 π({1}) 0 0 0

0 0 π({2}) 0 0

0 0 0 π({1, 3}) 0

0 0 0 0 106


.

Based on the vector/matrix notation, one may represent the optimization problem (16) as

min
ϕ

(f − Zϕ)T W (f − Zϕ) , (17)

whose solution is given by

ϕ =
(
ZTWZ

)−1
ZTWf . (18)

Remark that S =
(
ZTWZ

)−1
ZTW can be calculated independently of the instance of interest

x∗. Therefore, an interesting aspect in Kernel SHAP is that, even if one would like to explain the

outcome of several instances of interest, one only needs to calculate S once. The only element that

12



varies in Equation (18) is the vector of evaluations f , which is dependent on the instance of interest

under analysis.

Another remark in Kernel SHAP is that, if M = P(M), Equation (18) leads to the exact SHAP

values (as in Equation (13)). Therefore, in this exact calculation, one needs the expected predictions

f̂x∗(A) for all possible 2m coalitions A, which can be infeasible for a large number of attributes.

However, the clever strategy used in Kernel SHAP aims at selecting the most promising expected

predictions to approximate the SHAP values. For instance, if one considers the weighting kernel

π(A), one may note that the majority of A has a low contribution in the SHAP value calculation.

Therefore, the aim in Kernel SHAP consists in defining a subset M from P(M) such that the

elements A ∈ M are sampled4 from a probability distribution following the weighting kernel π(A).

Greater is the weight associated with A, greater is the chance that A is sampled from P(M).

It is important to note that, although the Kernel SHAP approximates the SHAP values with

less coalitions, the relation between the game and the generalized interaction indices (which include

the Shapley values) involves 2m parameters. Therefore, even if one is interested in estimating m

parameters (the SHAP values), implicitly, we are dealing with the whole power set of M . We

address such an issue in our proposed approach.

3. A more general model for local interpretability based on Shapley values

As highlighted in Section 1, we have two main contributions in this paper: to provide a straight-

forward formulation of the Kernel SHAP method based on the Choquet integral, and to adopt the

concept of k-additive games in order to reduce the number of evaluations needed to approximate

the SHAP values. Both contributions are presented in the sequel.

3.1. The Choquet integral as an interpretable model for Kernel SHAP formulation

We here show that we need not consider an additive function as the interpretable model in order

to explain a prediction based on the Shapley values. Indeed, if we adopt the non-additive function

called Choquet integral, we also achieve such values. Recall the Choquet integral function defined

in Equation (7). The idea is to define the local interpretable model g(·) as

g(1A) = ϕ0 + fCI(1A), (19)

4In order to avoid double selecting the same A, in the experiments conducted in this paper, we adopted a sampling

procedure without replacement. Therefore, after sampling a coalition, we update the probability distribution by

removing the associated kernel weight and normalizing the probabilities.

13



where ϕ0 is the intercept parameter. In order to simplify the notation, let us also define f̄x∗(A) =

f̂x∗(A)− ϕ0. In this case and based on the LIME formulation for local interpretability, one obtains

the following loss function:

L(f, g, π) =
∑
A∈M

π′(A)
(
f̄x∗(A)− fCI(1A)

)2
, (20)

where the weights π′(A) have the same values for all A (e.g., 1) except for the empty set and the

grand coalition M , whose associated weights are big numbers (e.g., 106). We clarify these choices

soon.

An interesting aspect on the Choquet integral and that can be easily checked from Equation (7) is

that, when we only have binary data (which is our case since 1A is a binary vector), fCI(1A) = υ(A).

Therefore, we may redefine the loss function presented in (20) as

L(f, g, π) =
∑
A∈M

π′(A)
(
f̄x∗(A)− υ(A)

)2
. (21)

Remark that, for A = ∅, we minimize f̄x∗(∅)− υ(∅) = f̂x∗(∅)− ϕ0 − υ(∅) = υ(∅), since f̂x∗(∅) = ϕ0

by definition. In order to ensure that υ(∅) = 0 (according to the definition of a game), we assume a

big number for π′(∅) when solving the optimization problem. Similarly, when A = M , we minimize

the difference between f̂x∗(M) and ϕ0 + υ(M). In this case, as υ(M) = υ(∅) +
∑m

j=1 ϕj , the big

weight π′(M) ensures that ϕ0 +
∑m

j=1 ϕj = f̂x∗(M) = f(x∗) (the local accuracy property).

Furthermore, if one considers the linear transformation presented in Equation (4), the loss

function can be directly defined in terms of the generalized Shapley interaction indices. In this case,

we have the following optimization problem:

min
I

∑
A∈M

π′(A)

f̄x∗(A)−
∑
D⊆M

γ
|D|
|A∩D|I(D)

2

, (22)

where γ is defined as in Equation (5). As in the Kernel SHAP, our proposal also leads to the exact

SHAP values if M = P(M). We prove it in the sequel.

Theorem 1. If M = P(M), the solution of (22) leads to the exact SHAP values as calculated in

Equation (13).

Proof. Assume M = P(M). In this scenario, the optimization problem (22) has a unique solution

such that
∑

D⊆M γ
|D|
|A∩D|I(D) = υ(A) = f̄x∗(A). From the obtained game and the linear transfor-

mation presented in Equation (1), we have that ϕj =
∑

A⊆M\{j}
(m−|A|−1)!|A|!

m! [υ(A ∪ {j})− υ(A)].

It remains to show that ϕj ≡ ϕj(f,x
∗).
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Recall that we defined f̄x∗(A) = f̂x∗(A) − ϕ0 and, then, υ(A) = f̂x∗(A) − ϕ0 in the optimal

solution. Therefore, we have the following:

ϕj =
∑

A⊆M\{j}

(m− |A| − 1)! |A|!
m!

[
f̂x∗(A ∪ {j})− ϕ0 − f̂x∗(A) + ϕ0

]
=

∑
A⊆M\{j}

(m− |A| − 1)! |A|!
m!

[
f̂x∗(A ∪ {j})− f̂x∗(A)

]
= ϕj(f,x

∗),

(23)

which proves that our proposal also converges to the exact SHAP values when M = P(M).

Similarly as in the Kernel SHAP, we may here also rewrite the optimization problem in vec-

tor/matrix notation. For this purpose, let us represent f̄ ∈ RnM×1 as the vector f (as defined in

Section 2.3.3) discounted by ϕ0 and W̄ ∈ RnM×nM as the diagonal matrix whose elements are 1’s

except for the elements associated with the empty set and the grand coalition M , whose weights are

a big number (e.g., 106). Moreover, we define υM as the vector of payoffs for all coalitions A such

that A ∈ M. In addition, we consider TM as the transformation matrix whose rows are composed

by the rows of T (as defined in Section 2.1) associated with all coalitions A such that A ∈ M.

For example, in the same problem when M = {1, 2, 3} and using ∅, {1}, {2}, {1, 3} and M as the

coalitions of attributes, we have the following:

υM =



υ(∅)

υ({1})

υ({2})

υ({1, 3})

υ(M)


=



1 −1/2 −1/2 −1/2 1/6 1/6 1/6 0

1 1/2 −1/2 −1/2 −1/3 −1/3 1/6 1/6

1 −1/2 1/2 −1/2 −1/3 1/6 −1/3 1/6

1 1/2 −1/2 1/2 −1/3 1/6 −1/3 −1/6

1 1/2 1/2 1/2 1/6 1/6 1/6 0





I(∅)

ϕ1

ϕ2

ϕ3

I1,2

I1,3

I2,3

I({1, 2, 3})



= TMI,

f̄ =



f̂x∗(∅)− ϕ0

f̂x∗({1})− ϕ0

f̂x∗({2})− ϕ0

f̂x∗({1, 3})− ϕ0

f̂x∗(M)− ϕ0


and W̄ =



106 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 106


.
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The vector/matrix notation leads to the following optimization problem:

min
I

(
f̄ −TMI

)T
W̄
(
f̄ −TMI

)
, (24)

whose solution is given by

I =
(
TT

MW̄TM
)−1

TT
MW̄f̄ . (25)

It is important to note that, differently from the Kernel SHAP formulation discussed in Sec-

tion 2.3.3, in our proposal we obtain all Shapley interaction indices (which, obviously, include the

SHAP values). Therefore, this can also be infeasible for a large number of attributes as the num-

ber of parameters is given by 2m. However, one may exploit some degree of additivity about the

Choquet integral which contributes to reduce its number of parameters. We discuss this aspect in

the next section.

3.2. k-additive games for local interpretability

As a second contribution, we propose to adopt the concept of k-additive games in the Choquet

integral-based formulation for local interpretability. Called here kADD-SHAP, our proposal consists

in dealing with the following weighted least square problem:

min
Ik

∑
A∈M

π′(A)

f̄x∗(A)−
∑

D⊆M,
|D|≤k

γ
|D|
|A∩D|I(D)


2

, (26)

where Ik = [I(∅), ϕ1, . . . , ϕm, I1,2, . . . , I({m− k, . . . ,m}] is the vector of Shapley interaction indices,

in a cardinal-lexicographic order, for all I(D) such that |D| ≤ k. By using the vector/matrix

notation, we may rewrite (26) as follows:

min
Ik

(
f̄ −TM,kIk

)T
W̄
(
f̄ −TM,kIk

)
, (27)

whose solution is given by

Ik =
(
TT

M,kW̄TM,k

)−1
TT

M,kW̄f̄ , (28)

where TM,k is equal to TM up to the columns associated with all I(D′) such that |D′| ≤ k

(I(D′) = 0 for all coalitions D′ such that |D′| > k). Therefore, in this formulation and for k ≥ 2,

one eliminates unnecessary parameters (I(A) when |A| is large) in terms of local interpretability.

Note that, as in (26) (or (27)) we restrict the feasible domain to the Shapley indices whose car-

dinalities are at most k, we can not guarantee to achieve the exact SHAP values even if M = P(M).
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In other words, Theorem 1 is not valid for the proposed kADD-SHAP. However, as already men-

tioned in Section 2.2, an advantage of such a model is that one both drastically reduces the number

of parameters to be determined while still having a flexible model to generalize the relation be-

tween inputs and outputs. Therefore, in order to approximate the exact SHAP values, we avoid

over-parametrization and we may need less evaluations when adopting (27) compared to (17). It is

important to note that, even if in the Kernel SHAP formulation one only searches for the Shapley

values (i.e., m parameters), implicitly, such parameters as well as the remaining (generalized) in-

teraction indices are associated with all 2m expected predicted evaluations defined by all A ⊆ M

(recall the linear transformation presented in Equations (3) and (4)). This may bring an over-

parametrization when the dataset has several attributes. Moreover, as the number of unknown

parameters differs from our proposal and the Kernel SHAP, for the same subset of coalitions, both

approaches will probably lead to different results. Also, we expect that our proposal converges

faster than the Kernel SHAP as one eliminates parameters that are not important for the purpose

of interpretability.

With respect to how to select the subset M of evaluations, we consider the same strategy as

in Kernel SHAP. We sample the elements A ∈ M according to the probability distribution defined

by pA = π(A)∑
A⊆M π(A) . As we adopt in this paper a sampling procedure without replacement, after

sampling a coalition, we update the probability distribution and normalize it. Moreover, as p∅ and

pM are much greater than the other probabilities, it is very likely that both the empty set and the

grand coalition M are sampled to compose the subset M.

Equivalently as in the Kernel SHAP formulation, SM,k =
(
TT

M,kW̄TM,k

)−1
TT

M,kW̄ (or SM =(
TT

MW̄TM
)−1

TT
MW̄) can also be calculated independently of the instance of interest x∗. There-

fore, in order to explain the outcome of several instances of interest, one only needs to calculate

SM,k (or SM) once.

4. Numerical experiments

In this section, we present some numerical experiments in order to check the validity and inter-

est of our model5. The experiments are based on four datasets frequently used in the literature:

Diabetes (Efron et al., 2004), Red Wine Quality (Cortez et al., 2009), Law School Admission Coun-

cil Wightman (1998) and Pima Indians Diabetes (Smith et al., 1988). In the sequel, we provide a

5All codes can be accessed in https://github.com/GuilhermePelegrina/k_addSHAP.
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brief description of them:

• Diabetes dataset: This dataset containsm = 10 attributes (age, sex, body mass index, average

blood pressure and six blood serum measurements) that describe n = 442 diabetes patients.

All collected data are centralized (with zero mean) and with standard deviation equals to

0.0476. For each patient, one also has as the predicted value a measure of the diabetes

progression. The mean and the standard deviation for the diabetes progression measure are

152.13 and 77.00, respectively. In our experiments, we split the dataset into training (80%,

i.e., ntr = 353 samples) and test (20%, i.e., nte = 89 samples).

• Red Wine Quality dataset: In this dataset, one has m = 11 attributes describing n = 1599

red wines. Both mean and standard deviation (std) of attributes are described in Table 1. For

each wine, one also has a score (between 0 and 10) indicating its quality. In our experiments,

we use this data for the purpose of classification and, therefore, we assume that a good (resp.

a bad) wine has a score greater than 5 (resp. at most 5). In total, one has 855 good wine

(class value 1) and 744 bad wine (class value 0). Moreover, we split the dataset into training

(80%, i.e., ntr = 1279 samples) and test (20%, i.e., nte = 320 samples).

• Law School Admission Council (LSAC) dataset: This dataset contains n = 23726 candidates

described by m = 11 features. Both mean and standard deviation (std) of attributes are

described in Table 2. The purpose in this dataset is to predict whether a candidate would

pass the bar exam. Therefore, it is a classification task.

• Pima Indians Diabetes: Differently from the previous Diabetes dataset, the goal in Pima

Indians Diabetes is to diagnostically classify a person as having (or not) diabetes. This

dataset contains n = 768 patients described by m = 8 features, summarized in Table 3.

Besides different datasets, we also evaluate our proposal by assuming two training models:

Neural Network and Random Forest6. Recall that the purpose of this paper is to address inter-

6We borrowed these methods from the Scikit-learn library (Pedregosa et al., 2011) in Python and adopted the

following parameters:

• Neural Network: maxiter = 106 for both MLPRegressor and MLPClassifier.

• Random Forest: n estimators = 1000, max depth = None and min samples split = 2 for both RandomFore-

stRegressor and RandomForestClassifier.
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Table 1: Summary of the Wine dataset.

Attributes
Mean

(± std)
Attributes

Mean

(± std)
Attributes

Mean

(± std)

fixed acidity
8.320

(±1.740)
chlorides

0.087

(±0.047)
pH

3.311

(±0.154)

volatile acidity
0.528

(±0.179)
free sulfur dioxide

15.875

(±10.457)
sulphates

0.658

(±0.169)

citric acid
0.271

(±0.195)
total sulfur dioxide

46.468

(±32.885)
alcohol

10.423

(±1.065)

residual sugar
2.539

(±1.409)
density

0.997

(±0.002)

pretability in any trained machine learning model. We do not work on improving the model itself.

So we attempt to explain the contributions of attributes regardless how the model is accurate.

4.1. Experiment varying the number of expected prediction evaluations until the exact SHAP values

convergence

In the first experiment, we verify the convergence of the proposed kADD-SHAP and the Kernel

SHAP to the exact SHAP values. For each dataset and test sample (recall that we use the training

data to calculate the expected predictions given the coalitions inM), we vary the number of expected

prediction evaluations, apply both kADD-SHAP and Kernel SHAP and calculate the squared error

when estimating the exact SHAP values. Let us represent, for a given test sample i′, the SHAP

values obtained by the Equation (13) (the exact SHAP values), the kADD-SHAP and the Kernel

SHAP as ϕexact,i′ , ϕkADD,i′ and ϕKernel,i′ , respectively. The squared error between ϕexact,i′ and

ϕkADD,i′ is given as follows:

εkADD,i′ =

m∑
j=1

(
ϕexact,i′

j − ϕkADD,i′

j

)2
. (29)

In order to calculate the squared error with respect to the Kernel SHAP, one only needs to replace

ϕkADD,i′

j by ϕKernel,i′ . By increasing nM, i.e., the number of coalitions selected to calculate the ex-

pected prediction evaluations used in the estimation procedure, the aim is to verify the convergence

to the exact SHAP values. We show the obtained results by taking the median (50th percentile

or q0.5 - a central tendency measure), the 90th percentile and the 10th percentile (q0.9 and q0.5,

respectively, both used to indicate the dispersion around the median) over s = 501 simulations. For
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Table 2: Summary of the LSAC dataset.

Attributes
Mean

(± std)
Attributes

Mean

(± std)
Attributes

Mean

(± std)

decile1b
5.709

(±2.838)
decile3

5.729

(±2.830)
lsat

36.990

(±5.278)

ugpa
0.409

(±0.179)
zfygpa

0.145

(±0.921)
zgpa

0.080

(±0.977)

fulltime
1.073

(±0.261)
fam inc

3.498

(±0.833)
male

0.564

(±0.495)

race
0.935

(±0.245)

Table 3: Summary of the Pima Indian Diabetes dataset.

Attributes
Mean

(± std)
Attributes

Mean

(± std)
Attributes

Mean

(± std)

Pregnancies
3.845

(±3.369)
Glucose

120.894

(±31.972)
BloodPressure

69.105

(±19.355)

SkinThickness
20.536

(±15.952)
Insulin

79.799

(±115.244)
BMI

31.992

(±7.884)

DiabetesPedigreeFunction
0.471

(±0.331)
Age

33.240

(±11.760)

each simulation, we calculate the errors when estimating the exact SHAP values of all test samples.

For the proposed kADD-SHAP, the percentile qa, a = 0.1, 0.5, 0.9, is calculated as follows:

ε̄a,kADD
= qa

(
1

nte

nte∑
i′=1

ε1kADD,i′ , . . . ,
1

nte

nte∑
i′=1

εskADD,i′

)
(30)

where εrkADD,i′ , r = 1, . . . , s represents the squared error for test sample i′ in simulation r. Equa-

tion (30) can be easily adapted to calculate the metrics when adopting the Kernel SHAP.

The results obtained when varying nM (i.e., the number of coalitions selected to calculate the

expected prediction evaluations) are presented in Figures 1, 2, 3 and 4. The central line represents

the average median and the shaded area indicates the averaged dispersion between the 10th and 90th

percentiles. For all datasets and trained models, the 3ADD-SHAP leads to a faster approximation to

the exact SHAP values in comparison with the Kernel SHAP. Moreover, the dispersion was lower for
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the 3ADD-SHAP even with reduced numbers of expected prediction evaluations. For Kernel SHAP,

one achieves a high dispersion for low numbers of expected prediction evaluations (see, especially,

Figures 1, 3 and 4), which decreases as one includes more samples. With respect to the 2ADD-SHAP,

it has a good performance (better than the Kernel SHAP) for few evaluations, however, it diverges

as more samples are include in the SHAP values estimation. An explanation for these results is

that the 2ADD-SHAP could rapidly approximate the exact SHAP values when less evaluations are

used because it can avoid over-parametrization when only few data are considered. However, when

increasing the number of expected prediction evaluations, the 2ADD-SHAP has not enough flexibility

to model the data and the adjusted parameters could not converge to the correct ones. As can also

be seen in Figures 2 and 4, the 3ADD-SHAP also diverges for a high number of evaluations (recall

from Section 3.2 that we can not guarantee to achieve the exact SHAP values even if M = P(M)),

however, it still achieves a very low error. Clearly, as we increase k, the parameters become more

flexible to model the data and estimate the exact SHAP values.

4.2. The impact on computational time

In the previous experiment, we showed that the 3ADD-SHAP requires less expected prediction

evaluations in order to converge to the exact SHAP values. In this section, we discuss how our

proposal impacts the computational time. For this purpose, it is convenient to analyze the compu-

tational cost when calculating SM,k and f̄ (or S and f for the Kernel SHAP).

Both SM,k and S require to compute a pseudo-inverse. The main difference between the Kernel

SHAP and our proposal is that we have more parameters to be identified. Indeed, while the Kernel

SHAP only provides the marginal contribution of each attribute, in our proposals (for k ≥ 2), we also

provide the interaction indices. When considering the Kernel SHAP, 2ADD-SHAP and 3ADD-SHAP,

one has m, m(m+1)/2 and m(m2+5)/6 parameters to be identified, respectively. As a consequence,

the computational time needed to calculate SM,k is greater than the time spent in S (for a fixed

number of expected prediction evaluations and given all matrices and vectors used to calculate both

of them). Figure 5 presents the average computational time (over 501 simulations) of 3ADD-SHAP,

2ADD-SHAP and Kernel SHAP for different numbers of expected prediction evaluations7. Clearly,

for most of the datasets, the computational time of 3ADD-SHAP when calculating SM,k increases

faster than the other methods as nM increases. However, one can notice an exception with the Pima

Indian Diabetes dataset. Note that this dataset has the lowest number of attributes. Therefore, in

7Computing device: Intel Core i7-8565U, CPU 1.80 GHz, 8.00 GB RAM, software Python 3.9.
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(a) Neural Network (score ≈ 0.45). (b) Random Forest (score ≈ 0.44).

(c) Neural Network (score ≈ 0.45). (d) Random Forest (score ≈ 0.44).

Figure 1: Comparison between the convergence of 2ADD-SHAP, 3ADD-SHAP and Kernel SHAP (Diabetes dataset).

For both Neural Network and Random Forest, the score indicates the coefficient of determination of the predicted

outcomes given the test samples.

this case, all methods spent practically the same (very low) computational time.

The other computational cost that is worth to be studied is when calculating the vectors f̄

and f , which consists in nM expected prediction evaluations obtained from a trained machine

learning model (i.e., this cost is also dependent on the adopted ML model). Indeed, the proposed

3ADD-SHAP requires much less expected prediction evaluations to converge in comparison with the

Kernel SHAP. Therefore, our goal is to show that, by reducing nM, the overall computational time

(required to calculate both SM,k and f̄) of our proposal is lower than the one of Kernel SHAP. For

this analysis, we consider the 3ADD-SHAP, which led to the faster convergence and has the highest

cost when calculating SM,k. Table 4 presents the averaged computational cost for a single evaluation

as well as until the convergence. We considered that the 3ADD-SHAP converges to the exact SHAP

values for the Diabetes, Red Wine, LSAC and Pima Indian Diabetes datasets with 290, 500, 400
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(a) Neural Network (score ≈ 0.73). (b) Random Forest (score ≈ 0.79).

(c) Neural Network (score ≈ 0.73). (d) Random Forest (score ≈ 0.79).

Figure 2: Comparison between the convergence of 2ADD-SHAP, 3ADD-SHAP and Kernel SHAP (Red Wine dataset).

For both Neural Network and Random Forest, the score indicates the accuracy given the test samples.

and 200 expected prediction evaluations, respectively (for both ML models). In Kernel SHAP, we

assumed convergence for the Diabetes, Red Wine, LSAC and Pima Indian Diabetes datasets with

1000, 1400, 850 and 245 expected prediction evaluations, respectively (for both ML models).

As a first remark from the results presented in Table 4, the Random Forest takes much more

time in comparison to the Neural Network in order to provide the expected predictions (see the cost

for a single evaluation). Clearly, this result is independent on the approximation strategy. Another

important remark is that the computational time to compute a few tens of expected predictions

already exceeds the cost to calculate either SM,k or S. Therefore, as the Kernel SHAP needs much

more expected prediction evaluations to converge to the exact SHAP values in comparison with

the 3ADD-SHAP, its overall computational time is much higher. This result was consistent with all

datasets, even in the Pima Indian Diabetes whose number of attributes is lower than the others. It

is also worth highlighting that, besides the gain in computational time, our proposal also provides
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(a) Neural Network (score ≈ 0.90). (b) Random Forest (score ≈ 0.90).

(c) Neural Network (score ≈ 0.90). (d) Random Forest (score ≈ 0.90).

Figure 3: Comparison between the convergence of 2ADD-SHAP, 3ADD-SHAP and Kernel SHAP (LSAC dataset). For

both Neural Network and Random Forest, the score indicates the accuracy given the test samples.

the interaction indices between attributes, which is not the case in the Kernel SHAP.

4.3. Experiment comparing the obtained SHAP values

In this experiment, we compare the obtained SHAP values with the exact ones. For an instance

of interest among the test data, we use the experiment described in Section 4.1 and select the

SHAP values that lead to the median error over all simulations. For ease of visualization, we only

plotted the five attributes that contribute the most (either positively or negatively) according to

the exact SHAP values. As an illustrative example and without loss of generality, we selected a test

sample x∗ from the Diabetes dataset that has the attributes values described in Table 5 (recall that

this dataset is already centered with zero mean). The predicted measure of diabetes progression is

equal to 84, which is less than the overall expected prediction provided by both Neural Network
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(a) Neural Network (score ≈ 0.64). (b) Random Forest (score ≈ 0.74).

(c) Neural Network (score ≈ 0.64). (d) Random Forest (score ≈ 0.74).

Figure 4: Comparison between the convergence of 2ADD-SHAP, 3ADD-SHAP and Kernel SHAP (Pima Indian Diabetes

dataset). For both Neural Network and Random Forest, the score indicates the accuracy given the test samples.

and Random Forest (154.92 and 153.81, respectively). This means that the SHAP values help to

explain, for the instance of interest x∗, how each attribute value contributes to decrease the diabetes

progression measure from the overall prediction until the actual 84.

Figure 6 presents the estimated SHAP values when using nM = 290, nM = 590, nM = 890

different coalitions of attributes to calculate the expected prediction evaluations. As a first remark,

we note that the estimated SHAP values (specially the illustrated five ones) for the Neural Network

(Figures 6a, 6c and 6e) practically do not change regardless the number of predicted evaluations.

All approaches led to very small errors, i.e., they could rapidly approximate the exact SHAP values

associated with the Neural Networks model. For the Random Forest, we see that the contributions

provided by the 3ADD-SHAP are close to the exact ones even with small number of predicted

evaluations (see Figure 6b). As one increases the number of evaluations, the Kernel SHAP converges

to the exact SHAP values.
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(a) Diabetes dataset. (b) Red Wine dataset.

(c) LSAC dataset. (d) Pima Indian Diabetes dataset.

Figure 5: Comparison between the computational time, when calculating SM,k and S, of 3ADD-SHAP, 2ADD-SHAP

and Kernel SHAP.

Regarding the Red Wine dataset, we selected as an illustrative example a test sample classified

as a good wine. The attributes values are described in Table 6. The overall expected probability

prediction for class 1 (good wine) for both Neural Network and Random Forest is approximately

0.53. In this case, the SHAP values indicate the contributions of attributes that increase the

probability of being classified as a good wine from the overall expected probability until the actual

classification (class value equals to 1).

Figure 7 presents the estimated SHAP values when using nM = 420, nM = 1020 and nM = 1800

coalitions of attributes. As in the previous dataset, we can see that, even for a reduced number of

samples, the 3ADD-SHAP converges faster to the exact SHAP values. When the number of expected

prediction evaluations increases, the Kernel SHAP converges to the exact SHAP values while the

2ADD-SHAP slightly diverges.

Based on the LSAC dataset, we selected a candidate that succeeded the bar exam and is de-
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Table 4: Comparison between the computational time in the expected prediction calculation.

Dataset ML model

Averaged computational time (in seconds)

For a single

evaluation

Until convergence

(3ADD-SHAP)

Until convergence

(Kernel SHAP)

f̄ f̄ + SM,k f f + S

Diabetes Neural Network 0.0046 1.334 1.338 4.600 4.604

Random Forest 0.1699 49.271 49.275 169.900 169.904

Red Wine
Neural Network 0.0010 0.500 0.508 1.400 1.405

Random Forest 0.3701 185.050 185.058 518.140 518.145

LSAC
Neural Network 0.0162 6.480 6.491 13.770 13.781

Random Forest 2.6260 1050.400 1050.411 2232.100 2231.111

Pima Indian

Diabetes

Neural Network 0.0005 0.100 0.101 0.122 0.123

Random Forest 0.2488 49.760 49.761 60.956 60.957

Table 5: Summary of the selected test sample - Diabetes dataset.

Attribute Value Attribute Value Attribute Value

age 0.009 blood serum 1 0.099 blood serum 5 −0.021

sex −0.045 blood serum 2 0.094 blood serum 6 0.007

body mass index −0.024 blood serum 3 0.071

average blood pressure −0.026 blood serum 4 −0.002

Table 6: Summary of the selected test sample - Red Wine dataset.

Attribute Value Attribute Value Attribute Value

fixed acidity 9.4 chlorides 0.08 pH 3.15

volatile acidity 0.3 free sulfur dioxide 6 sulphates 0.92

citric acid 0.56 total sulfur dioxide 17 alcohol 11.7

residual sugar 2.8 density 0.9964

scribed by the attributes presented in Table 7. With overall expected probability predictions for

class 1 (pass the bar exam) for the Neural Network and the Random Forest equal to 0.97 and

0.91, respectively, the SHAP values will indicate the contributions of attributes until the actual

classification (class value equals to 1).

Figure 8 presents the estimated SHAP values for nM = 290, nM = 590 and nM = 890 coalitions
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(a) Neural Network, nM = 290. (b) Random Forest, nM = 290.

(c) Neural Network, nM = 590. (d) Random Forest, nM = 590.

(e) Neural Network, nM = 890. (f) Random Forest, nM = 890.

Figure 6: Comparison between the estimated SHAP values provided by the 2ADD-SHAP, 3ADD-SHAP and Kernel

SHAP for different machine learning models and varying the number of coalitions used to calculate the expected

prediction evaluations (Diabetes dataset).
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(a) Neural Networks, nM = 420. (b) Random Forest, nM = 420.

(c) Neural Networks, nM = 1020. (d) Random Forest, nM = 1020.

(e) Neural Networks, nM = 1800. (f) Random Forest, nM = 1800.

Figure 7: Comparison between the estimated SHAP values provided by the 2ADD-SHAP, 3ADD-SHAP and Kernel

SHAP for different machine learning models and varying the number of coalitions used to calculate the expected

prediction evaluations (Red Wine dataset).

of attributes. The results lead to the same conclusion as for the previous case. The 3ADD-SHAP

converges faster to the exact SHAP values and the 2ADD-SHAP slightly diverges as nM increases.

Finally, for the Pima Indian Diabetes dataset, we selected a person without diabetes. This person

is described by the attributes presented in Table 8. For the Neural Network and the Random Forest,

the overall expected probability predictions for class 1 (positive for diabetes) are equal to 0.34 and
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Table 7: Summary of the selected test sample - LSAC dataset.

Attribute Value Attribute Value Attribute Value Attribute Value

decile1b 3 decile3 3 lsat 34 ugpa 3.2

zfygpa −0.47 zgpa −0.79 fulltime 1 fam inc 4

male 1 race 1

0.36, respectively. The SHAP values will, then, indicate the impact of each feature in decreasing

the probability of having diabetes.

Table 8: Summary of the selected test sample - Pima Indian Diabetes dataset.

Attribute Value Attribute Value Attribute Value

Pregnancies 2 Glucose 108 BloodPressure 64

SkinThickness 0 Insulin 0 BMI 30.8

DiabetesPedigreeFunction 0.158 Age 21

Figure 9 presents the estimated SHAP values for nM = 144, nM = 200 and nM = 240 coalitions

of attributes. The results are consistent with the previous datasets, with a faster convergence for

3ADD-SHAP. However, it is interesting to note in Figures 8e and 8f that the 3ADD-SHAP slightly

diverges with the use of practically all coalitions. This is in accordance with the error presented in

Figure 4.

4.4. Illustrative example and results visualization

The purpose of this last experiment is to apply our proposal to visualize the attributes contribu-

tion towards the actual predicted outcome. We use as an illustrative example the Red Wine dataset

and applied the 3ADD-SHAP. We also consider the test sample used in the previous experiment,

which is classified as a good wine. Based on 1500 predicted evaluations and using the Random For-

est, the contributions of attributes are presented in Figure 10. Note that there are three attributes

that contribute the most into the predicted outcome: alcohol, sulphates and volatile acidity. They

are all positively contributing to predict the sample as a good wine.

Recall that, more than the contribution of features, our proposal automatically provides the

interaction degree between them. We highlight that these interaction effects do not come up with

the original Kernel SHAP formulation. Indeed, further adaptations must be made in Kernel SHAP

in order to retrieve the interaction effects (Lundberg et al., 2020). Figure 11 shows the interaction
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(a) Neural Networks, nM = 290. (b) Random Forest, nM = 290.

(c) Neural Networks, nM = 590. (d) Random Forest, nM = 590.

(e) Neural Networks, nM = 890. (f) Random Forest, nM = 890.

Figure 8: Comparison between the estimated SHAP values provided by the 2ADD-SHAP, 3ADD-SHAP and Kernel

SHAP for different machine learning models and varying the number of coalitions used to calculate the expected

prediction evaluations (LSAC dataset).

degree between attributes for the considered test sample. It indicates that, although volatile acidity,

sulphates and alcohol (attributes 1, 9 and 10, respectively) contribute the most to the predicted
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(a) Neural Networks, nM = 144. (b) Random Forest, nM = 144.

(c) Neural Networks, nM = 200. (d) Random Forest, nM = 200.

(e) Neural Networks, nM = 240. (f) Random Forest, nM = 240.

Figure 9: Comparison between the estimated SHAP values provided by the 2ADD-SHAP, 3ADD-SHAP and Kernel

SHAP for different machine learning models and varying the number of coalitions used to calculate the expected

prediction evaluations (Pima Indian Diabetes dataset).

outcome, there are negative interactions between alcohol and both volatile acidity and sulphates.

This suggests that there are some redundancies between alcohol and the other two attributes when

predicting the sample as a good wine.
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Figure 10: Attributes contribution towards the predicted outcome - 3ADD-SHAP and Red Wine dataset.

Figure 11: Interaction degree between attributes - 3ADD-SHAP and Red Wine dataset.

5. Conclusions and future perspectives

Interpretability in machine learning has become as important as accuracy in real problems. For

instance, even if there is a correct classification (e.g., a denied credit), the explanation about how

this result was achieved is required to ensure the model trustfulness. A very famous model-agnostic
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algorithm for machine learning interpretability is the SHAP method. Based on the Shapley values,

the SHAP method indicates the contribution of each attribute in the predicted outcome. For this

purpose, we look at the machine learning task as a cooperative game theory problem and calculate

the marginal contribution of each attribute by taking the predicted outcomes of all possible coalitions

of attributes. A point of attention in this calculation is that, as the number of predicted outcomes

evaluations exponentially increases with the number of attributes, one may not be able to obtain

the exact SHAP values.

In order to reduce the computational effort of SHAP method, the Kernel SHAP emerges as

a clever strategy to approximate the SHAP values. However, its formulation is not easy to fol-

low and no further considerations about the modeled game are assumed when approximating the

SHAP values. In this paper, we first proposed a straightforward Choquet integral-based formulation

for local interpretability. As the parameters used in the Choquet integral are directly associated

with the Shapley values, our formulation also leads to the SHAP values. Therefore, we can also

exploit the benefits of the SHAP values when interpreting local predictions. Moreover, our formu-

lation also provides the interaction effects between attributes without further adaptations in the

algorithm. Therefore, we can interpret the marginal contribution of each attribute towards the

predicted outcome and how they interact between them.

As a second contribution, we exploit the concept of k-additive games. The use of k-additive

models has revealed to be useful in multicriteria decision making problems in order to reduce

the number of parameters in capacity-based aggregation functions (such as the Choquet integral)

while keeping a good level of flexibility in data modeling. Therefore, as attested by the numerical

experiments, when adopting k-additive games (specially the 3-additive, which leads to the proposed

3ADD-SHAP), we could approximate the SHAP values using less predicted outcomes evaluations

in comparison with the Kernel SHAP. As one reduced the number of parameters in the Choquet

integral formulation, one avoided over-parametrization in scenarios with a low number of predicted

outcomes evaluations. On the other hand, as we restricted the modeling data domain, in the

scenario with all evaluations the proposed kADD-SHAP may slightly diverge from the exact SHAP

values. However, as could be seen in the experiments, this difference is very low (mainly for the

3ADD-SHAP) and it does not affect the interpretability.

Future works include to extend the proposed approach when assuming that the attributes are

dependent. In such a scenario, the formulation could be adjusted in order to better approximate

the Shapley values (Aas et al., 2021). Moreover, we also would like to investigate an automatic
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approach to assess the value of k. Although 3-additive models achieved very interesting results,

such automatic strategy would be useful to verify if k > 3 can better deal with specific situations,

such as high dimensional data. Another perspective consists in evaluating the use of other game-

based aggregation functions to deal with local interpretability. However, as some of them do not

ensure the efficiency property, one must be careful in how one can apply them in the context of

machine learning in a way that the feature attribution makes sense for local or global interpretability.
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Appendix A

We here describe the desired properties satisfied by SHAP values, which are derived from the

Shapley values properties (Shapley, 1953; Young, 1985). Recall that f(x) is the predicted outcome

of a trained model f(·), x is the instance to be explained and z′ is a binary vector. The proofs are

provided in the original SHAP paper (Lundberg & Lee, 2017).

Property 1. Local accuracy (or efficiency)

f(x) = ϕ0 +

m∑
j=1

ϕj(f,x) (31)

The local accuracy property states that the predicted outcome f(x) can be decomposed by

the sum of the SHAP values and the overall expected prediction ϕ0.

Property 2. Missingness

If, for all subset of attributes represented by the coalition z′,

f
(
hx(z

′)
)
= f

(
hx(z

′\j)
)
, (32)

then ϕj(f,x) = 0. This property states that, if adding attribute j into the coalition the

expected prediction remains the same, the marginal contribution of such an attribute is null.
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Property 3. Consistency (or monotonicity)

For any two models f(·) and f ′(·), if

f ′ (hx(z′))− f ′ (hx(z′\j)) ≥ f
(
hx(z

′)
)
− f

(
hx(z

′\j)
)

(33)

for any binary vector z′ ∈ {0, 1}m, then ϕj(f
′,x) ≥ ϕj(f,x). The consistency property states

that, if one changes the trained model and the contribution of an attribute j increases or stays

the same regardless of the other inputs, the marginal contribution of such an attribute should

not decrease.
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Grabisch, M., Duchêne, J., Lino, F., & Perny, P. (2002). Subjective evaluation of discomfort in

sitting positions. Fuzzy Optimization and Decision Making , 1 , 287–312.

Grabisch, M., & Labreuche, C. (2010). A decade of application of the Choquet and sugeno integrals

in multi-criteria decision aid. Annals of Operations Research, 175 , 247–286.

Grabisch, M., Prade, H., Raufaste, E., & Terrier, P. (2006). Application of the Choquet integral to

subjective mental workload evaluation. IFAC Proceedings Volumes, 39 , 135–140.

Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: Individual

probability estimates using machine learning. Expert Systems with Applications, 40 , 5125–5131.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning volume 521.

Lipton, Z. C. (2018). The mythos of machine learning interpretability. Machine Learning , 16 ,

31–57.

37



Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmel-

farb, J., Bansal, N., & Lee, S.-I. (2020). From local explanations to global understanding with

explainable AI for trees. Nature Machine Intelligence, 2 , 56–67.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett

(Eds.), Advances in Neural Information Processing Systems 30 (pp. 4765–4774).

Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., Liston, D. E., Low,

D. K. W., Newman, S. F., Kim, J., & Lee, S. I. (2018). Explainable machine-learning predictions

for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering , 2 , 749–760.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences. Artificial

Intelligence, 267 , 1–38.

Molnar, C. (2021). Interpretable machine learning . URL: https://christophm.github.io/

interpretable-ml-book/.

Murofushi, T., & Soneda, S. (1993). Techniques for reading fuzzy measures (iii): interaction index.

In 9th fuzzy system symposium (pp. 693–696).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,

M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of

Machine Learning Research, 12 , 2825–2830.

Pelegrina, G. D., Duarte, L. T., Grabisch, M., & Romano, J. M. T. (2020). The multilinear model

in multicriteria decision making: The case of 2-additive capacities and contributions to parameter

identification. European Journal of Operational Research, 282 .

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ”Why should I trust you?” Explaining the

predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference

on knowledge discovery and data mining (pp. 1135–1144).

Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., & Giannotti, F. (2021). Glocalx -

from local to global explanations of black box AI models. Artificial Intelligence, 294 , 103457.

38



Shapley, L. S. (1953). A value for n-person games. In W. Kuhn, & A. W. Tucker (Eds.), Annals

of mathematics studies: Vol. 28. Contributions to the theory of games, Vol. II (pp. 307–317).

Princeton University Press.

Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., & Johannes, R. S. (1988). Using

the ADAP learning algorithm to forecast the onset of diabetes mellitus. In Proceedings of the

Annual Symposium on Computer Applications in Medical Care (pp. 261–265). American Medical

Informatics Association.

Wightman, L. F. (1998). LSAC national longitudinal bar passage study . Technical Report.

Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine

learning and deep learning methods for cybersecurity. IEEE Access, 6 , 35365–35381.

Young, H. P. (1985). Monotonic solutions of cooperative games. International Journal of Game

Theory , 14 , 65–72.
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