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Abstract. A natural geyser can be reproduced by a toy experiment composed of a water pool
located above a water reservoir, the two being connected by a long and narrow tube. When
the bottom reservoir is heated, the system may experience periodic eruptions of hot water and
steam at the top similarly to the geyser effect occurring in nature. The eruption frequency of
a toy geyser is inspected experimentally as a function of the heating power and the height of
the setup. We propose a thermodynamic model of this system that predicts the time between
eruptions. A phase diagram that takes into account the thermal energy provided to the geyser
and the geometry was constructed for the toy geyser. The conditions to obtain the geyser
effect have been determined. The study of the toy geyser is then extended to the case of two
reservoirs connected to the same tube. Such a coupled system adopts a complex time-evolution
that reflects the dynamics of natural geysers. We analyze the behavior of a toy geyser with two
reservoirs by the way of statistical tools and develop a theoretical model in order to rationalize
our observations.

1. Introduction
A geyser can be defined as a periodically eruptive spring resulting from Earth’s thermal activity.
One of the most famous geyser is Old Faithful [Fig. 1(a)] in Yellowstone National Park in the
United States, which has raised the fascination of millions of visitors over the years. It erupts
about every 90 minutes and projects hot water up to 56 m high [1, 2]. Probably the first
scientist to describe the principle of a geyser was Robert Bunsen in 1845 after the Danish
government sponsored him to study the eruption of Mount Hekla in Iceland [3]. He lowered
a thermometer into geyser depths and discovered a reservoir of ”superheated” water at its
base. He understood that when the water in the reservoir boils, the liquid in the conduit is
ejected upwards and produces an eruption of hot water and steam. Bunsen and his student
John Tyndall built a toy geyser based on the same principle as illustrated in Fig. 1(b) [4].
Such a demonstrative experiment showed eruptions regularly spaced in time and confirmed
their intuitions on the fundamental principles underlying natural geysers. The realization of a
geyser at reduced scale promotes Bunsen’s theory for geyser among the geophysical community
[5]. Nowadays, similar setups are present in various Science Museum like the Exploratorium in
San Francisco (USA) and Source-o-Rama in Chaudfontaine (BE) and can be easily reproduced
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at home with a pressure cooker and a hot plate (Caution: to make this experiment safe, all
the connexions of the piping system have to be sealed and one has to stay away (& 20 cm)
of the hot reservoir and the erupting vent) [6]. We are convinced that the experiment can be
shown from the primary school to undergraduate students with different level of comprehension.
The basic measurement procedure only requires a stop watch. Moreover, this setup can be
implemented by undergraduate students in the context of a guided experimental project as two
thermocouples are sufficient to characterize the dynamic of the system and the risks associated
to the manipulation are very limited. Thus, the toy geyser setup is the perfect experiment
to become more familiar with thermal transfers, boiling processes and fluid dynamics at an
affordable cost. Moreover, the connection between this system and a spectacular geothermal
phenomenon may raise the attention of students and curious people towards science. Lasic
reproduced a toy geyser experiment and studied the time evolution of the temperature and the
pressure inside the reservoir [7]. This work identifies the different phases of a toy geyser eruption
and discusses the associated temperature and pressure signals. Steinberg et al. conducted similar
experiments and provided a theoretical model in order to describe the geysering dynamics [8, 9].
Lately, Toramaru and Maeda focused on the eruption style and the erupted mass depending
on the system geometry [10]. The influence of a bubble trap in the vertical conduit of a toy
geyser was investigated by Adelstein et al. [11]. More recently, the pressure and temperature
variations in a toy geyser system were carefully studied by Flieller et al. [6]. However, despite
the deep understanding of toy geyser systems provided by these studies, the exact conditions
allowing the succession of eruptions and reservoir’s refills remains unexplored.

Furthermore, the natural geysers erupt with much more complex time series than the one
displayed by a toy geyser, as revealed by in situ data collection in Yellowstone USA [1, 2, 12],
El Tatio in Chile [13, 14] or Atami in Japan [15]. Such a complexity can be attributed to a
high sensitivity of geysers dynamics towards water and steam inflow [14], barometric pressure,
tectonic stresses [16, 17, 18], reservoirs interconnections [19] or the presence of dissolved gases
[20, 21]. Over the past decades, crucial steps in the theoretical modelling of geyser eruptions
have been achieved [22, 23, 24]. However, these studies were mainly focused on specific geysers
rather than laboratory experiments, which did not allow to easily quantify the influence of the
physical parameters.

Throughout this paper we aim to describe how a toy geyser experiment can be implemented
at a low cost and how scientific methods and notions can be approached with this setup. We
study and predict the dynamics of a toy geyser, to understand conditions under which it operates
and to reveal the similarities between this setup and natural geysers. The erupting dynamics
of this system has been inspected as a function of the injected heat power and its geometrical
characteristics. The different stages of a geyser eruption and the evolution of the reservoir
temperature with time are described in Section 2. In Section 3 we develop a theoretical model
based on thermodynamics and fluid dynamics in order to rationalize our observations. The
conditions required to produce a geyser effect are inspected in Section 4. Indeed, we observed
that the geyser effect can vanish because of intense vaporization or thermal convection in the
conduit. Finally, in Section 5 we consider a double toy geyser with two interconnected reservoirs
in order to approach the degree of complexity of natural systems.

2. Experiments
2.1. Experimental set-up and driving parameters
The toy geyser was constructed with a glass reservoir (1.2 L) connected to a pool (4.0 L) through
a long and narrow vertical conduit (silicone tube) as sketched in Fig. 1(c). The system was
filled with water. We denote H the total height of the liquid column from the bottom of the
reservoir to the liquid surface. The depth of the pool is h, the height of the reservoir h′ and the
internal conduit radius R.
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Figure 1. (a) People watching Old Faithful erupt from a geyser cone, Yellowstone National
Park, 1948. (b) Toy model of a geyser by Tyndall [25]. (c) Sketch of the experimental setup.
The glass reservoir containing a mass M of water at a temperature Tr was connected to the pool
by a long conduit of radius R. The water in the pool was maintained at a constant temperature
Tp. The system was completely filled with a column of water of height H chosen between 1.6 and
11.5 m, the pool had a depth h and the reservoir had a height h′. The heating plate provided a
specific heat power P to the water of the reservoir. (d) Photo of the experimental setup.

The reservoir was heated from below by a hot plate delivering a constant heat power. As the
hot plate is not insulated from the rest, the effective heat power was experimentally determined
as follows. The reservoir was filled with water. A thermistor plunged inside the water allowed
measuring the increase of temperature of the water with respect to time. The power delivered
by the hot plate must be sufficient to observe a linear increase of the temperature with time,
i.e. Tr = χ t. The mass of water M being known, the heat power P is given by χMc where
c = 4186 J K−1 kg−1 is the specific heat of the water. In our experiments, P was tuned between
30 and 220 W/kg. Before starting the geyser experiments, one can already infer that if the
power delivered by the plate is not sufficient, the boiling and geyser effect will not be observed.
Thus, the specific heat power is the natural driving parameter for the observation of a geyser.

As liquid flow plays a major role during an eruption, the dimensions of the tube connecting
the reservoir and the pool is the second driving parameter of the system. We varied the length
and the diameter of the tube according to Tab. 1. Our basis configuration (Exp.1) is a geyser
with a total height H of 1.6 m and a tube of 3 mm of inner radius.

Exp. H (m) R (mm) M (kg) h (cm) h′ (cm) P (W/kg) Geysering
1 1.6 3.0 1.2 4.0 25 30 → 220 yes
2 11.5 3.0 1.2 4.0 25 30 → 220 yes
3 1.6 25.0 1.2 4.0 25 30 → 220 no

Table 1. Sets of experimental parameters.

To start measurement procedures, the system must be completely filled with water. Any
bubble cannot be tolerated in the conduit or in the reservoir. This may be tricky regarding the
small diameter of the conduit in Exp.1. Here is the preliminary procedure to completely fill
the system. Note that the procedure is similar to the geyser effect. First, the reservoir is filled
with water. Then, the conduit is connected to the top of the reservoir and to the bottom of
the pool. Water is then poured in the pool (h ' 4 cm). The liquid does not enter the conduit
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because of the air pressure in the tube. The system has to be initiated by heating the reservoir
until boiling. When boiling, the air in the conduit is ejected and replaced by steam. For safety
reasons, the experiment should always be designed with a large enough pool (20 x 20 cm), such
as the ejection of hot water and steam is confined to the experiment. The heating source is then
to be switched off. The boiling stops and the water from the pool is sucked down in the reservoir
and the conduit. After the cooling of the geyser to room temperature, the whole system is ready
for operation.

2.2. Geyser observation
We first injected enough specific heat to observe the boiling of the water in the reservoir. A
First experiment was conducted for a specific heating power P = 130 W/kg. Under these
conditions, the toy geyser undergoes periodic erupting events spaced between quiet phases. The
time between two successive eruptions was 5 min and 27 s ±4 s. This periodic behavior is
illustrated by the evolution of the temperature Tr measured every second in the middle of the
reservoir as shown in Fig. 2(a). After a first heating phase, the temperature in the reservoir
follows a saw-tooth evolution between about 93 ◦C and 102 ◦C. The red bullets represents the
moment at which the geyser ejects steam and water.
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Figure 2. (a) Evolution of the temperature Tr in the reservoir as a function of time for a
toy geyser of height H = 1.60 m, specific heating power P = 130 W/kg, pool height h = 4.0
cm, reservoir height h′ = 25 cm and conduit radius R = 3.0 mm. Dots indicate the time at
which eruptions begin. (b) Boiling temperature Tb of water as a function of the height H of the
overlying column extracted from [26]. Symbols show the the two conduit heights used in this
study.

At this point, we can define three characteristic periods of time: the time τ between two
eruption starts, the duration of the eruption τe and the heating time τh corresponding to the
time spent between the end of an eruption and the start of the following one. These durations
are linked to each other according to τ = τe + τh. The variation of the reservoir temperature
during one period, Tr(t), is reported schematically in Fig. 3 and consists in three steps: the
heating, the eruption, the return to the initial state.

Heating- The water in the reservoir is heated up from Tr(t1) at t = t1 to the boiling point
Tb(H) reached at t = t2 [stage (a) in Fig. 3]. The boiling temperature Tb(H) depends on
the pressure applied by the water column (i.e. ρgH where ρ is the water density and g the
gravitation acceleration). The boiling temperature of water as a function of the height of the
overlying column H is shown in Fig. 2(b) and is equal to 102 ◦C for H = 1.60 m. When the

Page 4 of 17AUTHOR SUBMITTED MANUSCRIPT - EJP-104000.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



(a) (b) (c) (d) (e)
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Reservoir 
Temperature

Pool

Conduit

Reservoir

Figure 3. Sketch showing the different stages of the cycle of a toy geyser: (a) Heating the
reservoir from Tr(t1) at t = t1 up to the boiling temperature Tb(H). (b) Water boiling in the
reservoir provokes an eruption at t = t2. (c) Vapor emission throughout the conduit. (d) End of
the eruption at t = t3, the water from the pool refills the reservoir. (e) The system had returned
to its initial state at t = t4. The typical evolution of the reservoir temperature Tr over time
is described by the red solid line in the top graph. The pool temperature remains constant at
Tp = 30◦C. Bottom and top pictures correspond respectively to the reservoir and to the pool at
different moments of the geyser cycle.

water in the reservoir reaches the corresponding boiling point (at t = t2), an intense production
of vapor bubbles occurs. The heating step lasts τh = t2 − t1 and ends when the geyser starts to
erupt.

Eruption- Buoyancy induces the upward motion of vapor bubbles in the conduit. These
vapor bubbles entrain the water and produce an eruption of hot water and steam at the top
of the toy geyser [stage (b) in Fig. 3]. Ejected water can reach a height of 20 cm above the
pool surface for the set of experimental parameters we used (cf. Table 1). After the ejection of
the liquid from the conduit, the water in the reservoir keeps on boiling and the vapor continues
to escape through the conduit toward the pool, making loud noise [stage (c) in Fig. 3]. The
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total amount of water transferred from the reservoir to the pool during the erupting duration
(excluding the water contained in the conduit) is denoted ∆M . As the boiling goes on, the
vapor production cools down the water remaining in the reservoir. When this latter reaches
the boiling temperature Tb(h), corresponding to the pressure of a water column of height h, the
vapor emission decreases till the vapor flow cannot resist the entry of water from the pool into
the conduit [stage (d) in Fig. 3 at t = t3]. At that point, the water falls back into the reservoir
and the eruption phase is finished. The eruptions lasted a time τe = t3 − t2.

Return to initial state- After the eruption at t = t4, the temperature in the reservoir
reaches again Tr(t1), the equilibrium temperature resulting from the mixture of a mass of water
M − ∆M at the temperature Tb(h) and a mass of water ∆M coming from the pool at a
temperature Tp [stage (e) in Fig. 3]. This stage is also corroborated by recent measurements
of the pressure in the reservoir [27]. After that, the temperature in the reservoir increases from
Tr(t1) to Tb(H) in a time τh before an other eruption starts. It is important to underline that
it takes several cycles to obtain the same initial state. Indeed, due to the contact with the
ambient air and liquid replacement in between each eruption, the observed temperature of the
pool slowly increased from room temperature to a constant temperature of Tp = 30± 2◦C. All
the measurements presented thereafter are realized in the regime of constant pool temperature.

2.3. Measurements
During the eruption of a toy geyser, the two characteristic eruption times τh, τe and the
exchanged mass ∆M were easily measured with a chronometer and a graduated reservoir. In
this study, they were measured as a function of the specific heating power P and the geyser
heights H (H = 1.6 m and H = 11.50 m). The boiling temperature of water associated with
each height is respectively 102 ◦C and 120 ◦C for a standard outside atmospheric pressure [Fig.
2(b)]. The mean values of τh, τe and ∆M were determined over more than 10 events and the
experimental results are shown in Fig. 4.

The figures 4(a) and (b) present the heating duration τh and the erupting duration τe as a
function of the specific heat power respectively. The measurements are reported for the two
considered geometries, i.e. H = 1.6 m and 11.5 m represented by blue dots and purple squares
respectively. From Fig.4(a), one deduces that the values of τh ranges from 2 to 30 min. This
characteristic time increases with the geyser height H and decreases with the specific heating
power P. The logarithmic scale diagram in Fig. 4(a) reveals that the time τh is inversely
proportional to P. In Fig. 4(b), the erupting time τe is presented as a function of the specific
heat power for the two considered geometries. This characteristic time increases with the conduit
height H and shows a small dependency with the specific heating power P. The average erupting
times are 50 s and 90 s for H = 1.6 m and 11.5 m respectively.

Figure 4(c) shows the exchanged mass fraction ∆M/M as a function of the specific heating
power and the water column height. The exchanged mass ∆M was measured by recording the
minimal water level reached in the reservoir during an eruption with a high speed camera. One
notices in Fig. 4(c) that ∆M/M increases both with P and H.

3. Model
From the observations, we model the heating time τh (section 3.1), the erupting duration τe
(section 3.2), and the variation of water volume ∆M in the reservoir (section 3.3).

3.1. Sleeping time: τh
The time between the end of an eruption and the start of the next one corresponds to the time
needed to heat the water in the reservoir from the initial temperature Tr(t1) to the boiling
temperature Tb(H) (corresponding to a water column of height H [Fig. 2(b)]). If a specific heat
power P is transferred to the reservoir, its temperature increases from Tr(t1) to Tb(H) in a time
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Figure 4. (a) Mean values of the heating time τh as a function of the specific heat power P for
two different water column heights H = 1.6 m and H = 11.5 m (logarithmic scales). Symbols
correspond to experiments and solid lines show the predictions of Eq. (3) detailed in Section
3. (b) Mean erupting time τe as a function of the specific heat power P for H = 1.6 m and
H = 11.5 m. Symbols correspond to experiments and solid lines show the predictions of Eq.
(4) deduced from the model developed in Section 3. (c) Mean mass fraction ∆M/M exchanged
between the reservoir and the pool during an eruption as a function of the specific heating power
P for H = 1.6 m and H = 11.5 m. Symbols correspond to experiments and solid lines show the
predictions of Eq. (7) issued from the model explained in Section 3. In the three plots, the grey
zones indicate where no periodic eruptions have been observed.

τh =
c

P
[Tb(H)− Tr(t1)] . (1)

During an eruption, a mass of water ∆M moves from the reservoir to the pool [Fig. 5].
The eruption stops when the temperature of the water remaining in the reservoir is close to the
boiling temperature Tb(h) corresponding to the pressure imposed by a water column of height h.
When the vapor production is not sufficient any longer to counterbalance the pressure imposed
by the height h of liquid in the pool, the liquid flows from the pool to the reservoir. Thus, a mass
∆M at T = Tp moves from the pool to the reservoir and fills it completely. The temperature
Tr(t1) of the reservoir at this particular time is
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Tr(t1) =
(M −∆M)Tb(h) + ∆M Tp

M
(2)

Combining Eqs. (1) and (2) yields

τh =
c

P

[
∆M

M
(Tb(h)− Tp) + (Tb(H)− Tb(h))

]
(3)

Equation (3) is divided in two terms. The first part of the equation corresponds to the
cooling of the reservoir by the entry of a mass ∆M of water coming from the pool maintained
at a temperature Tp. The second part of the equation is the time required to reach the boiling
temperature Tb(H) below a water column of height H. These contributions imply that the
geyser height H, the pool temperature Tp and the geometry of the plumbing system impact the
time between eruptions. In our experiments, all quantities involved in Eq. (3) are known except
∆M/M , which has been measured and interpolated (polynomial interpolation). Therefore, an
estimation of the time between eruptions τh can be deduced. Such predictions are plotted as
solid lines in Fig. 4(a) for the two geyser heights studied. The agreement between experiments
and predictions validates the approach considered above.

3.2. Eruption time, τe
After the beginning of an eruption, once the water is ejected from the conduit, the temperature
of the reservoir is Tb(H) whereas the overlying pressure is close to the atmospheric pressure,
which imposes an equilibrium temperature Tb(h). The erupting time is associated with the time
needed to cool the reservoir from Tb(H) to Tb(h) by vaporizing water [stage (c) in Fig. 3]. In
our situation, we assume that this process is limited by the thermal transfer occurring in the
reservoir with bubbles forming on nucleation sites, their growth and their ascension. Such a
thermal transfer has been described in detail by Pinhasi et al.[28] and by Lu and Kieffer in
particular cases of geothermal interest [21]. In the following, we approach the complexity of
boiling processes through an heuristic equation that expresses the power lost by vaporization
as a power law of the temperature difference, i.e. Q̇ = β(Tr − Tb(h))γ [Fig. 5]. In a first
approximation, the power lost by vaporization is balanced by the temperature variation of the
reservoir Mc Ṫr = −β(Tr−Tb(h))γ . Solving the previous equation from a reservoir temperature
Tb(H) to a threshold temperature Tt at which an eruption stops provides the following prediction
for the erupting duration

τe =
M c

β(1− γ)

[
(Tb(H)− Tb(h))1−γ − (Tt − Tb(h))1−γ

]
. (4)

We note that the erupting duration predicted by Eq. (4) increases with the geyser height
as observed experimentally in Fig. 4(b). More quantitatively, this model was adjusted to the
experimental data. Solid lines in Fig. 4(b) correspond to the best fit of experiment data with
the predictions of Eq. (4) for Tt − Tb(h) = 0.1 ◦C, γ = 0.64 and β = 3.7 × 102 W K−0.64. The
deviation of experimental data from the theoretical predictions at large heating power (P > 150
W/kg) is attributed to the omission of the energy injected by the heating plate during τe in
the energy balance of the model. Indeed, the specific heating power P delays the cooling of the
water in the reservoir.

3.3. Exchanged mass, ∆M
When an eruption has occurred and the water has left the conduit, the vaporization in the
reservoir results from both the injected heat power PM and the heat flux Q̇ coming from the
water superheat [Fig. 5]. Thus, the power balance in this case writes
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(a) (b) (c) (d) (e)

heating eruting refill

Pool

Conduit

Reservoir

Figure 5. Sketch of the mass and heat transfers during a cycle of a toy geyser. At t = t2 a
mass ∆M of water is transferred from the reservoir to the pool and returns to the reservoir at
t = t3. A heat power P is constantly provided by the heat plate to the reservoir. Between t = t2
and t = t3, the boiling processes inside the reservoir of superheated water induce a leaving heat
flux Q̇.

LṀ = PM + β(Tb(H)− Tb(h))γ (5)

where Ṁ is the mass flow rate of vapor produced in the reservoir and L the latent heat of
vaporization of water. The mass flow rate can be modeled by describing the vapor bubbles
that grow and rise in the reservoir. Due to the constriction of the reservoir, the bubble volume
fraction φ(z) increases along the vertical axis z as sketched in Fig. 6. When the volume fraction
reaches a critical value φc, the bubbles coalesce and finally form the vapor phase. Considering
that φc corresponds to the fraction at which a single bubble cannot be added to a cubic close-
packed arrangement of monodispered bubbles, we estimate that φc ' 0.33 consistently with the
approach of Kaichiro and Ishii [29]. Thereby, the equilibrium position ze of the liquid/vapor
interface during an eruption can be deduced from the critical bubble volume fraction in the
liquid. Introducing the bubbles rising velocity Ub in the reservoir, the vapor density ρv and
Rr(z) is the radius of the reservoir at the altitude z relatively to the bottom of the reservoir, we
get

L ρv φ(z)πR2
r(z)Ub = PM + β(Tb(H)− Tb(h))γ . (6)

Haberman and Morton showed that the terminal velocity of vapor bubbles in water is between
20 cm/s and 30 cm/s for bubble of radius comprised between 0.5 mm and 15 mm [30]. For the
sake of simplicity, we consider that all the bubbles in the conduit rise at the same velocity
Ub ' 25 cm/s, which is consistent with our observations. The critical bubble volume fraction φc
is reached for a reservoir radius
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Rr(ze) =

√
PM + β(Tb(H)− Tb(h))γ

πL ρv φc Ub
. (7)

This radius represents the constriction size at which the continuous vapor phase appears in the
reservoir during the eruption. We deduce from Eq. (7) and geometrical considerations the mass
of water ∆M ejected out of the reservoir during an eruption for the parameters corresponding
to the experiments of section 2 (M = 1.2 kg, ρv = 0.9 kg/m3, L = 2.6× 106 J/kg, γ = 0.64 and
β = 3.7× 102 W K−0.64) and a critical bubble volume fraction φc = 0.33. The predictions of this
approach are shown in Fig. 4(c) as solid lines. A relative agreement between the theory and
experimental data is observed despite the strong assumptions we made concerning the constant
velocity of ascending bubble and the rough estimation of the critical gas volumic fraction.

Figure 6. Definition of the parameters used in the model developed in section 3.3. All the
vapor bubbles have the same upwards velocity Ub. Due to the reduction of the reservoir radius
Rr(z) with increasing height z, the bubble volume fraction φ(z) increases along this direction
up to a critical volume fraction φc which defines the equilibrium position ze of the liquid/gas
interface.

4. Conditions for geysers existence
The aim of this section is to inspect the conditions under which a toy geyser follows periodic
eruptions. We identify the physical mechanisms associated to geyser eruptions and deduce a
prediction for the frontiers of the different regimes undergone by the system : the geyser, the
fumarole, the hot spring and the boiling pool regimes. Finally, these regimes are summarized in
a phase diagram.

4.1. Geyser’s birth: bubble clogging
First, we investigate the effect of the conduit radius on the toy geyser operations. Experimentally,
we observe that if the conduit radius is too large (R & 25 mm), the vapor bubbles produced
by the boiling in the reservoir are able to rise without provoking a clog in the conduit and
no eruptions occur (cf. Table 1). Thus, the initiation of a geyser eruption is caused by the
transition from a dispersed flow regime to an annular flow regime. The different flow regimes
of a liquid/gas mixture in a vertical conduit have been extensively studied by Mishima and
Hibiki [31]. Furthermore, Kaichiro and Ishii showed that the transitions between different flow
regimes are virtually not impacted by replacing air with steam [29]. The transition between
the dispersed to the annular flow in the conduit can be approached with a critical gas volume
fraction above which bubbles clog and entrain the water above. In the present situation, the
vapor volume fraction in the conduit φ can be estimated by assuming that when the reservoir
reaches its boiling temperature Tb(H), all the specific heating power P is used to vaporize water.
The balance between the vapor departure through the conduit and the vapor production in the
reservoir yields
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φUbπR
2 =
PM
L ρv

(8)

Using the critical vapor volume fraction φc introduced in section 3.3, we predict the critical
constriction size Rb below which eruptions occur

Rb =

√
PM

πLρvUbφc
(9)

For P = 220 W/kg, M = 1.2 kg, L = 2.3 × 106 J/kg, ρv = 0.9 kg/m3, Ub = 0.25 m/s and
φc = 0.33, we get Rb = 22 mm. This prediction is consistent with our experiments where
eruptions has been reported for conduit’s radius R = 3.0 mm but not for R = 25 mm. The
regime without eruptions (R > Rb) is called the ”hot spring” regime because neither eruptions
or boiling events occur at the liquid surface. The water experiences only convection.

Beyond the case of toy geysers, bubble clogging in a vertical constriction is a phenomenon
observed in a large variety of situations such as volcanic eruptions [32], cold CO 2 geysers [33],
mentos in diet coke [34] and beer taping [35]. In the particular case of volcanic eruptions, the
elevation of the internal pressure in the volcano and thus the explosiveness of the eruption is
ruled by the possibility for the gas contained in the magma to escape [36]. Depending on the
volatile content of the magma, its viscosity and the configuration of the magmatic chamber,
different types of eruption occur [37, 38].

4.2. Geyser’s death: transition to fumarole
When varying the water level in the pool, h, we observed that, for small heights, a first eruption
could be followed by a continuous vaporization of the water in the reservoir, without any further
eruptions. In this case, the liquid in the pool cannot go down into the reservoir. Because of
permanent emission of vapor through the conduit, this situation is called the ”fumarole” regime.
We noticed that a toy geyser operating in a fumarole regime can be brought back to a periodic
regime by increasing the height h of the water in the pool. Thereafter, we discuss quantitatively
the minimal pool height that leads to a periodic regime. During an eruption, when the water in
the reservoir has reached its equilibrium temperature Tb(h), the specific heating power P induces
water vaporization. Thus, the mass of water vapor produced per unit time is Ṁ = PM/L and
it results a mean gas velocity in the conduit Uv = PM/πR2Lρv. For the range of parameters
used in our experiments, the order of magnitude of the gas velocity is ∼ 1 m/s and the Reynolds
number associated to the gas flow in the conduit is about ∼ 103. As a consequence, we consider
the dynamic pressure ρvU

2
v /2 associated to the vapor flow at the exit of the conduit and we

compare it with the hydrostatic pressure ρlgh (where ρl is the water density) at the bottom of
the pool. If ρvU

2
v /2 > ρlgh, the water will not re-entry in the conduit and the system will stay

in a fumarole regime. The critical specific heating power Pc above which the system does not
follows periodic eruptions is

Pc = πLR2
√

2 ρvρl g h/M (10)

For R = 3.0 mm, h = 40 mm, L = 2.3 × 106 J/kg, ρv = 0.9 kg/m3, ρl = 960 kg/m3 and
M = 1.2 kg, this relation gives a critical value of Pc ' 1400 W/kg. In the experiments presented
in section 2, the maximal specific heat power is P = 220 W/kg which explains why a geyser
regime was always observed. To observe a furamole regime, we had to reduce the water level in
the pool, h, below a centimeter.
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4.3. Geyser’s death: convection
In the description of the toy geyser done previously, we have considered that the heat power
injected in the system is only transferred to the water inside the reservoir. Actually, thermal
convection transfers a part of the injected heat power from the reservoir to the conduit and to
the pool. The thermal energy per unit time conveyed in the conduit writes k(Tr − Tb)πR2 with
k the heat transfer coefficient in the case of vertical natural convection in a vertical pipe heated
from below. This coefficient depends on the Rayleigh number and the Grashof number but stays
between 100 and 1000 W.K−1.m−2 in the range of parameters encountered in our experiments
[39]. The limit case where the convective flux is equal to the injected heat power PM occurs
for a critical conduit radius

Rc =

√
PM

πk(Tr − Tp)
. (11)

For P = 220 W/kg, M = 1.2 kg, k = 500 W.K−1.m−2 and Tr − Tp = 70 ◦C, we get
Rc = 41 mm. This approach explains why thermal convection in the conduit has been neglected
in the model presented in section 3, where we have R = 3.0 mm. Indeed, in such a situation the
convective flux is about 200 times smaller than the injected heat power. Finally, one expects
that for a conduit radius larger than Rc, the injected heat power will be transferred to the entire
volume of water and boiling will occur everywhere. This regime of the toy geyser is called the
”boiling spring” regime in the rest of this paper.

4.4. Phase diagram
The four regimes of a toy geyser, i.e. geyser, fumarole, hot spring and boiling springs are
gathered in a single diagram presented in Fig. 7. Such a diagram shows the behavior of a toy
geyser depending on the injected heat power PM and the conduit radius R. If the specific
heating power is larger than the critical one Pc corresponding to Eq. (10) (White solid line in
Fig. 7), the setup exhibits a fumarole regime. Otherwise, the system behaves as a geyser until
reaching a critical point, defined by the limit of bubble clogging (Eq. (9) and white dashed line).
Below this limit, the setup starts to behave as a hot spring. For even lower heat power PM or
higher conduit radius R, the system reaches the limit of heat convection (Eq. 11) and starts to
behave as a boiling spring. We indicate in Fig. 7 the range of experimental parameters used for
the experiments detailed in Section 2 (white bar) and Section 4.1 (black bar), where a geyser
regime and a hot spring regime have been reported.

While the phase diagram in Fig. 7 gives an easy grasp of the different regimes accessible by
a geyser-like geometry and the physical parameters governing these regimes, most of natural
geysers exhibit more complex dynamics that depend on their own specificities (i.e. change in
water inflow, pressure, tectonic stress, etc.. [16, 18]). Another parameter, often discussed, but
difficult to characterize in situ, is the interconnection between several geyser reservoirs. Indeed,
the interconnection between the plumbing systems of different geysers is known to induce a
chaotic and complex dynamics of eruptions [40]. While focusing on the influence of these localized
parameters is important for a better characterization of each geyser, pinpointing natural geysers
in the present phase diagram would allow to give an idea of how well a toy geyser reproduces the
geyser mechanism and what are the geysers specificities that really differentiate natural geysers
from their toy models. We hope that future characterizations of geothermal systems, possibly
involving geophysics students, will allow such a comparison and will determine to what extent
the mechanics of natural pool geysers and toy geysers are similar.
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Figure 7. Phase diagram of the behavior of a toy geyser as sketched in Fig. 1(c) as a function
of the conduit radius R and the injected heat power PM . The white solid line represents the
transition between a fumarole and a geyser regime as predicted by Eq. (10) for h = 4 cm.
The dashed line indicates the limit between a geyser and a hot spring regime according to Eq.
(9). The dotted line corresponds to the transition between a hot spring and a boiling spring
regime as predicted by Eq. (11). The white vertical stripe indicates the range of experimental
parameters in Section 2 where a geyser regime has been reported. The dark stripe shows the
range of experimental parameters in section 4.1 where a hot spring regime has been observed.

5. Towards complex geysers: Two connected geysers.
A way to better link the simplified model that is a toy geyser and a natural geyser is to implement
natural observations to the toy geyser experiment. This has been done previously to study the
influence of a bubble trap in the vertical conduit of geysers [11]. To approach the complex
stochastic eruption of certain natural geysers, we built a setup made of two interconnected
reservoirs. Both reservoirs received a different specific heating power (Pl and Pr) and they were
connected to a single pool as sketched in Fig. 8. The connection between the conduits of the
two reservoirs is made at a fraction α of the height H of the water column, i.e. α=0.2 means
that the connection is located at 0.2 H below the pool surface.

5.1. Experimental data
Figure 9 shows the time evolution of the temperature in each reservoir of an interconnected
toy geyser. The saw-tooth evolution of the temperature in a reservoir is not periodic, contrary
to the single reservoir geyser inspected previously. The aim of this section is to describe and
rationalize the dynamics of toy geyser with two coupled reservoirs. In the following, we set up
our system such that the eruption duration τe is small compare to the sleeping time τh. Under
this condition, τ ≈ τh.

A way to present the data is to plot the time between the eruptions of an event numbered N
as a function of the time between the eruptions of the previous event (numbered N − 1). Such
a procedure allows to visualize the correlation between successive eruptions and is reported in
Fig. 10(a-c) for three different fraction of joined conduit α. The figure shows the time lag for
each reservoir (red dots and blue squares for left and right reservoirs respectively) and for the
total system (gray diamonds). One observes in Fig. 10(a) that even for small fraction of joined
conduit α = 0.20, the time between eruptions in each reservoir undergoes a large dispersion
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conduit

Figure 8. Sketch of a toy geyser experiment with two interconnected reservoirs. The specific
heating power received by each reservoir is respectively Pl and Pr. The two conduits are
connected at a distance αH from the top.
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Figure 9. Measured temperatures as a function of time in each reservoir of an interconnected
toy geyser as sketched in Fig. 8. The total height of the geyser is H = 1.60 m and α = 0.20.
The specific heat power injected in the left and right reservoirs are respectively Pl = 110 W/kg
and Pr = 100 W/kg. Symbols indicate the time of eruptions.

(about two minutes of dispersion while the mean period is about six minutes). The data for
the whole system (gray diamonds) cover a trapezoidal-shaped domain. When α increases to
α = 0.70 [Fig. 10(b)], the dispersion for each reservoir increases and the domain of the global
eruption adopt a ”banana” shape. Finally, for large fraction of joined conduit α = 0.90, Fig.
10(c) indicates a reduction of the dispersion of the time between eruptions in each reservoir and
for the whole system.

5.2. Model
When a reservoir reaches its boiling temperature and erupts, it empties its conduit and reduces
the height of the water column of the other reservoir. Thus, if the second reservoir was at a
temperature high enough, the reduction of the height of the water column may generate boiling
and entrain the eruption of the second reservoir as well. To model this behavior, we assume
that the temperature of each reservoir follows a perfect saw-tooth evolution that is governed
successively by the equations dTr/dt = MP/c and dTr/dt = −MPd/c in order to stay in the
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range of temperature Tr(t1) < Tr < Tb(H). We assume that the evolution of the temperatures in
each reservoir is independent unless the temperature of one reservoir is larger than a temperature
threshold Tb((1−α)H) when the other erupts. In such a case, the eruption of a reservoir provokes
the eruption of the other one. This approach provides a prediction of times between eruptions
for each reservoir.

(a) (b) (c)

(d) (e) (f)

Ex
pe

rim
en

ts
Si
m
ul
at
io
n

Figure 10. Time between eruptions of the event numbered N and the previous event numbered
N − 1. Red dots and blue squares indicate the time between eruption in each reservoir whereas
gray diamonds represent the time between eruptions for the total system. The three top panels
correspond to experimental results and the three bottom panels to numerical simulations. The
three panels from left to right show different values of α, the fraction of joined conduit of the
system: (a) (d) α = 0.20, (b) (e) α = 0.70 and (c) (f) α = 0.90. The dashed rectangles show the
predictions for the dispersion for the time between eruptions based on the model introduced in
Section 5.2.

Figures 10(d-f) show the correlation plot of the times between eruptions for the three values
of the coupling parameters inspected experimentally in Section 5.1. It is noticed in Figs. 10(d-
f) that despite the fact that the large spreading of the experimental data is not reproduced
by the model, the general trends are similar to the ones observed in section 5.1. Indeed, the
times between eruptions of the total system occupy a trapezoidal domain that vanishes at large
coupling parameters α. Moreover, the spreading of the times between eruptions for each reservoir
increases with α up to a critical value where the two reservoirs act as a single one.

The dispersions observed in Figs. 10(a-c) can be approached by the theory developed in
Section 3 for a toy geyser with a single reservoir. Equations (3) and (4) yield the time between
two eruptions of a reservoir if the other one does not experience any eruption. The substitution
into Eqs. (3) and (4) of the boiling temperature Tb(H) by its value Tb((1 − α)H) when the
other reservoir has erupted, provides the minimal time between eruptions that a reservoir can
follow. The difference between these two extreme cases provides an estimation of the dispersion
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observed for τ . We delimited in Fig. 10(a-c) the domain during which the time between eruptions
is supposed to be confined according to this approach. Beyond this first explanation for the data
dispersion, other phenomenon can be invoked such as the turbulent gas flow inside the conduit
and boiling processes in the reservoir but their theoretical modeling are out of the scope of the
present study.

6. Conclusions
The study of a toy geyser reveals the successive operations that lead to periodic eruptions
of steam and hot water. In a geyser, a geometrical constriction prevents thermal convection of
water from a heated reservoir toward a pool. Thus, the water in the reservoir slowly accumulates
heat energy by being superheated relatively to the pool level. Such a situation holds until the
water in the reservoir boils and the vaporization ejects the water in the conduit, a phenomenon
that generates a large release of energy in a short period of time. The slow accumulation of
energy and its fast release is characteristic of catastrophic natural events such as earthquakes,
volcanic eruptions or thunderbolts. We showed with the example of a toy geyser that there is a
strict set of physical parameters that allows an accumulation of thermal energy and a periodic
release. Moreover, toy geyser experiments allow us to understand their sensitivity towards
external parameters such as water inflow, barometric pressure or pool temperature.

A major difference exists between toy geysers and natural ones: the latter generally adopt
a complex dynamics that strongly differs from the clock-like precision of toy geysers. The
complexity of real geysers has been approached with a toy geyser having two interconnected
reservoirs. Such a setup showed a complex time behavior that has been studied statistically
and rationalized theoretically. The rareness of regular geysers in nature reveals that very few of
them have a single and independent reservoir. Interconnected and complex plumbing systems
seem to prevail in nature leaving room for complexity rather than simplicity.

The present study leaves several open questions such as a deeper understanding of the
phenomenon of bubble clogging in confined situations or the exact description of heat transfer
during a boiling process in a superheated liquid. The issue of whether a natural geyser with a
large conduit radius can operate thanks to a bubble clogging phenomenon remains open. This
work opens new avenues for future research about geysers made with a liquid differing from
water, or with a liquid inducing solid deposition in order to study the stability of the plumbing
system over time.
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[35] Rodŕıguez-Rodŕıguez J, Casado-Chacón A and Fuster D 2014 Physical review letters 113 214501
[36] Gonnermann H M and Manga M 2007 Annu. Rev. Fluid Mech. 39 321–356
[37] Walker G P L 1973 Geologische Rundschau 62 431–446
[38] Wilson L 1980 Journal of Volcanology and Geothermal Research 8 297–313
[39] Jackson J, Cotton M and Axcell B 1989 International journal of heat and fluid flow 10 2–15
[40] Nicholl M, Wheatcraft S, Tyler S and Berkowitz B 1994 Journal of Geophysical Research: Solid Earth

(1978–2012) 99 4495–4503

Page 17 of 17 AUTHOR SUBMITTED MANUSCRIPT - EJP-104000.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t


