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EDDMF: An Efficient Deep Discrepancy Measuring
Framework For Full-Reference Light Field Image

Quality Assessment
Zhengyu Zhang, Shishun Tian, Wenbin Zou, Luce Morin, and Lu Zhang

Abstract—The increasing demand for immersive experience
has greatly promoted the quality assessment research of Light
Field Image (LFI). In this paper, we propose an efficient
deep discrepancy measuring framework for full-reference light
field image quality assessment. The main idea of the proposed
framework is to efficiently evaluate the quality degradation of
distorted LFIs by measuring the discrepancy between reference
and distorted LFI patches. Firstly, a patch generation module
is proposed to extract spatio-angular patches and sub-aperture
patches from LFIs, which greatly reduces the computational cost.
Then, we design a hierarchical discrepancy network based on
convolutional neural networks to extract the hierarchical dis-
crepancy features between reference and distorted spatio-angular
patches. Besides, the local discrepancy features between reference
and distorted sub-aperture patches are extracted as comple-
mentary features. After that, the angular-dominant hierarchical
discrepancy features and the spatial-dominant local discrepancy
features are combined to evaluate the patch quality. Finally, the
quality of all patches is pooled to obtain the overall quality
of distorted LFIs. To the best of our knowledge, the proposed
framework is the first patch-based full-reference light field image
quality assessment metric based on deep-learning technology.
Experimental results on four representative LFI datasets show
that our proposed framework achieves superior performance as
well as lower computational complexity compared to other state-
of-the-art metrics.

Index Terms—Light field, image quality assessment, full-
reference, patch, deep-learning.

I. INTRODUCTION

IN the era of flourishing visual communication, traditional
2D images can no longer satisfy people’s yearning for

immersive experience. As a novel imaging technology, Light
Field Image (LFI) has received a broad spotlight for its po-
tential to provide more immersive experience, such as Virtual
Reality (VR) [1] and Augmented Reality (AR) [2]. Different
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Fig. 1. (a) Biplane model for describing the 4D LFI. (b) Example of SAI
array and its enlarged central view [6].

from 2D images, LFI is a high-dimensional imaging format for
recording the distribution of light rays, which was originally
represented as a 7D function [3], [4]. To facilitate practical
applications, the 7D LFI is reduced to 4D representation
[5] and described as a biplane model L(u, v, h, w), where
(u, v) are the coordinates of angular plane (i.e., camera plane)
and (h,w) are the coordinates of spatial plane (i.e., scene
plane), as shown in Fig. 1 (a). By fixing each group of
angular coordinates (u, v), a 4D LFI can be represented as
a Sub-Aperture Image (SAI) array. The SAI array of LFI
is a 2D image array as shown in Fig. 1 (b), and it can be
regarded as the data obtained by photographing the same
scene from an array of viewpoints with narrow parallax. In
addition to the SAI array, LFI can be visualized in several other
representations, e.g., Refocused Image (RI), Epipolar Plane
Image (EPI), Pseudo Video Sequence (PVS), and MicroLens
Image (MLI).

In the image processing chain [7], [8], the quality degra-
dation of LFIs will inevitably be introduced by compression
[9] [10], reconstruction [11], [12] and rendering [13] methods,
thus it is necessary to evaluate the distortion influence on the
LFI quality. Since human eyes are the ultimate recipient of
visual information, subjective experiments based on Human
Visual System (HVS) are the most reliable way to evaluate
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the impact of image quality degradation. However, they are
extremely time-consuming and resource-intensive. Further, tra-
ditional objective Image Quality Assessment (IQA) metrics
cannot well deal with the special distortions in LFIs. For
example, 2DIQA metrics [14], [15], [16], [17], [18], [19],
[20] mainly focus on spatial distortions in 2D images. 3DIQA
metrics [21], [22], [23] are designed for image pairs with
wide parallax, not for LFIs with narrow parallax. Multiview-
IQA metrics [24], [25], [26], [27], [28] tend to measure the
view-synthesis distortions such as stretching and black holes.
Consequently, an objective LFIQA metric that can accurately
evaluate the LFI quality is in great demand. In recent years,
researchers have made a lot of efforts on LFIQA and pro-
posed several landmark LFIQA metrics [29]. Existing LFIQA
metrics can be generally grouped into three categories based
on the availability of reference information: No-Reference
(NR), no reference information required; Reduced-Reference
(RR), partial reference information required; Full-Reference
(FR), full reference information required. Among them, the
FR LFIQA metric can obtain the most stable results due to its
access to full reference information, which is the focus of this
paper.

The incorporation of multiple SAIs from different perspec-
tives in LFIs inevitably results in an enormous amount of data.
Currently, most existing LFIQA metrics (e.g., [30], [31], [32])
suffer from high computational complexity due to the use of
full LFI data. Many previous quality assessment metrics on 2D
images [33], [34], [35] have demonstrated the effectiveness of
using patches to evaluate the overall quality. Analogously, two
previous works on LFIQA [36], [37] also show that evaluating
the LFI quality with patches is a promising approach to
reduce the computational complexity. However, these patch-
based LFIQA metrics are all NR metrics. Compared to the
NR metrics, the FR metrics are undoubtedly more reliable
with access to reference information, which motivates us to
develop an efficient patch-based FR LFIQA metric in this
paper. First, since LFI patches need to reflect the charac-
teristics of high-dimensional LFIs, we exploit two kinds of
LFI patches, spatio-angular patches and sub-aperture patches,
both of which contain angular and spatial quality degradation
information of LFIs. In addition, although spatial and angular
information are two different characteristics of LFIs, existing
LFIQA metrics generally adopt homogeneous features for
both information, i.e., Convolutional Neural Network (CNN)
features only or handcrafted features only. However, we ar-
gue that they should be treated differently to maximize the
efficiency and effectiveness. For angular information, due to
the non-intuitive nature of angular information deterioration,
it is often perceived in combination with spatial information.
Therefore, CNN features with strong discriminative ability are
more suitable for angular information. For spatial information,
existing handcrafted feature-based FR metrics can handle
most spatial distortions well when reference information is
available. As a result, a combination of angular-dominant CNN
features and spatial-dominant handcrafted features is presented
as a more comprehensive description for LFI patches.

Motivated by the above facts, in this paper, we propose
the first patch-based FR LFIQA framework adopting CNNs,

named Efficient Deep Discrepancy Measuring Framework
(EDDMF). The main idea of the proposed EDDMF is to
efficiently evaluate the quality degradation of distorted LFIs
by measuring the discrepancy between reference and distorted
LFI patches. The main contributions of this paper are summa-
rized as follows.

1) To address the efficiency problem when dealing with
high-dimensional LFIs, a patch generation module is proposed
for preprocessing. Specifically, spatio-angular patches and sub-
aperture patches are generated for quality assessment, both
of which contain angular and spatial quality degradation
information of LFIs. As a result, the computational complexity
of the overall framework is significantly reduced.

2) To extract sufficient information from LFI patches to esti-
mate the LFI quality, a hierarchical discrepancy network based
on CNNs is designed to extract the angular-dominant hier-
archical discrepancy features between reference and distorted
spatio-angular patches. In addition, a local discrepancy extrac-
tion module is presented to generate the spatial-dominant local
discrepancy features from reference and distorted sub-aperture
patches, which are exploited as complementary features to
evaluate the quality degradation in LFI patches.

3) To fully demonstrate the effectiveness of the proposed
EDDMF, extensive experiments are conducted on four repre-
sentative LFI datasets. Experimental results show that com-
pared with state-of-the-art metrics, the proposed EDDMF
achieves superior quality evaluation performance with a rela-
tively low computational complexity.

The remainder of this paper is organized as follows. Section
II introduces related works. Section III describes the proposed
EDDMF in detail. Section IV provides experimental results
and discussions. In Section V, conclusions will be drawn.

II. RELATED WORKS

A. Light Field Processing

Light field image/video enables a wide range of attractive
applications because of its abundant information. However,
such a large amount of information also brings challenges in
various aspects such as light field storage, transmission and
display [8]. Therefore, light field compression techniques [38],
[39], [40], [41], [42], [43], [44] are of great significance to
improve the coding efficiency. Among which, LFI compression
methods can be further divided into two categories: lossy [38],
[39], [40] and lossless [41], [42]. Currently, lossy compression
methods are receiving more attention as they can achieve
higher bitrate reduction than lossless compression methods.
Unfortunately, both encoding and decoding processes in lossy
compression methods inevitably distort the LFI structure to
a certain extent, thereby affecting the Quality of Experience
(QoE) of end-users. In addition, restricted by the resolution
trade-off of the LFI acquisition hardware [8], spatial super-
resolution [45], [46] and angular reconstruction [47], [48] are
two important means to expand the resolution of LFIs. How-
ever, due to various factors such as object occlusion and Lam-
bertian reflectance, these methods may produce some visually
discontinuous regions, which also degrade the LFI quality
perceived by human eyes. In addition to the aforementioned
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Fig. 2. Overview of the proposed EDDMF. Note that patches with and without red borders denote reference patches and distorted patches, respectively.

quality-impairing processing related to LFI’s characteristics,
some common image/video distortions may also appear in
LFIs and lead to quality deterioration.

B. Light Field Image Quality Assessment

As mentioned before, existing LFIQA metrics can be gen-
erally grouped into NR, RR, and FR categories, depending on
the amount of reference information involved.

The NR LFIQA metrics evaluate the quality of distorted
LFIs without reference information. Most NR LFIQA metrics
[49], [50], [30], [51], [52], [53], [54], [55] focus on extracting
Natural Scene Statistics (NSS) features to describe the whole
LFI and further estimate its quality. BELIF [49] first generates
cyclopean images tensor from SAIs, and then explores tensor
spatial characteristic features and tensor structure variation
index to measure the spatial and angular quality, respec-
tively. NR-LFQA [50] combines the naturalness distribution
of cyclopean image array and gradient histogram of EPIs
to evaluate the LFI quality. Tensor-NLFQ [30] adopts tensor
decomposition on SAI stacks in four directions, and further
extracts naturalness statistics features and structural similarity
distribution for LFI quality evaluation. VBLFI [51] adopts
curvelet transform on the mean difference image and SAIs,
and then extracts statistical and energy features to measure
the LFI quality. PVRI [52] measures the angular quality
from the structure, motion and disparity information of the
decomposed PVS, and evaluates the spatial quality from the
depth and semantic information of RIs. TSSV-LFIQA [53]
assesses the quality deterioration of LFIs using the sharpness
and distribution information of tensor slice and the percentage
of singular value. PM-BLFIQM [54] measures the LFI quality
based on the disparity information of local light fields and
the angular consistency of MLI. 4D-DCT-LFIQA [55] extracts
naturalness distribution and energy features in 4D frequency
domain for LFI quality evaluation.

The RR LFIQA metrics use partial information from refer-
ence LFIs to measure the distorted LFI quality. For instance,
Paudyal et al. [56] proposed a RR LFIQA metric, which

computes the depth map similarity between the distorted and
reference LFIs as the predicted quality.

The FR LFIQA metrics utilize the differences between ref-
erence and distorted LFIs for quality assessment. Existing FR
LFIQA metrics [57], [58], [59], [31], [60], [61], [32], [62], [63]
generally capture these differences using handcrafted features,
and obtain the quality of distorted LFIs via pooling methods.
Fang et al. [57] calculated the LFI quality by combining the
gradient magnitude of SAIs and EPIs. MDFM [58] extracts
the multi-order derivative information on SAIs to assess the
LFI quality. Min et al. [59] computed the global and local
quality on SAIs using the view structure matching and the
near-edge mean square error, respectively. Meng et al. [31]
adopted Gaussian operator on the central SAI to measure the
spatial quality, and computed the structural similarity between
distorted and reference RIs to evaluate the angular quality. In
LGF-LFC [60], single-scale and multi-scale log-Gabor filters
are applied on SAIs and EPIs to evaluate the local and global
quality, respectively. SDFM [61] captures the spatial quality
based on the symmetry information of SAIs, and measures
the angular quality from the geometry information of EPIs.
KRIQE [32] exploits the gradient magnitude and phase con-
gruency of the key RIs for LFI quality evaluation. CTM [62]
estimates the LFI quality by applying contourlet transform on
SAIs to measure the multi-scale information. As the updated
version of CTM, SGFM [63] was recently proposed to further
explore the geometry quality of each multiview sequence by
applying 3D-Gabor filter.

The naturally massive LFI data not only leads to compli-
cated human visual perception, but also brings great challenges
to the efficiency of quality assessment algorithms. Most of
the aforementioned works suffer from high computational
complexity due to the use of full LFI data. To deal with this
issue, Zhao et al. [36] pioneeringly proposed a NR metric
for LFIQA, in which only a small number of patches are
extracted to measure the LFI quality, thus greatly reducing
the computational complexity. However, the effectiveness of
this metric is significantly constrained when dealing with
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Fig. 3. Pipeline of the proposed patch generation module. For better visualization, A is set to 3 for all illustrations with A×A angular resolution.

LFIs of low angular resolution. Further, our previous work
[37] also presented a patch-based NR LFIQA metric, named
DeeBLiF, which achieves competitive performance in most
circumstances while maintaining relatively low computational
costs. Considering the underutilized potential of patch-based
methods in the FR LFIQA research, we develop an efficient
patch-based FR LFIQA framework (EDDMF) in this paper,
which is extended from the DeeBLiF metric, and the exten-
sions are summarized as follows.

First, DeeBLiF extracts angular and spatial features sepa-
rately from spatio-angular patches, and obtains spatio-angular
features through a naive concatenation operation. The resulting
spatio-angular features are not discriminative enough for both
angular and spatial quality degradation. On the contrary, the
proposed EDDMF evaluates the LFI quality based on two
kinds of LFI patches, spatio-angular patches and sub-aperture
patches, which focus on measuring the deterioration of angular
and spatial quality, respectively. Thus, the proposed EDDMF
can learn more discriminative features than DeeBLiF.

Second, DeeBLiF only extracts angular features at a single
encoding level, which cannot handle the ever-changing angular
effect on spatial quality in LFIs. To this end, EDDMF presents
a hierarchical discrepancy network consisting of multiple
branches for spatio-angular patches. The generated hierarchi-
cal discrepancy features with diverse angular encoding levels
are highly discriminative on angular quality degradation.

Third, the implicit spatial information in spatio-angular
patches restricts the potential improvement of utilizing spatial
information in DeeBLiF. In EDDMF, we further propose
a local discrepancy extraction module to extract the local
discrepancy features from sub-aperture patches, which are
more spatially discriminative and serve as complementary
features, thereby providing a more comprehensive description
for quality assessment.

Finally, a more in-depth analysis of the proposed framework
on four benchmark LFI datasets is provided in this paper, in-
cluding comprehensive analysis of individual distortion types,
time complexity, hyperparameter dependency, cross-dataset
and cross-type validation. These were not presented in the
original paper of DeeBLiF.

III. THE PROPOSED FRAMEWORK

The overview of the proposed EDDMF is illustrated in
Fig. 2, which contains three main components: patch gen-
eration module, hierarchical discrepancy network, and local
discrepancy extraction module. First, given a distorted LFI and
its corresponding reference LFI, both spatio-angular patches
and sub-aperture patches of the reference and distorted LFIs
are generated by the patch generation module. Then, each
spatio-angular patch pair is composed by a spatio-angular
patch and its corresponding reference version, while each sub-
aperture patch pair consists of a sub-aperture patch and its
corresponding reference version. Note that patches with and
without red borders in Fig. 2 denote reference patches and
distorted patches, respectively. Second, hierarchical discrep-
ancy features are obtained by the hierarchical discrepancy
network using spatio-angular patch pairs. Third, sub-aperture
patch pairs are exploited to extract local discrepancy features
through the local discrepancy extraction module. Finally, hi-
erarchical discrepancy features and local discrepancy features
are combined to predict the patch quality, and then the quality
of all patches is pooled into an overall quality of the distorted
LFI. The main components are detailed as follows.

A. Patch Generation Module

The feasibility of using patches for 2DIQA has been thor-
oughly demonstrated in many previous studies [33], [34], [35].
The motivation behind is that most distortions for 2D images
are homogeneous distortions, i.e., all patches from the same
image include similar information variation caused by the
same distortion type and level [64]. Motivated by this fact, we
observe that most distortions for LFIs are also homogeneous
distortions. Besides, the main difference between 2D images
and LFIs is the extra angular information. Therefore, we
believe that LFI patches are able to reflect the LFI quality as
long as they contain enough angular information. To extract
patches that are capable of reflecting the LFI quality, a patch
generation module is presented, as shown in Fig. 3.

The input SAI array of LFI is denoted as L ∈
RU×V×H×W×C , where U×V is the angular resolution of the
SAI array, H×W is the spatial resolution of each SAI, C is
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Fig. 4. Architecture of our proposed hierarchical discrepancy network, which consists of a baseline network and three discrepancy branches of different levels.

the channel number. Here, C equals 3 since the original LFI
is in the RGB color format. Several previous works [19], [30]
have demonstrated that the human eye is more sensitive to the
luminance component of an image. Therefore, we convert the
input LFI into YCbCr color format and use only the luminance
component Y of the central A×A SAIs for subsequent patch
generation, as described in Eq. (1)-(2).

LY = {rgb2ycbcr(L)}Y (1)

LY C = Central(LY ) (2)

where LY ∈ RU×V×H×W and LY C ∈ RA×A×H×W denote
the luminance component Y of the U×V SAIs and the central
A×A SAIs of LFI, respectively.

In order to extract both angular and spatial information in
LFI, an A×A sliding window array is defined. Each sliding
window is defined as a square of size S×S to obtain the same
amount of spatial information from the vertical and horizontal
directions. Then the sliding window array is placed on the
A×A SAIs (i.e., LY C) for evenly cropping and sliding, with
a stride of T . For each sliding position, A×A blocks of size
S×S are obtained and a sub-aperture patch is generated by
stitching all blocks. After sliding over LY C , a set of sub-
aperture patches Ps is generated, as described in Eq. (3)-(5).

I = dH − S
T
e, J = dW − S

T
e (3)

P i,js = Stitch{B1,1, ..., BAx,Ay, ..., BA,A}i,j (4)

Ps = {P 1,1
s , ..., P i,js , ..., P I,Js } (5)

where I and J represent the number of patches generated in
the vertical and horizontal directions, respectively. BAx,Ay ∈
RS×S denotes the Ax-th row and the Ay-th column block
cropped from LY C . P i,js ∈ RA×A×S×S denotes the sub-
aperture patch with the i-th vertical index and the j-th hori-
zontal index.

Further, for each sub-aperture patch P i,js , a permutation
operation is applied to exchange its angular coordinates and
spatial coordinates to obtain a spatio-angular patch. A toy

example of a patch of size 3×3×3×3 is illustrated in the
dashed box in Fig. 3. In this case, the permutation operation
can be visualized as grouping all pixels of the same color.
After applying the permutation operation to all P i,js in Ps, a
set of spatio-angular patches Pa is generated, as described in
Eq. (6)-(7).

P i,ja = Permute(P i,js ) (6)

Pa = {P 1,1
a , ..., P i,ja , ..., P I,Ja } (7)

where P i,ja ∈ RS×S×A×A denotes the spatio-angular patch
with the i-th vertical index and the j-th horizontal index.

Finally, Pa and Ps are the outputs of the patch generation
module. Specifically, Pa contains I×J spatio-angular patches
while Ps includes I×J sub-aperture patches. The data sizes
of the original LFI L, the generated Pa and Ps, and their ratio
are calculated in Eq. (8)-(10).

DL = U×V×H×W×C (8)

DPa = DPs = A×A×S×S×I×J (9)

R =
DPa

DL
=
DPs

DL
(10)

where DL, DPa
, and DPs

represent the data sizes of L, Pa, and
Ps, respectively. R is the ratio between DPa

(or DPs
) and DL.

Taking the LFI in Fig. 1 (b) for instance, its angular resolution
U×V , spatial resolution H×W , and channel number C are
9×9, 434×625, and 3, respectively. In our implementation,
three hyperparameters related to the generation of patches, A,
S, and T are set to 5, 32, and 64, respectively. In this case,
R ≈ 3%, that is, we only use 3% of the original LFI data for
quality assessment, which greatly reduces the computational
complexity of the whole framework. In addition, since the
generated patches consist of angular and spatial information
from different locations of the original LFI, they are able to
reflect the overall LFI quality.
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TABLE I
NETWORK CONFIGURATION OF THE PROPOSED HIERARCHICAL

DISCREPANCY NETWORK.

Layer Name Kernel Size Channel Stride Padding

B Conv1
3×3 [1, 32] 2 1

BN, ReLu

B/L Conv2
3×3 [32, 64] 2 1

BN, ReLu

B/L Conv3
3×3 [64, 64] 1 1

BN, ReLu

B/L/M Conv4
3×3 [64, 128] 2 1

BN, ReLu

B/L/M Conv5
3×3 [128, 128] 1 1

BN, ReLu

B/L/M/H Conv6
3×3 [128, 256] 2 1

BN, ReLu

B/L/M/H Conv7
3×3 [256, 256] 1 1

BN, ReLu

Average Pooling

B/L/M/H FC - [256, 256] - -

Concat - [4×256, 256] - -

C FC - [1024, 128] - -

B. Hierarchical Discrepancy Network

The angular information in LFIs essentially distinguishes
LFIs from traditional 2D images. Therefore, the key to de-
signing a well-performing LFIQA metric lies in effectively
capturing the angular effect on spatial information. Generally,
LFI’s angular information will be affected to varying degrees
when different types and levels of distortion are introduced.
For example, JPEG distortion focuses on distorting spatial
information, while its effect on angular information is very
limited. Conversely, the opposite is true for the interpolation
distortion. Thus, we argue that the solidified angular feature
extraction fails to accommodate the ever-changing distortion
types and levels, thereby resulting in suboptimal performance
in quality evaluation.

Given a spatio-angular patch, we notice that shallow convo-
lutional layers capture information between nearest neighbor
pixels, i.e., angular features. As the network deepens and
the feature map size decreases, information between distant
pixels is captured accordingly, i.e., spatial features, which
can also be known as spatio-angular features since they are
extracted based on the shallow angular features. Inspired by
the above observations, we design a hierarchical discrepancy
network to extract the hierarchical discrepancy features be-
tween reference and distorted spatio-angular patches, in which
different branches extract spatio-angular discrepancy features
with different angular encoding levels.

Fig. 4 illustrates the architecture of our proposed hierar-
chical discrepancy network. The proposed network consists
of a baseline network and three discrepancy branches, which
generate the baseline, low-level, middle-level, and high-level
discrepancy maps, respectively. Then each discrepancy map
is converted into a feature vector using an average pooling
layer, followed by a Fully Connected (FC) layer (denoted as
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B/L/M/H FC, respectively). Finally, a FC layer, denoted as
C FC, is applied after concatenating the four feature vectors
to generate the final hierarchical discrepancy features. The
baseline network contains two sub-networks for extracting
features from reference and distorted spatio-angular patches,
respectively. Each sub-network includes seven convolutional
layers, i.e., B Conv1 − B Conv7. Note that the two sub-
networks share the same weights in all convolutional layers.
At the end of the baseline network, the feature maps extracted
by the two sub-networks are subtracted, i.e., the baseline dis-
crepancy map between reference and distorted spatio-angular
patches are obtained. Additionally, three discrepancy branches
are exploited to extract the low-level, middle-level, and high-
level discrepancy maps, respectively. The three branches start
from the subtraction of reference and distorted feature maps
generated by B Conv1, B Conv3, and B Conv5, respec-
tively, and have the same structure as the rest of the baseline
network.

As shown in TABLE I, all convolution layers use 3×3
kernel size with 1 padding and each convolutional layer
is followed by a Batch Normalization (BN) layer and a
ReLu activation function. As the number of convolutional
layers increases, the output channel increases while the out-
put feature map size decreases. Specifically, we halve the
feature map size by setting the stride to 2 in B Conv1,
B/L Conv2, B/L/M Conv4, and B/L/M/H Conv6, re-
spectively. Therefore, the final feature map size is 1/16 of
the original input patch. Taking a sub-network in the baseline
network for example, with an input patch of size 160×160×1,
the size and channel of the feature map are changed as fol-
lows: 160×160×1−80×80×32−40×40×64−40×40×64−
20×20×128 − 20×20×128 − 10×10×256 − 10×10×256.
After applying the average pooling layer, the FC structure
4×256 − 4×256 − 1024 − 128 is adopted to generate hier-
archical discrepancy features. Finally, the final output of our
proposed hierarchical discrepancy network is 128 dimensions,
consisting of spatio-angular discrepancy features with different
angular encoding levels.
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TABLE II
SUMMARY OF FOUR LFI DATASETS USED IN OUR EXPERIMENTS.

Datasets Reference LFIs Distortion types Distortion levels Distorted LFIs Angular resolution Spatial resolution Mode Protocol MOS Year

Win5-LID [6]
6 (real-world), HEVC, JPEG2000,

5 or 1 220 9×9
434×625 (real-world),

Interactive DSCQS [1,5] 2018
4 (synthesis) LN, NN, [69], [70] 512×512 (synthesis)

NBU-LF1.0 [66]
8 (real-world), NN, BI, EPICNN [69],

3 210 9×9
434×625 (real-world),

Interactive and passive DSCQS [1,5] 2019
6 (synthesis) Zhang [71], VDSR [72] 512×512 (synthesis)

JPEG, JPEG2000, BPG, VP9, AV1,

LFDD [67] 8 (synthesis) AVC, HEVC, Gaussian noise, Impulse noise, 5 480 9×9 512×512 (synthesis) Passive DSIS [1,5] 2020

Barrel, Pincushion, Unsharp mask

SHU [68] 8 (real-world)
JPEG, JPEG2000, Gaussian noise,

6 240 15×15 434×625 (real-world) Passive DSCQS [0,5] 2019
Motion blur, White noise

C. Local Discrepancy Extraction Module

As mentioned before, hierarchical discrepancy features are
more angularly discriminative due to the hierarchical design
based on spatio-angular patches. As a result, the spatial
features used for quality assessment are insufficient to some
extent. Therefore, we aim to extract local discrepancy features,
which focus more on spatial quality degradation and serve as
complementary features to hierarchical discrepancy features.
Specifically, we propose a local discrepancy extraction module
to generate the local discrepancy features between reference
and distorted sub-aperture patches, which provide a more
comprehensive description of the patch quality degradation.

The pipeline of the proposed local discrepancy extrac-
tion module is illustrated in Fig. 5. Given a distorted sub-
aperture patch Ps ∈ RA×A×S×S and its reference version
P̂s ∈ RA×A×S×S , they are both composed by A×A blocks
of size S×S, as described in Eq. (4). Since each block contains
local information derived from a single SAI, we measure the
local discrepancy between reference and distorted blocks to
evaluate the impact of spatial quality degradation for each SAI.
Specifically, for each distorted block and its reference version,
we measure their local discrepancy score by adopting a hand-
crafted feature-based FR 2DIQA metric instead of the CNN
model. The reason behind is that existing handcrafted feature-
based FR 2DIQA metrics can deal well with the degradation of
spatial information in 2D images. Finally, a total of A×A local
discrepancy scores are generated and further concatenated into
a feature vector, named local discrepancy features. In our
implementation, we use the representative Structural Similarity
Index Metric (SSIM) [65] as the FR 2DIQA metric due to its
low computational complexity and excellent performance. The
above process can be described in Eq. (11)-(12):

Si = SSIM(B̂i, Bi) (11)

Flocal = Concat(S1, S2, ..., SA×A) (12)

where B̂i and Bi denote the i-th reference and distorted
blocks of the sub-aperture patch Ps, respectively, Si is the
local discrepancy score between B̂i and Bi, Flocal is the local
discrepancy features with A×A dimensions.

Since the same distortion may have different impacts on
different SAIs and each local discrepancy score can only
measure the spatial degradation of a single SAI, the angular
degradation is neglected. To this end, we combine all the local
discrepancy scores to estimate the angular degradation of sub-
aperture patches. Although angular information is considered,

local discrepancy features are more spatially discriminative
and are thus used as complementary features to the angular-
dominant hierarchical discrepancy features.

D. Training

In the training stage, we employ mini-batch Stochastic
Gradient Descent (SGD) as the optimizer, where the weight
momentum and weight decay are set to 0.9 and 0.0001,
respectively. Due to the adoption of FC layers in the proposed
framework, the size of input patches needs to be fixed.
Specifically, we set the central angular resolution of SAIs,
the size of each sliding window, and the stride of the sliding
window array to 5×5, 32×32, and 64, respectively. Thus, we
train our network with a large number of patches on a TITAN
Xp GPU. All the patches extracted from the same distorted LFI
use the Mean Opinion Score (MOS) of the whole distorted LFI
as their training Ground Truth (GT). Although setting a smaller
batch size can slightly improve the final performance possibly
due to more frequent parameter updates, it also leads to a
significant increase in training time. Therefore, the batch size
is empirically fixed to 32 for a reasonable trade-off. Following
[37], the training set data is trained for 70 epochs with an
initial learning rate of 0.001, and the learning rate is divided
by 10 at epoch 30 and 60. The proposed framework is trained
from scratch with Xavier normal distribution initialization.
Note that no data augmentation operation is used in the data
preparation stage. Suppose that (P̂ ba , P

b
a) and (P̂ bs , P

b
s ) denote

the b-th spatio-angular patch pair and sub-aperture patch pair
in a batch, respectively, and Gb is the corresponding GT.
We employ the widely-used L2 Loss to measure the distance
between the predicted quality and GT. The learning objective
of our proposed framework is to minimize the loss through
backpropagation, as described in Eq. (13)-(14).

L =
1

B

B∑
b=1

(f(P̂ ba , P
b
a , P̂

b
s , P

b
s ;w)−Gb)2 (13)

w
′
= min

w
(L) (14)

where B denotes the batch size, f(P̂ ba , P
b
a , P̂

b
s , P

b
s ;w) is the

predicted patch quality using network weights w with the input
of (P̂ ba , P

b
a) and (P̂ bs , P

b
s ), w

′
denotes the updated network

weights.
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TABLE III
OVERALL PERFORMANCE COMPARISON ON THE WIN5-LID, NBU-LF1.0, LFDD, AND SHU DATASETS. “OVERALL” DENOTES THE

WEIGHTED-AVERAGE RESULTS OVER ALL DATASETS, WHERE WEIGHTS ARE PROPORTIONAL TO THE SIZE OF EACH DATASET. THE BEST AND
SECOND-BEST RESULTS ARE MARKED IN BOLD AND UNDERLINE, RESPECTIVELY.

Metric Types Metrics
Win5-LID NBU-LF1.0 LFDD SHU Overall

PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE

PIQE [14] 0.4820 0.3920 0.9220 0.2561 0.1779 1.0000 0.4201 0.3746 1.0103 0.7780 0.7996 0.6836 0.4767 0.4307 0.9233

NR 2DIQA NIQE [15] 0.6246 0.4482 0.7584 0.4792 0.3701 0.7948 0.5642 0.4449 0.9405 0.9187 0.8920 0.4247 0.6342 0.5252 0.7714

BRISQUE [16] 0.6263 0.4559 0.7530 0.4969 0.3750 0.7910 0.5103 0.4179 0.9597 0.9012 0.8747 0.4614 0.6116 0.5127 0.7854

NQM [17] 0.6509 0.5908 0.9082 0.6479 0.6614 0.6995 0.4461 0.3810 0.9989 0.8581 0.8618 0.5619 0.6081 0.5727 0.8357

FR 2DIQA IFC [18] 0.4945 0.5429 1.0628 0.7440 0.6843 0.6049 0.3683 0.4226 1.0198 0.8853 0.9068 0.4969 0.5689 0.5945 0.8431

HDR-VDR-2 [19] 0.7315 0.7169 0.6643 0.7827 0.7924 0.6212 0.3986 0.5306 1.0368 0.8444 0.8736 0.5861 0.6255 0.6856 0.7956

NR 3DIQA SINQ [21] 0.6051 0.5075 0.7410 0.5276 0.4374 0.7633 0.5892 0.4952 0.8959 0.9189 0.8955 0.4209 0.6498 0.5705 0.7429

FR 3DIQA Chen’s [22] 0.8527 0.8278 0.5083 0.8357 0.8048 0.4902 0.4507 0.5051 0.9580 0.8916 0.8960 0.4947 0.6899 0.7031 0.6899

NR multiview-IQA NIQSV+ [24] 0.3030 0.2174 0.9159 0.3512 0.2339 0.8354 0.3264 0.1944 1.0479 0.4362 0.0757 0.9390 0.3494 0.1812 0.9611

MW-PSNR [25] 0.3647 0.5436 0.9094 0.3371 0.4730 0.8569 0.6189 0.6095 1.0872 0.8514 0.8763 0.6355 0.5673 0.6276 0.9169

FR multiview-IQA
MW-PSNRr [26] 0.3649 0.5573 0.9093 0.3351 0.4452 0.8576 0.4047 0.6472 1.0237 0.8400 0.8735 0.5885 0.4752 0.6403 0.8807

MP-PSNR [27] 0.3645 0.5606 0.9094 0.3333 0.4216 0.8581 0.2344 0.6529 1.0540 0.8364 0.8844 0.5986 0.4030 0.6413 0.8955

MP-PSNRr [26] 0.3648 0.5602 0.9093 0.3334 0.4426 0.8581 0.4321 0.6451 1.0320 0.8139 0.8458 0.7858 0.4809 0.6338 0.9254

BELIF [49] 0.5912 0.5119 0.7572 0.7161 0.6892 0.6291 0.7747 0.7072 0.7103 0.8976 0.8671 0.4784 0.7545 0.6999 0.6560

VBLFI [51] 0.6844 0.6116 0.7041 0.8179 0.7660 0.5027 0.6928 0.6245 0.8238 0.9220 0.8992 0.4100 0.7619 0.7052 0.6559

NR LFIQA
NR-LFQA [50] 0.6952 0.6275 0.6750 0.8327 0.8036 0.4895 0.6647 0.5864 0.8374 0.9390 0.9347 0.3729 0.7585 0.7066 0.6459

Tensor-NLFQ [30] 0.7595 0.7345 0.6327 0.7624 0.7261 0.5856 0.8446 0.7887 0.6025 0.8649 0.8630 0.5424 0.8175 0.7824 0.5926

4D-DCT-LFIQA [55] 0.8267 0.8079 0.5512 0.8381 0.8213 0.4906 0.8206 0.7699 0.6411 0.9400 0.9320 0.3691 0.8499 0.8204 0.5397

DeeBLiF [37] 0.8427 0.8186 0.5160 0.8583 0.8229 0.4588 0.8827 0.8086 0.5267 0.9548 0.9419 0.3185 0.8856 0.8409 0.4688

RR LFIQA LF-IQM [56] 0.3620 0.3438 0.8930 0.4260 0.2700 0.7966 0.4457 0.4287 0.9950 0.3601 0.2960 1.0046 0.4082 0.3558 0.9413

MDFM [58] 0.7303 0.6768 0.6625 0.8444 0.8138 0.4749 0.5725 0.5282 0.9276 0.8275 0.8543 0.6149 0.7056 0.6768 0.7290

FR LFIQA
Min’s [59] 0.7350 0.6645 0.6794 0.7112 0.6577 0.6476 0.5596 0.4094 0.9366 0.8496 0.8470 0.5745 0.6814 0.5949 0.7591

Meng’s [31] 0.6924 0.6347 0.7001 0.8367 0.7819 0.4944 0.3043 0.3493 1.0593 0.9282 0.9203 0.4037 0.6060 0.6021 0.7506

EDDMF (ours) 0.8654 0.8354 0.4839 0.9024 0.8743 0.3866 0.9406 0.9077 0.3794 0.9443 0.9206 0.3575 0.9200 0.8905 0.3961

E. Patch Quality Pooling

Based on the assumption that the quality of the whole LFI
can be reflected in patches, we indirectly evaluate the quality
degradation of the distorted LFI by measuring the quality
degradation in each patch. Therefore, in the test stage, the
output of our proposed EDDMF is the patch quality and a
pooling method is required to convert the quality of all patches
into an overall quality of the distorted LFI. Since patches from
the same LFI are trained with the same GT, we consider all
patches in the same LFI to be equally important and use the
average pooling to generate an overall quality of the distorted
LFI, as shown in Eq. (15).

Q =
1

I×J

I∑
i=1

J∑
j=1

f(P̂ i,ja , P i,ja , P̂ i,js , P i,js ;w) (15)

where Q denotes the overall quality of the distorted LFI, I
and J are the number of patches generated in the vertical
and horizontal and directions, respectively, as calculated in
Eq. (3). f(P̂ i,ja , P i,ja , P̂ i,js , P i,js ;w) represents the predicted
patch quality with the input of a spatio-angular patch pair
(P̂ i,ja , P i,ja ) and a sub-aperture patch pair (P̂ i,js , P i,js ).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets, Experimental Settings, and Evaluation Criteria

To validate our proposed EDDMF, we conduct extensive
experiments on four publicly available LFI datasets: Win5-LID

[6], NBU-LF1.0 [66], LFDD [67], and SHU [68]. TABLE II
provides a detailed summary of these four LFI datasets used
in our experiments.

The Win5-LID dataset includes 220 distorted LFIs derived
from 6 real-world reference LFIs and 4 synthetic reference
LFIs, which are subject to 6 types of distortions with different
distortion levels. Specifically, these distortion types comprise
HEVC, JPEG2000, Linear interpolation (LN), Nearest Neigh-
bor interpolation (NN), and two CNN distortions [69], [70].
Except the two CNN distortions, each of the other four distor-
tions contains 5 distortion levels. The subjective experiment of
Win5-LID dataset adopts Double-Stimulus Continuous Quality
Scale (DSCQS) protocol and interactive mode, which provides
the MOS from 1 (very annoying) to 5 (imperceptible).

The NBU-LF1.0 dataset consists of 8 real-world reference
LFIs and 6 synthetic reference LFIs. Each reference LFI is
processed by 5 reconstruction distortions: NN, Bicubic Inter-
polation (BI), learning based reconstruction (EPICNN) [69],
disparity map based reconstruction (Zhang) [71], and spatial
super-resolution reconstruction (VDSR) [72]. Each distortion
has 3 levels. Therefore, the NBU-LF1.0 dataset contains 210
distorted LFIs. The dataset adopts passive and interactive mode
and DSCQS protocol to conduct the subjective experiment.
The MOS on a 5-point discrete scale is provided.

The LFDD dataset has 8 synthetic reference LFIs and 480
distorted LFIs. A total of 12 common distortion types are
involved: JPEG, JPEG2000, BPG, VP9, AV1, AVC, HEVC,
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Fig. 6. Box-plots of SROCC distribution of LFIQA metrics. (a) Win5-LID dataset; (b) NBU-LF1.0 dataset.

Gaussian noise, Impulse noise, Barrel, Pincushion, and Un-
sharp mask. Each distortion type has 5 distortion levels. The
passive mode and Double-Stimulus Impairment Scale (DSIS)
protocol are adopted for the subjective experiment. The dataset
provides the MOS ranged from 1 to 5.

The SHU dataset includes 240 distorted LFIs based on 8
real-world reference LFIs. The dataset includes 5 distortion
types: JPEG, JPEG2000, Gaussian blur, Motion blur, and
White noise. Each type of distortion has 6 distortion levels.
The passive experimental mode and DSCQS protocol are
employed for the subjective experiment. The dataset provides
the MOS ranged from 0 (bad) to 5 (excellent).

In our experiments, we adopt leave-two-fold-out cross-
validation as the train-test split strategy to report the per-
formance. Specifically, for each dataset, we first divide all
distorted LFIs into K folds according to their corresponding
reference LFIs. Each fold contains all distorted versions of
the same reference LFI. Then we use K-2 folds for training
and the remaining 2 folds for testing, which ensures that the
training and test sets are independent of each other. After
going through all train-test partitions, there are K(K-1)/2
combinations in total. Therefore, we conduct experiments
based on all combinations and report the average result as
the final performance.

In addition, three standard criteria are employed to eval-
uate the performance of all metrics, including Pearson Lin-
ear Correlation Coefficient (PLCC), Spearman Rank Order
Correlation Coefficient (SROCC), and Root Mean Square
Error (RMSE). Here, PLCC measures the linear relationship,
SROCC focuses on the monotonicity, and RMSE evaluates
the predictive accuracy. Higher PLCC and SROCC values
represent better performance, while it is opposite for RMSE.
As recommended in [73], a five-parameter nonlinear function
is adopted for score-mapping process before computing PLCC
and RMSE, as shown in Eq. (16).

f(p) = β1(
1

2
− 1

1 + eβ2(p−β3)
) + β4p+ β5 (16)

where p and f(p) denote the prediction and its nonlinear map-
ping result, respectively, and β1...5 are optimized to minimize

the error between p and its corresponding MOS.

B. Overall Performance Comparison

In this subsection, we conduct comparative experiments to
demonstrate the effectiveness of our proposed framework. The
proposed framework is compared with twenty-three state-of-
the-art IQA metrics, including nine types: three NR 2DIQA
metrics (PIQE [14], NIQE [15], BRISQUE [16]), three FR
2DIQA metrics (NQM [17], IFC [18], HDR-VDR-2 [19]),
one NR 3DIQA metric (SINQ [21]), one FR 3DIQA metric
(Chen’s [22]), one NR multiview-IQA metric (NIQSV+ [24]),
four FR multiview-IQA metrics (MW-PSNR [25], MW-PSNRr
[26], MP-PSNR [27], MP-PSNRr [26]), six NR LFIQA met-
rics (BELIF [49], VBLFI [51], NR-LFQA [50], Tensor-NLFQ
[30], 4D-DCT-LFIQA [55], DeeBLiF [37]), one RR LFIQA
metric (LF-IQM [56]) and three FR LFIQA metrics (MDFM
[58], Min’s [59], Meng’s [31]). In our experiments, leave-two-
fold-out cross-validation is employed for all metrics to report
their performance. For those metrics that can directly predict
scores, we report their performance on the same test set as the
learning-based metrics for fair comparison. In addition, since
2DIQA metrics and multiview-IQA metrics are designed for
2D images and multiview images, respectively, while 3DIQA
metrics are designed for a pair of 2D images, we provide
different experimental methods for different types of metrics.
For 2DIQA metrics and multiview-IQA metrics, we perform
them on each SAI and take the average results of all SAIs as
the final performance. For 3DIQA metrics, each adjacent two
SAIs in the horizontal direction are regarded as left and right
views of the input, and the average performance is reported.
The performance of all metrics is reproduced using the features
or released codes from their authors.

TABLE III shows the overall experimental results on the
Win5-LID, NBU-LF1.0, LFDD, and SHU datasets. We can
find that compared to other IQA metrics, our proposed frame-
work achieves superior performance on the Win5-LID, NBU-
LF1.0, and LFDD datasets, and yields competitive perfor-
mance on the SHU dataset. This may be because 2DIQA
metrics mainly focus on the quality degradation on 2D images,
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TABLE IV
PLCC PERFORMANCE OF DIFFERENT DISTORTION TYPES ON THE WIN5-LID AND NBU-LF1.0 DATASETS. IN EACH CASE, THE BEST TWO RESULTS ARE

MARKED IN BOLD, AND HIT-COUNT TALLIES THE NUMBER OF TIMES EACH IQA METRIC OBTAINING A TOP-TWO RESULT.

Cases Metric Types Metrics
Win5-LID NBU-LF1.0

Hit-count
HEVC JPEG2000 LN NN NN BI EPICNN Zhang VDSR

BELIF [49] 0.8062 0.7275 0.7172 0.7219 0.9244 0.8732 0.6707 0.6886 0.8749 0

VBLFI [51] 0.8037 0.8273 0.8151 0.7261 0.9056 0.9276 0.8729 0.7072 0.9526 0

NR LFIQA
NR-LFQA [50] 0.7641 0.8098 0.7731 0.7920 0.9544 0.9519 0.9157 0.7108 0.8850 0

Tensor-NLFQ [30] 0.8909 0.8340 0.8543 0.8446 0.8517 0.9199 0.8395 0.7135 0.9223 0

4D-DCT-LFIQA [55] 0.9001 0.9365 0.8803 0.8534 0.9386 0.9389 0.8183 0.9048 0.9317 1

Case 1 DeeBLiF [37] 0.9389 0.9254 0.9021 0.9207 0.9610 0.9499 0.9395 0.6659 0.9487 3

RR LFIQA LF-IQM [56] 0.6172 0.7263 0.8284 0.7158 0.5026 0.6764 0.5976 0.5296 0.5517 0

MDFM [58] 0.9446 0.8878 0.8819 0.9004 0.9327 0.9463 0.9483 0.9436 0.9226 1

FR LFIQA
Min’s [59] 0.9777 0.9465 0.8798 0.7775 0.8033 0.8796 0.7890 0.8466 0.9664 3

Meng’s [31] 0.9129 0.7442 0.9486 0.8915 0.8989 0.9550 0.9734 0.7308 0.9652 4
EDDMF (ours) 0.9662 0.9259 0.8747 0.9073 0.9699 0.9660 0.9544 0.9204 0.9534 6

BELIF [49] 0.9669 0.9428 0.9647 0.9242 0.8554 0.7225 0.5406 0.6737 0.8566 1

VBLFI [51] 0.9762 0.9754 0.8676 0.9315 0.9366 0.9389 0.8938 0.6749 0.9172 1

NR LFIQA
NR-LFQA [50] 0.9791 0.9757 0.9520 0.9577 0.9414 0.9324 0.9224 0.7718 0.8773 4

Tensor-NLFQ [30] 0.9409 0.9424 0.8910 0.8481 0.9149 0.8449 0.8064 0.8007 0.9143 0

4D-DCT-LFIQA [55] 0.9261 0.9603 0.9547 0.9094 0.9405 0.8708 0.7972 0.8264 0.8849 1

Case 2 DeeBLiF [37] 0.9474 0.9179 0.9320 0.9616 0.9591 0.9175 0.8952 0.6104 0.9353 3

RR LFIQA LF-IQM [56] 0.5898 0.7151 0.8332 0.4082 0.3198 0.4834 0.4977 0.4783 0.3826 0

MDFM [58] 0.9367 0.8350 0.8843 0.8198 0.8804 0.8683 0.8874 0.8244 0.8627 1

FR LFIQA
Min’s [59] 0.9652 0.9379 0.8944 0.7965 0.7636 0.8005 0.7308 0.7303 0.9051 0

Meng’s [31] 0.8945 0.6740 0.9643 0.8897 0.8347 0.8778 0.9449 0.4086 0.9068 2

EDDMF (ours) 0.9805 0.9795 0.9078 0.9283 0.9477 0.9557 0.9136 0.7872 0.9698 5

but they fail to evaluate the angular consistency between
different SAIs in LFIs. Besides, since multiview-IQA metrics
are designed to measure view-synthesis distortions such as
flickering, stretching, and black holes, they are insensitive to
the quality degradation caused by reconstruction and compres-
sion methods in LFIs. Further, 3DIQA metrics are proposed to
measure the quality of stereoscopic images with wide parallax,
they do not perform well on LFIs with narrow parallax.
Among the above three types of IQA metrics, it is reasonable
that the FR metrics have better performance than the NR
metrics due to the available reference information. LF-IQM
metric [56] is a RR LFIQA metric whose performance relies
heavily on the accuracy of depth map estimation. Although
some existing NR or FR LFIQA metrics achieve competitive
performance on a certain criterion or a certain dataset, they
fail to perform consistently well on all datasets. However,
our proposed EDDMF is not only designed based on the
characteristics of LFIs, but also evaluates the LFI quality
by jointly using hierarchical discrepancy features and local
discrepancy features, which obtains more consistent results
with HVS on most LFI datasets.

In addition, we provide the box-plots of SROCC distribution
of LFIQA metrics on the Win5-LID and NBU-LF1.0 datasets
in Fig. 6. Each box represents the SROCC distribution of
one metric, and the red line denotes the median performance
over all train-test splits. The top and bottom of the blue box
denote the lower and upper quartiles, respectively. The top and

bottom of the dashed line are the maximum and minimum,
respectively. Generally, the blue box with higher red line and
position indicates better performance, while the blue box with
smaller height denotes better stability. As shown in Fig. 6,
we can see that our proposed framework achieves the best
performance with strong stability compared to the state-of-
the-arts.

C. Robustness Against Different Distortion Types

An excellent IQA metric should show strong robustness
with respect to different distortion types. In order to investigate
the effectiveness of the proposed method under different exper-
imental conditions, we conduct the experiments on individual
distortion types in two different cases:
Case 1: Leave-two-fold-out cross-validation. We use the

train-test split strategy that reports overall performance, but
each test fold includes only one distortion type. Then the
average result of K(K-1)/2 iterations is reported as the
performance for each distortion type. In this case, each test
set contains all distortion levels of one distortion type for
two reference LFIs, which mainly investigates the ability for
discriminating different levels of the same LFI.
Case 2: Randomly selection. For each distortion type, we

randomly select a distorted LFI from each reference LFI to
construct the test set. Then we repeat this 100 times and
report the average result as the performance for each distortion
type. In this case, each test set includes one random selected



IEEE TRANSACTIONS ON IMAGE PROCESSING 11

TABLE V
RESULTS OF THE TEST TIME AGAINST OVERALL PLCC PERFORMANCE.

THE BEST AND SECOND-BEST RESULTS ARE MARKED IN BOLD AND
UNDERLINE, RESPECTIVELY.

Metric Types Metrics Test Time (s) PLCC

PIQE [14] 5.1466 0.4767

NR 2DIQA NIQE [15] 6.0077 0.6342

BRISQUE [16] 3.1543 0.6116

NQM [17] 10.1941 0.6081

FR 2DIQA IFC [18] 36.3739 0.5689

HDR-VDR-2 [19] 89.2621 0.6255

NR 3DIQA SINQ [21] 187.7167 0.6498

FR 3DIQA Chen’s [22] 472.7339 0.6899

NR multiview-IQA NIQSV+ [24] 2.5747 0.3494

MW-PSNR [25] 1.0127 0.5673

FR multiview-IQA
MW-PSNRr [26] 1.0039 0.4752

MP-PSNR [27] 18.4434 0.4030

MP-PSNRr [26] 10.1670 0.4809

BELIF [49] 107.8814 0.7545

VBLFI [51] 65.6667 0.7619

NR LFIQA
NR-LFQA [50] 225.2069 0.7585

Tensor-NLFQ [30] 697.6515 0.8175

4D-DCT-LFIQA [55] 169.2623 0.8499

DeeBLiF [37] 4.8533 0.8856

RR LFIQA LF-IQM [56] 589.7851 0.4082

MDFM [58] 0.8537 0.7056

FR LFIQA
Min’s [59] 3.9845 0.6814

Meng’s [31] 30.4872 0.6060

EDDMF (ours) 1.8775 0.9200

TABLE VI
PERFORMANCE DEPENDENCY OF DIFFERENT HYPERPARAMETERS IN

PATCH GENERATION MODULE ON THE WIN5-LID DATASET. HERE, A×A
DENOTES THE CENTRAL ANGULAR RESOLUTION, S×S DENOTES THE SIZE

OF EACH SLIDING WINDOW, T DENOTES THE STRIDE OF THE SLIDING
WINDOW ARRAY.

Hyperparameters Values PLCC SROCC RMSE

3×3 0.8428 0.8155 0.5178

A×A 5×5 0.8654 0.8354 0.4839
7×7 0.8635 0.8351 0.4860

9×9 0.8629 0.8349 0.4891

8×8 0.8506 0.8287 0.5102

S×S 16×16 0.8589 0.8305 0.4946

32×32 0.8654 0.8354 0.4839
64×64 0.8630 0.8232 0.5022

32 0.8668 0.8401 0.4819
48 0.8625 0.8365 0.4883

T 64 0.8654 0.8354 0.4839

80 0.8517 0.8225 0.5046

96 0.8576 0.8298 0.4942

TABLE VII
PERFORMANCE OF CROSS-DATASET VALIDATION. THE MODEL IS TRAINED

AND TESTED USING THE OVERLAPPING DISTORTION TYPES OF TWO LFI
DATASETS.

Distortion Types Training Datasets Test Datasets PLCC SROCC RMSE

NN
Win5-LID NBU-LF1.0 0.9724 0.9626 0.2613

NBU-LF1.0 Win5-LID 0.8230 0.8051 0.5709

JPEG2000
Win5-LID SHU 0.8375 0.8334 0.4426

SHU Win5-LID 0.8624 0.7504 0.5044

distortion level of one distortion type for all reference LFIs,
which focuses on testing the robustness to different scenarios.

TABLE IV shows the experimental results against distortion
types in two cases on the Win5-LID and NBU-LF1.0 datasets.
Due to the space constraint, we only show the PLCC perfor-
mance of LFIQA metrics. In the table, hit-count tallies the
number of times each IQA metric obtaining a top-two result.
It can be found that the FR metrics perform better than the
NR metrics in Case 1, while it is the opposite in Case 2. One
possible reason is that different quality degradation levels of
the same LFI are easier to be distinguished when the reference
LFI is available, while the NR metrics are more suitable
for discriminating the quality of different scenes. However,
the proposed EDDMF outperforms state-of-the-art metrics for
most distortion types in both cases, which fully demonstrates
its robustness and effectiveness.

D. Time Complexity

Time complexity is one of the most important factors in
practical applications. TABLE V exhibits the test time against
overall PLCC performance among all metrics. Here, test time
denotes the runtime for testing a single distorted LFI. For fair
comparison, all the metrics are tested with the same CPU-
only hardware configuration. We only report the runtime of
each metric, excluding the time required for data loading
and model initialization. As shown in TABLE V, it is not
surprising that our proposed framework has much lower time
complexity compared to most existing IQA metrics, because
our framework is executed based on the extracted LFI patches
which greatly reduce the computational complexity. Further,
with such a low computational cost, our proposed framework
still achieves the best performance among all state-of-the-art
metrics.

E. Hyperparameter Dependency

Since there are several manual setting hyperparameters for
generating spatio-angular patches and sub-aperture patches in
the patch generation module, it is necessary to study the per-
formance dependency of the proposed framework with respect
to different hyperparameters. TABLE VI exhibits the perfor-
mance dependency of three hyperparameters on the Win5-LID
dataset, including A×A, the central angular resolution; S×S,
the size of each sliding window; and T , the stride of the
sliding window array. Note that the experimental results of
each hyperparameter are reported when other hyperparameters
are fixed. For hyperparameter A, similar performance can be
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TABLE VIII
PERFORMANCE OF TRAINING ON THE WIN5-LID AND NBU-LF1.0

DATASETS, AND TESTING ON THE NBU-LF1.0 DATASET.

Test Distortion Types Training Datasets PLCC SROCC RMSE

NN
Win5-LID 0.8816 0.8147 0.3169

NBU-LF1.0 0.9699 0.9144 0.1765

BI
Win5-LID 0.9522 0.8986 0.2597

NBU-LF1.0 0.9660 0.9351 0.2416

EPICNN
Win5-LID 0.9581 0.7903 0.1899

NBU-LF1.0 0.9544 0.8061 0.2133

Zhang
Win5-LID 0.7802 0.6246 0.3119

NBU-LF1.0 0.9204 0.8188 0.1952

VDSR
Win5-LID 0.9316 0.8854 0.3005

NBU-LF1.0 0.9534 0.9168 0.2677

All
Win5-LID 0.7782 0.7467 0.5627

NBU-LF1.0 0.9024 0.8743 0.3866

TABLE IX
PERFORMANCE OF CROSS-TYPE VALIDATION.

Datasets Training Types Test Types PLCC SROCC RMSE

Win5-LID
Real-world Synthetic 0.7605 0.7436 0.6495

Synthetic Real-world 0.7986 0.7131 0.5875

NBU-LF1.0
Real-world Synthetic 0.8485 0.8343 0.4799

Synthetic Real-world 0.8594 0.8459 0.4792

obtained when A×A is set to 5×5 or larger, while a smaller
value results in suboptimal performance, it is possibly because
there is not enough angular information to measure the LFI
quality. For hyperparameter S, adopting a moderate value,
i.e., S×S is set to 32×32, achieves the best performance.
One possible explanation is that as the S value increases, a
single patch contains more spatial information while the total
number of generated patches decreases. Therefore, adopting
a moderate value of S maintains a reasonable trade-off and
achieves the best results. For hyperparameter T , the smaller
the value set, the more LFI patches can be obtained. Thus, it
can be found that a smaller value achieves better performance
since more samples are used for training. However, in order to
keep a better trade-off between computational complexity and
quality evaluation performance, we adopt a moderate value of
64 in our framework.

F. Cross-dataset and Cross-type Validation

In this subsection, we investigate the generalization perfor-
mance of the proposed framework from two aspects: cross-
dataset validation and cross-type validation.

From TABLE II we can see that both Win5-LID and NBU-
LF1.0 datasets include the NN distortion, and both Win5-LID
and SHU datasets include the JPEG2000 distortion. Thus,
we train the framework with one distortion type on one
dataset and test it with the same distortion type on another
dataset for cross-dataset validation. As reported in TABLE
VII, it can be found that our framework still achieves good
performance even when trained on other datasets. In addition,
since the SHU dataset contains only real-world LFIs while the
NBU-LF1.0 dataset contains only 3 levels for each distortion

TABLE X
PERFORMANCE OF DIFFERENT FEATURE COMBINATIONS ON THE

WIN5-LID, NBU-LF1.0, AND LFDD DATASETS. HERE, B DENOTES
BASELINE DISCREPANCY FEATURES, H DENOTES HIERARCHICAL
DISCREPANCY FEATURES, AND L DENOTES LOCAL DISCREPANCY

FEATURES.

Datasets Features PLCC SROCC RMSE

B 0.8036 0.7693 0.5618

Win5-LID
B + H 0.8605 0.8288 0.4906

B + L 0.8480 0.8230 0.5068

B + H + L (ours) 0.8654 0.8354 0.4839

B 0.8514 0.7996 0.4706

NBU-LF1.0
B + H 0.8972 0.8621 0.3934

B + L 0.8651 0.8315 0.4574

B + H + L (ours) 0.9024 0.8743 0.3866

B 0.8798 0.7948 0.5311

LFDD
B + H 0.9253 0.8899 0.4244

B + L 0.8912 0.8366 0.5089

B + H + L (ours) 0.9406 0.9077 0.3794

TABLE XI
PERFORMANCE OF DIFFERENT POOLING METHODS ON THE WIN5-LID

DATASET.

Pooling Methods PLCC SROCC RMSE

Median 0.8569 0.8251 0.4969

Min 0.8390 0.8190 0.5232

Max 0.7901 0.7434 0.6016

Average 0.8654 0.8354 0.4839

type, the Win5-LID dataset is much more complex than the
other two datasets. Thus, it is reasonable to find that training
on the Win5-LID dataset achieves better performance than
testing on the Win5-LID dataset for both NN and JPEG2000
distortions, which further demonstrates the excellent cross-
dataset robustness of our framework.

Additionally, we perform the cross-dataset experiment by
training on the whole Win5-LID dataset and testing on the
NBU-LF1.0 dataset. To better investigate the cross-dataset
performance, we compare the performance of training on the
Win5-LID and NBU-LF1.0 datasets respectively, and testing
on the NBU-LF1.0 dataset, as shown in TABLE VIII. It
can be observed that for most individual distortion types,
the model training on the Win5-LID dataset still achieves
competitive performance compared to that training on the
NBU-LF1.0 dataset. Besides, even when testing on the whole
NBU-LF1.0 dataset, the proposed EDDMF still achieves com-
petitive results, which fully demonstrates the robustness and
effectiveness in terms of quality evaluation.

For cross-type validation, since both Win5-LID and NBU-
LF1.0 datasets contain two types of LFIs, i.e., real-world LFIs
and synthetic LFIs, we train the framework with one type
and test it with another type. TABLE IX presents the cross-
type validation performance on the Win5-LID and NBU-LF1.0
datasets. It can be found that the type of LFIs used for training
has a small impact on the performance for both datasets, which
verifies the robustness of our proposed framework.
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TABLE XII
PERFORMANCE OF DIFFERENT FR 2DIQA METRICS ON THE WIN5-LID

DATASET.

Metrics PLCC SROCC RMSE

PNSR 0.8605 0.8308 0.4911

SSIM [65] 0.8654 0.8354 0.4839

G. Ablation Studies

In this subsection, we conduct experiments to investigate
the efficacy of different feature combinations in our proposed
framework. TABLE X exhibits the experimental results on
the Win5-LID, NBU-LF1.0, and LFDD datasets, in which B
denotes baseline discrepancy features, H denotes hierarchical
discrepancy features, and L denotes local discrepancy features.
From the table, we can observe a significant improvement in
performance when incorporating H into B or B+L, indicating
that the angular-dominant hierarchical discrepancy features are
quite discriminative for quality assessment. In addition, we
can see that incorporating L into B, i.e., the combination
of baseline CNN features and handcrafted features, can also
significantly improve the performance. Besides, even com-
bining L with B+H can yield slight improvement, which
demonstrates the effectiveness of the spatial-dominant local
discrepancy features. Moreover, it can be found that the boost
with H is more significant than that with L, indicating that the
angular-dominant hierarchical discrepancy features contribute
more to quality evaluation than the spatial-dominant local
discrepancy features. Finally, the combination of B, H, and L
constitutes our proposed framework and consistently achieves
the best performance on the three datasets.

Since our proposed framework aims to evaluate the overall
quality of the whole distorted LFI, a patch quality pooling
method is required. We explore the effectiveness of four
pooling methods in our proposed framework on the Win5-
LID dataset, including median, min, max, and average pooling
methods. The performance is shown in TABLE XI. It can
be found that using average pooling achieves the best perfor-
mance among the four methods, probably because we adopt
the same training target for all patches from the same LFI,
which also verifies that our framework can be successfully
trained with LFI patches.

In the local discrepancy extraction module, a FR 2DIQA
metric is adopted to measure the local discrepancy scores
between reference and distorted sub-aperture patches. We
conduct experiments on the Win5-LID dataset to investigate
the effectiveness of using different FR 2DIQA metrics for
generating local discrepancy scores. To maintain the efficiency
of the whole framework, we compare two representative
lightweight metrics: PSNR and SSIM [65], and report the
experimental results in TABLE XII. It can be found that using
SSIM to measure local discrepancy scores achieves slightly
better performance than using PSNR. The main reason may be
that SSIM is able to measure the subtle structural differences
between different local regions in LFIs.
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Fig. 7. Sample curves of loss and SROCC performance during training.

H. Training Process

In order to comprehensively show the training process of
the proposed framework, we select the test set containing all
distorted versions of Bikes and dishes reference LFIs from
the Win5-LID dataset as an example, and visualize its loss
and SROCC performance curves during training, as shown
in Fig. 7. It can be found that the proposed framework can
be trained stably and almost converges after training for 30
epochs, which demonstrates the feasibility of training the
framework with LFI patches.

I. Limitation Analysis

Although the proposed EDDMF demonstrates its high
efficiency and remarkable performance in terms of quality
evaluation in various scenarios, it still has some limitations,
which potentially provide valuable insights and inspiration
for the follow-up works. First and foremost, we can observe
from TABLE III that EDDMF performs significantly better
than DeeBLiF on the Win5-LID, NBU-LF1.0, and LFDD
datasets, but slightly worse than DeeBLiF on the SHU dataset.
A possible explanation is that the SHU dataset involves only
spatial distortions, while other three datasets have both angular
and spatial distortions. In the case of the SHU dataset, the
angular-dominant hierarchical discrepancy features may have
a counterproductive effect on the evaluation of LFI quality.
Second, the proposed framework is only applicable to 4D LFIs,
i.e., LFIs with two angular dimensions, but not to 3D LFIs
with one angular dimension, such as LFIs in [74]. Finally,
most current LFIs have relatively low angular resolution
(typically 9×9) due to the resolution trade-off of the LFI
acquisition hardware. The proposed framework demonstrates
high efficiency in handling such low angular resolution LFIs.
However, as the angular resolution increases, more SAIs need
to be introduced to ensure accurate quality evaluation. As a
result, the computational complexity of our framework will
increase accordingly.

V. CONCLUSION

In this paper, we present an Efficient Deep Discrepancy
Measuring Framework (EDDMF) for full-reference light field
image quality assessment. Considering the high-dimensional
characteristic of LFIs, we propose to evaluate the LFI qual-
ity by measuring the quality of LFI patches, which greatly
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reduces the computational complexity. Thus, we present a
patch generation module to generate spatio-angular patches
and sub-aperture patches for quality assessment. Besides, con-
sidering that spatial and angular information are two different
characteristics of LFIs, we argue that they should be treated
differently to maximize the efficiency and effectiveness. To
this end, we propose a CNN-based hierarchical discrepancy
network to extract the angular-dominant hierarchical discrep-
ancy features between reference and distorted spatio-angular
patches. Further, we propose a local discrepancy extraction
module to extract the spatial-dominant local discrepancy fea-
tures between reference and distorted sub-aperture patches,
which are regarded as complementary features to provide a
more comprehensive description of the quality degradation in
patches. Experimental results on four publicly available LFI
datasets show that our proposed EDDMF achieves superior
performance and lower computational complexity compared
with several types of state-of-the-art IQA metrics. In the future,
we will consider to delve into LFI’s characteristics and explore
the potential of CNN structures in LFIQA metrics.
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