
HAL Id: hal-04356602
https://hal.science/hal-04356602

Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the implementation of Hybridizable Discontinuous
Galerkin discretization for linear anisotropic elastic wave

equation: Voigt-notation and stabilization
Ha Pham, Florian Faucher, Hélène Barucq

To cite this version:
Ha Pham, Florian Faucher, Hélène Barucq. On the implementation of Hybridizable Discontinuous
Galerkin discretization for linear anisotropic elastic wave equation: Voigt-notation and stabilization.
RR-9533, INRIA Bordeaux. 2023, pp.79. �hal-04356602�

https://hal.science/hal-04356602
https://hal.archives-ouvertes.fr


IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
95

33
--

E
N

G

RESEARCH
REPORT
N° 9533
December 2023

Project-Team Makutu

On the implementation of

Hybridizable Discontinuous Galerkin

discretization for linear anisotropic

elastic wave equation: Voigt-notation

and stabilization

Ha Pham, Florian Faucher, and Hélène Barucq





RESEARCH CENTRE
BORDEAUX – SUD-OUEST

200, avenue de la Vieille Tour
33405 Talence Cedex

On the implementation of Hybridizable
Discontinuous Galerkin discretization for
linear anisotropic elastic wave equation:

Voigt-notation and stabilization

Ha Pham∗, Florian Faucher∗, and Hélène Barucq∗

Project-Team Makutu

Research Report n° 9533 — December 2023 — 76 pages

Abstract:
This work is concerned with implementing the hybridizable discontinuous Galerkin (HDG) method
to solve the linear anisotropic elastic equation in the frequency domain, focusing in particular on
providing a compact description of the discrete problem and an optimal choice of stabilization in
defining the HDG numerical traces. Voigt notation is employed in the description of the discrete
problem in order to facilitate matrix operation and to provide efficient book-keeping of physical
parameters. Additionally, a first-order formulation working with the compliance elasticity ten-
sor is employed to allow for parameter variation within a mesh cell, for better representation of
complex media. We determine an optimal choice of stabilization by constructing a hybridized
Godunov-upwind flux for anisotropic elasticity possessing three distinct wavespeeds. This stabi-
lization removes the need to choose judiciously scaling factors and can be used as a versatile choice
for all materials. Its optimality is established by comparing with identity matrix-based stabiliza-
tion in a wide range of values for the scaling factor. Numerical investigations are carried out in
two and three dimensions, for isotropic elasticity and material with varying degree of anisotropy.
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1 Introduction

In this work, we implement Hybridizable Discontinuous Galerkin (HDG) method to solve the time-
harmonic linear anisotropic elastic equation in two and three dimensions. This is carried out in the
context of simulating wave propagation in the frequency domain for heterogeneous Earth subsurfaces
ranging from local to global scale, and to be employed in full waveform inversion (FWI) algorithms. Such
applications require discretization methods that can handle material heterogeneity and nonconforming
meshes, while, at the same time, provide accurate and stable performance at tenable computational
costs due to the large scale of the domain and high number of iterations employed in FWI. Finally, an
ideal candidate also exploits efficiently advanced and parallel computing architecture. A method that
can meet these requirements is the HDG method. The form employed in this work follows the original
HDG method devised by Cockburn and co-authors [19, 21] for second-order elliptic equation, which was
adapted and analyzed for Helmholtz equation in [39]. In implementing HDG method for elastic equation,
the contributions of our work are centered around the following three main points.

1. Starting from a systematic formalism based on Voigt notation, our work writes the discretized prob-
lem in compact matrix form, which handles efficiently general anisotropy and facilitates numerical
implementation.

2. A hybridized numerical flux for HDG method is constructed for anisotropy under the assumption
of three distinct wave speeds, by extending the hybridization technique of upwind flux in [53].

3. In-depth numerical investigations are carried out to study the effect of stabilization operator in the
definition of numerical trace for varying degrees of anisotropy. This is in terms of the form of the
stabilization matrix-operator, that can be a multiple of the identity matrix or a symmetric matrix
containing material parameters, or from hybridizing Godunov-upwind fluxes.

Before developing further discussion, we cite some description of HDG method and refer to [3, 21, 15,
52, 49, 34] and the recent survey [17] for more in-depth discussion. For a review of the implementation
of HDG method for wave equation to fluid flow and continuum mechanics, in both time and frequency
domain, we refer to [31] and [35, Section 2]. Other methods related to HDG are Weak Galerkin or
Hybrid High Order, for elasticity, cf. [60] and [26, 18]. HDG method was initially introduced in [19, 21]
to remedy a disadvantage in terms of computational cost of Discontinuous Galerkin (DG) approximations
compared to standard Continuous Galerkin (CG) discretizations reinforced with static condensation. By
relaxing continuity constraints of solution between mesh elements, DG family is able to capture ‘physically
relative’ discontinuity without producing spurious oscillation1, which forms one of the main advantages

1We refer to [23, 14] for an overview of the development of DG method since the seminal work of Reed and Hill in 1973
[48]. From its development in 1973 for the neural transport equation, a hyperbolic scalar equation, DG discretization was
extended to time-dependent hyperbolic conservation law, computational fluid dynamics, and to elliptic equation. A unified
treatment of DG methods for elliptic equation is given in [2], cf. in particular Table 3.1.
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of DG methods compared to Finite Difference and Finite Volume ones, in addition to their flexibility to
handle complicated geometries (CG method as well), adaptive strategies, and being highly parallelizable,
[23]. However relaxing continuity constraints is obtained by doubling degrees of freedom at interior edges,
which leads to high computational cost. While static condensation presents a strategy to reduce this cost,
it is not applicable to all DG methods, in particular those containing coupling of interior nodes of an
element with neighboring ones. As described in [15, 16], an HDG method is a DG method amenable to
hybridization and thus static condensation.

In more recent literature, HDG method is directly defined as a two-staged process in which the origi-
nal problem is written as a union of local boundary problems on each mesh cell whose boundary data are
the hybrid variables, and the local problems are linked by transmission conditions which together with
inversion of local problem results in a global problem in the hybrid variable defined on the skeleton of
the mesh, [15]. HDG method retains the attractive features of the DG family, being locally conservative,
flexible with h-p adaptivity strategy and thus unstructured nonconforming meshes, and highly paralleliz-
able, e.g., [62, Section 4]. Additionally, HDG method allows for unified treatment of boundary condition
and numerical flux [45], and is amenable to hybrid computing architecture, cf., e.g., [28]. In simple formu-
lations using L2-based approximation, which are non-conforming bases employing polynomial functions,
HDG method provides optimal convergence which is also observed even when the primal variable and its
gradient are approximated with polynomials of the same degree, see further discussion in Remark 10. In
comparing with CG method, HDG method is also observed to be more stable for convection-dominated
problems, cf. [31], while numerical results in [43, 52] for elastostatics show higher convergence rate for
HDG using the same mesh and degree of approximation. For in-depth comparison of HDG with CG
and other DG methods, we further refer to [41, 36, 62] and [46] in the context of incompressible fluid
flow with high-order elements; see also [32] for sparsity comparison. In the context of seismology in fre-
quency domain, for local or regional seismology, Finite Difference method can outperform Finite Element
method; however it requires structured grids, which impedes taking into consideration strong background
variation, topography (roughness of boundary) and implementation about boundary conditions, cf. [58,
Section 4.2].

Works implementing HDG for elasticity are e.g., [7] for time-harmonic elasticity, [49] for static isotropic
elasticity, [52, 33, 24, 27] for static elasticity allowing anisotropy, [53, 44, 31] in time-domain isotropic
elasticity. In [49, 34], authors employ HDG-Voigt in their formulation, in addition to curved mesh feature
in [34]. In [52, 33, 24], authors work with general form of the elastic equation thus allow for anisotropy,
however their numerical investigation only consider isotropy. While [53] hybridizes the Godunov-upwind
flux employed by [61] for DG method in time-domain problem, other works use multiple of identity
stabilization, with the exception of [52, 33, 24] which propose stabilization in terms of the Kelvin–
Christoffel matrix. In comparison to these references, our work contains the following new aspects
(references are also discussed and compared in more details in Appendix C with respect to the choice of
primal and mixed variables, and stabilization operators used to define the numerical traces).

1. While Voigt notations are also used with HDG method in [49], referred to as the HDG-Voigt
method, we employ it in a more systematic way to provide a compact treatment of the discretized
problem with anisotropic elasticity, and of the construction of hybridized Godunov-upwind flux.
Our formalism, cf. Section 3, starts from the introduction of Voigt notation in [11], and offers a
matrix-block alternative to the brute-force component-wise description which lists each component
of the discretized problems. This latter approach can quickly become cumbersome not only in
formal writing, but also renders code building daunting, especially for general anisotropy in 3D, cf.
[7, Appendix B, Sections 5.4.1 and 5.4.2]. Voigt formalism offers better organization not only in
writing but also in coding, bringing out block-structure pattern, which enables matrix operations
and thus optimization of the direct solver. Additionally, good book-keeping of physical materials
will be indispensable in the second stage which is inversion.

2. We extend to anisotropy the method employed by [53] to hybridize the upwind flux constructed in
[61] for DG formulation in time domain. The main ingredients in hybridization are the exact solution
of the Riemann problem and the fact that they satisfy the Rankine–Huguniot jump condition. The
HDG numerical trace constructed in this way, despite having a more complicated form, arises
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6 H. Pham & F. Faucher & H. Barucq

naturally in the sense that it is rigorously derived, rather than being simply proposed, as remarked
in [8]. The ingredients for anisotropy case remain the same as in isotropy: exact solution of
the Riemann problem and Rankine–Hugoniot jump conditions2. The name ‘Godunov-upwind’ is
adopted from [8, 9, 10], in which hybridization was carried out following different approaches;
however that employing Rankine–Hugoniot jump condition is recognized in sequel work [9, 10]
(where the hybridized flux is also called ‘Rankine–Hugoniot’ flux) to be more natural and direct.
Also employing notion of Riemann problem to devise HDG scheme are, e.g., [59, 43] and the
references therein, in the context of compressible fluid flow (in [59], hybridization is carried out
with Lax-Friedrichs, Roe and Harten-Lax-Van Leer approximate Riemann solver).

3. As mentioned above, most implementations with HDG method for elasticity employ multiple of
identity stabilization (τ Id, with Id the identity matrix and τ a scalar coefficient) with the exception
of [52, 33, 24] and [53] that use the Kelvin–Christoffel (KC) matrix and hybridizing Godunov-upwind
flux, respectively. It is commented in [31] that for linear elasticity, the choice of the stabilization
matrix-operator has slight effect on the accuracy of the approximation3, allowing for a wide range of
choices, and that the multiple of identity stability is as effective as more complicated ones. Regarding
the effect of the scaling factor in multiple of identity stabilization, numerical investigation for
Helmholtz equation has been carried out in [38] with τ in the complex plane, and for static isotropic
elasticity in [49]. For static isotropic elasticity, numerical results in [52, 33] compare between
multiple of identity stabilization and one with KC matrix. We note that for elastodynamics, even for
isotropy, there are no numerical investigations comparing between multiple of identity stabilization
and other more complicated forms. We extend the numerical investigation in these references
to dynamic elasticity for both isotropy and anisotropy. We investigate whether the stabilization
matrix-operator should contain the anisotropy of the material. Intuitively, multiple of identity
stabilization performs well with the condition that the scaling factor τ is chosen appropriately in
terms of sign and magnitude, while without additional choosing, the Godunov flux offers a reference
optimal performance. We also extend the investigation in [38] to elasticity with scaling factor τ
taking value in the complex plane.

4. Our formulation of the wave equations in linear elasticity is written in terms of the compliance
tensor S instead of the usual stiffness tensor C = S−1. This allows us to easily treat physical
properties that vary within the cell avoiding having to derive these properties, see Subsection 6.3.
Firstly, it allows us to treat highly varying properties while keeping large-cell discretization, hence
keeping high-order polynomial discretization, which is critical for the efficiency of the HDG method
compared to CG one, [28]. Secondly, it allows us to have a flexible representation of the physical
properties on the discretized domain, which is a key-ingredient for inversion, [30].

The organization of this report is as follows. We first introduce the first-order formulation for the elas-
tic equation and its HDG formulation in Section 2. In order to prepare for discretization and construction
of the Godunov flux, we develop a formalism based on Voigt notation in Section 3. The discretized prob-
lem in matrix form is developed in Section 4. A summary of the stabilization investigated in this paper
is given in Subsection 4.4 together with a detailed discussion of literature in Appendix C. In Section 5,
the basic ingredients of the Riemann problem are given in Subsections 5.1 and 5.2, and the construction
for anisotropy is carried out in Subsection 5.4. Finally, we carry out numerical experiments in Sections 6
and 7, respectively for isotropic and anisotropic media.

2These are also employed in [56, 55, 63] to construct upwind flux for DG implementation in time domain. Although
constructed from the same ingredients, the DG numerical flux in [61, 56, 55, 63] depends on information both from left and
right of the interface, while the hybridized HDG numerical fluxes in [53] and in our work are defined from one-sided data.

3It is beyond our scope to consider nonlinear-elasticity. However it is interesting to note the remark in [31, Section 4.2.4]
that a complicate form of stabilization matrix containing information of the stiffness tensor is not suitable for nonlinear
elasticity in time. They cite in specific the stabilization in [52], i.e., the Kelvin–Christoffel stabilization which was proposed
for linear electrostatics. The question is whether this remark pertains to the hybridized Godunov form in [53], i.e, MGodunov

(4.63) derived for linear isotropic elasticity.
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HDG discretization for linear anisotropic elastic wave equation 7

2 HDG Formulations for time-harmonic linear elasticity

As mentioned in the introduction, in order to reduce the computational cost due to the doubling of
degrees of freedom at an interior edge in a DG method, HDG formulation employs two strategies: the
hybridization of mixed method, and static condensation. Firstly, the original problem is written as a
union of local boundary-valued problems defined for each mesh cell with boundary data a hybrid variable.
Secondly, local problems are introduced and are linked by transmission conditions (or jump conditions)
which constrain weakly the continuity of the solutions through numerical flux. With HDG method, the
local problems are solved in mixed formulation with a pair of unknowns made up of the original unknown
(also called primal), a mixed unknown (usually the derivatives of the primal), and the boundary data
given by the hybrid variable for Dirichlet problem, that is, the trace of the primal unknown. The global
problem is written only in terms of the hybrid variables defined only on the skeleton of the mesh, then
the primal and mixed unknowns are found via the inversion of local problems which can be carried out
in a parallel manner as they are independent on each element of the discretized domain.

Remark 1 (On hybrid, hybridization and mixed methods). We cite here some explanation from [21, 15]
on the origins of the name of the HDG method. As explained in [21], the name ‘hybrid’ comes from
p.421 in the book of Ciarlet (1978) [13] and designates any finite-element methods whose set of unknowns
consist of a primal unknown, a mixed unknown (usually a derivative of the primal one) and the trace of
the primal unknown, usually denoted by λ along the skeleton. This is also called Lagrange multiplier in
the work [2] (1985) associated with the continuity of the mixed unknown, specifically jump of the flux.
As explained in [15, Section 2.3] and [21, Section 1.2], hybridization is what allows a mixed method
to undergo static condensation. Commonly, a mixed method corresponds to a first-order formulation,
solving simultaneously for the primal/original unknown and a mixed unknown (usually a derivative of the
primal one). For instance for the Poisson equation ∆w = f , the unknowns are (q := ∇w,w). In mixed

methods, the left-hand side is written as a system

(
A B
Bt 0

)(
qh

wh

)
, where A is not block-diagonal due to

the requirement of strong continuity of qh, therefore static condensation cannot be performed to eliminate
qh. This problem is remedied by introducing an approximation of q which allows discontinuity from one
element to another, and a hybrid unknown ŵ approximating the trace of w on the skeleton of the mesh.
DG methods amenable to the hybridization approach in [21] are those whose globally coupled unknowns
are the numerical trace, cf. [21, Section 1.3]. Additionally, as explained in the same reference, examples
of DG methods that are not hybridizable are those presented in [3] with the exception of some local DG
(LDG) methods, since they involve no dependency between the numerical trace and the mixed unknown.
For original article on hybridization of mixed method, we further refer to [20].

2.1 Notations

We list here the operations on tensors employed, working with the following objects,

– fourth-order tensor S = (Sijkl)
3
i,j,k,l=1,

– matrix χ = (χkl)
3
k,l=1, and χ̃ = (χ̃kl)

3
k,l=1 ,

– vector v = (vi)
3
i=1, w = (wi)

3
i=1.

Tensor-valued functions whose components taking value in a function space V are written as,

vector-valued Vn , matrix-valued Vn×n , symmetric
matrix-valued V

n×n
sym . (2.1)

Tensor operations We have the standard dot product

Vector dot
product v ·w =

3∑
j=1

vjwj (2.2a)

fourth-order tensor
matrix product (Sχ)ij =

∑
k,l

Sijkl χkl (2.2b)

Matrix-vector
product χv =

3∑
j=1

χij vj (2.2c)

Matrix
contraction χ : χ̃ =

3∑
i,j=1

χij χ̃ij . (2.2d)
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8 H. Pham & F. Faucher & H. Barucq

The tensor product vector between two vectors v and w is written as v⊗w and defines a matrix whose
components in Cartesian basis are

(v ⊗w)ij = vi wj . (2.3)

Denote the bilinear form between two vectors v, w with matrix χ such as,

v · χ ·w =

3∑
i,j=1

vi χij wj . (2.4)

Differential operations Gradient of vector is given by matrix with rows indexed by i and columns
by j,

(∇w)ij = ∂jwi (2.5)

We denote by ∇s the symmetric gradient for a vector w, with t denoting matrix transpose,

∇sw :=
∇w + (∇w)t

2
. (2.6)

The divergence of a matrix χ is given by a vector whose components are given by,

(∇ · χ)i =
3∑

j=1

∂jχij . (2.7)

2.2 First-order systems of wave equations in linear elasticity

We consider the propagation of time-harmonic waves in linear elasticity, given in terms of the displacement
u or velocity v defined such that v := −iω u. We therefore work with the following two variants (which
are equivalent) of the elastic wave equation. Considering a domain Ω and an interior source f , the wave
equations are given by (e.g., [11]),

Formulation (u,σ)S

{
− ω2 ρ(x)u(x, ω) − ∇ · σ(x, ω) = f(x, ω) ,

S(x)σ(x, ω) = ∇su(x, ω) .

(2.8a)

(2.8b)

Formulation (v,σ)S

{− iω ρ(x)v(x, ω) − ∇ · σ(x, ω) = f(x, ω) ,

iωS(x)σ(x, ω) = −∇sv(x, ω) .

(2.9a)

(2.9b)

Here, σ is the stress tensor, ρ is the density, S is the compliance tensor which is the inverse of the stiffness
tensor S := C−1.

Remark 2. The two variants in (2.8) and (2.9) are analogous to those for the Helmholtz equation
(acoustic wave) with a first or second-order in ω, cf., [39, 30] and [25] respectively. We note that only
the variant (u,σ)S gives the formulation for elastostatics as ω → 0. Other formulations equivalent to
(2.8) and (2.9) are also discussed in [42, Section 6], cf. continued discussion in Appendix C focusing on
the form of stabilization operator. For instance, variants found in literature include,

(u,σ)C

{
− ω2 ρu − ∇ · σ = f ,

σ = C (∇su) ,

(2.10a)

(2.10b)
(v,σ)C

{− iω ρv − ∇ · σ = f ,

iωσ = −C(∇sv) ,

(2.10c)

(2.10d)

(u, ϵ)C

{
− ω2ρu − ∇ · (Cϵ) = f ,

ϵ = ∇su ,

(2.10e)

(2.10f)
(v, ϵ)C

{
− iωρv − ∇ · (Cϵ) = f ,

iωϵ = −∇sv .

(2.10g)

(2.10h)

The strain tensor is ϵ := ∇su. Note that our choice of working with the compliance tensor S rather
than the stiffness tensor C is motivated as it is more convenient to allow for physical properties that vary
within each element of the discretized domain, see Subsection 6.3.
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HDG discretization for linear anisotropic elastic wave equation 9

2.3 Discretization domain

To solve numerically the elastic wave problem, the domain Ω is discretized with an ordered set Th (also
referred to as the mesh) of non-overlapping elements Ke, 1 ≤ e ≤ |Th|, providing a partition of Ω:

Th = {Ke
∣∣1 ≤ e ≤ |Th|} , Ω =

|Th|⋃
e=1

Ke := Ωh . (2.11)

For simplicity, we have assumed that the domain used for numerical computation Ωh is exactly the
original physical domain Ω. Notation e is the index of element Ke in the set Th, the size of which is |Th|.
In our numerical implementation, we exclusively work with simplexes, thus K is a tetrahedron in 3D and
a triangle in 2D.

The set of faces in the mesh Th is denoted by Σh. It consists of the union of the faces F which also
form the boundary of all element K in Th,

Σh =

|Th|⋃
e=1

∂Ke = Ωh \
|Th|⋃
e=1

◦
Ke = {Fk

∣∣1 ≤ k ≤ |Σh|} . (2.12)

Here, for a domain K, we have written
◦
K to denote its interior, that is,

◦
K = K \ ∂K . (2.13)

Index k is the global index of the face F in Σh, each of which has also a local index with respect to the
element K that contains it, cf. discussion in Subsection 4.1, in particular (4.1). We distinguish between
the interior faces, also called interfaces, and boundary ones which forms the boundary of Ωh,

Σ = Σint ∪ Σ∂ , Σ∂ = ∂Ωh = ΣN ∪ ΣD ∪ Σ∞ . (2.14)

Here, the boundary of the domain, Σ∂ consists of non-overlapping regions where Neumann, Dirichlet,
and Robin boundary conditions are imposed, respectively ΣN, ΣD and Σ∞.

Jump operator For a scalar quantity f regular enough defined on the interior of domain K, to denote
its zero-th order trace operator along ∂K, we write

f |∂K := lim
h→0+

f(x− hν) , ν the outward-pointing normal . (2.15)

Consider an interface F shared between elements K+ and K− i.e., F = ∂K+ ∩ ∂K− . Denote by ν± the
outward-pointing normal vector defined on ∂K±. At interface F, the jumps J · K of a vector v and of the

traction of a matrix w defined on
◦
K+ ∪

◦
K− are respectively defined as

JvK := v|K+ − v
∣∣
K− , JwνK := w|K+ν+ +w|K−ν− . (2.16)

2.4 Statement of HDG problem for formulation (v,σ)S

Strong form The HDGmethod comprises of local problems defined on each cellK ∈ Th, for formulation
(v,σ)S of (2.9), we have 

iω ρv − ∇ · σ = f , on K ,

iω Sσ = −∇sv , on K ,

v = λv , on ∂K .

(2.17a)

(2.17b)

(2.17c)

We note that the local problem is a boundary value problem with prescribed Dirichlet condition λv ∈
L2(∂K). The trace λv is determined by the conservativity condition4,

JσνK = 0 on F ∈ Σint. (2.18)

4Originally, the continuity of the global solution is given by JvK = 0 and JσνK = 0 along Σint. The first one is satisfied

automatically by Dirichlet condition (2.17c) which obliges v|K+ = v|K− on interface F ∈ K+ ∩ K−. In another word,
JvK = 0 for all F ∈ Σint.

RR n° 9533



10 H. Pham & F. Faucher & H. Barucq

On the boundary of the domain Σ∂ , the three types of boundary conditions are as follow,

λv = 0 on ΣD , Dirichlet boundary,

σν = 0 on ΣN , Neumann boundary,

σν = Z λv on Σ∞ , Robin boundary.

(2.19)

The last condition represents a low order absorbing boundary condition with impedance-like matrix Z.

Weak form To state the weak form, in addition to convention listed in (2.1), we also introduce the
space:

H(K) :=
{
A =

(
aij
)3
i,j=1

| A = At, ai ∈ L2(K)3 and ∇ · ai ∈ L2(K) ,

where ai := (aij)
3
j=1 , i = 1, 2, 3

}
.

(2.20)

On ∂K, given v̂ = λv and a definition of σ̂ν in terms of λv and (v,σ)| ◦
K
, the weak form consists in

finding (v,σ,λv) that solve

1. The local problems on each K ∈ Th: for all test-functions (ϕ,Ψ) ∈ H1(K)3 × H(K),
− iω

∫
K

ρv · ϕ dx +

∫
K

σ : ∇ϕdx −
∫
∂K

ϕ · σ̂ν dsx =

∫
K

f · ϕ dx ,

iω

∫
K

Sσ : Ψ dx =

∫
K

v ·
(
∇ ·Ψ

)
dx−

∫
∂K

ν ·Ψ · v̂ dsx ;

(2.21a)

(2.21b)

2. The global problem is given by conservativity condition on Σint: for ξ ∈ L2(Σint),∫
Σint

Jσ̂νK · ξ dsx = 0 , (2.22)

and boundary conditions (2.19) write as,
λv = 0 on ΣD ;

∫
ΣN

σ̂ν · ξ dsx = 0 , ∀ξ ∈ L2(ΣN) ;∫
Σ∞

(iω σ̂ν −Z λv) · ξ dsx = 0 , ∀ξ ∈ L2(Σ∞) .

(2.23)

Finite element spaces Below we write L2(Ωh)
3×3
sym to denote the space of symmetric 3 × 3 matrices

(thus w = (wIJ)I,J=x,y,z, with wIJ = wJI). Introduce the global finite element spaces

Uh = {u = (uI)I=x,y,z ∈ L2(Ωh)
3 : uI |K ∈ Uh(K), ∀K ∈ Th} ;

Vh = {v = (vIJ)I,J=x,y,z ∈ L2(Ωh)
3×3
sym : vIJ |K ∈ Vh(K), ∀K ∈ Th} ;

Mh = {w = (wI)I=x,y,z ∈ L2(Σh)
3 : µI |F ∈Mh(F), ∀F ∈ Σh} .

(2.24)

The local function spaces Uh(K), Vh(K) and Mh(F) are generally spaces of polynomials of finite degree
on the corresponding domain. Denote Pk(D) the space of polynomials of degree k defined on domain
D ⊂ R3. As common choice5 for elasticity using nonconformal spaces (L2 space), same degrees are chosen
for all three spaces, e.g., [52, 7, 31],

Uh(K) = Vh(K) = Pk(K) , Mh(F) = Pk(F) . (2.25)

5The local function spaces can also be allowed to have different degrees. In [47, p.2 and Table 1],

Uh(K) = Pk+1(K) , Vh = Pk , Mh(F) = Pk(F) .
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Numerical trace of traction The numerical trace of the traction is defined as

σ̂ν = σh ν − τv (vh − λvh) . (2.26)

In the current form, the stabilization operator τv is usually a symmetric definite positive matrix, a list
of the variants considered in our work is further detailed in Subsection 4.4. We next substitute this into
(2.21)–(2.23) to obtain the approximate problem below.

Approximate problem Find (vh,σh,λvh) ∈ Uh × Vh ×Mh that solve,

1. Local problems on each element Ke ∈ Th, for all test functions (ϕ,Ψ) ∈ Uh × Vh,
− iω

∫
K

ρvh · ϕ dx−
∫
K

(∇ · σh) · ϕdx+

∫
∂K

ϕ · τv · (vh − λvh) dsx =

∫
K

f · ϕdx ,

iω

∫
K

σh : S : Ψ dx =

∫
K

vh ·
(
∇ ·Ψ

)
dx−

∫
∂K

ν ·Ψ · λvh dsx ,

(2.27a)

(2.27b)

2. Interface and boundary problems Conservativity and Neumann conditions give,

|Th|∑
e=1

∫
∂Ke∩(Σint∪ΣN)

(
ξ · σh · ν − ξ · τv · (vh − λvh)

)
dsx = 0 , ∀ξ ∈Mh(Σint ∪ ΣN) . (2.28)

The Robin boundary condition (2.19) gives, ∀ξ ∈Mh(Σ∞),

|Th|∑
e=1

∫
∂Ke∩Σ∞

(
ξ · σh · ν − ξ · τv · (vh − λvh) − ξ · Z · λvh

)
dsx = 0 , (2.29)

The Dirichlet condition is imposed strongly such that,

λvh = 0 , on ΣD . (2.30)

2.5 Statement of HDG problem for formulation (u,σ)S

The HDG problem associated with formulation (u,σ)S follows the same step as above. The strong form
associated with (2.8) is 

− ω2 ρu − ∇ · σ = f , on K ,

Sσ = ∇su , on K ,

u = λu , on ∂K .

(2.31a)

(2.31b)

(2.31c)

We now use û = λu on ∂K, and a definition of σ̂ in terms of λu and (u,σ)| ◦
K
. The weak form is to find

(u,σ,λu) that solve

1. The local problems on each K ∈ Th, for all (ϕ,Ψ) ∈ H1(K)3 ×H1(K)6, are,
− ω2

∫
K

ρu · ϕ dx +

∫
K

σ : ∇ϕdx −
∫
∂K

ϕ · σ̂ · ν dsx =

∫
K

f · ϕ dx ,∫
K

σ : S : Ψ dx = −
∫
K

u ·
[
∇ ·Ψ

]
dx+

∫
∂K

ν ·Ψ · ûdsx .

(2.32a)

(2.32b)

2. The global problem is given by conservativity condition on Σint: for ξ ∈ L2(Σint),∫
Σint

Jσ̂νK · ξ dsx = 0 (2.33)
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12 H. Pham & F. Faucher & H. Barucq

and boundary conditions (2.19),
λu = 0 on ΣD ;

∫
ΣN

σ̂ν · ξ dsx = 0 , ∀ξ ∈ L2(ΣN) ,∫
Σ∞

(σ̂ν −Z λu) · ξ dsx = 0 , ∀ξ ∈ L2(Σ∞) .

(2.34)

The numerical trace of the traction is now defined (with a list of variants for τu given in Subsection 4.4)

σ̂ν = σhν − τu(uh − λuh) . (2.35)

Substitute this into (2.32)–(2.34) to obtain the approximate HDG problem:

Approximate problem Find (uh,σh,λuh) ∈ Uh × Vh ×Mh that solve,

1. Local problems on element Ke ∈ Th, for all test functions (ϕ,Ψ) ∈ Uh × Vh,
− ω2

∫
K

ρuh · ϕdx−
∫
K

(∇ · σh) · ϕ dx+

∫
∂K

ϕ · τu(uh − λuh) dsx =

∫
K

f · ϕ dx,∫
K

σh : S : Ψ dx = −
∫
K

uh · ∇ ·Ψdx+

∫
∂K

ν ·Ψ · λh dsx .

(2.36a)

(2.36b)

2. Interface and boundary problems Conservativity and Neumann conditions give,

|Th|∑
e=1

∫
∂Ke∩(Σint∪ΣN)

(
ν · σh · ξ − ξ · τu · (uh − λuh)

)
dsx = 0 , ∀ξ ∈Mh(Σint ∪ ΣN) . (2.37)

The Robin boundary conditions (2.19) give, ∀ξ ∈Mh(Σ∞),

|Th|∑
e=1

∫
∂Ke∩Σ∞

(
ν · σh · ξ − ξ · τu · (uh − λuh) − ξ · Z · λuh

)
dsx = 0 . (2.38)

The Dirichlet condition is imposed strongly,

λuh = 0 , on ΣD . (2.39)

3 Voigt notations

Streamlined and compact writing of the discretized problem is useful for clear writing but also indispens-
able in view of building direct solver that can maximize efficient matrix operations and block storage.
The Voigt notation (e.g., [11]), is employed to represent not only the tensors, but also operations on
them including differential operators in Subsections 3.2 and 3.3. One obtains explicit expression for
the Kelvin–Christoffel matrix Subsection 3.4.2 for general anisotropy which is an important object char-
acterizing anisotropy in terms of wavespeeds. The notations and results of this section, in particular
Subsection 3.4, will be used for the discretization in Section 4 and to derive the hybridized Godunov-
upwind flux in Section 5.

3.1 Definitions

We denote by eI with I = x, y, z the unit vectors in Cartesian basis in three dimensions. A vector u in
C3 is written as

u = uxex + uyey + uzez . (3.1)

We denote by S2 the set of symmetric matrices and S4 the set of fourth order tensors which have the
same symmetry as the stiffness tensor C:

S2 := {w = (wij)i,j=x,y,z ∈ C3×3
∣∣wij = wji} ,

S4 :=
{
T = (tijkl)i,j,k,l=x,y,z ∈ C3×3×3×3

∣∣ tijkl = tjikl = tijlk = tklij
}
.

(3.2)
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Index sets of symmetric matrices and tensors Denote by Ism the ordered set consisting of diagonal
and upper-diagonal indices of a symmetric matrix. These are identified with diagonal and lower-diagonal
indices, referred to as 1, . . . , 6,

Ism := ( ‘xx’ , ‘yy’ , ‘zz’ , ‘yz’ , ‘xz’ , ‘xy’)

= ( ‘xx’ , ‘yy’ , ‘zz’ , ‘zy’ , ‘zx’ , ‘yx’)

identified

↔
with

(1, . . . , 6) . (3.3)

We further define the constant arrays cJ, J ∈ Ism and diagonal matrix D† such that,

cJ =

{
1 , for J = ‘xx’,‘yy’,‘zz’

2 , for J = ‘yz’, ‘xz’, ‘xy’
, D† :=

(
Id3×3 03×3

03×3 2 Id3×3

)
, (3.4)

hence D† = diag (c1, . . . , c6) .

Voigt and Kelvin identifications for symmetric matrices A symmetric 3 × 3 matrix w ∈ S2

is identified with a vector of length 6 in Voigt and Kelvin notation, that we refer to as −→w and −→w†

respectively, such that

S2 ∋ w =

(
wxx wxy wxz

wyx wyy wyz

wzx wzy wzz

)
←→

Voigt identification

−→w = (wxx , wyy , wzz , wyz , wxz , wxy)
t
, (3.5a)

←→
Kelvin identification

−→w† = (wxx , wyy , wzz , 2wyz , 2wxz , 2wxy)
t
. (3.5b)

The relation between the two representations is given using D† (3.4):

−→w† = D†−→w . (3.6)

Voigt identification for symmetric tensor A fourth order symmetric tensor in S4 is identified with
a symmetric matrix of size 6× 6 as

T ∈ S4 ↔
Voigt identification

=

T = (tJJ′)J,J′∈Ism
,

↔
Kelvin identification

=

T
†
=
(
t†JJ′

)
J,J′∈Ism

,

(3.7)

with6

=

T :=


c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

 ,
=

T
†
:=


c11 c12 c13 2 c14 2 c15 2 c16
c21 c22 c23 2 c24 2 c25 2 c26
c31 c32 c33 2 c34 2 c35 2 c36
c41 c42 c43 2 c44 2 c45 2 c46
c51 c52 c53 2 c54 2 c55 2 c56
c61 c62 c63 2 c64 2 c65 2 c66

 . (3.8)

The above representations are related by,
=

T
†
=

=

TD† . (3.9)

It is also useful to define,

†=T† := D†=TD† . (3.10)

6In the above expression, identification (3.3) is used to label the components of a symmetric tensor in S4. In original

indices,
=
T =


txxxx txxyy txxzz txxxy txxxz txxyz

tyyxx tyyyy tyyzz tyyxy tyyxz tyyyz

tzzxx tzzyy tzzzz tzzxy tzzxz tzzyz

txyxx txyyy txyzz txyxy txyxz txyyz

txzxx txzyy txzzz txzxy txzxz txzyz

tyzxx tyzyy tyzzz tyzxy tyzxz tyzyz

 .
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3.2 Operations in Voigt notation

We define the following matrices:

Ax =

(
1 0 0 0 0 0
0 0 0 0 0 1

2

0 0 0 0 1
2

0

)
, Ay =

(
0 0 0 0 0 1

2

0 1 0 0 0 0
0 0 0 1

2
0 0

)
, Az =

(
0 0 0 0 1

2
0

0 0 0 1
2

0 0
0 0 1 0 0 0

)
; (3.11a)

A†
x =

1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 , A†
y =

(
1 0 0 0 0 1
0 0 0 0 0 0
0 0 0 1 0 0

)
, A†

z =

(
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

)
. (3.11b)

With matrix D† defined in (3.4), the two identifications A†
I and AI are related by

A†
I = AI D

† , where I = x, y, z . (3.12)

For a vector ξ ∈ C3, we define

A†(ξ) :=
∑

I=x,y,z

ξI A†
I , A(ξ) :=

∑
I=x,y,z

ξI AI . (3.13)

They are related by,
A†(ξ) = A(ξ)D† . (3.14)

Symmetric tensor product between two vectors We denote by ⊙ the symmetric tensor product:
for two vectors v = (vI)I=x,y,z and w = (wI)I=x,y,z

w ⊙ v =
w ⊗ v + v ⊗w

2
=

1

2

 2wxvx wxvy + wyvx wxvz + wzvx
wyvx + wxvy 2wyvy wyvz + wzvy
wzvx + wxvz wzvy + wyvz 2wzvz

 . (3.15)

We can further represent the symmetric tensor product between two vectors w and v of length 3, as a
vector of length 6 in Voigt and Kelvin notations:

−−−−→
w ⊙ u =



wxux

wyuy

wzuz

1
2
(wyuz + wzuy)

1
2
(wxuz + wzux)

1
2
(wxuy + wyux)


= wx



ux

0

0

0
1
2
uz

1
2
uy


+ wy



0

uy

0
1
2
uz

0
1
2
ux


+ wz



0

0

uz

1
2
uy

1
2
ux

0


,

−−−−→
w ⊙ u

†
=


wxux

wyuy

wzuz

wyuz + wzuy

wxuz + wzux

wxuy + wyux

 = wx


ux

0
0
0
uz

uy

+ wy


0
uy

0
uz

0
ux

+ wz


0
0
uz

uy

ux

0

 .

(3.16)

Additionally, we have
−−−→
ξ ⊙w = A(ξ)t w ,

−−−→
ξ ⊙w

†
= A†(ξ)t w . (3.17)

Symmetric matrix-vector product The dot product between a 3 × 3 symmetric matrix χ and a
3× 1 vector w can be written as, using identity (3.24),

χw = A†(w)−→χ , (3.18)

χw = wx

χxx

χxy

χxz

+ wy

χyx

χyy

χyz

+ wz

χzx

χzy

χzz

 =

(∑
I

wIA†
I

)
−→χ =

(∑
I

wIAI

)
−→χ †

. (3.19)
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Contraction For the contraction of two symmetric matrices τ1, τ2 ∈ S2,

τ1 : τ2 = −→τ1 · −→τ2† = −→τ1† · −→τ2 = −→τ1 ·D† · −→τ2 (3.20)

Here the operation in the second and third expressions are vector dot products, while the last one is a
bilinear form between two vectors and matrix, cf. Subsection 2.1.

Symmetric tensor-matrix product For symmetric tensor C ∈ S4 and matrix χ ∈ S2,

−−→
Cχ =

=

CD†−→χ =
=

C
†−→χ =

=

C −→χ † ; (3.21a)

−−→
Cχ† = D† =

CD†−→χ (3.10)
= †=C†−→χ = D† =

C −→χ † . (3.21b)

Useful identities For a 4th-order tensor T ∈ S4 and symmetric matrices τ ,w ∈ S2,

(Sτ ) : w =
−→
Sτ † · −→w = −→w · (D†=SD†) · −→τ

= −→w ·†
=

S† · −→τ = −→w† ·
=

S · −→τ † .
(3.22)

For two vectors v,w and a symmetric matrix τ ∈ S2,

τv = A†(v)−→τ ⇒ τv ·w = w · τ · v = w · A†(v) · −→τ . (3.23)

3.3 Differential operators in Voigt notation

We first note that the three columns of symmetric matrix χ can be given by(
χxI

χyI

χzI

)
= A†

I
−→χ = AI

−→χ †
, I = x, y, z . (3.24)

Using notation of the vector-valued differential operator ∂x = (∂x, ∂y, ∂z)
t , we define the operators acting

on length 3 vector functions,

A(∂x) :=
∑

I=x,y,z

∂I AI =

∂x 0 0 0 1
2
∂z

1
2
∂y

0 ∂y 0 1
2
∂z 0 1

2
∂x

0 0 ∂z
1
2
∂y

1
2
∂x 0

 ,

A†(∂x) :=
∑

I=x,y,z

∂I A†
I =

(
∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x

0 0 ∂z ∂y ∂x 0

)
.

(3.25)

Using their transpose7, we also define

A(∂x)
t =

∑
I

∂IAt
I =

∑
I

At
I∂I , A†(∂x)

t =
∑
I

∂IA†t
I =

∑
I

A†t
I ∂I . (3.26)

It is useful to note that for a constant vector v and scalar function ϕ, with A(∇ϕ) defined using (3.13)
(with ξ = ∇v), we have

A(∂x)(ϕv) = A(∇ϕ)v . (3.27)

7For matter of completeness, we list here their explicit expressions.

At
x =


1 0 0
0 0 0
0 0 0
0 0 0
0 0 1/2

0 1/2 0

, At
y =

 0 0 0
0 1 0
0 0 0
0 0 1/2
0 0 0

1/2 0 0

, At
y =

 0 0 0
0 0 0
0 0 1
0 1/2 0

1/2 0 0
0 0 0

, A†t
x =

 1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

, A†t
y =

 0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

, A†t
z =

 0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

 .
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Symmetrized gradient of a vector The symmetrized gradient (2.6) in Voigt notation is

−−→
∇sw =



∂xux

∂yuy

∂zuz
1
2
(∂ywz + ∂zwy)

1
2
(∂xwz + ∂zwx)

1
2
(∂xwy + ∂ywx)


= ∂x



wx

0
0

0
1
2
wz

1
2
wy


+ ∂y



0
wy

0
1
2
wz

0
1
2
wx


+ ∂z



0
0
wz

1
2
wy

1
2
wx

0


. (3.28)

Using the transpose of the matrices A, we can further write the Voigt notation:

−−→
∇sw =

 ∑
I=x,y,z

∂I At
I

wx

wy

wz

 . (3.29)

Similarly, the Kelvin representation of ∇sw, using the transpose of A†
• is

−−−−→
∇sw

†
=



∂xux

∂yuy

∂zuz

∂ywz + ∂zwy

∂xwz + ∂zwx

∂xwy + ∂ywx


=

( ∑
I=x,y,z

∂I A† t
I

)wx

wy

wz

 . (3.30)

We thus obtain the following identities,

−−→
∇sw = A(∂x)

tw ,
−−→
∇sw† = A†(∂x)

tw . (3.31)

Divergence of a symmetric matrix The divergence of a symmetric matrix χ is rewritten as

∇ · χ = A†(∂x)
−→χ = A(∂x)

−→χ † . (3.32)

This is seen by using identity (3.24),

∇ · χ = ∂x

χxx

χxy

χxz

+ ∂y

χyx

χyy

χyz

+ ∂z

χzx

χzy

χzz

 =

(∑
I

∂IA†
I

)
−→χ =

(∑
I

∂IAI

)
−→χ †

. (3.33)

3.4 Useful examples and identities

3.4.1 Basis for symmetric matrices

The following matrices form a basis for S2:

ex ⊙ ex =
(

1 0 0
0 0 0
0 0 0

)
, ey ⊙ ey =

(
0 0 0
0 1 0
0 0 0

)
, ez ⊙ ez =

(
0 0 0
0 0 0
0 0 1

)
ey ⊙ ez =

 0 0 0

0 0
1
2

0
1
2 0

 , ex ⊙ ez =

 0 0
1
2

0 0 0
1
2 0 0

 , ex ⊙ ey =

 0
1
2 0

1
2 0 0

0 0 0

 .
(3.34)

In particular, for the stress tensor σ, we have,

σ =
∑

I=x,y,z

σII eI ⊙ eI + 2 (σyz ey ⊙ ez + σxz ex ⊙ ez + σxy ex ⊙ ey) . (3.35)

With Ism the ordered set (3.3), we write the unit Cartesian vectors in R6 as,

êJ, J ∈ Ism . (3.36)
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The unit basis vector ÊJ in R6 is (inversely) identified with the symmetric matrix8 given in (3.34),

=
eJ :=

{
eI ⊙ eJ , I = J

2 eI ⊙ eJ , I ̸= J
⇒

−→
=
eJ = êJ . (3.37)

where the explicit expression of
=
eJ is obtained from definition (3.34),

=
exx =

(
1 0 0
0 0 0
0 0 0

)
,

=
eyy =

(
0 0 0
0 1 0
0 0 0

)
,

=
ezz =

(
0 0 0
0 0 0
0 0 1

)
,

=
eyz =

(
0 0 0
0 0 1
0 1 0

)
,

=
exz =

(
0 0 1
0 0 0
1 0 0

)
,

=
exy =

(
0 1 0
1 0 0
0 0 0

)
.

(3.38)

In particular, a symmetric matrix σ ∈ S2 can be written in the basis
=
eJ, or in Voigt notation in terms of

the basis eJ such that,

σ =
∑

J∈Ism

σJ
=
eJ ,

−→σ =
∑

J∈Ism

σJ êJ . (3.39)

Its divergence is

∇ · σ =
∑

J∈Ism

A†(∇σJ) êJ , (∇ · σ) · eI =
∑

J∈Ism

eI · A†(∇σJ) · êJ . (3.40)

3.4.2 Kelvin–Christoffel matrix

We first recall the definition of the Kelvin–Christoffel matrix, see, for instance, [11].

Definition 1 (Kelvin–Christoffel matrix). With normalized vector ν and fourth-order elasticity tensor
C, the Kelvin–Christoffel matrix is,

Γ(ν) := ν ·C · ν, with (ν ·C · ν)jk =

3∑
i,l=1

νi cijkl νl . (3.41)

Proposition 1 (Identity). The Kelvin–Christoffel matrix Γ can be written as

Γ(ν) = A(ν) †
=

C† At(ν) . (3.42)

Proof. This is seen as follows. Using identity (3.17), we have

At(ν)w =
−−−−→
ν ⊙w ⇒

=

C†At(ν)w =
−−−−−−−→
C (ν ⊙w) . (3.43)

Next with identity (3.18), A†(w)−→χ = χw, with χ = C (ν ⊙w), we obtain

A†(ν)
=

C†At(ν)w = (C (ν ⊙w))ν = (ν ·C · ν) ·w . (3.44)

Proposition 2 (Symmetry). By the symmetry of C, we have,

(ν ·C · ν)il =
∑
j,k

νj cijkl νk =
∑
j,k

νj clkji νk = (ν ·C · ν)li . (3.45)

From the above identity, it follows that Γ(ν) is a symmetric matrix.

8In particular, for J = II with I = x, y, z then ÊII = eI ⊙ eI , while J ∈ Ism and J = IJ then ÊJ = 2eI ⊙ eJ .
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18 H. Pham & F. Faucher & H. Barucq

The derivation (3.44) also gives us

w ·
(

A†(ν)
=

C†At(ν)

)
·w = w · (C (ν ⊙w))ν = (ν ⊙w) : C : (ν ⊙w) > 0 . (3.46)

This follows from the assumption of a positive definite stiffness tensor C, and we have,

A†(ν)
=

C†At(ν) = ν ·C · ν = Γ(ν) is positive-definite and symmetric. (3.47)

It is thus diagonalizable with 3 positive eigenvalues, listed in descending order,

ρc2qP , ρc2qS1 , ρc2qS2 . (3.48)

Proposition 3. The components of matrix Γ can be computed as a matrix as

[Γ(ν)]IJ = (A(ν) eI) · †
=

C† · (A(ν) eJ) (3.49a)

= (eI ⊙ ν) : C : (eJ ⊙ ν) = eI · (C(eJ ⊙ ν)) · ν . (3.49b)

In Voigt’s notation, it can be written as a vector given by matrix-vector multiplication,

−−−→
Γ(ν) =



c11 c66 c55 c56 c15 c16

c66 c22 c44 c24 c46 c26

c55 c44 c33 c34 c35 c45

c16 c26 c45
c46+c25

2
c14+c56

2
c12+c66

2

c15 c46 c35
c45+c36

2
c13+c55

2
c14+c56

2

c56 c24 c34
c44+c23

2
c36+c45

2
c25+c46

2


−−−−→
ν ⊙ ν

†
. (3.50)

Proof. The first equality in (3.49) is obtained by using identity (3.42). The second and third identities
can be derived as follows,

[Γ(ν)]IJ = eI · Γ(ν) · eJ = eI · (ν ·Cν) · eJ
= (eI ⊙ ν) : C : (eJ ⊙ ν) = eI · (C(eJ ⊙ ν)) · ν .

(3.51)

The Voigt expression (3.50) is obtained by direct computation, see also [11, Equation 1.73].

3.4.3 Voigt representation of stiffness and compliance tensor

Relation between the Voigt representation of stiffness and compliance tensor The stress-
strain relation and the strain-stress relation9 can be written in the form of the action of a dimension 4
tensor to a matrix such that, (3.21a),

σ = Cε , ε = Sσ , (3.52)

and are in Voigt representation,

−→σ =
=

CD†−→ε , −→ϵ =
=

SD†−→σ ,

⇒ −→ε =

[
(D†)−1

=

C
−1

(D†)−1

]
D† =

C −→σ .
(3.53)

This gives us the definition of the compliance tensor S in Voigt notation:

=

S = (D†)−1 (
=

C)−1(D†)−1 = (D† =

CD†)−1 = (†
=

C†)−1 . (3.54)

We thus obtain a relation between the Voigt representation of C and S,

=

S = (†
=

C†)−1 , †=S† =
(=
C
)−1

. (3.55)
9Precisely, these are σij =

∑
k,l=1,2,3 cijklεkl and εij =

∑
k,l=1,2,3 sijklσkl.
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3.4.4 Integration by parts identity

With test functions χ ∈ Vh and w ∈ Uh from (2.24), the identity for the integration by part,∫
K

∇sv : χ = −
∫
K

v · ∇ · χ+

∫
∂K

v ⊙ ν : χ , (3.56a)∫
K

(∇ ·Cϵ) ·w = −
∫
K

ϵ : C∇sw +

∫
∂K

ν · (Cϵ) ·w , (3.56b)

writes as, using Voigt and Kelvin notations,∫
K

At(∂x)v · −→χ = −
∫
K

v · A(∂x)−→χ † +
∫
∂K

At(ν)v · −→χ † , (3.57a)∫
K

(
A(∂x)

†=C†−→ϵ
)
·w = −

∫
K

−→ϵ · †
=

C† A(∂x)
t w +

∫
∂K

(
A(ν) †

=

C†−→ϵ
)
·w . (3.57b)

We reunite these two identities in matrix form,∫
K

[(
0 At(∂x)ρ

−1

A(∂x) †
=

C† 0

)(−→ϵ
ρv

)]
·
(−→χ †

w

)
= −

∫
K

(−→ϵ
ρv

)
·

(
0 †=C† A(∂x)t

ρ−1 A(∂x) 0

)(−→χ †

w

)

+

∫
∂K

[(
0 At(ν)ρ−1

A(ν) †
=

C† 0

)(−→ϵ
ρv

)]
·
(−→χ †

w

)
.

(3.58)

3.4.5 Relation of quantities under rotation

Notations The basis vector of Cartesian coordinates is denoted by (ex, ey, ez). In a second coordinate
system, the orthonormal basis is given by the ordered set (ẽx, ẽy, ẽz). We introduce the matrix R whose
columns are the components of these vectors in original basis,

R = (rij) :=

ẽxx ẽyx ẽzx
ẽxy ẽyy ẽzy
ẽxz ẽyz ẽzz

 , and ẽi =
∑
j

rji ej . (3.59)

We also have that R is orthonormal,
Rt = R−1 . (3.60)

In the following discussion, we use over-script ‘∼’ to distinguish the coordinates of vector u and of
symmetric tensor σ in these bases; specifically,

u =

3∑
j=1

uj ej =

3∑
j=1

ũj ẽj , (3.61)

and

σ =

3∑
j=1

σjj ei ⊙ ej + 2σ23 e2 ⊙ e3 + 2σ13 e1 ⊙ e3 + 2σ12 e1 ⊙ e2

=

3∑
j=1

σ̃jj ẽi ⊙ ẽj + 2σ̃23 ẽ2 ⊙ ẽ3 + 2σ̃13 ẽ1 ⊙ ẽ3 + 2σ̃12 ẽ1 ⊙ ẽ2 .

(3.62)

We gather the coordinates in vectors and matrices form, for i, j = 1, 2, 3,

In Cartesian basis, u = (uj) , σ = (σij) , ϵ = (ϵij) , q = ( ϵ
ρu ) , C = (cijkl) ,

In rotated basis, ũ = (ũj) , σ̃ = (σ̃ij) , ϵ̃ = (ϵ̃ij) , q̃ =
(

ϵ̃
ρũ

)
, C̃ = (c̃ijkl) .

(3.63)
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Bond matrix Given 3 vectors vi,i = 1, 2, 3 we define the following operatorsM† andM which create
a 6× 6 matrix whose row columns are given by

−−−−→
vi ⊙ vj

†, respectively
−−−−→
vi ⊙ vj (cf. notation in (3.16)),

M†(v1,v2,v3) :=



(−−−−−→
v1 ⊙ v1

†
)t(−−−−−→

v2 ⊙ v2
†
)t(−−−−−→

v3 ⊙ v3
†
)t(−−−−−→

v2 ⊙ v3
†
)t(−−−−−→

v1 ⊙ v3
†
)t(−−−−−→

v1 ⊙ v2
†
)t


, M(v1,v2,v3) :=


(−−−−−→
v1 ⊙ v1

)t
...(−−−−−→

v1 ⊙ v2

)t
 . (3.64)

We then define operators M† and M for a 3 × 3 matrix R = (rij)i,j=1,2,3, that will act on its column
vectors,

M†[R] :=M†(c1, c2, c3) , M[R] :=M(c1, c2, c3) ,

where cj are column vectors of R , i.e.,cj =
( r1j

r2j
r3j

)
.

(3.65)

They are related to each other by
M[R] =M†[R] (D†)−1 . (3.66)

We then define the Bond matrices M and N associated to the orthonormal matrix R (3.59) as

M :=M†[R] , N := D†M(D†)−1 . (3.67)

Remark 3. By its definition, N is obtained from M by the multiplication of the last 3 columns by 1
2

and the last 3 rows by 2. Their components are also explicitly given in [11, Equations (1.54) and (1.56)].
Note the difference in notation with [11] that the matrix a given in [11, Equations (1.52)] corresponds
to Rt. On the other hand, M is built with the row columns of matrix a in the notation of [11]. In fact
by direct inspection of the components of N, cf. [11, Equations (1.55) and (1.56)] keeping in mind the
difference in notation, we obtain another description of N,

Nt =M[Rt] . (3.68)

As a result of Remark 3, N written here by its transpose has two defining expressions. Thus the Bond
matrices M and Nt can be written as.

M =M†[R] , Nt =M[Rt] = (D†)−1MtD† . (3.69)

They are further related by the fact that the inverse of one is the transpose of the other. This fact is
stated in the following proposition.

Proposition 4. For a 3× 3 orthonormal matrix R, and the operatorM† defined in (3.65), we have the
following identity (

M†[R]
)−1

= M†(Rt) . (3.70)

This above result takes the following equivalent form,

M−1 = Nt = M†[Rt] = (D†)−1MtD† , (3.71a)

N−1 = Mt =
(
M†[R]

)t
. (3.71b)

Proof. It suffices to prove (3.70) since (3.71) is just an equivalent rewrite of (3.70) in terms of the Bond
matrices M and N using (3.69). To establish (3.70), we will use the notation of the Bond matrices:

M =M†[R] , Nt =M†[Rt] .

We thus need to show that
MNt = NtM = Id6 .

The key ingredients are the orthonormality of the column vectors and the row vectors of R = (rij)
3
i,j=1

which are respectively denoted as ci and rj , i.e.,

for k = 1, 2, 3, ck = (rij)
3
i=1 , rk = (rkj)

3
j=1 . (3.72)
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Left inverse We evaluate the expression MNt which is first rewritten as

MNt = M(D†)−1MtD† =
(
M(D†)−1Mt

)
D† . (3.73)

It is thus equivalent to compute the value of

I := M (D†)−1Mt = MM̃t , (3.74)

where,
M̃ := M(D†)−1 ⇒

(3.66)
M̃ =M(R) . (3.75)

Its transpose is described by column vectors
−−−−→
vi ⊙ vj ,

M̃t = (D†)−1Mt =
(−−−−−→
v1 ⊙ v1 ,

−−−−−→
v2 ⊙ v2 ,

−−−−−→
v3 ⊙ v3 ,

−−−−−→
v2 ⊙ v3 ,

−−−−−→
v1 ⊙ v3,

−−−−−→
v1 ⊙ v2

)
. (3.76)

We also denote the components of M and M̃ by m and m̃, i.e.,

M = (mIJ)I,J=1,...,6 , M̃ = (m̃IJ)I,J=1,...,6 . (3.77)

The components of I are the vector products between a row vector of M and column vector of M̃,

IIJ = (mIĨ)Ĩ=1,...,6
· (m̃J̃J)J̃=1,...,6

=
−−−−→
ci ⊙ cj

† · −−−−→ck ⊙ cl . (3.78)

In the above expression, we have used Voigt identification (3.3) to relate I ↔ {i, j} and J ↔ {k, l}. Due
to the symmetry in the last expression, we can assume that

i ≤ j , k ≤ l . (3.79)

Next recalling identity (3.20) for contraction between two symmetric matrices, we have

IIJ = ci ⊙ cj : ck ⊙ cl = ck · (ci ⊙ cj) · cl
with assumption (3.79)

. (3.80)

Since ci are mutually orthonormal, we have ci · cj = δij ,

IIJ =
δkiδjl + δkjδil

2
, together with (3.79). (3.81)

We next investigate the values of IIJ off and along the diagonal.

Case 1: I ̸= J . In this case, we have
i ̸= k or k ̸= l . (3.82)

This is equivalent to
δik = 0 or δjl = 0 . (3.83)

Each of the above statement leads to the following implications,

δik = 0 =⇒
[

δli = 0 , or

δli = 1 ⇒ k < i ≤ j ⇒ δkj = 0 .
(3.84)

Similarly,

δjl = 0 =⇒
[

δkj = 0 or

δjk = 1⇒ i ≤ j < l⇒ δil = 0 .
(3.85)

Substitute this into (3.81), we thus arrive at,

IIJ = 0 when I ̸= J . (3.86)
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Case 2: I = J . In this case, we have

i = k and k = l . (3.87)

We distinguish further two cases: δil = 1 or δil = 0, each of which has the following implication,[
δil = 1 ⇒ i = j = k = l ⇒ I = J ∈ {1, 2, 3} and IIJ = 1 ,

δil = 0 ⇒ I = J ∈ {3, 5, 6} and IIJ = 1
2

. (3.88)

The identities (3.86) and (3.88) give that I is a diagonal matrix with

I = diag
(
1, 1, 1, 12 ,

1
2 ,

1
2

)
. (3.89)

Since multiplication to the right with D† has the effect of multiplying the last 3 columns by 2, we thus
obtain the identity

ID† = Id6 . (3.90)

Right inverse We next show NtM = Id6. This follows in the same manner as that for the left inverse,
however exploiting this time the orthonormality of the row vectors ri ofR. We thus first rewrite expression
NtM in a form similar to (3.74) by introducing H,

H := Nt . (3.91)

Additionally, from expression (3.69) we have

H =M†[Rt] =M†(r1, r2, r3) ,

and H = (D†)−1MtD† ⇒ Ht = (D†)M(D†)−1 ⇒ Mt = (D†)−1HtD† .
(3.92)

The expression NtM is rewritten as,

NtM = H(D†)−1HtD† =
(
H(D†)−1Ht

)
D† . (3.93)

Similarly as before, we first evaluate the expression in the last parenthesis,

J := H(D†)−1Ht = HH̃t , where H̃ := HD† =M†(Rt) . (3.94)

The components of matrices H and H̃ are denoted as

H = (hIJ)I,J=1,...,6 , H̃ =
(
h̃IJ
)
I,J=1,...,6

. (3.95)

The definition of their components are defined in a similar way to those of M however in terms of the
row vectors of R. Similar to (3.81), we have

JIJ = (hIĨ)Ĩ=1,...,6
·
(
h̃J̃J

)
J̃=1,...,6

=
−−−−→
ri ⊙ rj

† · −−−−→rk ⊙ rl , (3.96)

where the indices are related by Voigt identification (3.3), I ↔ {i, j} and J ↔ {k, l}, I ↔ {i, j} and
J ↔ {k, l}. From this point on, the same argument goes through to obtain

J = diag(1, 1, 1, 12 ,
1
2 ,

1
2 ) ⇒ NtM = JD† = Id6 . (3.97)

Proposition 5. For matrix R whose column vectors form an orthonormal basis ν, t, t̃, i.e. R =
(
ν, t, t̃

)
,

its associated Bond matrix M =M†[R] satisfies the following identity

Rt A(ν)Mt = A1 , where A1 :=

1 0 0 0 0 0
0 0 0 0 0 1

2

0 0 0 0 1
2

0

 and A(ν) defined in (3.13). (3.98)
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Proof. We will show identity (3.98) column by column. We thus compute the J-th of the right-hand side
of (3.98) and show that it takes the value of the corresponding column vector of A1. If we denote by vJ

the row vector of M which is the column of Mt, then

vJ =
−−−−→
ci ⊙ cj

† , with i ≤ j . (3.99)

The J-th column vector of (3.98) denoted by wJ , is given by

wJ = RtA(ν)vJ . (3.100)

By identity (3.18) we have,

A(ν)vJ = A(ν)
−−−−→
ci ⊙ cj

† = A†(ν)
−−−−→
ci ⊙ cj

† = (ci ⊙ cj) · ν =
1

2
(ciδj1 + cjδi1) . (3.101)

Substitute the above expression into (3.100), we obtain,

wJ = RtA(ν)vJ =
1

2

δj1
δ1iδ2i
δ3i

+ δi1

δ1jδ2j
δ3j

 . (3.102)

The right-hand-side of (3.102) is nonzero only when j = 1 or i = 1. In these cases and under the
assumption i ≤ j, it can take the following values,

i = j = 1 ⇒ J = 1 : wt
J = (1, 0, 0)t ,

i = 1, j = 3 ⇒ J = 5 : wt
J = (0, 0, 12 )

t ,

i = 1, j = 2 ⇒ J = 7 : wt
J = (0, 12 , 0)

t .

(3.103)

Relation between the components in two coordinates The Bond matrices are used to describe
the relation between the components (3.63) in two coordinate system10,

ũ = Rtu ,
−→̃
σ = M−→σ ,

−→̃
ϵ = M−→ϵ = M−→ϵ . (3.106)

From this, we obtain the relation,

q̃ =

(−→̃
ϵ
ρũ

)
=

(−→̃
ϵ
ρũ

)
=

(
M−→ϵ
Rtu

)
=

(
M 0
0 Rt

)
q , (3.107)

and the stiffness tensor in Voigt notation is, cf. (3.7) and (3.10),

=

C̃ = M
=

CMt , †
=

C̃† = N †=C† Nt = M−t †=C† M−1. (3.108)

10This can be seen as follows.

ũi := u · ẽi = u ·
∑
j

rjiej =
∑
j

rji uj ⇒ ũ = Rtu . (3.104)

The relation for components of σ is as follows,

σ̃αβ := ẽβ · σ · ẽα =

(∑
i

riβei

)
· σ ·

∑
j

rjαej

 =
∑
i,j

riβ rjαei · σ · ej =
∑
i,j

riβ rjα σij

def of
=

contraction
rβ ⊗ rα : σ

contract with
=

symmetrix matrix
rβ ⊙ rα : σ

(3.20)
=

−−−−−→
rβ ⊙ rα

† ·
−→̃
σ .

(3.105)

Finally, recall that matrix A and vectors u, v, with Au = v we have vi = [RA]i · Au where [RA]i is the i-th row vector

of matrix A. Since
−−−−−→
rβ ⊙ rα† is exactly the row vectors of M, the above computation gives

−→̃
σ = M−→σ . Bond matrix is

also given in [11, p. 11], and [11, Eqn 1.53-1.54] gives the relation between components of σ and ϵ in original and rotated
coordinates.
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The first expression also gives
=

C = M−1
=

C̃M−t . (3.109)

In employing Proposition 4, we also have the following identity:

=

C = M†[Rt]
=

C̃
(
M†[Rt]

)t
= Nt

=

C̃ N . (3.110)

3.5 Elastic isotropy and transverse isotropy

Using the Voigt notation, the elasticity tensor C can be represented as a six-by-six matrix
=

C. With the
elasticity tensor symmetric, it leads to 21 independent coefficients, [11]. Nonetheless, its structure can
be simplified depending on the assumption on the medium, and we consider here elastic isotropy, vertical
transverse isotropy (VTI), and tilted transverse isotropy (TTI).

3.5.1 Isotropic elasticity

• The stiffness tensor for an isotropic elastic material has the following form,

C iso = (cijkl) , with cijkl = µ (δik δjl + δil δjk) + λ δij δkl ; (3.111a)

Siso = (sijkl) , with sijkl =
1

4µ
(δik δjl + δil δjk)−

λ

2µ(3λ+ 2µ)
δij δkl . (3.111b)

Here the two degrees of freedom are given by Lamé parameters λ and µ. They can also be defined in
terms of the equivalent set of parameters: the Young modulus E and Poisson coefficient (ratio) defined
as,

E :=
(3λ+ 2µ)µ

λ+ µ
, ν :=

λ

2(λ+ µ)
⇒ ν

E
=

λ

2µ(3λ+ 2µ)
. (3.112)

Introduce the P- and S-wave speed, which we see below related to the eigenvalues of the KC matrix,

cP =

√
λ+ 2µ

ρ
, cS =

√
µ

ρ
. (3.113)

• The constitutive law (2.8b) simplifies under linear isotropy as,

σ(x, ω) = λ(x) Tr
(
ϵ(x, ω)

)
Id + 2µ(x) ϵ(x, ω), elastic isotropy , (3.114)

where Tr denotes the trace and Id the identity matrix.
• By identification, (3.7), their Voigt representations are,

=

C iso =


λ+2µ λ λ 0 0 0

λ λ+2µ λ 0 0 0
λ λ λ+2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 ,
=

Siso =



1
E − ν

E − ν
E 0 0 0

− ν
E

1
E − ν

E 0 0 0

− ν
E − ν

E
1
E 0 0 0

0 0 0
1
4µ 0 0

0 0 0 0
1
4µ 0

0 0 0 0 0
1
4µ


, (3.115)

By direct calculation, we note that
=

C iso and
=

Siso satisfy relation (3.55), with the upper left 3× 3 block

of
=

Siso being the inverse of that of
=

C iso.

Proposition 6 (Kelvin–Christoffel matrix for linear isotropy). Under linear isotropy, the Kelvin–Christoffel
matrix Γiso(ν) is,

Γiso(ν) = µId + (λ+ µ)ν ⊗ ν = ρ
(
c2SId + (c2P − c2S)ν ⊗ ν

)
. (3.116)

Its eigenvalues are µ = ρc2S of multiplicity 2, and λ+µ = ρc2P of multiplicity 1. Additionally, their values
are independent of direction ν.
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Proof (version 1). We start from the action of isotropic stiffness tensor,

C isoγ = 2µγ + λ(trγ)Id . (3.117)

For symmetric γ = v ⊙w, we have

C isov ⊙w = 2µv ⊙w + λ(v ·w)Id , (3.118)

We have

C iso eJ ⊙ ν = 2µ eJ ⊙ ν + λνJ Id ⇒ (C iso eI ⊙ ν) · ν = µ(ννJ + eJ) + λνJν. (3.119)

Using (3.49b), this gives,

[Γ(ν)]IJ = eI · (C iso(eJ ⊙ ν)) · ν
= µ(νIνJ + δIJ) + λνIνJ = µδIJ + (µ+ λ)νIνJ .

(3.120)

Proof (version 2). We can also work with identity (3.42) to obtain the expression for the KC matrix.
The whole matrix is then defined in terms of matrix-matrix product and matrix-vector product, by using
the expression in Voigt notation of the stiffness tensor, cf. (3.115) and recall definition of A(ν) in (3.13),
and its explicit expression is

Γ(ν)

ρ
=

1

ρ

 (λ+2µ)νx λνx λνx 0 2µνz 2µνy

λνy (λ+2µ)νy λνy 2µνz 0 2µνx

λνz λνz (λ+2µ)νz 2µνy 2µνx 0



νx 0 0
0 νy 0
0 0 νz
0 νz

2
νy

2
νz

2 0 νx

2νy

2
νx

2 0

 . (3.121)

Note that λ+ µ = λ+ 2µ− µ = ρ(c2P − c2S) using (3.113), hence,

Γ(ν)
ρ

=


c2Pν

2
x + c2S

(
ν2
y + ν2

z

) (
c2P − c2S

)
νxνy

(
c2P − c2S

)
νxνz(

c2P − c2S
)
νxνy c2Pν

2
y + c2S

(
ν2
x + ν2

z

) (
c2P − c2S

)
νyνz(

c2P − c2S
)
νxνz

(
c2P − c2S

)
νyνz c2Pν

2
z + c2S

(
ν2
y + ν2

x

)
 . (3.122)

By writing the diagonal as, e.g., c2Pν
2
x + c2S

(
ν2y + ν2z

)
= (c2P − c2S)ν

2
x + c2S|ν|2, we have

Γ(ν)

ρ
= c2S|ν|2 Id + (c2P − c2S)

 ν2
x νxνy νxνz

νxνy ν2
y νyνz

νxνz νyνz ν2
z

 = c2S|ν|2 Id + (c2P − c2S)ν ⊗ ν .

3.5.2 Vertical transverse isotropy (VTI)

Vertical transverse isotropy (VTI) refers to the family of linear elastic materials that are rotational sym-
metric around ez. Their stiffness tensor in Voigt representation is given with five independent coefficients,
cf. [11, Equation (1.39) in Subsection 1.2.1],

CVTI =


c11 c11 − 2c66 c13 0 0 0

c11 − 2c66 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

 . (3.123)

Positive definiteness of C requires that

c11 > |c12| , (c11 + c12) c33 > 2 c213 , c55 > 0 . (3.124)

A description of planewaves sustained in VTI materials is further given in Appendix A.
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Thomsen’s parametrization of VTI As an alternative to prescribing directly the values of cij , VTI
material can also be described in terms of the (unitless) Thomsen’s parameters [54], which quantify more
clearly the level of anisotropy in a VTI material. Their definitions in terms of components of stiffness
tensor are:

α0 =
√
c33/ρ , vertical P-wave speed , (3.125a)

β0 =
√
c55/ρ , vertical (or horizontal) S-wave speed , (3.125b)

ϵ =
c11 − c33

2c33
, (3.125c)

δ =

(
c13 + c44

)2 − (c33 − c44)2
2c33

(
c33 − c44

) , (3.125d)

γ =
c66 − c44

2c44
. (3.125e)

The planewave analysis and Remark 13 in Appendix A explain the meaning of parameters α0 and β0,
which are speeds of true P- and S-planewaves propagating along vertical axis ez. To encode this signifi-
cance, we can represent α0 and β0 with λTI and µTI, called here TI-Lamé parameters,

c33 = λTI + 2µTI , c55 = µTI , equivalently α0 =

√
µTI

ρ
, β0 =

√
λTI + 2µTI

ρ
. (3.126)

In short, the Thomsen’s parametrization can be given in terms of

(ρ ; α0 , β0 , ϵ , δ , γ) , or equivalently (ρ ; λTI , µTI , ϵ , δ , γ) . (3.127)

Conversely, given a set of TI-Lamé and Thomsen’s parameters (ρ;λTI, µTI, ϵ, δ, γ), the components of
stiffness tensor can be retrieved as follows,

c11 = (λTI + 2µTI) (1 + 2ϵ) , (3.128a)

c33 = λTI + 2µTI , (3.128b)

c44 = c55 = µTI , (3.128c)

c66 = µTI (1 + 2γTI) , (3.128d)

c13 = −µTI +
√
(λTI + µTI)2 + 2δ(λTI + 2µTI)(λTI + µTI) , (3.128e)

See Remark 5 below regarding the choice of sign for c13.

Remark 4. In isotropy, we have c11 = c33 , c66 = c44 and c13 + c44 = c33 − c44. This means that
ϵ = δ = γ = 0, and VTI reduces to isotropy. In another word, the deviation of ϵ, δ and γ from zero
indicates the deviation from isotropy, that is, the level of anisotropy. We further note the following case
of anisotropy:

Weak anisotropy : |ϵ|, |δ|, |γ| < 0.2 ,

Elliptical anisotropy : ϵ = δ .
(3.129)

Remark 5. Expression (3.128) for c13 is obtained by solving the quadratic relation (3.125) with a choice
of sign so that when δ = 0, one can retrieve isotropy, specifically, c13 = λTI when δ = 0.

The Kelvin–Christoffel matrix for VTI material is obtained from Proposition 3 by replacing the
expression of the stiffness tensor with its VTI form (3.123).

Proposition 7. For a VTI medium, the Kelvin–Christoffel matrix ΓVTI(ν) is given in symmetric matrix
form as

ΓVTI(ν) =

c11 ν
2
x + c66 ν

2
y + c55 ν

2
z (c13 + c55)νyνz (c13 + c55) νxνz

c66ν
2
x + c11 ν

2
y + c55 ν

2
z (c11 − c66) νx νy

c55(ν
2
x + ν2y) + c33 ν

2
z

 , (3.130)
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and in form of a matrix-vector product as,

−−−−−→
ΓVTI(ν) =



c11 c66 c55 0 0 0

c66 c11 c55 0 0 0

c55 c55 c33 0 0 0

0 0 0 0 0 c11−c66
2

0 0 0 0 c13+c55
2 0

0 0 0 c55+c13
2 0 0


−−−−→
ν ⊙ ν

†
. (3.131)

3.5.3 Tilted transverse isotropy (TTI)

Tilted transverse isotropy is the name for linear elastic material having rotational symmetry around an
axis, denoted by unit vert eTIsym, which is not parallel to ez. TTI is related to VTI by rotation. This
means that by a rotation so that ez points in the same direction as eTIsym, the stiffness tensor in the
rotated coordinates takes the structure of a VTI tensor in the rotated coordinates. Denote by CTTI the
stiffness tensor of a TTI medium.

– Representation in Cartesian coordinates: by abuse of notation, we also denote by CTTI the tensor
whose components are the coefficients of CTTI in Cartesian coordinates. Use this to denote its
Voigt representation and tensor form,

CTTI =
(
cTTI
ijkl

)3
i,j,k,l=1

,
=

CTTI (3.132)

– Representation in rotated coordinates: we denote by (ex̃, eỹ, ez̃) the coordinates after rotation. The
components in rotated coordinates are denoted by, cf. (3.137)

=

C̃ = (c̃ijkl)
3
i,j,k,l=1 ,

=

C̃ . (3.133)

Their relation is given by identity (3.110), which will be exploited to compute the quantity in (3.132)
from their VTI structure cf. (3.137) in rotated coordinates.

θ-TI Suppose the rotational symmetry axis in (ex, ez) is

eTIsym =

sin θ
0

cos θ

 , −π ≤ θ ≤ π . (3.134)

The Cartesian basis is rotated to,

ex̃ =

 cos θ
0

− sin θ

 , eỹ = ey =

0
1
0

 , ez̃ = eTIsym =

sin θ
0

cos θ

 . (3.135)

Note the above vectors are described in Cartesian coordinates. Define

Rθ :=
(
ex̃, eỹ, ez̃

)
=

 cosβ 0 sin θ
0 1 0

− sinβ 0 cos θ

 ,

Rt
θ := R−1

θ = R−θ =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 .

(3.136)
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In coordinates with axes (ex̃, eỹ, ez̃), the Voigt representation of the stiffness tensor of θ-TI takes the
form of a VTI tensor,

=

C̃ =


c̃11 c̃11 − 2c̃66 c̃13 0 0 0
c̃21 c̃11 c̃13 0 0 0
c̃13 c̃13 c̃33 0 0 0
0 0 0 c̃44 0 0
0 0 0 0 c̃44 0
0 0 0 0 0 c̃66

 . (3.137)

In using identity (3.110), the θ-TI stiffness tensor in Voigt representation in Cartesian coordinates is
given by,

=

CθTI := Mθ

=

C̃ Mt
θ , with Mθ :=M†[Rt

θ] and
=

C̃ given in (3.137) . (3.138)

Recall from its definitionM† in (3.65), My(θ) is defined with the columns of Rt
θ (equivalently the rows

of R(β)),

Mβ := M†[Rt
β ] =



(−−−−→
r1 ⊙ r1

†
)t(−−−−→

r2 ⊙ r2
†
)t(−−−−→

r3 ⊙ r3
†
)t(−−−−→

r2 ⊙ r3
†
)t(−−−−→

r1 ⊙ r3
†
)t(−−−−→

r1 ⊙ r2
†
)t


, with r1 =

cos θ
0

sin θ

 , r2 =

0
1
0

 , r3 =

− sin θ
0

cos θ

 . (3.139)

In expanding out components of the row vectors, we retrieve the same matrix as in [11, Equation (1.195)],

Mβ =


cos2 θ 0 sin2 θ 0 sin(2θ) 0

0 1 0 0 0 0
sin2 θ 0 cos2 θ 0 − sin(2θ) 0
0 0 0 cos θ 0 − sin θ

− 1
2
sin(2θ) 0 1

2
sin(2θ) 0 cos(2θ) 0

0 0 0 0 0 cos θ

 . (3.140)

Remark 6. Equations (3.138) and (3.140) also agree with [11] in using equations (1.58) and (1.195).
When β = π

2 , we obtain the Horizontal Transverse Isotropy (HTI) tensor, [11].

General Transverse Isotropy Suppose the rotational symmetry axis is in Cartesian coordinates

eTIsym =

sin θ cosϕ
sin θ sinϕ

cos θ

 (3.141)

The Cartesian basis is rotated to

ex̃ =

cos θ cosϕ
cos θ sinϕ
− sin θ

 , eỹ =

− sinϕ
cosϕ
0

 , ez̃ = eTIsym =

sin θ cosϕ
sin θ sinϕ

cos θ

 . (3.142)

Define

Rθ,ϕ :=
(
ex̃, eỹ, ez̃

)
=

cos θ cosϕ − sinϕ sin θ cosϕ
cos θ sinϕ cosϕ sin θ sinϕ
− sin θ 0 cos θ

 ,

Rt
θ,ϕ := R−θ,−ϕ = Rt

θ,ϕ =

cos θ cosϕ cos θ sinϕ − sin θ
− sinϕ cosϕ 0

sin θ cosϕ sin θ sinϕ cos θ

 .

(3.143)
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In Cartesian coordinates, the Voigt representation of a TTI stiffness tensor is given using identity (3.110),
now with Mθ,ϕ defined in (3.65) with the columns of Rt

θ,ϕ (i.e., rows of Rθ,ϕ),

Mθ,ϕ := M†[Rt
θ,ϕ] =



(−−−−→
r1 ⊙ r1

†
)t(−−−−→

r2 ⊙ r2
†
)t(−−−−→

r3 ⊙ r3
†
)t(−−−−→

r2 ⊙ r3
†
)t(−−−−→

r1 ⊙ r3
†
)t(−−−−→

r1 ⊙ r2
†
)t


, with

r1 =

cos θ cosϕ
− sinϕ

sin θ cosϕ

 , r2 =

cos θ sinϕ
cosϕ

sin θ sinϕ

 ,

r3 =

− sin θ
0

cos θ

 .

(3.144)

We summarize the results in the following proposition.

Proposition 8. The components in Cartesian coordinates of a TTI stiffness tensor CTTI with
rotational axis symmetry eTIsym = (sin θ cosϕ , sin θ sinϕ , cos θ)t, are given as follows.

– With Mθ,ϕ defined in (3.144) and
=

C̃ in (3.137), its Voigt representation is,

=

CTTI = Mθ,ϕ

=

C̃ Mt
θ,ϕ . (3.145)

– Equivalently, with rij denoting the components of rotation matrix Rt
θ,ϕ = (rij)i,j=1,2,3, components

of its form as a fourth-order tensor is

cTTI
ijkl =

3∑
p,q,r,s=1

rip rjq rkr rlr c̃VTI
pqrs . (3.146)

Proof. It remains to prove identity (3.146). Under Voigt representation (3.7),

[
=

CTTI]IJ = cTTI
ijkl , (3.147)

with identification (i, j)↔ I and (k, l)↔ J under (3.3). By the definition Mθ,ϕ, if we denote by vI the
I-th row vector of Mθ,ϕ, and by ṽJ J-th column of its transpose, i.e. equivalently, J-th row vector of
Mθ,ϕ, then

vI =
−−−−→
ri ⊙ rj

† , vJ =
−−−−→
rk ⊙ rl

† . (3.148)

We start with the expression given by the left-hand-side of (3.145),

[
=

CTTI]IJ
(3.145)
= vI ·

=

C̃ · ṽJ =
−−−−→
ri ⊙ rj

† ·
=

C̃ · −−−−→rk ⊙ rl
†

(3.22)
= ri ⊙ rj : C̃ : rj ⊙ rl = lhs of (3.146) .

(3.149)

This combined with (3.147) gives identity (3.146).

4 Discretization of HDG problem

In this section, we give a complete description of the HDG discretization for the elastic problem (2.36)
and (2.39) for the formulation (u,σ)S with unknowns (uh,σh,λuh), the formulation (v,σ)S follows the
same step, see Remark 8. In the HDG method, the numerical flux plays the role of the global unknown.
Here, we obtain linear systems which are satisfied by the coefficients of these unknowns with respect to
the chosen basis for the local function spaces Uh, Vh and Mh introduced in (2.24). The matrix form of
the local and global systems will employ Voigt formalism developed in Section 3. This helps exploit the
block structure of the system, and enables matrixification and optimization of the direct solver.
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4.1 Notations

Local and global indexes of an edge We recall from the initial discussion in Subsection 2.3, |Σh| is
the number of faces in the mesh and |Th| is the number of elements in the mesh. An edge F ∈ Σh can be
referred to in two ways,

1. as Fk, with 1 ≤ k ≤ |Σh|, here k is the index of the face in the ordered set Σh,

2. as F(e,ℓ) with 1 ≤ e ≤ |Th|, 1 ≤ ℓ ≤ neface, when it is considered as part of the boundary of an
element Ke, and ℓ is its index among the set of faces of Ke. Note that neface is the number of edges
in element Ke, for instance four with a tetrahedron.

We denote by f the mapping which relates these local and global labels of an edge:

f : (e, ℓ) 7→ k = f(e, ℓ) , where F(e,ℓ) = Fk . (4.1)

Local Basis functions We have three groups of basis functions for the local finite element spaces
introduced in (2.24),

basis functions for Uh(K
e), 1 ≤ e ≤ |Th| : ϕej , 1 ≤ j ≤ ne , ;

basis functions for Vh(K
e), 1 ≤ e ≤ |Th| : ψe

j , 1 ≤ j ≤ me ,

basis functions for Mh(F
k), 1 ≤ k ≤ |Σh| : ξkj , 1 ≤ j ≤ n̂k .

(4.2)

We have denoted by

ne : dimension of basis of Uh(K
e) ; (4.3)

me : dimension of basis of Vh(K
e) ; (4.4)

n̂k = n̂(e,ℓ) : dimension of basis of Mh(F
k) =Mh(F

(e,ℓ)) . (4.5)

Also denote the total number of face degrees of freedom in each direction I by,

n̂I = n̂ =

|Σh|∑
k=1

n̂k . (4.6)

Volume discrete unknowns With formulation (u,σ)S , the volume unknowns are the approximations
of the displacement vector field u and of strain tensor σ on each cell Ke, 1 ≤ e ≤ |Th|. For the
displacement we have,

uh =
∑

α=x,y,z

uhI êI , with uhI
∣∣
Ke =

ne∑
j=1

ueIj ϕ
e
j , for I = x, y, z . (4.7)

For the strain tensor, we work directly with its Voigt representation as a vector of length 6, cf. (3.39),

σh =
∑

J∈Ism

σh
J

=
eJ ←→ −→σ h =

∑
J∈Ism

σh
J êJ ,

with σh
J

∣∣
Ke =

me∑
j=1

veJj ψ
e
j , for J ∈ Ism .

(4.8)

Above we use êI for I = x, y, z the unit Cartesian vector in R3, and ÊJ for J ∈ Ism for unit Cartesian
vectors in R6 with Ism the ordered set (3.3). We gather all volume unknowns into vector W such that,

W = (We)1≤e≤|Th| , with We :=

(
Ue

Ve

)
and Ue = (Ue

I)I=x,y,z , V
e =

(
Ve
J

)
J∈Ism

,

(4.9)

Their corresponding sub-blocks are given by

Ue
I =

(
ueIj
)
j=1,...,ne

, Ve
J =

(
veJj
)
j=1,...,me

. (4.10)
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Edge discrete unknowns Unknowns defined on the edges Σh are numerical approximations of the
trace of the displacement u on the edges Σh. Specifically, on each edge Fk, k = 1, . . . , n̂k,

λh =
∑

I∈{x,y,z}
λhI êI , with λhI

∣∣
Fk =

n̂k∑
j=1

λkIj ξ
k
j . (4.11)

Gather these coefficients into global vector Λ which has the following substructure,

Λ =
(
Λk
)
k=1,...,|Σh|

, with Λk =
(
Λk
I

)
I=x,y,z

and Λk
I =

(
λkIj
)
1≤j≤n̂k

. (4.12)

Remark 7. The above expressions are written in global edge indices. Using (4.1), it can also be written
in terms of the local edge indices, specifically for k = f(e, ℓ), that is, (e, ℓ) is identified with k, then

Fk = F(e,ℓ) , λ
(e,ℓ)
Ij = λkIj , ξ

(e,ℓ)
j = ξkj , where k = f(e, ℓ) . (4.13)

4.2 Discretization for elastic wave formulation (u,σ)S

4.2.1 Discretized local problem

From (2.36), we write the local (on each mesh cell) variational formulations for the equation of motion
and of constitutive law, with test-functions ϕ and ψ:

− ω2

∫
Ke

uh · ϕ dx −
∫
Ke

(∇ · σh) · ϕdx+

∫
∂Ke

ϕ · τu(uh − λh) dsx =

∫
Ke

f · ϕdx ,∫
Ke

σh : S : Ψ dx = −
∫
Ke

uh · ∇ ·Ψdx+

∫
∂Ke

ν ·Ψ · λh dsx .

(4.14a)

(4.14b)

Equation of motion We integrate the equation of motion (4.14a) against test functions

ϕ = ϕei êI , I = x, y, z 1 ≤ i ≤ ne . (4.15)

The two volume integrals are discretized as,∫
Ke

ρω2 uh · ϕei êI dx = ω2
ne∑
j=1

ueI,j

∫
Ke

ρϕei ϕ
e
j dx ; (4.16a)

∫
Ke

(∇ · σh) · ϕei êI dx
(3.40)
=

∑
J∈Ism

me∑
j=1

σe
J,j êI ·

(∫
Ke

ϕei A†(∇ψe
j ) dx

)
· êJ . (4.16b)

while the boundary integrals are written as

∫
∂Ke

ϕ êI · τudsx =

neface∑
ℓ=1

∑
J=x,y,z

ne∑
j=1

ueJ,j

∫
F(e,ℓ)

τIJ ϕei ϕ
e
j dsx ; (4.17a)

∫
∂Ke

ϕêI · τuλ dsx =

neface∑
ℓ=1

∑
J=x,y,z

n̂k∑
j=1

λ
(e,ℓ)
J,j

∫
F(e,ℓ)

τIJ ϕei ξ
(e,ℓ)
j dsx . (4.17b)

Constitutive law We integrate the constitutive equation (4.14b) against test functions, cf. (3.37) and
(3.36) for notation,

Ψ = ψe
i

=
eI ↔

Voigt identification

−→
Ψ = ψe

i êI, for I ∈ Ism , 1 ≤ i ≤ me, (4.18)
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the two volume integrals are discretized as∫
Ke

σh · S ·Ψdx
(3.22)
=

∑
J′∈Ism

me∑
j=1

σe
J′,j êJ ·

(∫
Ke

ψe
i ψ

e
j
†=S† dx

)
· êJ′ ; (4.19a)

∫
Ke

uh · ∇ ·
(
ψe
i ÊI

)
dx

(3.40)
=

∑
J=x,y,z

ne∑
j=1

ueJ,j êJ ·
(∫

Ke

ϕei A†(∇ψe
i ) dx

)
· êI . (4.19b)

The boundary integral is discretized as,∫
∂Ke

ν ·Ψ · λhdsx =

neface∑
ℓ=1

∑
J=x,y,z

n̂k∑
j=1

λ
(e,ℓ)
J,j

(∫
F(e,ℓ)

ψe
i ξ

(e,ℓ)
j

=
eJ ν

(e,ℓ) dsx

)
· êJ . (4.20)

Discretized local problem in matrix form Using the above expressions, we arrive at the discretized
problem defined on each element Ke,

Ae We + De Λe = Se , for 1 ≤ e ≤ |Th| . (4.21)

The upper row blocks of Ae and De correspond to the discretization of the equation of motion (4.14a),
while the blocks of the second row are related to the constitutive law (4.14b),

Ae =

(
−ω2 Me

u +Me
∂ −Ke

σ

−Ke
u −Me

σ

)
, De =

(
−D(e,1)

m . . . −D(e,neface)
m

D(e,1)
c . . . D(e,neface)

c

)
. (4.22)

The components of the sub-blocks matrices are given below. The source of (4.21) comes from the volume
source f of equation of motion (4.14a),

Se =

(
Se
m

0(6me)×1

)
, Se

m = (mS
e
I)I=x,y,z , [mS

e
I ]i = ⟨f , ϕ

e
i êI⟩ , 1 ≤ i ≤ ne . (4.23)

• The upper left block of Ae in (4.21) is given by matrix Me
u which has a 3× 3 block structure and is

block-diagonal11, the definition of its components comes from (4.16a),

Me
u = (Mue

IJ)I,J=x,y,z , Mue
IJ =


0ne×ne , for I ̸= J ;

[Mue
II ]ij =

∫
Ke

ρϕei ϕ
e
j dx , for I = J, I = x, y, z .

(4.25)

On the other hand, matrix Me
∂ has a 3× 3 block structure, where each block is a matrix of size ne × ne,

the definition of its components comes from (4.17a),

Me
∂ =

(
M∂e

IJ

)
I,J=x,y,z

, with
[
M∂e

IJ

]
ij
=

neface∑
ℓ=1

∫
F(e,ℓ)

τIJ ϕei ϕ
e
j dsx . (4.26)

Finally, matrix Ke
σ has a 6× 3 block structure12, the definition of its components comes from (4.16b),

Ke
σ =

(
Kσe
IJ

)
I=x,y,z,
J∈Ism

with
[
Kσe
IJ

]
ij
= êI ·

(∫
Ke

ϕei A†(∇ψe
j ) dx

)
· êJ

=
∑

α=x,y,z

(
A†
α

)
IJ

∫
Ke

ϕei ∂αψ
e
j dx .

(4.27)

11We write out explicitly the block structure for Me
∂ and Me

u; compared to Me
u, one has a similar diagonal structure for

Me
σ with 6 diagonal blocks Mσe

JJ with J ∈ Ism,

Me
u =

Mue
xx 0 0
0 Mue

yy 0
0 0 Mue

zz

 , Me
∂ =

M∂e
xx M∂e

xy M∂e
xz

M∂e
yx M∂e

yy M∂e
yz

M∂e
zx M∂e

zy M∂e
zz

 . (4.24)

12This is the transpose of the row block of Kue in Footnote 13
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In the blocks of the lower row of Ae, matrix Me
σ consists of 6 × 6 blocks with each block a matrix of

size me ×me, the definition of its components comes from (4.19a),

Me
σ =

(
Mσe

JJ′
)
J,J′∈Ism

, with
[
Mσe

JJ′
]
ij
= êJ ·

(∫
Ke

ψe
i ψ

e
j
†=S† dx

)
· êJ′ ,

=

∫
Ke

ψe
i ψ

e
j

[
†=S†
]
JJ′

dx .

(4.28)

If the compliance matrix is constant on each mesh cell, then[
Mσe

JJ′
]
ij
=

[
†=S†
]
JJ′

∫
Ke

ψe
i ψ

e
j dx . (4.29)

On the other hand, matrix Ke
u consists of 3 × 6 block13, the definition of its components comes from

(4.19b),

Ke
u = (Kue

IJ) I∈Ism,
J=x,y,z

with [Kue
IJ ]ij = êJ ·

(∫
Ke

ϕej A†(∇ψe
i ) dx

)
· êJ

=
∑

α=x,y,z

(A†
α)IJ

∫
Ke

ϕej ∂αψ
e
i dx .

(4.31)

• For matrix De, the upper row blocks are made up of sub-blocks D(e,ℓ)
m which consists of 3× 3 block

structure (similarly to Me
∂) with components given by (4.17b),

D(e,ℓ)
m =

(
mD(e,ℓ)

IJ

)
I,J=x,y,z

, with
[
mD(e,ℓ)

IJ

]
ij
=

∫
F(e,ℓ)

τIJ ϕei ξ
(e,ℓ)
j dsx . (4.32)

• In the lower row matrix De, D(e,ℓ)
c has a 6× 3 structure such that,

D(e,ℓ)
c =

(
cD

(e,ℓ)
IJ

)
I∈Ism,
J=x,y,z

. (4.33)

The definition of its components comes from (4.20),[
cD

(e,ℓ)
IJ

]
ij
=

∫
F(e,ℓ)

ψe
i ξ

(e,ℓ)
j êJ ·

=
eJ · ν(e,ℓ) dsx ,

where êJ ·
=
eJ · ν(e,ℓ) = A†(ν(e,ℓ))JJ =

∑
α=x,y,z

ν(e,ℓ)α [A†
α]JJ .

(4.34)

4.2.2 Discretized problem for the edges

We recall from (2.37) the approximate condition imposed on Neumann boundary and interior interfaces:

|Th|∑
e=1

∫
∂Ke∩(Σint∪ΣN)

(
ν · σh · ξ − ξ · τu · (uh − λh)

)
dsx = 0 , ∀ξ ∈Mh(Σint ∪ ΣN) . (4.35)

Using as test functions ξ = ξ
(e,ℓ)
i êI , the integrals in equation (4.35) take the following form,∫

F(e,ℓ)

ξ · σK
h · ν(e,ℓ) dsx

(3.23)
=

∑
J∈Ism

me∑
j=1

σe
J,j êI ·

(∫
F(e,ℓ)

ξ
(e,ℓ)
i ψe

j A†(ν(e,ℓ)) dsx

)
· êJ . (4.36)

13We write out explicitly the structure of Ke
u, the structure of Ke

σ is the transpose of this block structure containing 6× 3
blocks,

Ke
u =


Kue
x,xx Kue

x,yy Kue
x,zz Kue

x,yz Kue
x,xz Kue

x,xy

Kue
y,xx Kue

y,yy Kue
y,zz Kue

y,yz Kue
y,xz Kue

y,xy

Kue
z,xx Kue

z,yy Kue
z,zz Kue

z,yz Kue
z,xz Kue

z,xy

 . (4.30)
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The boundary integral is discretized in the exact same way as (4.17), and similarly for the condition
along Σ∞.

The discretized problem on the interface Σ is

|T |∑
e=1

Rt
e (B

e We +LeReΛ) =

|T |∑
e=1

Rt
e s

e . (4.37)

Both matrices Be and Le have neface row-blocks, corresponding to face (e, ℓ). Within each (e, ℓ) block-row,
j-th row is obtained by integrating test function

ξ
∣∣
F (e,ℓ) = ξ

(e,ℓ)
j êI , with I = x, y, z . (4.38)

The columns of Be are grouped into B(e,ℓ)
u and B(e,ℓ)

σ , while Le has diagonal block structure

Be =


−B(e,1)

u B(e,1)
σ

...
...

−B(e,neface)
u B(e,neface)

σ

 , Le =


L(e,1) 0 0 0
0 L(e,2) 0 0

0 0
. . . 0

0 0 0 L(e,neface)

 . (4.39)

• For each (e, ℓ), matrix B(e,ℓ)
u consists of 3× 3 blocks14,

B(e,ℓ)
u =

(
uB(e,ℓ)

IJ

)
I,J=x,y,z

, (4.40)

with sub-block uB(e,ℓ)
IJ of size n̂k × ne; its components come from (4.17), for 1 ≤ i ≤ n̂k, 1 ≤ j ≤ ne,

[
uB(e,ℓ)

IJ

]
ij

=


∫
F(e,ℓ)

τIJ ξ
(e,ℓ)
i ϕej dsx , F(e,ℓ) ∈ Σint ∪ ΣN ∪ Σ∞ ,

0 , F(e,ℓ) ∈ ΣD .

(4.41)

• For matrix Le, the zero off-diagonal block is of size 3n̂k × n̂k. Each diagonal block of L(e,ℓ) consists
of 3× 3 sub-blocks

L(e,ℓ) =
(

L(e,ℓ)
IJ

)
I,J=x,y,z

, (4.42)

with sub-block L(e,ℓ)
IJ of size n̂k ×me and components: for 1 ≤ i, j ≤ n̂k,

[
L(e,ℓ)
IJ

]
ij

=



∫
F(e,ℓ)

τIJ ξ
(e,ℓ)
i ξ

(e,ℓ)
j dsx , F(e,ℓ) ∈ Σint ∪ ΣN∫

F(e,ℓ)

ξ
(e,ℓ)
i ξ

(e,ℓ)
j

(
τIJ + Zabc

IJ

)
dsx , F(e,ℓ) ∈ Σ∞

I 3n̂k× 3n̂k , F(e,ℓ) ∈ ΣD .

(4.43)

• On the other hand, the matrix B(e,ℓ)
σ consists of 3× 6 block structure15 such that,

B(e,ℓ)
σ =

(
σB(e,ℓ)

IJ

)
I=x,y,z ,J∈Ism

, (4.44)

with its sub-block σB(e,ℓ)
IJ of size n̂k × n̂k having components given by (4.36), for 1 ≤ i ≤ n̂k, 1 ≤ j ≤ me,

σB(e,ℓ)
IJ = 0 , for F(e,ℓ) ∈ ΣD , (4.45)

14Similarly to Me
u and Me

∂ , cf. Footnote 11
15Similar to Ke

u cf.Footnote 13.
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while for F(e,ℓ) ∈ Σint ∪ ΣN ∪ Σ∞,[
σB(e,ℓ)

IJ

]
ij

=

∫
F(e,ℓ)

ξ
(e,ℓ)
i ψe

j A†(ν(e,ℓ))IJ dsx ,

with A†(ν(e,ℓ))IJ =
∑

α=x,y,z

ν(e,ℓ)α (A†
α)IJ .

(4.46)

Remark 8 (HDG with formulation (v,σ)S). The discretization of the formulation in terms of the velocity
instead of displacement, (2.27) and (2.30), follows the same step as above, with mild modification in the
coefficients of the matrices. Namely, we arrive at the discrete problem,

Ae We + De Λe = Se , for 1 ≤ e ≤ |Th|
|T |∑
e=1

Rt
e (B

e We +LeReΛ) =

|T |∑
e=1

Rt
e s

e .
(4.47)

with matrices

Ae =

(
iωMe

u +Me
∂ −Ke

σ

−Ke
u −iωMe

σ

)
, De =

(
−D(e,1)

m . . . −D(e,neface)
m

D(e,1)
c . . . D(e,neface)

c

)
, (4.48)

and

Be =


−B(e,1)

u iω B(e,1)
σ

...
...

−B(e,neface)
u iω B(e,neface)

σ

 , Le =


L(e,1) 0 0 0

0 L(e,2) 0 0

0 0
. . . 0

0 0 0 L(e,neface)

 . (4.49)

The components of the above matrices are as given in Subsection 4.2, with the exception of

Me
∂ , D(e,ℓ)

m , B(e,ℓ)
u , Le

(4.26) (4.32) (4.41) (4.43) ,
(4.50)

for which a slight modification is made by replacing the notation of the stabilization, τu by τv.

4.3 Summary of the HDG formulations

We put together the discussion in Subsection 4.2. The HDG discretization (2.36)–(2.39) takes the fol-
lowing form with unknowns (W ,Λ), cf. (4.9) and (4.12),

Ae We + DeRe Λ = Se , ∀ e = 1 . . . , |Th| ,

|T |∑
e=1

Rt
e

(
Be We + LeRe Λ

)
=

|T |∑
e=1

Rt
e s

e ,

(4.51a)

(4.51b)

with (4.51a) the local problem on Ke. Problem (4.51b) can be reduced to one in terms of Λ, called the
global problem, that we write as,

KΛ = S , (4.52)

with global coefficient matrix and right-hand side given by

K :=

|Th|∑
e=1

Rt
e KeRe , with Ke := −Be (Ae)

−1 De + Le ; (4.53a)

S := −
|T |∑
e=1

Rt
e Be A−1

e Se . (4.53b)
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In a summary, problem (4.54) is equivalent to,

(4.51) ⇔

{
We = − (Ae)

−1
(DeRe Λ + Se) , ∀e = 1, . . . , |Th|;

KΛ = S .

(4.54a)

(4.54b)

This means that the HDG method divides the problem into two stages. Firstly, one solves the global
problem (4.54b) in terms of the trace Λ; secondly, the value of the volume unknowns We is retrieved
element-by-element with the right-hand side of (4.54a).

Remark 9 (Implementation with simplexes). In the case where the normal direction ν is constant on a
face F(e,ℓ), that is, with straight edges in 2D and plane faces in 3D, ν can be put outside of the integrands.
This concerns the matrices

Me
∂ , D(e,ℓ)

m , B(e,ℓ)
u , L(e,ℓ). (4.55)

For instance, from (4.34) and (4.46), we have,[
cD

(e,ℓ)
IJ

]
ij
= A†(ν(e,ℓ))JJ

∫
F(e,ℓ)

ψe
i ξ

(e,ℓ)
j dsx ,[

σB(e,ℓ)
IJ

]
ij

= A†(ν(e,ℓ))IJ

∫
F(e,ℓ)

ξ
(e,ℓ)
i ψe

j dsx .

(4.56)

with

A†(ν(e,ℓ))IJ =
∑

α=x,y,z

ν(e,ℓ)α [A†
α]IJ , with I = x, y, z, J ∈ Ism . (4.57)

Remark 10 (Optimal convergence rate). Theoretical investigation for the convergence of the HDG
method for elasticity is well-established, e.g., for static elasticity [52, 24, 33, 47], and for time-harmonic
elasticity [42]. In their numerical investigations, the authors report optimal convergence rate, that is,
order k + 1 for approximation polynomials of order k, for both the primal (displacement) and mixed
unknowns (strain or stress). Optimal convergence rate k + 1 using approximation spaces of equal order
for all unknowns are observed and confirmed in [49, Section 5.1], in particular their Figure 3 in 2D,
and Figure 6 for 3D, even in the incompressible limit, i.e., for so-called locking-free feature. Here, one
does not need the strategy of HDG+ for optimal convergence, cf. [42], which employs different degrees
of polynomials for the primal, mixed and hybrid variables, and which also needs a projection operator.
This observation is also stated in [28] following [43, Tables 6 and 7] for static elasticity. In these inves-
tigations, convergence rate is also compared with CG method, showing the higher rate for HDG method.
This optimal convergence of the mixed variable is then exploited to obtain the superconvergence for the
displacement unknown.

4.4 Stabilization of the HDG formulations

The HDG discretizations, (4.14) and (4.35), are written in terms of the stabilization τu and τv, respec-
tively associated with the formulations (u,σ)S and (v,σ)S . These stabilization operators, τv and τu,
are key ingredients in the definition of the numerical trace of traction, we remind from (2.26) and (2.35),

σ̂ν = σh ν − τv (vh − λvh) , variant (v,σ)S , (4.58a)

σ̂ν = σh ν − τu(uh − λuh) , variant (u,σ)S . (4.58b)

The stabilizations can be categorized into two groups,

– Group 1: one chooses or constructs a form for τv associated with variant (v,σ)S . Next, using
relation v = −iωu, the stabilization τu is determined by,

τu = −iω τv . (4.59)
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– In group 2, the stabilization τu employs those derived for elastostatics, e.g., [52, 41]. The stabiliza-
tion τv can then be obtained by the relation (4.59).

In Table 1, we give a list of variants considered in our work and analyzed in our numerical experiments
Sections 6 and 7.

Identity-based In most general form, stabilization operators τu and τv are symmetric definite positive
matrices. The simplest choice is given by a multiple of the identity matrix,

τv = τ Id Identity stabilization, (4.60)

with τ a scalar number.

Kelvin–Christoffel matrix More complicated forms of stabilization involve the 3×3 Kelvin–Christoffel
matrix Γ of Subsection 3.4.2. We remind its definition associated with a vector ν:

Γ(ν) := ν ·C · ν, with (ν ·C · ν)jk =
∑
i,l

νi cijkl νl , (4.61)

with definitions of its coefficients given in Subsection 3.5. From the assumption on the stiffness tensor
C, Γ(ν) is symmetric and definite positive. It is thus diagonalizable with eigenvalues associated with
wavespeeds in elasticity (up to three), cf. discussion in Subsection 3.4.2. For isotropic elasticity, the well-
known speeds are the P- and S- wave speed, cP and cS, (3.113), and Γ(ν) has two distinct eigenvalues:
ρ c2P and ρ c2S. For anisotropy, we label three positive eigenvalues, listed in descending order: ρc2qP, ρc

2
qS1,

and ρc2qS2. In our work, for anisotropic elasticity, we restrict to the case of three distinct wavespeeds such
that

ρc2qP > ρc2qS1 > ρc2qS2 . (4.62)

Hybridized Godunov stabilization From the construction and hybridization of the Godunov flux
(detailed in Section 5), the Godunov matrix MGodunov is defined such that

MGodunov(ν) =

{
MGiso(ν) , for C isotropic

MGani(ν) , for C anisotropic with 3 distinct speeds, (4.62).
(4.63)

The Godunov flux for isotropic elasticity is defined as (with normalized normal direction |ν| = 1),

MGiso(ν) =
ρ

cP + cS

(
cPcSId +

Γ(ν)

ρ

)
= ρ (cS Id + (cP − cS)ν ⊗ ν)

= ρ (cP Id + (cP − cS) (ν ⊗ ν − Id)) ,
(4.64)

where ⊗ is the tensor product (2.3). The derivation of the equivalent expressions is given in Subsection 5.3
which follows the method in [53]. For anisotropy with 3 distinct wave speeds (i.e., assumption (4.62)),

MGani(ν) := ρ (cqS1 + cqS2 + cqP)

(
1 + γ

(
Γ(ν)

ρ
+ p2

)−1
)
, (4.65)

with auxiliary quantities p2 and γ defined from the 3 wave speeds,

p2 := cqS1 cqS2 + cqS1 cqP + cqS2 cqP ,

and γ :=
cqS1 cqS2 cqP

cqS1 + cqS2 + cqP
− p2 .

(4.66)
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Table 1: List of the stabilizations considered. Penalization τv has unit [kgm−2 s−1], τu has unit
[kgm−2 s−2]. The scalar coefficient τ and the Godunov matrix MGodunov have unit [kgm−2 s−1], the
Kelvin–Christoffel matrix Γ has unit [kgm−1 s−2] and the scalar coefficient β has unit [sm−1].

Formulation Numerical traces Stabilization operator

(v,σ)S
v̂ = λv,

σ̂ν = σh − τv(vh − λvh)
τv =

τ Id

Γβ

MGodunov

(u,σ)S
û = λu,

σ̂ν = σh − τu(uh − λuh)
τu =

−iωτ Id

−iωΓβ

−iωMGodunov

5 Construction of hybridized Godunov stabilization operators

In this section, we provide details for the construction of the hybridized Godunov stabilization operator
MGodunov(ν) (4.63) introduced in Subsection 4.4, in particular for anisotropic elasticity under the as-
sumption of distinct speeds. Specifically, we need an expression for σ̂ν along the interface F shared by
two cells K− and K+. This is carried out by extending the method in [53] where isotropic elasticity is
considered. For completeness, the construction of [53] for isotropy was reviewed in Subsection 5.3 and
rewritten in the notation of Section 3, which helps out highlight the connection with Kelvin–Christoffel
matrix.

As in [53], first-order formulation (5.1) with unknown q = (ϵ, ρv) is employed. Integrating against
test functions and by integrating by parts, cf. (5.5), we make appear the flux operator B(ν) (5.4) whose

last 3 components give σν, cf. (5.13). This means that one first constructs the numerical trace B̂(ν) on
an interface F, which consists of 3 mains ideas.

– The numerical flux on F is given by the Godunov flux B(ν)q⋆, with the value of flux at intermediate
states q⋆. These states are exact solution to a Riemann problem in a neighborhood of F, denoted by
RP(q−,q+) having as initial data the trace of q from the left and right of F, written16 respectively
q±.

– The relation between the flux of the intermediate states and the left and right data is obtained
from a system of Rankine–Hugoniot (RH) jump conditions, cf. (5.46) in Subsection 5.2. In this
step, starting from the RH jump written in Cartesian coordinates, (5.54) for isotropic elasticity and
(5.69) for anisotropy, we retrieve the usual transmission condition for elasticity, and an expression
of the Godunov flux only in terms of one-sided data (i.e., either q+ or q−).

– In a third step, called ‘hybridization’, the transmission conditions ((5.56) for isotropy and (5.70)
for anisotropy) and the aforementioned expression of the Godunov flux in terms of one-sided data
((5.60) and (5.62) for isotropy, and (5.89) and (5.92) for anisotropy) are exploited to obtain HDG
numerical flux (5.95) and (5.95).

The first two ingredients are employed in the construction of upwind fluxes for DG implemention in
time domain, cf. [61, 56, 55, 63], and for HDG scheme [53]. For applications with DG, the constructed
numerical flux depends on information from both left and right of the interface. For implementation with
HDG, also starting from these ingredients, [53] however proceeds differently to arrive at an expression of
the flux which contains only one-sided data. Hybridization of Godunov flux is also discussed in a series
of work with different formalisms [8, 9, 10] and in which Rankine–Hugoniot jump condition is recognized
in sequel works ([9, 10]) to be a more natural and direct way to devise HDG flux.

16Recall that q = ∪K∈Th
qK along interface F = F+ = F− F = ∂K−∩∂K+ and F± = ∂K±∩F then with q± = qK± |F± .
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5.1 First order system and flux operator

First order system Consider the time-domain first order system with unknowns (ϵ, ρv),{
∂tϵ−∇sv = 0 ,

∂tρv −∇ ·Cϵ = f
⇔ ∂t

(
ϵ
ρv

)
=

(
0 ∇sρ−1

∇ ·C 0

)(
ϵ
ρv

)
. (5.1)

Introduce

B(∂x) := −

(
0 At(∂x) ρ

−1

A(∂x) †
=

C† 0

)
, (5.2)

in Voigt notation as

∂tq+B(∂x)q =

(
0
f

)
, with q =

(−→ϵ
ρv

)
. (5.3)

This is due to identity (3.31),
−−→
∇sv = A(∂x)tv, and by combining (3.21b) and (3.32), ∇ · (Cϵ) =

A(∂x) †
=

C†−→ϵ .

Flux term We have introduced the flux operator at ∂K and

B(ν) := −

(
0 At(ν)ρ−1

A(ν) †
=

C† 0

)
. (5.4)

This arises from integrating both sides of (5.1) against test function

(
χ
w

)
and after carrying out an

integration-by-parts. Next, using identity (3.58), we arrive at,∫
K

∂tq ·
(−→χ †

w

)
dx +

∫
K

B(∂x)

(−→ϵ
ρv

)
·
(−→χ †

w

)
dx

=

∫
K

∂tq ·
(−→χ †

w

)
dx+

∫
K

(−→ϵ
ρv

)
·Bad(∂x)

(−→χ †

w

)
dx +

∫
∂K

B(ν)

(−→ϵ
ρv

)
·
(−→χ †

w

)
dsx ,

(5.5)

with the ‘adjoint’ operator associated with B,

Bad(∂x) :=

(
0 †=C† A(∂x)t

ρ−1 A(∂x) 0

)
. (5.6)

Eigenvalues of B(ν) Consider the eigenvalues α of the flux operator B(ν),(
0 At(ν)ρ−1

A(ν) †
=

C† 0

)(→
τ
w

)
= α

(→
τ
w

)
⇔

{
At(ν)ρ−1w = α

→
τ

A(ν) †
=

C†→τ = αw
. (5.7)

Apply to both sides of the first equation A(ν) †
=

C†, we obtain the eigenproblem for the 3 × 3 matrix of
Kelvin–Christoffel matrix Γ(ν), which is also called the Christoffel equation,

A(ν) †
=

C†At(ν)w = ρα2 w ⇔ Γ(ν)w = ρα2 w . (5.8)

We have denoted in (4.62) the three (assumed distinct) eigenvalues of Γ(ν):

ρ c2qP < ρ c2qS1 < ρ c2qS2 . (5.9)

That is, under assumption (4.62), the eigenvalues of B(ν) are

−cqP , −cqS1 , −cqS2 , 0
multiplicity 3

, cqS2 , cqS1 , cqP . (5.10)

For elastic isotropy, Subsection 3.5.1, the eigenvalues of B(ν) are

−cP , −cS
multiplicity 2

, 0
multiplicity 3

, cS
multiplicity 2

, cP . (5.11)

RR n° 9533



40 H. Pham & F. Faucher & H. Barucq

Action of B(ν) From its definition, for vectors W of length 6 and w of length 3,

B(ν)

(
W
w

)
= −

(
At(ν)ρ−1w

A(ν) †
=

C†W

)
. (5.12)

By using this on to q =

(−→ϵ
ρv

)
, we have

B(ν)q = −

(
At(ν)v

A(ν) †
=

C†−→ϵ

)
= −

(
At(ν)v
σν

)
= −

(−−−→
v ⊙ ν
σν

)
; (5.13a)

B(ν)2q =

(
At(ν) ρ−1 σν

ρA(ν) †
=

C† At(ν)v

)
=

1

ρ

(
At(ν)σν
ρΓ(ν)v

)
=

1

ρ

(−−−−−→
ν ⊙ σν
ρΓ(ν)v

)
; (5.13b)

B(ν)3q = −

(
At(ν)ρ−1A(ν) †

=

C† At(ν)v

A(ν) †
=

C†At(ν)ρ−1σν

)
= −1

ρ

(
At(ν)Γ(ν)v
Γ(ν)σν

)
= −1

ρ

(−−−−−−−→
ν ⊙ Γ(ν)v
Γ(ν)σν

)
. (5.13c)

Flux operator in rotated coordinates Given a normal vector ν at a straight edge face F, we consider
a second coordinate system obtained by rotation so that ex is parallel to the axis ν. The basis of the
rotated coordinate is given by the ordered set (ν, t, t̃) with the latter vectors being tangential to the
straight-edge face F. The components of these vectors in Cartesian coordinates are written as

νx, νy, νz ; tx, ty, tz ; t̃x, t̃y, t̃z . (5.14)

The relation between the two coordinates is given by formula derived in Subsection 3.4.5 with rotation
matrix R and Bond matrix M associated specifically to these two coordinates,

R = (rij) :=

νx tx t̃x
νy ty t̃y
νz tz t̃z

 , and M := M†[R] following definition (3.64) . (5.15)

With the matrices defined in (5.15), we introduce the block-diagonal matrix T defined as

T :=

(
M 0
0 Rt

)
, T−1 =

(
M−1 0
0 R

)
. (5.16)

Denote by B̃(ν) the matrix representation of the flux operator in rotated coordinates, i.e.,

(B(ν)q) · p = B̃(ν)q · p̃ =
(
B̃(ν) q̃

)
· p̃ . (5.17)

By abuse of notation, B(ν) also denotes the matrix representation of the flux operator in Cartesian
coordinates. From the relation derived in (3.107) between q and q̃ (now with rotation and Bond matrix

given in (5.15)), we obtain a more explicit expression for B̃(ν) which is taken as its definition,

B̃(ν) :=

(
M 0
0 Rt

)
B(ν)

(
M−1 0
0 R

)
. (5.18)

In more compact notation, matrix B̃(ν) and B(ν) are conjugation of each other by T (5.16),

B̃(ν) = TB(ν)T−1 , B(ν) = T−1 B̃(ν)T . (5.19)

To state the following identity for the rotated flux, we recall
=

C̃ is the stiffness tensor in rotated

coordinates written in Voigt representation, and its scaled version †
=

C̃† is defined in (3.10). We also recall
from identity (3.98) the matrix,

A1 :=

1 0 0 0 0 0
0 0 0 0 0 1

2

0 0 0 0 1
2

0

 . (5.20)
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Proposition 9. The matrix representation of the flux operator B(ν) in Cartesian coordinates, also

denoted by B(ν), and rotated coordinates (ν, t, t̃) denoted by B̃(ν) are conjugation of each other by T,
(5.19), which means they have the same spectral structure stated in (5.10) or (5.25). Additionally, the
representation in rotated coordinates is explicitly given by

B̃(ν) =

(
0 At

1ρ
−1

A1
†
=

C̃† 0

)
. (5.21)

Proof. Inject the definition (5.4) of B(ν) in the defining expression (5.18) of its rotated version, we obtain

B̃(ν) = −
(
M 0
0 Rt

)(
0 At(ν)ρ−1

A(ν) †
=

C† 0

)(
M−1 0
0 R

)

= −
(
M 0
0 Rt

)(
0 At(ν)Rρ−1

A(ν) †
=

C†M−1 0

)
= −

(
0 MAt(ν)Rρ−1

RtA(ν) †
=

C†M−1 0

)
.

(5.22)

The final expression is obtained by rewriting

RtA(ν) †
=

C†M−1 =
(
RtA(ν)Mt

)(
M−t †=C†M−1

)
, (5.23)

and by applying identities (3.98) and (3.108).

5.2 Riemann problem and Rankine–Hugoniot jump conditions

5.2.1 Toy Riemann problem and its solution

Toy Riemann problem We adapt the discussion of Riemann problem from [57, Section 2.3.3] to
incorporate the spectral structure of the flux operator in (5.10). We work in (rotated) coordinates having
as variable x̃ = (n, s, s̃)t. The toy Riemann problem is defined in variable (t, n) with 9 × 9 constant
coefficient matrix Bn. It has as unknown the length-9 vector u = u(x̃, t) = u(n, t) and initial data the
piecewise constant length-9 vector u = u(n),

∂tu + ∂nBnu = 0 , with u(x̃, 0) = u(n) =

{
uL , n < 0 ,

uR , n > 0
. (5.24)

The solution to (5.24) is constructed below and takes the final form in (5.37).

Assumption on matrix Bn We will assume that Bn has the same spectral structure of B (5.10). This
means Bn is diagonalizable with eigenvalue 0 having multiplicity 3 and remaining nonzero eigenvalues λi
having multiplicity 1; specifically,

λ1 < λ2 < λ3 < λ4 = λ5 = λ6 = 0 < λ7 < λ8 < λ9 . (5.25)

Denote by ki the corresponding eigenvectors

Bn ki = λi ki , i = 1, . . . , 9 . (5.26)

We also denote by K the 9 × 9 matrix whose columns are ki, and Λ the diagonal matrix whose entries
are the eigenvalues,

K = [k1, . . . ,k9] , Λ = diag(λ1, . . . , λ9) , (5.27)

We thus have,
Bn = KΛK−1 . (5.28)
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Solution to the Riemann problem We next construct the general solution to (5.24), following the
discussion in [57, Section 2.3.3]. In diagonalizing basis, i.e. w = K−1u, the Riemann problem (5.24) is
transformed to,

∂tw + ∂nΛw = 0 , with w(n, 0) = w(n) = K−1u , (5.29)

With Λ a diagonal matrix, (5.24) is decoupled to 9 advection equations, satisfied by each component wi

of w,
∂twi + λi ∂nwi = 0 , with wi(n, 0) = wi(n) . (5.30)

The solutions of (5.30) are given by advection of the initial condition wi along straight line at speed λi
in the (n, t)-plane,

wi(n, t) = wi(n− λit) . (5.31)

This means that wi is constant along the straight line with slope λi through the point (n, 0) and taking
value wi(n0) with n0 = n− λit. Using relation u = Kw, we obtain the solution to the original Riemann
problem (5.24),

u(n, t) =

9∑
j=1

wj(n, t)kj =

9∑
j=1

wj(n− λjt)kj . (5.32)

Next, we determine the value of wj in terms of the initial value u in (5.24), which is rewritten in terms
of the eigenfunctions ki (5.26),

u(n) =


uL =

9∑
i=1

αi ki , n < 0

uR =

9∑
i=1

βi ki , n > 0

(5.33)

Setting t = 0 in (5.32), we obtain another expression of the initial value of u,

u(n) = u(n, 0) =

9∑
j=1

wj(n)kj . (5.34)

Comparing the two above expressions of initial values, (5.34) with (5.33), we obtain the value of wj ,
which then yields,

wj(n) =

{
αj , for n < 0,

βj , for n > 0
. (5.35)

This then gives the value of wj ,

wi(n, t) = wj(n− λjt) =

{
αj , for n− λj t < 0 ⇔ n

t < λj

βj , for n− λj t > 0 ⇔ n
t > λj

. (5.36)

Substitute the obtained expression of wj into (5.32), we arrive at, cf. [57, Equation (2.60)],

u(n, t) =

I∑
j=1

βj kj +

9∑
j=I+1

αj kj , with I defined by λI <
n

t
< λI+1 . (5.37)

States From (5.37), we define the states associated to the distinct values of the eigenvalues, which give
the value of solution u in the eight regions delimited by the ray along which the singularities of the initial
conditions u are propagated, cf. Figure 2.

UL , Ua− , U b− , U⋆−︸ ︷︷ ︸
value on n<0

, U⋆+ , U b+ , Ua+ , UR︸ ︷︷ ︸
value on n>0

. (5.38)

Their explicit definitions in terms of the eigenfunctions ki are,
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– The states to the left of the interfaces (i.e., for n < 0) are,

UL =

9∑
i=1

αiki , Ua− = β1k1 +

9∑
i=2

αiki , U b− =

2∑
j=1

βjkj +

9∑
i=3

αiki ,

U⋆− :=

3∑
i=1

βiki +

9∑
i=4

αiki = UL +

3∑
i=1

(βi − αi)ki .

(5.39)

– The states to the right of the interface (i.e., for n > 0) are

UR =

9∑
j=1

βjkj , Ua+ =

8∑
j=1

βjkj + α9k9 , U b+ =

7∑
j=1

βjkj +

9∑
j=8

αjkj ,

U⋆+ :=

6∑
i=1

βiki +

9∑
i=7

αiki = UR +

9∑
i=7

(αi − βi)ki .

(5.40)

Derivation of Rankine–Hugoniot (RH) jump conditions From the definition of the states on the
left-hand side region (5.39), we have

Ua− − UL = (β1 − α1)k1 . (5.41)

We apply Bn to both sides of the equation to obtain,

Bn(U
a− − UL) = (β1 − α1)Bnk1 ⇒ Bn(U

a− − UL) = λ1(β1 − α1)k1 . (5.42)

Next replace k1 using (5.41), we obtain the RH condition associated with speed λ1,

Bn(U
a− − UL) = λ1(U

a− − UL) . (5.43)

The RH jump conditions with speed λ2, λ3, λ8 and λ9 are obtained in a similar manner, e.g., for λ9 we
have,

Ua+− − UR = (β9 − α9)k9 ⇒ Bn(U
a+− − UR) = λ9(U

a+− − UR). (5.44)

Lastly, the intermediate states ‘separated’ by the interface satisfy,

U⋆− − U⋆+ =

6∑
i=3

(αi − βi)ki ⇒ Bn(U
⋆− − U⋆+) = 0 . (5.45)

We gather the jump conditions associated with the 7 distinct speeds (eigenvalues),

Bn(U
a− − UL) = λ1(U

a− − UL) ,

Bn(U
b− − Ua−) = λ2(U

a− − Ua+) ,

Bn(U
⋆− − U b−) = λ3(U

a− − Ua+) ,

Bn(U
⋆− − U⋆+) = 0 ,

Bn(U
⋆+ − U b+) = λ7(U

a− − Ua+) ,

Bn(U
b+− − Ua+) = λ8(U

b+− − Ua+) ,

Bn(U
a+− − UR) = λ9(U

a+− − UR) .

(5.46)

5.2.2 Jump equations in original coordinates

We follow the notation and quantities introduced at the end of Subsection 5.1. Recall briefly that given a
normal vector ν at a straight edge face F, we consider a second coordinate system obtained by rotation so
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that ex is parallel to the axis ν. The orthonormal basis of the rotated coordinate is given by the ordered
set (ν, t, t̃).

We return to the model problem considered in Subsection 5.2.1, now with Bn given by B̃(ν) defined
in (5.21), that is,

(∂t + ∂nBn)q̃ = 0 , with Bn := B̃(ν) .

We recall from (5.19), that with T defined in (5.16),

Bn = TB(ν)T−1 , B(ν) = T−1 Bn T .

The jump condition with Bn was derived in (5.46) (now with the eigenvalues denoted by speed cj)

Bn(q̃
α − q̃β) = cj(q̃

α − q̃β) . (5.47)

Substitute in the relation between the operators and the solutions, q̃• = Tq•, we obtain

T−1BnT(qα − qβ) = cj(q
α − qβ) , (5.48)

which gives the jump condition in original coordinates,

B(ν)(qα − qβ) = cj(q
α − qβ) . (5.49)

Remark 11. The above derivation can be extended for B piecewise-constant to arrive at the same
conditions, cf. e.g. [55, Equation (19))] for anisotropy, and [61, Equation (14)], [53, Equation (31)].
These states are explicitly given in terms of the eigenvalues and vectors of B(ν), which extend the
discussion in [57, Section 2.3.3] with B discontinuous across the interface. In addition, the differences
(q⋆±−q±) are linear combinations of corresponding eigenfunctions, cf. [63, Equation (20)], [55, Equation
(20)],

q⋆− = q− +

3∑
i=1

γ−i k−
i , q⋆+ = q+ +

9∑
i=7

γ+i k+
i . (5.50)

5.3 Derivation for isotropic elasticity

Here we consider isotropic elasticity, Subsection 3.5.1, where the elasticity tensor is written from the two
Lamé parameters λ and µ, that define the two wave speeds cP and cS (3.113). We denote by ν the normal
vector along the interface pointing from K− to K+, and ν± the outward pointing ones of K±, we have

ν = ν− = −ν+ . (5.51)

To distinguish the medium on each side of an interface in particular allowing to be discontinuous across
an interface, we write

ρ±, C±, B(ν)± , and its eigenvalues c±α . (5.52)

Here, B−(ν) is defined in (5.4) with physical parameters associated with mesh cell K−, i.e., (ρ−, λ−, µ−)
and normal vector ν−. Similarly for B(ν)+. Recall the spectral structure of B(ν) is as follows, cf. (5.11),

−cP , −cS
multiplicity 2

, 0
multiplicity 3

, cS
multiplicity 2

, cP . (5.53)

Rankine–Hugoniot jump conditions in Cartesian coordinates Apply the jump conditions ob-
tained in (5.49) adapted to spectral structure (5.53), cf. Figure 1,

B(ν)−
(
qa− − q−) = −c−P (qa− − q−) ;

B(ν)−
(
q⋆− − qa−) = −c−S (q⋆− − qa−) ;
B(ν)−q⋆− = B(ν)+q⋆+ ;

B(ν)+
(
q⋆+ − qa+

)
= c+S

(
q⋆+ − qa+

)
;

B(ν)+
(
qa+ − q+

)
= c+P

(
qa+ − q+

)
.

(5.54a)

(5.54b)

(5.54c)

(5.54d)

(5.54e)
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n

t

−c−S

q⋆−−c−P qa−

q−

0

λ−, µ−, ρ−

c+S

q⋆+ c+Pqa+

q+

0

λ+, µ+, ρ+

Figure 1: Spectral structure and the Godunov states appearing in the Rankine-Hugoniot jump condition
for isotropic elasticity (5.54).

Transmission condition for interface states From the expressions in (5.13), we have

q =

(−→ϵ
ρv

)
, B(ν)q = −

(−−−→
v ⊙ ν
σν

)
, σν := Cϵ · ν . (5.55)

The first 3 components and last 3 components of the equality (5.54c) give{
νI v

⋆−
I = νIv

⋆+
I , I = x, y, z

(σν)
⋆−

= (σν)
⋆+ ⇒

{
v⋆− = v⋆+ ;

(σν)
⋆−

= (σν)
⋆+ . (5.56)

Relating intermediate states to interface and boundary states Adding equation (5.54a) and
(5.54b) and after some rearrangement, we obtain(c−P − c−S )q

a− = −B(ν)−(q⋆− − q−) + c−Pq
− − c−S q

⋆− ;

−B(ν)− q− = −B−(ν)qa− − c−Pq
a− + c−Pq

− .

(5.57a)

(5.57b)

We next derive a relation between (σν)− and (σν)⋆− as follows. Substitute the expression of qa

given by (5.57a) into (5.57b), we arrive at an expression for −B−q− in terms of only q⋆− and q−,

−B(ν)−q− =
1

c−P − c−S

[
B(ν)−B(ν)−(q⋆− − q−)− c−P B(ν)−q− + c−S B(ν)−q⋆−]

+
c−P

c−P − c−S

[
B(ν)−(q⋆− − q−)− c−Pq

− + c−S q
⋆−] + c−Pq

− .

(5.58)

The above expression is rearranged to obtain

c−P + c−S
c−P − c−S

B(ν)−q− =
B(ν)−B(ν)−(q⋆− − q−)

c−P − c−S
+

c−P + c−S
c−P − c−S

B(ν)−q⋆− +
c−P c

−
S

c−P − c−S

(
q⋆− − q−) . (5.59)

By multiplying both sides by (c−P − c−S )/(c
−
P + c−S ), we obtain,

−B(ν)−q⋆− = −B(ν)−q− +
1

c−P + c−S

[
c−P c

−
S + B(ν)−B(ν)−

] (
q⋆− − q−) . (5.60)

From the expressions in (5.13), we have

q =

(−→ϵ
ρv

)
, B(ν)q = −

(
At(ν)v
σν

)
, B(ν)B(ν)q =

(
At(ν)ρ−1σν

Γ(ν)v

)
. (5.61)
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The last 3 components of (5.59) thus give,

(σν)⋆− = (σν)− +
ρ−

c−P + c−S

(
c−P c

−
S +

Γ−(ν)
ρ−

)(
v⋆− − v−) . (5.62)

We can carry out the same computation for the right-hand side of the interface to obtain,

(σν)⋆+ = (σν)+ +
ρ+

c+P + c+S

(
c+P c+S +

Γ+(ν)

ρ+

)(
v⋆+ − v+

)
. (5.63)

We thus retrieve the same result as in [53, Equation (36)].

Construction of HDG trace Following [53], the numerical traces for HDG are constructed using
relations (5.56):

v̂± := v⋆± , σ̂ν = (σν)⋆− . (5.64)

Using (5.62) obtained from the Rankine–Hugoniot jump condition at an interface with normal vector ν,
we have, 

v̂ := λv ;

σ̂ν := (σν)⋆− = (σν)− +
ρ−

c−P + c−S

(
c−P c

−
S I3 +

Γ(ν)

ρ−

)(
λv − v−) .

(5.65a)

(5.65b)

Using the explicit expression of Γ(ν) in (3.116), the stabilization operator takes the following form17

(using |ν| = 1),

MG−iso :=
ρ

cp + cs

(
cp csId +

Γ(ν)

ρ

)
= ρ (cs Id + (cp − cs)ν ⊗ ν) = ρ (cp Id + (cp − cs) (ν ⊗ ν − Id)) .

(5.66)

5.4 Derivation for anistropic elasticity with distinct waves speeds

We follow the same notation given in (5.51) and (5.52). Under the assumption of spectral structure (5.10)
of B±(ν), we have 7 possible discontinuities propagating at the speed of corresponding eigenvalues,

−cqP , −cqS1 , −cqS2 , 0
multiplicity 3

, cqS2 , cqS1 , cqP . (5.67)

Denote the states in between the discontinuities, cf. Figure 2,

q− , qa− , qb− , q⋆− , q⋆+ , qb+ , qa+ , q+ . (5.68)

The jump condition associated with spectral structure (5.67) is, cf. [55, Equation (19)],

B−(ν)
(
qa− − q−) = −c−qP (qa− − q−) ;

B−(ν)
(
qb− − qa−) = −c−qS1 (qb− − qa−) ;

B−(ν)
(
q⋆− − qb−) = −c−qS2 (q⋆− − qb−) ;
B−(ν)q⋆− = B+(ν)q⋆+ ;

B+(ν)
(
qb+ − q⋆+

)
= c+qS1

(
qb+ − q⋆+

)
;

B+(ν)
(
qb+ − qa+

)
= c+qS1

(
qb+ − qa+

)
;

B+(ν)
(
qa+ − q+

)
= c+qS

(
qa+ − q+

)
.

(5.69a)

(5.69b)

(5.69c)

(5.69d)

(5.69e)

(5.69f)

(5.69g)

17This is due to
Γ(ν)

ρ
= c2sId + (c2p − c2s)ν ⊗ ν and

Γ(ν)

ρ
+ cPcSId = cS(cS + cP)Id + (cP − cP)(cP + cS)ν ⊗ ν.
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n

t

−c−qS2

q⋆−−c−qS1 qb−

−c−qP

qa−

q−

0

C−, ρ−

c+qS2

q⋆+ c+qS1qb+

c+qP

qa+

q+

C+, ρ+

Figure 2: Spectral structure and the Godunov states appearing in the Rankine-Hugoniot jump condition
(5.69) for anisotropic elasticity with 3 distinct speeds.

Transmission condition for interface states Similar to isotropy (cf. (5.56)), we obtain the trans-
mission conditions from the first 3 and last 3 components of equation (5.69d) associated with the non-
propagative state q⋆±,{

νI v
⋆−
I = νI v

⋆+
I , I = x, y, z

(σν)
⋆−

= (σν)
⋆+

⇒

{
v⋆− = v⋆+ ;

(σν)
⋆−

= (σν)
⋆+ . (5.70)

Relating intermediate states to interface and boundary states Working on each side of the
interface, we will express the state qa± and qb± in terms of the interface states q⋆± and boundary states
q±.

Step 1a We start by working with the first three equations of (5.69), summing them, we obtain,

B(ν)−
(
q⋆− − q−) = (−c−qP + c−qS1

)
qa− +

(
−c−qS1 + c−qS2

)
qb− − c−qS2q

⋆− + c−qPq
− . (5.71)

After rearrangement, this leads to,(
c−qP − c−qS1

)
qa− +

(
c−qS1 − c−qS2

)
qb− = −B(ν)−

(
q⋆− − q−)− c−qS2q

⋆− + c−qPq
− . (5.72)

Next, take cqP × (5.69a) + cqS1 × (5.69b) + cqS2 × (5.69c), we obtain,

B(ν)−
[(

c−qP − c−qS1

)
qa− +

(
c−qS1 − c−qS2

)
qb−

]
= c−qPB(ν)−q− − c−qS2B(ν)−q⋆−

+
[
(c−qS1)

2 − (c−qP)
2
]
qa− +

[
(c−qS2)

2 − (c−qS1)
2
]
qb− − (c−qS2)

2q⋆− + (c−qP)
2q− .

(5.73)

Step 1b Using (5.72) to rewrite the left-hand side of equation (5.73), we have

B(ν)−
(
−B(ν)−

(
q⋆− − q−)− c−qS2q

⋆− + c−qPq
−
)

= c−qPB(ν)−q− − c−qS2B
−(ν)q⋆−(

−(c−qP)
2 + (c−qS1)

2
)
qa− +

(
−(c−qS1)

2 + (c−qS2)
2
)
qb− − (c−qS2)

2q⋆− + (c−qP)
2q− .

(5.74)

After simplification, we obtain,

−(B−)2
(
q⋆− − q−) =

(
−(c−qP)

2 + (c−qS1)
2
)
qa− +

(
−(c−qS1)

2 + (c−qS2)
2
)
qb−

− (c−qS2)
2q⋆− + (c−qP)

2q− .
(5.75)
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Equation (5.72) together with (5.75) give a linear system which determines uniquely (qa−,qb−) with a
right-hand side containing only q⋆− and q−,(

α β

αα̃ ββ̃

)(
qa−

qb−

)
=

(
−B(q⋆− − q−)− c−qS2q

⋆− + c−qPq
−

B2(q⋆− − q−)− (c−qS2)
2q⋆− + (c−qP)

2q−

)
, (5.76)

where

α = c−qP − c−qS1 , α̃ = c−qS1 + c−qP , β = c−qS1 − c−qS2 β̃ = c−qS1 + c−qS2 . (5.77)

Note that the determinant of the coefficient matrix in (5.76) is

αβ(β̃ − α̃) =
(
c−qP − c−qS1

)(
c−qS1 − c−qS2

)(
c−qS2 − c−qP

)
. (5.78)

This is invertible under assumption of distinct wave speeds (5.9), in which case, we obtain the expression
of qa− and qb− in terms of q⋆− and q−.(

qa−

qb−

)
=

1

β̃ − α̃

(
β̃
α − 1

α

− α̃
β

1
β

)(
−B(q⋆− − q−)− c−qS2q

⋆− + c−qPq
−

B2(q⋆− − q−)− (c−qS2)
2q⋆− + (c−qP)

2q−

)
. (5.79)

From here, we can proceed by working with either expression of qa− and (5.69a) or with qb− and (5.69c).
The first option is chosen in the next step, for which it is useful to further simplify the expression of qa−

given in (5.79),

α(β̃ − α̃)qa− = β̃
(
−B(q⋆− − q−)− c−qS2q

⋆− + c−qPq
−
)

−
(
B2(q⋆− − q−)− (c−qS2)

2q⋆− + (c−qP)
2q−

)
= −

(
β̃B+B2

)
(q⋆− − q−) + c−qS2

(
−β̃ + c−qS2

)
q⋆− + c−qP

(
β̃ − c−qP

)
q−

= −
(
β̃B+B2

)
(q⋆− − q−)− c−qS2c

−
qS1q

⋆− + c−qP

(
β̃ − c−qP

)
q− .

(5.80)

With some algebraic manipulation18, we obtain

c−qP

(
β̃ − c−qP

)
− α(β̃ − α̃) = c−qS1c

−
qS2 . (5.82)

This gives us the useful expression,

α(β̃ − α̃)
(
qa− − q−) = −

(
β̃B+B2 + c−qS1c

−
qS2

)
(q⋆− − q−) . (5.83)

Step 2a Using (5.69a), we have,(
B− + c−qP

) (
qa− − q−) = 0 ⇒

(
B− + c−qP

)
α(β̃ − α̃)

(
qa− − q−) = 0 . (5.84)

Substitute the difference given by (5.83) into the above expression:(
B− + c−qP

)(
β̃B+B2 + c−qS1c

−
qS2

)
(q⋆− − q−) = 0 . (5.85)

18This is seen as,(
c−qS1 − c−qP

)(
c−qS2 − c−qP

)
= c−qS1c

−
qS2 − c−qP

(
c−qS1 + c−qS2 − c−qP

)
⇒ c−qP

(
β̃ − c−qP

)
− α(β̃ − α̃) = c−qP

(
c−qS1 + c−qS2 − c−qP

)
−
(
c−qP − c−qS1

)(
c−qS2 − c−qP

)
= c−qS1c

−
qS2 .

(5.81)
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We compute the left-hand side,(
B− + c−qP

)(
β̃B+B2 + c−qS1c

−
qS2

)
= β̃B2 +B3 + c−qS1c

−
qS2B+ c−qPβ̃B+ c−qPB

2 + c−qPc
−
qS1c

−
qS2

=
(
B2 + c−qS1c

−
qS2 + c−qPβ̃

)
B+

(
β̃ + c−qP

)
B2 + c−qPc

−
qS1c

−
qS2 .

(5.86)

We thus arrive at,[(
B2 + c−qS1c

−
qS2 + c−qPβ̃

)
B+

(
β̃ + c−qP

)
B2 + c−qPc

−
qS1c

−
qS2

] (
q⋆− − q−) = 0 , (5.87)

where we have introduced

p3 := c−qS1c
−
qS2c

−
qP , p2 := c−qS1c

−
qS2 + c−qS1c

−
qP + c−qS2c

−
qP . (5.88)

In noting that p2 = c−qS1c
−
qS2 + c−qPβ̃, we rewrite the above equation as(

B3
− + p−2 B− +

(
c−qS1 + c−qS2 + c−qP

)
B2

− + p−3 Id
) (

q⋆− − q−) = 0 . (5.89)

Step 2b Recall from (5.13), we have

q =

(−→ϵ
ρv

)
, B(ν)q = −

(
At(ν)v
σν

)
B(ν)2q =

(
ρ−1At(ν)σν

Γ(ν)v

)
, B(ν)3q = −1

ρ

(
At(ν)Γ(ν)v
Γ(ν)σν

)
.

(5.90)

We substitute this into (5.89), and use the last three components of equation (5.89) to obtain,

−
(
Γ(ν)

ρ
+ p−2

)(
(σν)⋆− − (σν)−

)
+ ρ−

(
(cqSa + cqP)

Γ(ν)

ρ
+ p−3

)(
v⋆− − v−) = 0

⇒ (σν)⋆− − (σν)− = ρ−
(
Γ(ν)

ρ
+ p−2

)−1(
(cqSa + cqP)

Γ(ν)

ρ
+ p−3

)(
v⋆− − v−) . (5.91)

With some algebraic manipulation, we arrive at

(σν)⋆− − (σν)− = ρ−
(
c−qS1 + c−qS2 + cqP

)(
1 + γ

(
Γ(ν)

ρ
+ p2

)−1
)(

v⋆− − v−) , (5.92)

where

γ :=
p3

c−qS1 + c−qS2 + cqP
− p2 . (5.93)

Derivation of HDG trace From this point, following the same hybridization procedure as done in
isotropy, we employ the transmission condition (5.70),

v̂ := v⋆± , σ̂ν = (σν)⋆− , (5.94)

and the relation (5.92) obtained from the Rankine–Hugoniot jump condition at an interface with normal
vector ν, to arrive at the hybridized trace for displacement and traction,{

v̂ = λv ;

σ̂ν = (σν)− + MG−ani
(
λv − v−) , (5.95a)

(5.95b)

with

MG−ani := ρ−
(
c−qS1 + c−qS2 + c−qP

)(
1 + γ

(
Γ(ν)

ρ−
+ p−2

)−1
)
. (5.96)
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6 Numerical experiments: elastic isotropy

The HDG method is implemented in the open-source parallel software hawen19, [29]. We perform numer-
ical experiments to evaluate the performance of the different choices of stabilization for the accuracy of
the wave propagation. To evaluate the difference between a reference solution (either an analytic one or
a numerical one computed with refined discretization) and simulations, we introduce the relative error
defined for a wave field w such that

ê(w; x) =
|wref(x) − wsimu(x) |

∥wref(x)∥
. (6.1)

In our experiments, w is either a component of the displacement field u, velocity field v or of the stress
tensor σ. The mean errors e and E are defined such that

e(w) :=
1

nx

nx∑
k=1

ê(w,xk) ;

E(u) :=
1

3

∑
j={x,y,z}

e(uj ,xk) ; E(σ) :=
1

6

∑
j={xx,yy,zz,xy,xz,yz}

e(σj ,xk) ,

(6.2)

where xk corresponds to the kth position where the solutions are evaluated, with a total of nx positions.
Typically, we use a Cartesian grid to select these positions in order to balance the contributions of each
place. In all of the following experiments, we however exclude the positions near the boundaries, and the
source position when a Dirac point-source is used.

The different stabilization analyzed In the experiments, we consider the formulations with dis-
placement or velocity, respectively (u,σ)S and (v,σ)S in (2.8) and (2.9). Below we detail the main
stabilizations tested, introduced in Table 1:

Formulation (u,σ)S with σ̂ν = σh − τu(uh − λuh) :

choices of τu


τuI := −iω Id ; τuIs := −iω ρ cqS2 Id ; identity based ;

τuΓ := −iωΓ ; τuΓs :=
−iω
cqS2

Γ ; Kelvin–Christoffel based ;

τuG := −iωMGodunov ; Godunov stabilization .

(6.3a)

Formulation (v,σ)S with σ̂ν = σh − τv(vh − λvh) :

choices of τv


τvI := Id ; τvIs := ρ cqS2 Id ; identity based ;

τvΓ := Γ ; τvΓs :=
1

cqS2
Γ ; Kelvin–Christoffel based ;

τvG := MGodunov ; Godunov stabilization .

(6.4a)

Here, the Kelvin–Christoffel matrix for elastic isotropy and vertical transverse isotropy are respectively
given in Propositions 6 and 7. The Godunov matrices are respectively given in (4.64) and (5.96).

Remark 12. Alternatives for (6.3) and (6.4) have been implemented and numerically compared, in
particular replacing the wave-speed cqS2. For the sake of conciseness, we only present on the most effective
ones, which corresponds to taking the lowest velocity. We further refer to Subsections 6.2, 7.1 and 7.2
where the stabilizations based upon the identity are thoroughly analyzed, comparing real and imaginary
choices and several orders of magnitude for the scalar coefficient.

We start by considering an elastic isotropic medium in dimensions 2 or 3. In this case, the stiffness
tensor C is defined from the two Lamé parameters λ and µ, see Subsection 3.5.1. The absorbing boundary
conditions to approximate free-space propagation are given by, [37, 40],

σ · ν − iω
(√

(λ+ 2µ)ρ ν ⊗ ν +
√
µρ (Id − ν ⊗ ν)

)
u = 0 , on Γ. (6.5)

19https://ffaucher.gitlab.io/hawen-website/
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6.1 2D homogeneous medium with point source (benchmark2Diso-R5)

We consider a disk of radius R = 5 with constant values of density, P- and S-wave speeds. This is our
experiment benchmark2Diso-R5 described as follows:

benchmark2Diso-R5



Disk of radius R = 5 with Dirac source in (0, 0) ,

cP = 2.5× 10−3 , cS = 10−3 , ρ = 1 ,

⇒ λ = 4.25× 10−6 and µ = 10−6 .

Simulations with fixed mesh of about 30 000 triangles,

ω/(2π) ∈ (1, 15) mHz; polynomial orders between 1 and 7 .

(6.6)

Analytic solutions in two dimensions We consider here the solution gβ to the homogeneous
isotropic elastic equation with Dirac source at position y = (y1, y2) having polarizations at y in direction
e1 = ex and e2 = ey, respectively,(

−ω2ρ− Lλ,µ

)
gI(x;y) = eβ δy(x) , with I = 1, 2 . (6.7)

Here Lλ,µ is the elastic problem (2.8) under elastic isotropy (3.114), in 2D space variable x = (x1, x2).
The analytic expressions of the solutions are known for homogeneous background parameters λ, µ and
ρ, and are given by the first and second column of the outgoing elastic Green’s tensor whose expression
can be found in, e.g., [1, Equations (1.24) and (1.25)],

uref2D
I (x;y) = gI(x;y) = gP

I (x;y) + gS
I (x;y) , (6.8)

where 
gP
I (x,y) =

1

µ k2S
∇x (∂xI

ϕP) , with ϕP(x,y) =
i
4H

(1)
0 (kP|x− y|) ,

gS
I (x,y) = −

1

µ

(
ϕS eI +

1

k2S
∇x (∂xI

ϕP)

)
, with ϕS(x,y) =

i

4
H

(1)
0 (kS|x− y|) .

(6.9)

In the above expressions, H
(1)
n is the n-th Hankel function of the first kind20, while ∇x is the gradient

in variable x. In the above expression, for x ̸= 0 and y = 0, the term ∇x∂xI
ϕα with α = ‘P’,‘S’ and

I = 1, 2, is the vector21,

∇x∂xI
ϕα =

ikα
4

(
kα H

(1)
1 (kαr)

r
−H

(1)
0 (kαr)kα +

H
(1)
1 (kαr)

r2

)
xI
r2

x , where r := |x| . (6.12)

We also recall that kS = ω
cS

= ω
√

ρ
µ thus µk2S = ω2ρ2, while kP = ω

cP
= ω

√
ρ

λ+2µ .

In Figure 3, we picture the real parts of the analytic solutions for the displacement and the stress
tensor, respectively uref and σref , at frequency ω/(2π) = 2mHz.

20cf. https://dlmf.nist.gov/10.2.
21This can be seen as follows. It is derived for generic g = H

(1)
0 (k|x|) and x ̸= 0. We write ∂i := ∂xi . Since H

(1)′
0 = −H

(1)
1 ,

we have,

∂ig = −H
(1)
1 (kr) k

xi

r
⇒ ∂2

ijϕ =

(
−H

(1)′
1 (kr)k2 +

kH
(1)
1 (kr)

r2

)
xixj

r
. (6.10)

Next we use identity H
(1)′
1 (z) = H

(1)
0 (z)− 1

z
H

(1)
1 (z)

∂2
ijg =

(
H

(1)
1 (kr) k2

k|x|
− H

(1)
0 (kr) k2 +

kH
(1)
1 (kr)

r2

)
xixj

r2
. (6.11)
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Figure 3: Analytic solutions at 2mHz for benchmark2Diso-R5 (6.6), corresponding to (6.8) and (6.9).

6.1.1 HDG formulation (u,σ)S

The analytical solution for free-space propagation is compared with the simulations with absorbing bound-
ary conditions (6.5), and we use the different choices of stabilization coefficients (6.3). To avoid the
singularity at the origin, and reduce the effect of the boundary conditions, the numerical errors e and E
(6.1) and (6.2) that are plotted below are restricted to interval 6×10−2 ≤ ∥x∥ ≤ 4.90. Using formulation
(u,σ)S , the mean of the relative error e (6.1) with the frequency is pictured in Figure 4 where we compare
the different wave fields independently. Here we compare the stabilization coefficients τuI, τuΓ and τuG,
that is, the identity-based, Kelvin–Christoffel and Godunov stabilization respectively.
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Figure 4: Evolution of the error e of (6.2) with frequency for benchmark2Diso-R5 (6.6) using HDG
discretization formulation (u,σ)S for polynomial order 3 and stabilization (6.3).

Observation In the evolution of the relative error with frequency (Figure 4), we observe the similar
behaviour and error level for all fields, whether it is displacement (ux and uz) or stress tensor (σxx, σzz
and σxz). We observe three regions in the error plots that correspond to low, intermediate, and high
frequencies.

– At low frequency (below 4 Hz), the relative error is minimal as we have the largest wavelength.

Inria



HDG discretization for linear anisotropic elastic wave equation 53

The error stays relatively stable, and all choices of stabilization provide similar results. We however
note a slight increase for the smallest frequencies, which corresponds to the lack of accuracy of the
absorbing boundary condition for large wavelength.

– For high frequencies, the error is the highest as we have smaller wavelengths; this is expected as
there are less points per wavelength at fixed polynomial order. Regarding the different choices of
stabilization coefficients, we see that the Godunov stabilization is the most accurate, reducing the
relative error by a factor 2 compared to the other choices.

– In the intermediate region, the relative error increases with increasing frequencies, and we clearly
see the improvement of the Godunov stabilization, by a factor 2 to 5, compared to the Kelvin–
Christoffel and identity-based stabilizations respectively.

– We note that the minimal error for each stabilization is reached at different frequencies: for the
Godunov stabilization, the minimal error is obtained at 4 Hz, while it is rather at 3 Hz for the two
other stabilizations. Furthermore, for any frequency, the Godunov stabilization always gives the
best result.

To further investigate the stabilization coefficient, we use a scaling parameter based upon the S-wave
speed for the identity and Kelvin–Christoffel matrices, namely with τuIs and τuΓs

in (6.3). As the level
of error is similar for both fields (Figure 4), we plot global relative error E of (6.2) in Figure 5. In this
picture we represent the error with frequency and with polynomial order. In the evolution of the error
with frequency, Figures 5a and 5b, we see that using the scaled stabilization coefficients τuIs or τuΓs

provide similar error level compared to using τuG. This is confirmed by the evolution of error with the
polynomial orders in Figures 5c and 5d. We further see the expected improvement with the use of higher
order polynomials, and we have similar accuracy for the displacement u and stress tensor σ.
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Figure 5: Evolution of the error E of (6.2) with frequency (top) and polynomial order (bottom) for
benchmark2Diso-R5 (6.6) using HDG discretization formulation (u,σ)S and stabilization (6.3).

We see that the stabilization coefficient based upon the Godunov matrix, τuG in (6.3), is the best
choice in terms of accuracy of the solutions. The level of accuracy can be matched by other stabilization,
however, by using empirical scaling factors, that we have found here in terms of the S-wave speed (τuIs

and τuΓs
). Nonetheless, one cannot guarantee that this scaling is optimal in all possible configurations,

cf. Subsection 6.2, and the genuine option is to use the robustness of τuG which does not involve a scaling
parameter.
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6.1.2 Comparisons of HDG formulations

We now compute the wave fields with the HDG discretization using the formulation in terms of the
velocity, that is, (v,σ)S . In Figure 6, we compare the relative error with frequency, for the stabilization
coefficients of (6.4), and also compare the two HDG formulations (u,σ)S and (v,σ)S . We see that the
two formulations have similar accuracy, and the stabilization based upon the Godunov matrix, which is
the most natural one, is the best choice as it does not need an extra parameter for scaling.
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(a) E(u) using polynomial order 3.
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(b) E(u) using polynomial order 4.

Figure 6: Evolution of the error E(u) of (6.2) with frequency for benchmark2Diso-R5 (6.6) using HDG
discretization formulations (u,σ)S and (v,σ)S and stabilization coefficients (6.3) and (6.4).

6.1.3 Condition number of the global matrix

To further compare the formulations in terms of displacement or velocity, and with the choice of stabi-
lization, we compute the condition number of the global matrix assembled with the HDG discretization.
We provide in Figure 7 the evolution of the condition number with frequency for different orders of
polynomials.
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(a) Formulation (u,σ)S using polynomial order 3.
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(b) Formulation (v,σ)S using polynomial order 3.
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(c) Formulation (u,σ)S using polynomial order 6.
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(d) Formulation (v,σ)S using polynomial order 6.

Figure 7: Condition number of the global discretization matrix using HDG for benchmark2Diso-R5 (6.6).

We observe a drastic difference in the condition number between the identity-based stabilization coef-
ficients (τuI and τvI), while other choices show similar tendency. It indicates that the naive stabilization
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not only reduces the accuracy as shown in Figures 4 and 6, but also deteriorates the condition number
of the linear system. Moreover, even when the accuracy is acceptable (that is, for low frequencies), the
condition number of the global matrix is still higher. We also observe that using high-order polynomials
increases the condition number of the global matrix, while using higher frequencies does not, or even
slightly reduces the condition numbers. Furthermore, we do not observe differences between the HDG
formulations using the displacement or the velocity.

6.1.4 Concluding remarks on experiment benchmark2Diso-R5

With this first experiment considering isotropic elastic 2D homogeneous medium, we can draw the fol-
lowing comments.

– The HDG methods using displacement or velocity formulation, respectively (u,σ)S and (v,σ)S , are
equally accurate. Note that here we avoid the zero-frequency where only the formulation (u,σ)S
is appropriate.

– The stabilizations using the identity and Kelvin–Christoffel matrices τuI and τuΓ are less accurate
than using the Godunov matrix with τuG, cf. Figure 4. Those stabilization coefficients also lead
to an increase of the condition number of the global matrix, even for low frequencies where it is
accurate, Figure 7.

– The accuracy using stabilization coefficient based on identity and Kelvin–Christoffel matrices can
be improved by using a well chosen scaling parameter, here related to the S-wave speed. In this
case, using τuIs and τuΓs

is equally accurate as τuG. However, this scaling coefficient is empirical
and cannot be assumed to be universal.

6.2 3D homogeneous medium with planewave (benchmark3Diso-Pw)

We consider the propagation of planewaves in the three-dimensional domain (−1, 1)× (−1, 1)× (−1, 1).
Following Appendix A (that simplifies with isotropy), we defined the P- and S-planewave as follow:

P-planewave configuration: u(x, ω) = p(x) e
i ω
cP

(d ·x)
. (6.13a)

S-planewave configuration: ux = uz = 0 , uy(x, ω) = e
i ω
cS

(d ·x)
, (6.13b)

with p = (1, 0, 1)t and d =
(
1/
√
2, 0, 1/

√
2
)t
. (6.13c)

To emphasize the different behaviour of the stabilization, we further impose a strong contrast between
the P- and S-wavespeeds, we use:

benchmark3Diso-Pw



Cube (−1, 1)3 with planewave

cP = 2.5× 10−3 , cS = 10−4 , ρ = 1 ,

⇒ λ = 6.24× 10−6 and µ = 10−8 .

Simulations with fixed mesh of about 40 000 tetrahedra,

P-planewave at ω/(2π) = 8 mHz; polynomial order4 ,

S-planewave at ω/(2π) = 0.4 mHz; polynomial order4 ,

(6.14)

We illustrate the analytic solutions of the experiment (6.14) in Figure 8. The consideration of planewaves
results in having only one type of wave (P- or S-) propagating, allowing us to investigate the accuracy of
the discretization with each one separately. As we have seen that scaling of the stabilization based upon
the S-wavespeed improves the accuracy, this experiment serves in particular to investigate the case where
only P-waves propagate.

In this experiment, the frequency and order of polynomial are fixed, and we vary the magnitude of the
stabilization; we also consider purely real and imaginary coefficients. In Figures 9 and 10, we show the
mean of the relative error e of (6.1) for the non-zero components for the P- and S-planewave respectively.
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Figure 8: Reference solution for the 3D planewave propagation of benchmark3Diso-Pw (6.14).

For the P-planewave, the non-zero components are ux, uz, σxx, σyy, σzz and σxz. For the S-planewave,
the non-zero components are uy, σxy and σyz. We consider the formulation (u,σ)S , and investigate
stabilization ±τ Id and ±iτ Id with τ varying between several order of magnitude. In Figures 9 to 11,
we also indicate the error level obtained with the Godunov and Kelvin–Christoffel stabilization τuG and
τuΓ (horizontal lines) and the values of the P- and S-wavelength (vertical lines). We picture the results
for the formulation (v,σ)S in Figure 11.

We observe that

– For the P-planewave, the accuracy for the different fields is similar (Figure 9), except for the
component σxz which is slightly less accurate (6 × 10−6 relative error compared to 10−6 for the
other components). In this experiment, the S-planewave is less accurate than the P-planewave
because it has a smaller wavelength (0.25 compared to 0.31) at the selected frequencies.

– Comparing the formulations, we see that (u,σ)S and (v,σ)S are equally accurate. For best effi-
ciency, the formulation (u,σ)S should use a purely imaginary stabilization while formulation (v,σ)S
a real-valued one. This is explained by the (iω) factor appearing between the two formulations.
Also we note that the accuracy is not affected by the sign of the stabilization, namely taking ±τ
does no change the results in these experiments.

– For the P-planewave, the Godunov stabilization τuG gives the most accurate results, accuracy that
is never reach by identity-based stabilization, nor by the Kelvin–Christoffel coefficient. The best
performance with identity-based stabilization is obtained with scale ρωcP or ρcP, for displacement
and velocity formulations respectively.

– For the S-planewave, the accuracy of the Godunov stabilization can be improved with identity-
based stabilization. However, the optimal scale is difficult to select as it is not exactly ρωcS (for
displacement formulation, ρcS for velocity formulation), but a lower value.

We see that the Godunov stabilization is the most versatile as it accurately treats the P-planewave
and remains very efficient for the S-planewave. It seems that identity-based approach can be very efficient
to treat the S-waves but there is no unifying scaling that can treat both P- and S-waves. In practical
experiments of wave propagation, we would have a mix of P- and S-waves, and the Godunov stabilization
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Figure 9: Mean of the relative error e of (6.1) using the stabilization τ := τ Id and varying the magnitude
of coefficient τ . It corresponds with benchmark3Diso-Pw (6.14) using HDG discretization of formulation
(u,σ)S for 8 mHz P-planewave propagation at polynomial order 4. The relative error obtained with the
Godunov stabilization τuG is indicated with the horizontal dashed line, and the values of the P- and
S-wavelength with the vertical lines.
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Figure 10: Mean of the relative error e of (6.1) using the stabilization τ := τ Id and varying the magnitude
of coefficient τ . It corresponds with benchmark3Diso-Pw (6.14) using HDG discretization of formulation
(u,σ)S for 0.4 mHz S-planewave propagation at polynomial order 4. The relative error obtained with
the Godunov stabilization τuG is indicated with the horizontal dashed line, and the values of the P- and
S-wavelength with the vertical lines.

appears as the safest choice. Nonetheless, as S-waves tend to be more energetic than P-waves after
equipartition time ([50, 51]), it explains why a stabilization based upon S-wavelength is performing well
in the point-source experiment of Subsection 6.1.
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Figure 11: Mean of the relative error e of (6.1) using the stabilization τ̇ := τ Id and varying the magnitude
of coefficient τ . It corresponds with benchmark3Diso-Pw (6.14) using HDG discretization of formulation
(v,σ)S at polynomial order 4. The relative error obtained with the Godunov stabilization τvG is indicated
with the horizontal dashed line, and the values of the P- and S-wave speeds with the vertical lines.

6.3 2D experiment with highly varying properties (benchmark2Diso-He)

One advantage of writing the elastic system in terms of the compliance matrix S rather than the stiffness
tensor C is to easily handle physical properties that are not constant per cell. To fully use this property,
we design an experiment where the wave speeds and density are ‘solar-like’, that is, we follow the solar
background given by model S, [12]. Model S provides us with radial profiles for the density and P-wave
speed models, that we picture in Figure 12. For the purpose of this experiment, the S-wavespeed is
selected as cS = 0.70cP. For this experiment, we consider a two-dimensional disk of radius 1 on which
the radial profiles are applied.
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(a) Wave speed model.
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101
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(b) Density model on logarithmic scale.

Figure 12: Solar-like background wave speed and density extracted from model S for radial position
between 0 and 1. In our elastic experiment, we use cS = 0.70cP.
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The models of physical properties are particularly challenging because of the high variation in their
amplitude, cf. Figure 12, where the density is pictured on a logarithmic scale. Namely, the density is
exponentially decreasing near surface ([5, 4]) and the wave speed varies of about two orders of magnitude
in the domain. Therefore, it is fundamental to correctly represent the models within the discretization,
and using a piecewise-constant approximation would necessitate to design extremely small cells near
radius 1. Using the flexibility of the discretization with the compliance tensor, we instead represent
the physical parameters (wave speeds and density) using a basis of Lagrange functions on each cell. In
Figure 13 we picture the mesh of the 2D disk that we used for the simulations, and compare the density
model near surface when represented with piecewise-constant or with Lagrange basis of order 3, that
is, with 10 coefficients per cell. The piecewise-constant representation looses the spherical nature of the
medium, and shows some strong variations which will intrinsically lead to inaccurate simulations. The
Lagrange polynomial representation preserves the spherical nature of the model which appears radial as
expected.

(a) Mesh with about 50 000 cells.
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constant representation.
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(c) Zoom near surface for representation
with Lagrange basis of order 3.

Figure 13: Solar-like density near surface and computational mesh, considering a unitary disk.

In this case of (strongly) heterogeneous properties, there is no analytic solution for the elastic wave
equation. To evaluate the accuracy depending on the stabilization coefficients, we build a reference
solution which is computed with a refined mesh composed of 80 000 cells (while for the simulation we
have 50 000 cells, Figure 13a), with a polynomial order of 7, and using τuG. The reference solutions are
shown in Figure 14 where we also compare with the solution using a piecewise-constant representation.
Due to the exponentially decreasing nature of the density, we scale the displacement fields by

√
ρ to

better visualize the solution, [4, 5]. For similar reason, the components of stress tensor are scaled by
1/
√
ρ.

Comparing simulations using a piecewise-constant representation for the model parameters or allowing
them to vary within the cell, we see drastic difference. Using a piecewise-constant representation, the
solutions (both in terms of displacement u and stress tensor σ) show wiggles and artifacts, while the radial
nature is not preserved. On the contrary, the simulations using model represented in a Lagrange basis
on each cell capture well the spherical pattern and provide smooth solutions. With such high variation
in the background models, we see that it is mandatory to design an efficient representation, and that
piecewise-constant is not appropriate, therefore, the HDG formulation based upon the compliance tensor
σ is extremely useful as it allows us to vary the models within each cell, without having to compute their
derivatives (as it would be the case using a formulation with the stiffness tensor C).

In Figure 15, we plot the relative error E depending on the frequency and polynomial orders, for
the stabilization coefficients of (6.3). For some frequency and order, stabilization τuI results in a ill-
conditioned matrix that either cannot be factorized or lead to a particularly erroneous solutions, in
particular at low and high orders. This confirms the high-increase in condition number observed in
Figure 7. While stabilization τuΓ appears stable, it gives a higher error than the other stabilization.
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Figure 14: Comparison of the solution at 4 mHz of the elastic isotropic wave equation using the solar-like
background models of Figure 12 using piecewise-constant representation (bottom) or allowing representa-
tions that vary within each cell (top). The computations use HDG formulation (u,σ)S with stabilization
τuG and polynomial order 7.

Namely, this heterogeneous test enforces the results that τuG is the safest and more robust choice, while
scaling with the S-wave speed, with either τuIs or τuΓs

, can provide good accuracy.
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(a) E(u) for polynomial order 5.
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Figure 15: Relative error E of (6.2) with frequency (left) and the polynomial order (right) for
benchmark2Diso-He using HDG discretization of formulation (u,σ)S and stabilization coefficients of
(6.3).

7 Numerical experiments: elastic transverse isotropy

In the context of vertical transverse isotropy (VTI), there are five parameters that define the stiffness ten-
sor, see Subsection 3.5.2. These are the Lamé parameters λ and µ and the Thomsen’s parameters, ϵ, δ and
γ. In Subsection 7.3, we further consider the tilted case that introduces two angles, cf. Subsection 3.5.3.
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7.1 3D homogeneous medium with planewave (benchmark3Dvti-Pw)

In this experiment, we start from the isotropic configuration of Subsection 6.2 to have a strong contrast
between the wavespeeds, and add anisotropy with non-zero Thomsen’s parameters such that we have,

benchmark3Dvti-Pw



Cube (−1, 1)3 with planewave

λ = 6.23× 10−6 , µ = 10−8 , ρ = 1 ,

ϵ = 1.12 , δ = −0.235 γ = 2.28 .

Simulations with fixed mesh of about 40 000 tetrahedra,

qP-planewave at ω/(2π) = 10 mHz; polynomial order4 ,

sH-planewave at ω/(2π) = 0.7 mHz; polynomial order4 ,

(7.1)

Here the values of the anisotropic coefficients ϵ, δ and γ correspond to the muscovite crystal in [54].
This amounts to the following values of the stiffness tensor coefficients:

C11 = C22 = 2.025× 10−5 , C33 = 6.25× 10−6 , (7.2a)

C44 = C55 = 10−8 , C66 = 5.56× 10−8 , (7.2b)

C12 = C11 − 2C66 = 2.0139× 10−5 , C23 = C23 = 4.5296× 10−6 . (7.2c)

In Figure 16, we evaluate the accuracy of the solution depending on the stabilization for the HDG
formulation (u,σ)S . The qP-planewave is computed at frequency 10 mHz and the sH-planewave at
frequency 0.7 mHz, leading to wavelength of size 0.329 and 0.259 respectively.
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(a) qP-planewave relative error e(ux) (left), e(σyy) (middle) and e(σxz) (right) for 10 mHz frequency.
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(b) sH-planewave relative error e(uy) (left), e(σxy) (middle) and e(σyz) (right) for 0.7 mHz frequency.

Figure 16: Mean of the relative error e of (6.1) using the stabilization τ := τ Id and varying the magnitude
of coefficient τ . It corresponds with benchmark3Dvti-Pw (7.1) using HDG discretization of formulation
(u,σ)S at polynomial order 4. The relative error obtained with the Godunov stabilization τuG is indicated
with the horizontal dashed line, and the values of the qP- and sH-wavelength with the vertical lines.
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The observations in the context of an elastic VTI medium follow those of the elastic isotropic case
of Subsection 6.2. For the qP-planewave propagation, the Godunov stabilization is the most accurate,
accuracy that can only be approached by using a scaling in terms of the qP-wavespeeed for identity-based
stabilization. For the sH-planewave propagation, the accuracy of Godunov can be improved by taking a
low-valued coefficient for identity-based stabilization, however the precise value is not the qS-wavelength
but below it. Therefore, the Godunov stabilization is most robust to treat both qP- and sH-waves.

7.2 3D unscaled homogeneous medium with planewave (benchmark3Dvti-PwB)

In this experiment, we use unscaled parameter values and select the ones of the Biotite crystal in [54],
which gives us

benchmark3Dvti-PwB



Cube (−1, 1)3 with planewave

λ = 3.9157× 1010 , µ = 5.4848× 109 , ρ = 3050 ,

ϵ = 1.222 , δ = −0.388 γ = 6.12 .

Simulations with fixed mesh of about 40 000 tetrahedra,

qP-planewave at ω/(2π) = 15 kHz; polynomial order4 ,

sH-planewave at ω/(2π) = 10 kHz; polynomial order4 ,

(7.3)

This amounts to the following values of the stiffness tensor coefficients:

C11 = C22 = 1.7264× 1011 , C33 = 5.0126× 1010 , C44 = C55 = 5.4848× 109 , (7.4a)

C66 = 7.2618× 1010 , C12 = C11 − 2C66 = 2.7399× 1010 , (7.4b)

C23 = C23 = 1.0528× 1010 , ρ = 3050 . (7.4c)

Here the magnitude of the parameters is much higher than in our previous experiments (that can be
seen as ‘normalized’ experiments), hence we have to adjust the frequency that is now to be selected in
the kHz. We use frequencies 15 and 10 kHz for the qP- and sH-planewave, which leads to wavelength
of size 0.362 and 0.358 respectively. The accuracy with the amplitude of the stabilization is pictured in
Figure 17.

In this experiment the magnitude of the stabilization has to be adapted to the physical parameters and
frequency that are much higher than in the previous experiments. Despite the qP- and sH-wavespeed
being relatively close in this experiment, we still observe that the Godunov stabilization is the most
efficient to handle qP-waves, while for sH-waves, a low-valued coefficient for an identity-based stabilization
suffices.

7.3 2D experiment with highly varying properties (benchmark2Dtti-He)

We now consider a 2D experiment with a point-source, and start from the high-varying properties of
the experiment presented in Subsection 6.3, that give us the Lamé parameters λ, µ, and the density ρ.
Then we use constant Thomsen’s parameters with ϵ = 0.25, δ = 0.15 and θ = 45◦. In Figure 18, we
show the reference solutions at frequency 4 mHz, which is computed on a mesh with 80 000 triangles
(while following simulations would use 50 000 elements), using polynomial order 7 and the Godunov
stabilization. Compared to the isotropic case of Figure 14, we see that the solution is less smooth with
more wiggles. Note that for the TTI absorbing boundary conditions, we follow [7]. It is out of the scope
to investigate the accuracy of the anisotropic boundary conditions here.

In Figure 19, we plot the relative error E depending on the frequency and polynomial orders, for the
HDG formulation (u,σ)S . We note that stabilization τuI can result in a ill-conditioned matrix hence not
all cases can be computed with this choice of stabilization. The results confirm the behaviour observed in
the isotropic case, that the Godunov stabilization gives the most accurate results, and the level accuracy
can be met with other stabilization with a well-chosen scaling factor (in terms of the S-wavelength here).
Namely, it appears that considering transverse isotropy does not modify the behaviour and efficiency of
the discretization.
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(a) qP-planewave relative error e(ux) (left), e(σyy) (middle) and e(σxz) (right) for 15 kHz frequency.
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Figure 17: Mean of the relative error e of (6.1) using the stabilization τ := τ Id and varying the magnitude
of coefficient τ . It corresponds with benchmark3Dvti-PwB (7.3) using HDG discretization of formulation
(u,σ)S at polynomial order 4. The relative error obtained with the Godunov stabilization τωManiso is
indicated with the horizontal dashed line, and the values of the qP- and sH-wavelength with the vertical
lines.
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Figure 18: Solutions at 4 mHz of the elastic TTI wave equation using the solar-like background models of
Figure 12 with model representations that vary within each cell. The computations use HDG formulation
(u,σ)S with stabilization τuG and polynomial order 7.

8 Conclusion

In this work, we have employed Voigt’s notation in the HDG method to describe compactly the discrete
problem for anisotropic elasticity. Additionally, a first-order formulation with compliance tensor is used
and allows for mesh-wise parameter variation. This, together with the Voigt’s notation which provides
efficient booking-keeping of physical parameters, form indispensable features in quantitative reconstruc-
tion of elastic parameters. Secondly, to determine an optimal choice of stabilization, we constructed the

RR n° 9533



64 H. Pham & F. Faucher & H. Barucq

2 4 6 8 10
10−6

10−5

10−4

10−3

frequency (mHz)

E
(u

)

τuIs τuΓs

τuG τuI

τuΓ

(a) E(u) for polynomial order 4.

2 4 6
10−5

10−4

10−3

10−2

polynomial order

E
(u

)

τuIs τuΓs

τuG τuI

τuΓs

(b) E(u) at frequency 5 mHz.

Figure 19: Relative error E of (6.2) with frequency (left) the polynomial order (right) for
benchmark2Dtti-He using HDG discretization of formulation (u,σ)S .

hybridized Godunov-upwind flux for anisotropic elasticity, which offers a versatile choice and removes the
need for scaling factor tuning. This problem concerns in particular identity-based stabilization, a popular
choice due to its simple form, however one which lacks a universal scaling factor especially for geophysical
material. We have carried out numerical experiments in two and three dimensions, considering isotropic
elasticity and anisotropy, which highlight the performance and versatility of the Godunov stabilization.

A Planewave analysis for VTI

In this appendix, we provide the planewave analysis for vertical transverse isotropic media (VTI), following
[11, Section 1.3]. Tilted transverse isotropy (TTI) refers to material having one direction of rotational
symmetry. For VTI material, this direction is parallel to the z-axis, and the (x, y) becomes the plane of
isotropy. Recall the VTI stiffness tensor given in (3.123),

=

CVTI =


c11 c11 − 2c66 c13 0 0 0
c21 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66


z-axis

rotational symmetry.
(A.1)

A.1 Dispersion relation

The generic form of planewave is given by

upw = p ei(ωt−k·x) = p eiω(t−s k̂·x) , with |k̂| = 1 . (A.2)

Here, ω is the angular frequency, p the polarization, k̂ the direction of propagation, k the wave vector
and s the slowness, which is the inverse of the phase velocity: s = 1/v. The wave vector, phase velocity
vector, and slowness vector and their magnitudes satisfy,

k = k k̂ ; v = v k̂ ; s :=
k

ω
=

k̂

v
= s k̂ ,

and relation k =
ω

v
, s =

1

v
.

(A.3)

Substituting the planewave upw of (A.2) into the wave equation (2.8), we obtain a relation for the
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velocity and polarization, written in the 3 equivalent variants22,

(Γ(k)− ρω2)p = 0 ⇔ (Γ(k̂)− ρv2)p = 0

⇔ (Γ(s)− ρ)p = 0 .
(A.5)

• Using the first equation in (A.5), the eigenvalue is given by ρω2 satisfying the following relation,
also called the dispersion relation between ω and the wave vector k,

det
(
Γ(k) − ρω2 Id

)
= 0 . Dispersion relation (A.6)

• Working with the second equation in (A.5), the eigenvalue is given by ρv and satisfies,

det
(
Γ(k̂) − ρv2Id

)
= 0 . (A.7)

Recall from Assumption (4.62) that the Kelvin–Christoffel matrix Γ(k̂) is diagonalizable with three
distinct eigenvalues denoted by

ρc2qP > ρc2qS1 > ρc2qS2 , corresponding to direction k̂ . (A.8)

The corresponding eigenvectors are pi which gives polarization of the planewave.

• The third equation (A.5) implies the following relation which defines the slowness surface,

det (Γ(s) − ρ Id) = 0 Equation of slowness surface (A.9)

A.2 Planewave with propagating direction in the symmetry plane (x, z)

The Kelvin–Christoffel matrix (4.61) for VTI material writes as,

ΓVTI(k̂) =

C11k̂
2
x + C66k̂

2
y + C55k̂

2
z (C13 + C55)k̂yk̂z (C13 + C55)k̂xk̂z

C66k̂
2
x + C11k̂

2
y + C55k̂

2
z (C11 − C66)k̂xk̂y

C55(k̂
2
x + k̂2y) + C33k̂

2
z

 (A.10)

For direction of propagation only in (x, z) plane, we set k̂y = 0 in the above expression

ΓVTI(k̂x, 0, k̂z) =

 C11k̂
2
x + C55k̂

2
z 0 (C13 + C55)k̂xk̂z

0 C66k̂
2
x + C55k̂

2
z 0

(C13 + C55)k̂xk̂z 0 C55k̂
2
x + C33k

2
z

 (A.11)

Writing the determinant by expanding second row (or second column), the dispersion relation for VTI

material with k̂y = 0 gives,(
C66k̂

2
x + C55k̂

2
z − ρv2

)
= 0

SH dispersion relation, propagation
direction in the symmetry plane.

(A.12)

or (
c11k̂

2
x + c55k̂

2
z − ρv2

)(
c55k̂

2
x + c33k

2
z − ρv2

)
− (c13 + c55)

2k̂2xk̂
2
z = 0 ,

(A.13)

for inplane dispersion relation for propagation direction in the symmetry plane.

22For the second and third equation we use relation

Γ(k) = k2Γ(k̂) = ω2Γ(s) . (A.4)

The second equation is obtained by dividing both sides of the first equation by k2 and using the fact that ρω2

k2 = ρv. The

third equation is obtained by dividing both sides (of the first equation) by ω2 and the fact that s = k/ω.
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SH-planewave The dispersion relation (A.12) defines SH-wave speed and corresponding polarization
(or eigenfunctions):

v2SH(k̂x, 0, k̂z) =
c66k̂

2
x + c55k̂

2
z

ρ
, pSH(k̂x, 0, k̂z) =

0
1
0

 , (A.14)

Since the above polarization is perpendicular to the propagation direction, this defines a family of pure
SH-waves, 0

1
0

 eiω (t − sSH (k̂xx+k̂zz)) (A.15)

Note that the slowness surface associated with SH-waves is an ellipse, cf. [11, Figure 1.1].

Inplane planewaves The qSV- and qP-wave speeds are roots of dispersion relation (A.13), cf. also
[11, Equation (1.79)],

v2qSV (k̂x, 0, k̂z) =
1

2ρ

(
C11k̂

2
x + C33k̂

2
z + C55 − C

)
,

v2qP (k̂x, 0, k̂z) =
1

2ρ

(
C11k̂

2
x + C33k̂

2
z + C55 + C

)
,

with C2 =
(
(C11 − C55)k̂

2
x + (C55 − C33)k̂

2
z

)2
+ 4(C13 + C55)

2k̂2x k̂
2
z .

(A.16)

The corresponding polarizations (eigenfunctions) are, for α = qP, qSV,

pα(k̂x, 0, k̂z) =
1√

(c11 + c55)k̂2x + (c55 + c33)k2z − 2ρ vα


√
c55k̂2x + c33k2z − ρv2α

0√
c11k̂2x + c55k2z − ρ v2α

 . (A.17)

Thus we obtain the family of inplane planewaves:

pα e
iω (t − sα (k̂xx+k̂zz)) , for α = qP, qSV . (A.18)

Propagation along inplane axis We consider the following specific directions along x and z axis.

– Propagation along z-axis: substitute k̂x = 0 in the expression of inplane polarization (A.17) and
speeds (A.16), we obtain

pα(0, 0, 1) =
1√

C55 + C33

√C33 − ρv2α
0√

C55 − ρv2α

 ,

and v2qP (0, 0, 1) =
C33

ρ
, v2qSV (0, 0, 1) =

C55

ρ
.

(A.19)

The polarization can be written more explicitly as

pqP (0, 0, 1) =
1√

C55 + C33


√
C33 − ρv2pP

0
0

 ,

pqSV (0, 0, 1) =
1√

C55 + C33

 0
0√

C55 − ρv2qSV

 .

(A.20)
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We thus observe that, with k = (0, 0, 1)t, the above polarizations satisfy,

pqP (0, 0, 1) ∥ k̂ = (0, 0, 1)t , pqSV (0, 0, 1) ⊥ k̂ = (0, 0, 1)t (A.21)

The two inplane planewaves propagating along z-axis are true P and S waves. In another word,

C33

ρ

(
= v2qP (0, 0, 1)

)
denotes the square speed of a pure P wave ,

C55

ρ

(
= v2qSV (0, 0, 1)

)
denotes the square speed of a pure S wave speod

(A.22)

– Propagation along x-axis: Substitute k̂z = 0 in the expression of inplane speeds (A.16) and polar-
ization (A.17), we obtain

pα(1, 0, 0) =
1√

C11 + C55

√C55 − ρv2α
0√

C11 − ρv2α

 , for α = qP, qSV ,

v2qP (1, 0, 0) =
C11

ρ
, v2qSV (1, 0, 0) =

C55

ρ

(A.23)

The polarization can be written more explicitly as

pqP (1, 0, 0) =
1√

C11 + C55

√C55 − ρv2α
0
0

 ⇒
represents a pure P wave
with square speed C11

ρ

,

pqSV (1, 0, 0) =
1√

C11 + C55

 0
0√

C11 − ρv2α

 ⇒
represents a pure S wave

with square speed
C55

ρ

.

(A.24)

We list below propagation speed along x and z-axis (i.e., with propagation in the symmetry plane), which
defines speed of true P or S waves,

√
C55

ρ
↔ pure S-wave speed along x or z axis in the symmetry plane,√

C11

ρ
↔ pure P-wave speed along x axis

(also called squared horizontal P-wave speed)
,√

C33

ρ
↔ pure P-wave speed along z axis

(also called squared vertical P-wave speed)
.

Remark 13 (In relation to Thomsen’s parameters). The above computation explains the origin of
wavespeed parameters (parameters α0, β0) in Thomsen’s set of parameters for VTI, [54]. For wave prop-

agation in (x, z) plane, the direction of propagation k̂ = (k̂x, 0, k̂z)
t is now written in terms of the angle

beween k̂ and the symmetry axis êz,

k̂z = cos θ, k̂x = sin θ . (A.25)
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The Thomsen’s parameters [54] for VTI are,

α0 =
√
C33/ρ , vertical P wavespeed (A.26a)

β0 =
√
C55/ρ , vertical (or horizontal) S wavespeed (A.26b)

ϵ =
C11 − C33

2C33
, (A.26c)

γ =
C66 − C44

2C44
, (A.26d)

δ =
(C13 + C44)

2 − (C33 − C44)
2

2C33 (C33 − C44)
, (A.26e)

The inplane and SH wave speeds (A.14) and (A.16) can be written in terms of θ as

vqP (θ)
2 = α2

0

(
1 + ε sin2 θ +D

)
, (A.27a)

vqSV (θ)
2 = α2

0

(
1 +

α2
0

β2
0

(
ε sin2 θ −D

))
, (A.27b)

vsH(θ)2 = β2
0

(
1 + γ sin2 θ

)
, (A.27c)

(A.27d)

where

D =
1

2

(
1− β2

0

α2
0

)
1 +

4(ε− 2δ)

(1− β2
0

α2
0
)
sin2 θ cos2 θ + 4ε

1− β2
0

α2
0
+ ε

(1− β2
0

α2
0
)2

sin4 θ

1/2

− 1

 . (A.28)

B Formal derivation of Kelvin–Christoffel flux

Numerical trace of gradient of a scalar quantity We review the definitions of numerical trace of
the gradient found in existing works on HDG method for second-order scalar equations, in particular for
the Poisson equation (static regime) and Helmholtz equation (dynamic regime). These will be isotropic
stabilization i.e. scalar scaling factor multiple of identity.

– Helmholtz equation : Consider Helmholtz equation, −∆w − ω2w = f, written in first-order formu-
lation (with respect to spatial derivatives) but second-order in frequency, cf. [25],

q = −∇w , −ω2 w +∇ · q = f . (B.1)

In the HDG method applied to the above system, working with isotropic stabilization, the numerical
trace for the first-order unknown q is given as, cf. [25, Equation (2.3)]

q̂ = qh + iω τdyn-scalar (wh − ŵ)ν , with positive τdyn-scalar = O(1) . (B.2)

Here ν is the outward-pointing normal vector along ∂K.

Another equivalent approach is given by working with pure first order formulation (i.e. both in
spatial derivatives and ω) unknown (q̃ = − 1

iω∇w,w), with f̃ = 1
iω f, cf. [39, Equation (2)],

iω q̃ + ∇w = 0 , iωw + ∇ · q̃ = f̃ , (B.3)

with numerical trace, cf. [39, Equation (4e)],

̂̃q = q̃h + τdyn-scalar(wh − ŵ)ν , with τdyn-scalar > 0 . (B.4)

In [39], numerical investigation is also carried out to compare different value for τHelmholtz = 1, 1h , h
with optimal convergence for τHelmholtz = 1, additionally, second option slows down the convergence
for w, and third one for ∇w, cf. discussion in [39, Figures 2 and 4].
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The numerical traces in (B.2) and (B.4) are equivalent to,

∇̂w = ∇w − iω τdyn-scalar(wh − ŵ)ν , with positive τdyn-scalar = O(1) . (B.5)

This is also found in [38, Table 1]. In [38], investigation on the effect of τ is extended to complex
ones both for frequencies and scaling factor. Investigations therein are carried out to compare
τ ∈ C, thus not just nonzero real. The conclusions of [38] is that for ω real then the HDG method
remains uniquely solvable for Re τ ̸= 0. Additionally, the HDG method results in small artificial
dissipation which disappears for τ pure imaginary and ωh small enough, cf. [38, Page 21].

– Poisson equation : Another perspective is to work with static elliptic equation, specifically with a
solution to the Poisson equation, cf e.g. [22] which considers the mixed boundary problem for the
Poisson equation written in first-order formulation

q = −∇w, ∇ · q = f ,

with numerical trace defined by, cf. [22, Equation (1.3d)]

∇̂w = ∇wh + τstatic-scalar (wh − λ)ν , with τstatic-scalar > 0 . (B.6)

In comparing τstatic-scalar = 1, h and 1
h , numerical investigation in [22] observes optimal convergence

rate for 1, cf. Table 4.1 therein.

Numerical trace of gradient of displacement vector In the HDG method, the displacement vector
u is approximated by

u
∣∣ ◦
K

by uh =
(
uhx uhy uhz

)t
, u|∂K by λ =

(
λx λy λz

)t
. (B.7)

Associated with uh, define

εh :=
1

2

(
∇uh + (∇uh)

t
)
, σh := C ε . (B.8)

Starting from the definition (B.5) of numerical trace of the gradient of a scalar quantity, we obtain a
relation for the numerical trace of a gradient of each Cartesian component of the displacement vector u,

∇uI
∧

= ∇uhI − iω τI
(
uhI − λhI

)
ν , along ∂K , I = x, y, z (B.9)

We denote by τI the HDG stabilization parameter, following (B.5), for direction I. In basis {êx, êy, êz},
the gradient of u is the matrix,

∇u =

(
∇tux

∇tuy

∇tuz

)
,

expression (B.9) thus gives the I-row of ∇̂u
h
along ∂K,

∇u
∧

= ∇uh− iω Sdiag (uh − λ) ⊗ ν , with Sdiag =

(
τx 0 0
0 τy 0
0 0 τz

)
. (B.10)

Recall that ⊗ is the tensor product (2.3), with the stabilization matrix Sdiag is diagonal in Cartesian

basis. Note that the right-hand side of (B.10) for ∇u
∧h

holds in all coordinate basis.

Numerical trace of stress tensor The numerical trace of the strain and stress tensor σ is given by

ε
∧

:=
∇u
∧

+ (∇u
∧

)t

2
, σ

∧
= C ε

∧
. (B.11)
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We next substitute in the expression (B.10) for ∇u
∧

, and of ε in (B.8), the numerical trace for the stress
tensor along ∂K is a symmetric matrix given by,

ε
∧

= εh − iω Sdiag (uh − λ) ⊙ ν . (B.12)

Recall the symmetric tensor product ⊙ is defined in (3.15) Applying the stiffness tensor C (which is
defined on ∂K), to both sides, we obtain an expression for numerical trace of σ,

σ
∧

= σh− iωC (Sdiag (uh − λ) ⊙ ν) = σh− iωC (ν ⊗ τ (uh − λ)) . (B.13)

The second identity with ⊗ is due to the symmetry of stiffness tensor C , cijkl = cjikl = cijlk = cklij .
From this we obtain,

σ
∧
ν = σh ν − iω Mstab (uh − λ) , (B.14)

where Mstab = [ν ·C · ν] · Sdiag = Γ(ν) · Sdiag.

C Discussion of literature regarding stabilization employed in
HDG method for elasticity

In this appendix we review HDG stabilizations that can be found in the literature which are concerned
with time- and frequency-domain elastodynamics and elastostatics. The different stabilization are then
equivalently written in our notation, for formulations (u,σ)S and (v,σ)S . Note that most of the stabi-
lization in the literature are identity-based.

C.1 Stabilizations for frequency-domain elastodynamics

C.1.1 Discussion in [42]

Our reference is the discussion given in [42] for identity-based stabilization (i.e., using a scalar multiple
of the identity) for isotropic elasticity. Both formulations with first- and second-order in frequency are
considered in [42], with unknowns (u, i

ωσ, û) and (u,σ, û), cf. Equations (2.5) and (2.6) therein. Below,
by ‘equivalent’ we mean equivalent in our notation without the projection operator employed in [42],
and under convention v = −iωu. In particular, the numerical investigation in [42] is carried out with
unknowns (u,σ).

1. The first variant works with unknowns

î

ω
σhν :=

i

ω
σhν − τK(ûh − Puh) , (C.1)

with τK : ∂K → R3×3
sym satisfying: ∀ξ ∈ L2(∂K) and ∀K ∈ Th,

c1
hK
∥ξ∥2∂K ≤

〈
τKξ , ξ

〉
∂K
≤ c2

hK
∥w∥2∂K , (C.2)

for some constant c1 and c2, and hK size of element K. In our notation, this is ‘equivalent’ to,

σ̂hν = σhν + iωτK(ûh − uh) , σ̂hν = σhν − τK(v̂h − vh) . (C.3)

2. In [42], it is also indicated that the sign of τK is not relevant, and a variant called ‘time-reversal’
is proposed therein,

î

ω
σhν :=

i

ω
σhν + τK(ûh − uh) . (C.4)

In our notation, this is ‘equivalent’ to,

σ̂hν = σhν − iωτK(ûh − uh) , σ̂hν = σhν + τK(v̂h − vh) . (C.5)

Note that in Subsection 6.2, we also investigate how the sign of the stabilization affects the accuracy.
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3. A ω-scaled stabilization is also considered with,

î

ω
σhν :=

i

ω
σhν − ω τK(ûh − uh) (C.6)

In our notation, this is ‘equivalent’ to, with P a projection operator,

σ̂hν = σhν + iω2τK(ûh − Puh) . (C.7)

4. A fourth variant is also proposed in [47] for elastostatics. In our notation, this is ‘equivalent’ to,

σ̂hν = σhν + τK(ûh − Puh) , σ̂hν = σhν +
i

ω
τK(v̂h − Pvh) . (C.8)

Summary for value of scaling factor discussed in [42] The above variants can be summarized as
follows, cf. [42, Equation (6.3)],

σ̂hν = σhν + αKτK(ûh − uh) , (C.9)

with different implication for time-dependent problem, cf. [42, Proposition 6.3],

τK =
1

hK
, and αK = iω

dissipative

, −iω
energy

accumulating

, iω2, or 1
conservative

.

Here hK is the characteristic length of the mesh cell K.

C.1.2 Other works on frequency-domain elasticity

In [7, 6], for both isotropy and anisotropy, formulation with first-order in frequency and unknowns (σ,v)
is employed. The numerical trace is given by, cf. [7, Equation (9)],

σ̂ = σh − S(vh − λ)⊗ n , σ̂ν = σhν − S(vh − λ) ,

with S a local stabilization matrix. The above form was deduced from the numerical trace proposed in
[44], see below discussion. For numerical implementation in [6], S is in fact taken to be multiple of the
identity, for both isotropic and anisotropic elasticity.

C.2 Stabilizations for time-domain isotropic elasticity

• The work [31, Section 4.1] considers the isotropic elastic wave equation in the time domain, with
unknowns (F,v, v̂) where ∂tF = ∇v. The stabilization considered therein is, [31, Equation (35d)],

σ̂h(t)ν = CFh(t)ν + S (v̂h(t) − vh(t)) . (C.10)

The choice for S is a multiple of the identity, cf. [31, Section 4.1.3], such that

S = ρ cP Id or ρ cS Id. (C.11)

In our notation, this is ‘equivalent’ to (with convention ∂t ↔ −iω, this corresponds to time-harmonic
formulation (v,∇u, v̂)),

σ̂h ν = σh ν + S (v̂h − vh) , σ̂h ν = σh ν − iωS (ûh − uh) . (C.12)

• In [44], the time-domain isotropic elastic equation23 is considered, cf. their Equation (30) therein,

ρ ∂2t u−∇ · (µ∇u + (µ+ λ)∇ · u Id) = f . (C.13)

23Note that this equation is not exactly in the original elastic equation. It is obtained if we assume µ homogeneous and
rewrite ∇ · µ∇tu = µ∇ · ∇tu = µ∇∇ · u = ∇µ∇ · u.
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Unknowns are the displacement gradient, the pressure, the velocity, and the trace of the velocity: (H :=
∇u, p := (µ+ λ)∇ · u,v, v̂). The numerical flux is, cf. [44, Equations (33) and (36)],

µ∇u(t) + p(t) Id
∧

= µHh + p Id − S[44](vh − v̂)⊗ ν , with S[44] definite postive,

⇒ σ̂(t)ν = σh(t)ν + S[44](v̂ − vh) .
(C.14)

A common choice for stabilization matrix is, cf. [44, Equations (37)],

S[44] = ρωc Id , where ωc is the characteristic frequency . (C.15)

In our notation, this is ‘equivalent’ to

σ̂ν = σhν + ρωc(λv − vh) . (C.16)

C.3 Stabilization for elastostatics

• The formulation and stabilization of [44] were also employed for elastostatics in [43, Equation (55e)]
and [28, Equation (2.11)], with identity-based stabilization, µ

h Id, with h characteristic length, cf. [43,
Equation (5.6)].

• In [49], first-order formulation with unknown (u,L := −C1/2ϵ) is employed together with an isotropic
stabilization such that, cf. Equation (29) therein,

̂A(ν)C1/2L = A(ν)D1/2 Lh − τ (λu − uh) , τ > 0 . (C.17)

Here we have identified their notation D with C1/2 and N in [43] can be related to A(ν). In our notation,
this is ‘equivalent’ to,

σ̂ν = σhν + τ(λu − uh) , τ > 0 . (C.18)

Numerical investigations in [49, Section 5.3] use τ > 0 varying from 0.1 to 1000. Their conclusion is that
the optimal value of the stabilization is not the same depending on if one looks at the accuracy of the
primal or mixed unknowns, cf. Figures 13 and 14 (ignoring the effect of post-processing) therein.

• Stabilization containing the symmetric stiffness tensor was introduced in [52, 33], working with un-
knowns (σ,u) and numerical trace, cf. [52, Equation (3f)] and [33, Equation (5f)], and a fourth-order
tensor T = (τijkl),

σ̂ij = σh,ij + τijkl (λk − uh,k)νl , for ν ·T · ν positive definite ,

or σ̂ν = σhν + τ (λu − uh) , for symmetric positive definite τ .
(C.19)

The well-posedness of the HDG formulation was given in [52] under the assumption that ν ·T·ν is positive
definite. In the second form of numerical trace, τ = αΓ(ν) with α a scaling constant, and the Kelvin–
Christoffel matrix Γ, (4.61). Numerical investigations in [52, Section 5.2] consider α = {1, 105, h, 1

h}
with h the characteristic length of the mesh cell. As a follow-up to these results, in [33, Section 5], a
comparison between Kelvin-Christoffel stabilization (i.e., using α = 1) and identity-based stabilization
was carried out, with the conclusion that both stabilizations give similar performance.
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