
HAL Id: hal-04356523
https://hal.science/hal-04356523

Preprint submitted on 20 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity analysis and scalability of a matrix-free
extrapolated geometric multigrid solver for curvilinear

coordinates representations from fusion plasma
applications

Philippe Leleux, Christina Schwarz, Martin Joachim Kühn, Carola Kruse,
Ulrich Rüde

To cite this version:
Philippe Leleux, Christina Schwarz, Martin Joachim Kühn, Carola Kruse, Ulrich Rüde. Complex-
ity analysis and scalability of a matrix-free extrapolated geometric multigrid solver for curvilinear
coordinates representations from fusion plasma applications. 2023. �hal-04356523�

https://hal.science/hal-04356523
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Complexity analysis and scalability of a matrix-free extrapolated
geometric multigrid solver for curvilinear coordinates
representations from fusion plasma applications

Philippe Leleux · Christina Schwarz ·
Martin J. Kühn · Carola Kruse · Ulrich Rüde

Received: date / Accepted: date

Abstract Tokamak fusion reactors are promising alternatives for future energy production. Gy-
rokinetic simulations are important tools to understand physical processes inside tokamaks and
to improve the design of future plants. In gyrokinetic codes such as Gysela, these simulations
involve at each time step the solution of a gyrokinetic Poisson equation defined on disk-like cross
sections. The authors of [KKR21,KKR22] proposed to discretize a simplified differential equation
using symmetric finite differences derived from the resulting energy functional and to use an im-
plicitly extrapolated geometric multigrid scheme tailored to problems in curvilinear coordinates.
In this article, we extend the discretization to a more realistic partial differential equation and
demonstrate the optimal linear complexity of the proposed solver, in terms of computation and
memory. We provide a general framework to analyze flops and memory usage of matrix-free ap-
proaches for stencil-based operators. Finally, we give an efficient matrix-free implementation fo
the considered solver exploiting a task-based multithreaded parallelism which takes advantage of
the disk-shaped geometry of the problem. We demonstrate the parallel efficiency for the solution
of problems of size up to 50 million unknowns.

Keywords Multigrid · complexity · curvilinear coordinates · parallelization · multithreading ·
Plasma fusion

Philippe Leleux (Corresponding author)
Laboratoire d’Analyse et d’architecture des Systèmes (LAAS), équipe TSF, 7, avenue du Colonel Roche BP 54200,
31031 Toulouse cedex 4, France. ORC-ID: 0000-0002-3760-4698
E-mail: pleleux@laas.fr

Martin J. Kühn
German Aerospace Center (DLR), Institute for Software Technology, Department for High-Performance Comput-
ing, Cologne, Germany. ORC-ID: 0000-0002-0906-6984
E-mail: Martin.Kuehn@DLR.de

Christina Schwarz
University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
E-mail: christina.schwarz@uni-bayreuth.de

Carola Kruse
Parallel Algorithms Team, CERFACS (Centre Européen de Recherche et de Formation Avancée en Calcul Scien-
tifique), 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex 01, France. ORC-ID: 0000-0002-4142-7356
E-mail: carola.kruse@cerfacs.fr

Ulrich Rüde
Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany. ORC-ID: 0000-0001-
8796-8599 E-mail: ulrich.ruede@fau.de

2 Philippe Leleux et al.

Mathematics Subject Classification (2020) 68Q25 · 65Y20 · 65Y05 · 65N55 · 65N06 ·
65B99

1 Introduction

With accelerating climate change, plasma fusion is a promising alternative for future energy
productions. Tokamak fusion reactors are actively studied objects to realize energy production
from plasma fusion; see, e.g., [WC11] and the references therein. In these torus-shaped reac-
tors, plasma is magnetically confined to obtain energy from physical processes. Empirical laws
are important to design current reactors such as ITER or JET1. With the advent of modern
supercomputers, simulation and high performance computing (HPC) have opened up new pos-
sibilities to study potential reactor designs. Simulation codes can lead to improved designs by
creating a better understanding for physical aspects such as the transport of plasma. However,
the simulation of plasma in these reactors still involves high cost in terms of computation and
memory, and thus requires the use of efficient codes. The gyrokinetic framework is of particular
interest in this context since it is able to capture the turbulence in the plasma, and allows to
decrease the dimensions of the system from 6 to 5 dimensions: three for the torus geometry
and two for the velocity [BBG+18,GAB+16]. In gyrokinetic codes, a 5D Vlasov equation coupled
with a 3D Poisson-like equation must be solved at each time step. While being of smaller di-
mension, the solution of the latter 3D system is still computationally expensive and its compute
time as well as the needed resources are non negligible. In current implementations such as Gy-
sela [GAB+16] or Jorek [HHP+21], the 3D equation is reduced to the solution of 2D Poisson-like
equations on poloidal cross-sections of the tokamak. The description of the domain by curvilin-
ear coordinates [BBG+18,ZG19,Zon19], and the consideration of a varying density field [ZG19,
Zon19], lead to anisotropic operators and nonuniform meshes. In this case, a standard derivation
of a finite difference discretization may lead to a non-symmetric linear system, although the
corresponding energy functional is symmetric. In [KKR21], symmetric finite difference schemes
based on minimizing the energy functional were derived. A rigorous analysis showed that, when
using nonstandard finite element discretizations, extrapolation formulas [JR96] applied on the
discrete energy functional lead to higher order approximations. Numerical results showed that
additionally, the likewise extrapolated finite difference schemes lead to an order of convergence
of four.

Multigrid solvers are among the fastest numerical methods to solve elliptic partial differential
equations and are often optimal in the sense that the number of arithmetic operations is propor-
tional to the degrees of freedom of the discretized problem [TOS01]. Multigrid algorithms can
be divided into the class of algebraic and geometric algorithms. The focus of this paper is on a
tailored geometric multigrid solver for a Poisson-like equation on disk-like domains. The extrap-
olation techniques presented in [KKR21] can be incorporated naturally in a multigrid scheme,
as already shown by [JR96,JR98]. In [KKR22], this implicitly extrapolated geometric multigrid
method based on symmetric finite difference schemes, and named GMGPolar, was considered for
a simplified version of the gyrokinetic Poisson equation. The algorithm was shown to deliver a
higher order convergence in only a small number of solver iterations.

When it comes to computational expense, two different foci are memory and computation.
Algorithms are called memory-bound if their execution speed is limited by the speed of data
transfer (between different levels of memory). Algorithms are called compute-bound if their exe-
cution speed is limited by the speed of the computational units, e.g., the cores of the computing

1 https://www.iter.org/fr/sci/beyonditer

https://www.iter.org/fr/sci/beyonditer

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 3

node. For distributed-memory-based applications also the network speed can become a limiting
factor.

In the present article, a more realistic version of the Poisson-like equation from [KKR22] is
considered. We provide an efficient C/C++ implementation of GMGPolar that is available open-
source. The published code can be found GitHub under a permissive Apache-2.0 license. Its release
version 1.0 [LKS+23] has been used for this article. We demonstrate optimal linear complexity of
the solver with a systematic analysis of computational and memory costs. The algorithm employs
a task-based multithreaded parallelism which takes advantage of the disk-shaped geometry of
the problem. Such parallel implementation is essential for large scale simulations of plasma in
tokamak reactors. In [BLK+23], it has recently been shown that GMGPolar is able to compete
with other state-of-the-art solvers for the considered applications. Our rigorous computation and
memory analysis is built in the sense that it can be transferred to other stencil-based operators.

The article is structured as follows. In Section 2, we introduce the model problem, and in
Section 3 we introduce the discretization used for the model problem and geometry. In Section 4,
we briefly rephrase the implicitly extrapolated geometric multigrid solver, then in Section 5
we provide a detailed complexity analysis. The corresponding details on the particular function
evaluations and our rigorous framework for stencil-based operators is to be found in the Appendix.
The parallelization is discussed in Section 6 and numerical results can be found in Section 7.

2 Model problem

We are interested in the solution of the Poisson-like equation

−∇ · (U∇D) + VD = 5 in Ω,

D = D� on mΩ,
(1)

where Ω ⊂ R2 is a disk-like domain, 5 : Ω → R, 5 ∈ C0 (Ω), is the right hand side, U, V : Ω →
R with U ∈ C1 (Ω) ∩ C0 (Ω) and V ∈ C(Ω) are coefficients corresponding to density profiles.
Furthermore, we have the Dirichlet boundary conditions D� ∈ C0 (mΩ). For more details on this
equation, see [Zon19, eq. (4.36)]. In [KKR22], Equation (1) was considered with V = 0. Particular
choices for the coefficients U and V will be presented for numerical experiments in Section 7.

As the discretization method presented in the next section will be based on the energy func-
tional corresponding to the partial differential equation (1), we also briefly introduce this energy
functional. The problem (1) can be traced back to the minimization of the energy functional

� (D) :=
∫
Ω

1

2
U |∇D |2 + 1

2
VD2 − 5 D d(G,~), (2)

over a suitable Sobolev space incorporating the boundary conditions D� .
As in [BBG+18,ZG19,Zon19], we describe our domains Ω by curvilinear coordinates, i.e. based

on a mapping � from the Cartesian coordinates (G,~) to the (generalized) polar coordinates or
curvilinear coordinates (A, θ) ∈ ['min, 'max] × [0, 2c) where A is the (generalized) radius and θ the
(generalized) angle. Figure 1 shows an example of such coordinates and mapping. This description
introduces a periodicity constraint in the θ-direction. Figure 1 provides an example of a circular
domain described by a grid in Cartesian and polar coordinates. Please note that the mapping
between both systems is only bijective if 'min > 0. In [KKR22], we have considered different
approaches to handle the area around the origin. Similarly to [GAB+16,KKR22], we consider
that 'min ≈ 0, e.g. 'min = 10−6, and prescribe (homogeneous) Dirichlet boundary conditions on
the artificial inner boundary.

4 Philippe Leleux et al.

Fig. 1: A circular geometry described (Left) in Cartesian coordinates and (Right) in polar coor-
dinates (A, θ) ∈ ['<8=, '<0G] × [0, 2c) with mappings � and �−1 between the different descriptions.

As presented in Figure 1, we describe a circular geometry by simple polar coordinates and
an invertible mapping � from Ω̃ := ['<8=, '<0G] × [0, 2c) onto the circle. In order to model more
realistic cross-sections, generalized polar or curvilinear coordinates need to be used. Particular
geometries have been introduced in [BBG+18,CH08,ZG19]. We now introduce two mappings �(
and �� which describe geometries by �((Ω̃) and �� (Ω̃), see Figure 2.

The Shafranov geometry is a deformed ellipse defined by the mapping

�((A, θ) :=
(
G (A, θ)
~ (A, θ)

)
=

(
G0 + (1 − ^)A cos θ − XA2

~0 + (1 + ^)A sin θ

)
, (3)

where ^ is the elongation and X is the Shafranov shift, see [BBG+18,ZG19]. In [KKR21,KKR22],
this geometry was simply denoted deformed geometry, and G0 = ~0 = 0 were removed from the
equation.

The Czarny geometry adds triangularity to the shape with the mapping

�� (A, θ) :=
(
G (A, θ)
~ (A, θ)

)
=

©­­­«
1

Y

(
1 −

√
1 + Y (Y + 2 A cos θ)

)
~0 +

_ b A sin θ

2 −
√
1 + Y (Y + 2 A cos θ)

ª®®®¬ , (4)

where Y is the inverse aspect ratio, _ the ellipticity, and b = 1/
√
1 − Y2/4, see [CH08,ZG19].

In Figure 2, we present the Shafranov geometry for G0 = ~0 = 0, ^ = 0.3, and X = 0.2 as well
as the Czarny geometry for ~0 = 0, Y = 0.3, and _ = 1.4.

3 Discretization

In the following, we introduce the mesh as well as the finite difference discretization with respect
to the logical domain Ω̃ := ['<8=, '<0G] × [0, 2c).

The mesh Ω1 will be in product (i.e., tensor) format and given by two separate subdivi-
sions A1, . . . , A=A ∈ ['min, 'max] and θ1, . . . , θ=θ+1 ∈ [0, 2c]. These subdivisions are arbitrary with
definitions

A1 = 'min, A=A = 'max, θ1 = 0, and θ=θ+1 = 2c ;

A8+1 = A8 + ℎ8 , 8 ∈ {1, . . . , =A − 1}, θ9+1 := θ9 + : 9 , 9 ∈ {1, . . . , =θ},
(5)

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 5

−1 −0.5 0 0.5

−1

0

1

x

y

(a) Shafranov geometry with
G0 = ~0 = 0, ^ = 0.3, and
X = 0.2

−1 0 1

−1

0

1

x

y

(b) Czarny geometry with ~0 =

0, Y = 0.3, and 4 = 1.4

Fig. 2: Two geometries are considered.

and assumptions

=A odd, ℎ28 = ℎ28−1, 8 ∈ {1, . . . , (=A − 1)/2},
=θ even, :29 = :29−1, 9 ∈ {1, . . . , =θ/2}.

(6)

Remark 1 The assumptions in Equation (6) mean that there is a specific structure needed on
pairs of rectangular elements. The assumption (6) is needed to prove the relations between
quadratic and extrapolated linear finite elements in [KKR21] which increase the order of conver-
gence of the resulting multigrid scheme. There is no proof for finite differences, but it was shown
numerically on these grids that they behave similarly as their finite element counterpart. Note
that this assumption is not needed if the discretization is used for geometric multigrid without
the proposed extrapolation step. For more details, see [KKR21].

We further assume ℎ8 and : 9 to be uniformly bounded by

0 < ℎmin ≤ ℎ8 ≤ ℎ and 0 < :min ≤ : 9 ≤ :, (7)

as well as the existence of 0 < g < ∞ such that ℎ = g:. Our finite difference discretization builds
upon the localization (11) of the energy functional (2) first, the discretization of this localized
form second, and the differentiation of the sum of the localized, discretized energies third.

In order to localize Equation (2), consider any rectangular element '8 9 := [A8 , A8+ℎ8]×[θ9 , θ9+: 9]
of the logical domain Ω̃. For '8, 9 , we have its curvilinear representation by � ('8 9). Here, � typically
corresponds to the Shafranov or Czarny geometry but could be given by another invertible
mapping.

The following paragraphs are essentially built upon the theory in [KKR21] and only differ
due to the coefficients U and V. In [KKR21], we allowed for a more general diffusion tensor
� : R2 → R2 instead of U : Ω → R which could, in principle, also be used here. Also, in [KKR21],
we used V = 0. In order to make the paper self-contained, we repeat some of the basic ideas.

To make the transformation between Cartesian and curvilinear coordinates clear, let us use

Ũ (G,~) = U (A, θ), Ṽ (G,~) = V (A, θ), 5̃ (G,~) = 5 (A, θ), D̃ (G,~) = D (A, θ). (8)

6 Philippe Leleux et al.

By transformation of the energy functional in Equation (2), we then obtain

�'8,9 (D) : =
∫
� ('8,9)

(
1

2
U |∇(G,~)D̃ |2 +

1

2
ṼD̃2 − 5̃ D̃

)
d(G,~)

=

∫
'8,9

(
1

2
U |��−)∇(A,θ)D |2 +

1

2
VD2 − 5 D

)
| det�� | d(A, θ),

(9)

where �� is the Jacobian matrix of � and ��−) := (��))−1.
In principle, we have to distinguish the functions in Equation (8) as well as the operators

with respect to the different coordinates throughout the paper but we will generally write D or
∇D and assume that the variables are clear from the context.

In order to simplify the notation, we define

1

2
U��−1��−) | det�� | = :

(
0AA 1

20
Aθ

1
20

θA 0θθ

)
. (10)

Since (10) is symmetric, we have 0Aθ = 1
20

Aθ + 1
20

θA .
We then have

�'8,9 (D) =
∫
'8,9

(
0AAD2A + 0AθDADθ + 0θθD2θ +

(
1

2
VD2 − 5 D

)
| det�� |

)
d(A, θ), (11)

and the global energy can be decomposed as

� (D) =
=A−1∑
8=1

=θ∑
9=1

�'8,9 (D). (12)

The symmetric finite difference stencils are now derived by discretizing �'8,9 (D). Here and in
the following, we use for any function E : Ω̃ → R the notation

E8, 9 := E (A8 , θ9). (13)

The discretization of ∫
'8,9

(
0AAD2A + 0AθDADθ + 0θθD2θ − 5 D | det�� |

)
d(A, θ) (14)

can be obtained by [KKR21, (3.15) and (3.8)]. We only need to consider the remaining part∫
'8,9

1

2
VD2 | det�� | d(A, θ). (15)

Defining 1 := 1
2VD

2 | det�� |, the discretization of Equation (15) can be obtained by using the
trapezoidal rule:∫

'8,9

1 d(A, θ) =
ℎ8: 9

4
(18+1, 9+1 + 18+1, 9 + 18, 9+1 + 18, 9) + O(ℎ38 : 9 + ℎ8:39). (16)

Remark 2 Alternatively, we could use the midpoint rule and operators (3.3) and (3.4) of [KKR21]
to obtain the same result.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 7

The discretization (16) as well as the discretizations of the two summands in Equation (14)
are linear and quadratic expressions in D := (D1,1, . . . , D=A ,=θ+1) with a local discretization error of
O(ℎ38 : 9 + ℎ8:39) (see [KKR21, (3.15) and (3.8)]). The sum over all elements then implicitly yields
a discrete energy operator � as well as a vector 5̃ for 5 | det�� | such that

� (D) =
=A−1∑
8=1

=θ∑
9=1

�̃'8,9 (D) + O(ℎ2 + :2) =
1

2
D)�D − D) 5̃ + O(ℎ2 + :2), (17)

where �̃'8,9 (D) stands for the discretization of �'8,9 (D) in Equation (11).
Instead of searching the minimum of the continuous energy functional � (D), we now compute

the derivative of the discretized formulation 1
2D

)�D − D) 5̃ with respect to the nodal values of D
and set it to zero, i.e.,

m

mDB,C

(
1

2
D)�D − D) 5̃

)
=

=A−1∑
8=1

=θ∑
9=1

m

mDB,C
�̃'8,9 (D)

!
= 0. (18)

Due to the difference, averaging, and integration formulas used for discretization, we have
m

mDB,C
�̃'8,9 (D) = 0,

for (8, 9) ∉ �B,C := {(B, C), (B − 1, C), (B, C − 1), (B − 1, C − 1)}.
Computing the derivatives for (8, 9) ∈ �B,C and solving Equation (18) yields the nine point

stencil with the horizontal and vertical connections

DB+1,C : (∗9)B+1,C = −
:C + :C−1

ℎB

0AA (B, C) + 0AA (B + 1, C)
2

,

DB−1,C : (∗9)B−1,C = −
:C + :C−1
ℎB−1

0AA (B − 1, C) + 0AA (B, C)
2

,

DB,C+1 : (∗9)B,C+1 = −ℎB + ℎB−1
:C

0θθ (B, C) + 0θθ (B, C + 1)
2

,

DB,C−1 : (∗9)B,C−1 = −ℎB + ℎB−1
:C−1

0θθ (B, C − 1) + 0θθ (B, C)
2

,

(19)

the central update

DB,C : (∗9)B,C = −
[
(∗9)B+1,C + (∗9)B−1,C + (∗9)B,C+1 + (∗9)B,C−1

]
+ (ℎB + ℎB−1) (:C + :C−1)

4
VB,C | det��B,C |,

(20)

and the diagonal connections

DB+1,C+1 : (∗9)B+1,C+1 =
0Aθ (B + 1, C) + 0Aθ (B, C + 1)

4
,

DB+1,C−1 : (∗9)B+1,C−1 =
0Aθ (B + 1, C) + 0Aθ (B, C − 1)

4
,

DB−1,C+1 : (∗9)B−1,C+1 =
0Aθ (B − 1, C) + 0Aθ (B, C + 1)

4
,

DB−1,C−1 : (∗9)B−1,C−1 =
0Aθ (B − 1, C) + 0Aθ (B, C − 1)

4
.

(21)

Finally, the right hand side is given by
(ℎB + ℎB−1) (:C + :C−1)

4
5B,C | det��B,C |. (22)

8 Philippe Leleux et al.

4 Geometric multigrid solver

Multigrid solvers are powerful numerical methods for solving partial differential equations; see,
e.g., [TOS01]. In our paper, we will focus on a tailored geometric multigrid solver for Equation (1).
In [KKR22], such a solver was proposed using two ingredients: a suited smoothing procedure for
curvilinear discretizations, and an implicit extrapolation scheme. The smoothing procedure is
motivated by [Bar88] while the implicit extrapolation scheme was introduced in [JR96,JR98].
The resulting solver is named GMGPolar.

To make this paper self-contained, we briefly introduce the solver used in the following
numerical simulations. For more details on the derivation of the developed multigrid scheme,
see [KKR22].

4.1 Multigrid hierarchy

In order to build a multigrid scheme, we need to construct a hierarchy of grids. Based on Equa-
tion (5), the finest grid is defined as a rectangular mesh Ω1 of the logical domain, see also Figure 1.
We then use standard coarsening to obtain coarser meshes. Basically, starting from the first node,
we take every second value in {A1, . . . , A=A } and {θ1, . . . , θ=θ+1} to build the second grid level Ω2,
and so on and so forth. Note that for all levels, the last values are naturally kept in each direction
(A=A and θ=θ+1).

Assuming that there exist constants �A ,�θ ∈ R such that =A = �A2
! + 1 and =θ = �θ2

! for
! ∈ N, we can construct a hierarchy of ! grids Ω1, . . . ,Ω! from finest to coarsest. On each level
; ∈ {1, . . . , !}, we then use the discretizations (19)–(22) to construct the system

�;D; = 5; , (23)

where �; is a matrix of size<; ×<; and D; , 5; are vectors of size<; . On level ; , with =A ; and =θ; +1
the number of divisions in the A and θ directions, we have =A ; × (=θ; + 1) nodes in the grid. In
the θ-direction, we add the periodicity condition θ1 = θ=θ+1 and reduce the size of the matrix �;
to <; = =A · =θ. Since standard coarsening is used on the 2D grid, we have that

4(;−1)<; ≈<1 . (24)

The levels are linked by two transfer operators, the prolongation operator %;
;+1 transferring

the information from the coarser level ; + 1 to the finer level ; , and the restriction operator ';+1
;

,
which is often defined by ';+1

;
:= %;)

;+1. The latter definition ensures that the operator

%;
;+1�;+1'

;+1
;

(25)

is symmetric when �; is symmetric.
In [KKR22], the prolongation is defined as the bilinear interpolation operator on an anisotropic

mesh. In Table 1, we provide an illustration of the stencil used for the interpolation %;
;+1. For

more details, see Section 4.3. Except for the implicit extrapolation, which will act only between
the finest two levels, these stencils are qualitatively identical on any level, only depending on
the prolongated node. Quantitatively, the values of the operators depend on the distance to the
neighboring nodes.

In order to avoid a proliferation of indices, we skip the index ; for a particular grid where our
remarks hold for any level of the hierarchical grid Ω1, . . . ,Ω!.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 9

Prolongation Stencil Reference

\

A
Coarse Vertical Horizontal Diagonal

central node (A8 , \ 9) 8 odd, 9 odd 8 even, 9 odd 8 odd, 9 even 8 even, 9 even

%;
;+1 (interpolation)

%8=9 (injection) None None None

%4G (triangular)

Table 1: The stencils used for the prolongation operators depending on which node is prolongated.
The four types of central nodes depend on their neighboring coarse nodes, and are labeled
"coarse", "vertical", "horizontal", and "diagonal". White circles are coarse nodes, black dots are
fine nodes. A line corresponds to a relation with the central node in the prolongation stencil.
Also, we give the reference element for each prolongation type: finite difference for %;

;+1 and %8= 9 ,
P2 finite element for %4G .

4.2 Smoothing procedure

Pointwise smoothing leads to slow convergence of the multigrid scheme when polar or curvilinear
coordinate formulations are considered with standard coarsening [TOS01, Chap. 5.1.1]. [Bar88]
proposed the use of circle- and radial-line smoothing operations each using two alternating colors
(black and white) for every line on the full unit disk or annulus. On an annulus, for compact
stencils (i.e., stencils of a maximum length of one in each direction), all lines of one color of a
particular smoother (i.e., circle or radial) can be considered in parallel. On full disks, special care
has to be taken for radial smoothing as its colors get connected by the origin; see also Figure 4
for a motivation.

Due to the anisotropy introduced by the coordinate transformation, circle and radial smooth-
ing behave differently on different parts of the computational domain. This means that smoothing
each node with both smoothers, i.e. first all nodes with the first smoother and then all nodes
with the second one, may be inefficient in terms of computational cost. Based on the results
of [Bar88], in [KKR22], it was numerically shown that one smoothing step per grid node (either
radial or circle) can be sufficient to obtain fast convergence. Therefore, we partition the domain
into two subdomains where either circle or radial smoothing is applied. The criterion to change
from circle (starting with the innermost circle line) to radial smoothing is to find a minimum 8

such that it exists a 9 with

: 9

ℎ8
A8 > 1; (26)

see Figure 3 for an illustration.
We define =` as the index of the outermost radius of the interior subdomain. In Figures 4 and

3, we have =` = 4 and the corresponding circle would be given by the nodes with global numbers
25 to 32. Then the number of nodes in a black (or white) radial line in the exterior subdomain
is =A − =` = 4, e.g., nodes {36, 44, 52, 60} in Figure 4.

10 Philippe Leleux et al.

Fig. 3: Left: Schematic subdivision of a circular domain into an interior subdomain where circle-
line smoothing is used and an exterior subdomain where radial smoothing is used.Right: Circular
mesh with 64 nodes. Circular smoothing applied on the four interior circles (dark gray background
color), radial smoothing applied on the four exterior circles (light gray background color). Nodes
colored according to smoother color.

1
234

5
6 7 8

9
101112

13
14 15 16

17

18
19

20

21

22
23

24

25

26
27

28

29

30
31

32

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

3436

38 40

4244

46 48

5052

54 56

5860

62 64

Fig. 4: Left: Circular mesh with 64 nodes as in Figure 3 (right). Without loss of generality,
we assume a circle-wise global numbering. Focus on black colored nodes of the radial smoother.
Different grid lines of the smoother given by different background colors. Right: Nonzero pattern
of the submatrix �'�'� when using a compact five, seven, or nine point stencil, with colors
referring to the particular grid lines as depicted on the left figure. Different numberings of the
nodes lead to different nonzero patterns.

The line smoother used is a simple block Gauss-Seidel algorithm and these results also hold
for more general geometries. The sequential execution of the two partial smoothers (circle and
radial), considering the update from the first one in the second one, reduces the iteration numbers.
Moreover, a partially parallel implementation can substantially reduce the computation time
without increasing the iteration number. For more details, see [KKR22, Sec. 4.1] and Section 6.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 11

We further introduce the double index B2 to refer to a subset of nodes used in partial smoothing
operations. We use B ∈ {C,R} with � for circle and ' for radial as well as 2 ∈ {B,W} with � for
black and, for white. For instance, with B = R and 2 = B, we have the square submatrix

�'�'� (27)

of �, corresponding to a restriction on the black colored nodes where radial smoothing is applied.
In Figure 4, we provide a small example with the '� nodes highlighted with different background
colors, and the corresponding nonzero pattern of the submatrix �'�'� . Note that �'�'� can
easily be reordered as a block diagonal matrix when using, e.g., compact five, seven, or nine
point stencils. In this case, all lines can be handled in parallel. Similarly to �, the part of the
solution vector (resp. right hand side) corresponding to the nodes on the B2 lines is denoted by
DB2 (resp. 5B2). Finally, we define

`B :=<B/< and `B2 :=<B2 /<, (28)

the ratios of unknowns touched by the partial smoothing against the total number of unknowns
on the current grid. Here,<B represents the number of unknowns treated by the partial smoothing
procedure B (both colors for either circle or radial smoothing steps), while<B2 refers to the subset
of unknowns treated by only one color 2. Similarly, we can define `2 := <2/< as the number of
unknowns of color 2 (either black or white), and we have <� ≈<, ≈</2.

For the consideration of the complexity of the overall algorithm, we break all the ingredi-
ents down to the smallest possible unit. Therefore, let us further consider a submatrix of the
previously introduced submatrix �B2B2 . For both partial smoothers, a grid line refers to one line
that is smoothed together. In Figure 4 (left), we have four radial black grid lines, highlighted
by the different background colors yellow, blue, red, and green. Let us denote the submatrix
corresponding to the 8-th grid line

�
(8)
B2B2 . (29)

For instance, we obtain the matrix � (0)
'�'�

by extracting all yellow squares from Figure 4 (right).

Similarly, we write 5 (8)B2 for the corresponding right hand side part. The matrix � (8)
B2B
⊥
2
then consists

of all remaining elements, which are the rows corresponding to the 8-th grid line, and all columns
that do not belong to B2 ; that is, either they belong to the other color of the same partial smoother
or any color of the other partial smoother. One relaxation step for this line is then expressed as

D
(8)
B2 =

(
�
(8)
B2B2

)−1 (
5
(8)
B2 −�

(8)
B2B
⊥
2
D
(8)
B⊥2

)
. (30)

Table 2 gives the stencils of �B2B2 and �B2B⊥2 for each type of partial smoother.
Finally, a complete relaxation step in GMGPolar applies both partial smoothers B ∈ {�, '}

with both colors, black (�) and white (,). Different colors are treated sequentially while all lines
of one color are smoothed in parallel. That means, e.g., that the scheme of the second radial
color uses the update from the Gauss-Seidel scheme of the first radial color.

4.3 Multigrid iterations and implicit extrapolation

Using the previously introduced hierarchy of systems and the tailored smoother on each level,
GMGPolar follows a traditional + -cycle to solve the discretized system. Algo. 1 gives the whole
+ -cycle process, where Sa (D,�; , 5;) returns the result of a relaxation steps applied onto D on level
; .

12 Philippe Leleux et al.

Algorithm 1 MG(D; , ;): Multigrid V-cycle with a1 pre-smoothing and a2 post-smoothing steps
on level ; (! levels with ; = 1 the finest)
1: if coarsest level then
2: return �−1

!
D! (exact solve)

3: else
4: D; ← Sa1 (D; , �; , 5;) (pre-smoothing)

5: A;+1 ← %;
;+1

) (5; −�;D;) (restriction of the residual)
6: 4;+1 ←MG(A;+1, ; + 1) (coarse grid correction)
7: 4; ← %;

;+14;+1 (interpolation of the error)
8: D; ← D; + 4; (update of the solution)
9: return Sa2 (D; , �; , 5;) (post-smoothing)
10: end if

In [KKR21], the previously introduced variant of GMGPolar showed an approximation error
of degree 2 (compared to a manufactured solution of the Poisson-like problem (1) with V = 0) in a
modest number of iteration steps. In order to increase the approximation order of the algorithm
from order 2 to order 3 or 4, the authors in [KKR22] presented a mechanism called implicit
extrapolation [Rüd91,JR96] which can naturally be implemented in the multigrid scheme. The
implicitly extrapolated multigrid is based on the g-extrapolation technique [Ber97]. For more
details, see the motivation in [Sch21, Sec. 4.5] and the references therein. This approach al-
lows to increase the approximation order without the explicit construction of a higher order
discretization, and thus, keeps the modest computational cost of the original multigrid method
GMGPolar.

The implicit extrapolation uses additional information from the next coarser grid to estimate
the local error, and to eliminate certain dominating error terms on the finest level. Due to the
suitable combination of lower order systems when computing the new residual, we can implicitly
achieve a higher order solution. Note that with implicit extrapolation, we only relax the fine
nodes on the finest level, ensuring that the multigrid iteration converges to a unique higher order
solution. For more details, see [JR96].

For this paper to be self-contained, we briefly recall how the components of the multigrid
cycle are affected by this method. The extrapolation technique is only applied between the finest
two grids. Without loss of generality, let us assume that the unknowns are ordered such that the
coarse nodes are ordered first and the remaining fine (or fine-only) nodes second.

As the extrapolation only affects the first two levels, let us drop the index ; of �;D; = 5; or
explicitly set it to ; = 1 for (31)-(33). The system �D = 5 then writes(

�5 ⊥ 5 ⊥ �5 ⊥ 5
�5 5 ⊥ �5 5

) (
D5 ⊥

D5

)
=

(
55 ⊥

55

)
, (31)

where the indices ·5 and ·5 ⊥ , respectively correspond to fine nodes which do not belong to the
underlying coarse mesh, and the coarse nodes. The multigrid cycle with implicit extrapolation
then differs in two aspects.

First, and contrary to the g-extrapolation [Ber97], the smoothing is only performed on the
unknowns D5 on the fine grid excluding the coarse unknowns D5 ⊥ ; for more details see [JR96].
Thus, a relaxation step follows Equation (30) but, for each line, the matrix �B2 is restricted to
the fine unknowns D5 , and �⊥B2 also affects the coarse unknowns D5 ⊥ of the lines B2 , see Table 2.
We denote this smoothing procedure by

Sa1
��
5
(D,�, 5) :=

(
D5 ⊥

Sa1 (D5 , �5 5 , 55 −�5 5 ⊥D5 ⊥).

)
(32)

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 13

Secondly, we use a different intergrid transfer operator between the two finest levels. The re-
stricted residual on the first level (; = 1) of the implicitly extrapolated scheme is given by

A4G :=
4

3
%)4G (51 −�1D1) −

1

3
(52 −�2%

)
8=9D1). (33)

Here, %8= 9 is the simple injection operator such that %8= 9) extracts the coarse nodes from D1.
The operator %4G is specific to the extrapolation approach. %4G is based on triangle finite element
theory and for more details, see [KKR22, (4.8)] as well as [KKR21]. It is the identity operator
on the coarse nodes. For the remaining fine nodes, it returns 1/2 of the values of the adjacent
coarse nodes in the triangle finite element. Table 1 gives the stencil corresponding to %8= 9 and
%4G .

Configuration Stencil

\

A
�B2B2 �B2B⊥2

Circle smoother

Radial smoother

Extrap. fine nodes∗

Table 2: The stencils used for the smoother matrices �B2B2 and �B2B⊥2 . A black dot corresponds
to a relation with the central node in the stencil. ∗: "Extrap. fine nodes" refers to the stencil
used when smoothing fine nodes (of the same color as the coarse nodes) with the implicitly
extrapolated scheme, identically for both circle and radial smoothing.

The complete implicitly extrapolated multigrid cycle is given in Algo. 2. In the context of
finite elements, it can be shown that the discretization, with linear elements and extrapolation,
is equivalent to a quadratic discretization when nonstandard integration rules are applied. For
more details, see [Rüd91,JR98,KKR21]. In practice, approximation orders between 3 and 4 are
observed for the finite difference scheme introduced in [KKR21,KKR22], where the authors use
V = 0 in Equation (1). In Section 7, we demonstrate similar approximation orders using a general
value for the coefficient V, and the discretization from Section 3.

Algorithm 2 iexMG(D1): Implicit extrapolation applied on the finest level ; = 1 with a1 pre-
smoothing and a2 post-smoothing steps
1: D1 ← Sa1

��
5
(D1, �1, 51) (pre-smoothing fine nodes)

2: A4G ← 4
3%

)
4G (51 −�1D1) − 1

3

(
52 −�2%

)
8=9
D1

)
(extrapolated residual)

3: 42 ←MG(A4G , 2) (coarse grid correction)
4: 41 ← %4G42 (interpolation of the error)
5: D1 ← D1 + 41 (update of the solution)
6: return Sa2

��
5
(D1, �1, 51) (post-smoothing fine nodes)

14 Philippe Leleux et al.

5 Computation and complexity

Numerical experiments are an essential tool to allow considerations which are difficult or impos-
sible to realize by physical experiments. However, when it comes to the application of numerical
algorithms on supercomputers, their cost in terms of computations and memory can also become
important. In order to keep the cost reasonable and to make best use of the resources, these
algorithms should be designed with care. This means that potential bottlenecks should be inves-
tigated and possibly removed or reduced. Here, we solve the related problem (1) with a target
size between millions and a billion of dofs, mainly with a shared memory approach. However,
many hundreds or thousands instances of these problems have to be solved in each time step of
a gyrokinetic code such as Gysela [GAB+16].

Multigrid methods can be asymptotically optimal, in the sense that the complexity to solve a
linear system with sufficient accuracy grows only linearly with the number of unknowns <. This
has been shown for the full multigrid method [BL11]. Let us recall that GMGPolar follows a
matrix-free implementation in order to decrease the memory-footprint, thus a problem of a size
up to a billion can be solved in a single computing node, at the expense of a higher computational
cost. In this section, we provide the theoretical complexity of GMGPolar in terms of computation
and memory consumption. In particular, we show that GMGPolar inherits an optimal complexity.
The computation of such complexity is rarely done for complete solvers. This section, completed
by the appendix Appendix 8.4.1, can serve as a general approach for other frameworks.

Remark 3 The computational complexity of our method is expressed here in terms of floating
point operations (flops). Although we are aware that different operations do not correspond to
the same number of cycles on an actual machine, e.g. the addition or the division, we consider
here that they are all equivalent. This number of flops still gives a fair idea of how expensive an
algorithm is.

5.1 General considerations

Let us consider < = =A × =θ, the number of rows and columns of the matrix, as well as the
number of nodes (i.e., degrees of freedom) in the grid, on the finest level. Our goal here is to
obtain an estimation of the asymptotic complexity with respect to <, in terms of both memory
and computation. We denote by F(X) the computational cost of the operation X, and by M(V)
the memory cost of the structure (or the function) V. Since we are interested in the asymptotic
complexity of GMGPolar, we simplify the calculus by neglecting the boundaries (interior radius
'<8=, exterior radius '<0G , as well as the boundary between radial and circle-line smoothers).
We also neglect the manipulation of integers, to only focus on floating point numbers and their
operations of the order of O(<8), 8 ∈ N∗.

In order to compute the complexity on the whole grid, we often consider the complexity per
node F< (X) and M< (V). If the complexity applies to all nodes likewise (except the effect of
boundaries), we have for the overall complexity

F(X) = O ((F< (X)<) and M(V) = O (M< (V)<) . (34)

Let us start with an example: As input, we need to have a right hand side (RHS) vector of
size < defined on the finest level. We consider it as an input vector of size <. Then, F('�() = 0,
and the corresponding memory consumption is M(RHS) = <. Also, we need to store the mesh
information, i.e. the grid, on all levels. As we use a tensor-format mesh, the grid is represented
by two arrays of respective size =A and =θ containing the divisions in the A - and θ-directions.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 15

For a non-degenerated grid, we assume =A ≈ =θ ≈
√
<. Because the size of the A - and θ-arrays

are of order
√
<, we choose to neglect them to estimate the asymptotic complexity and memory

consumption. In order to decrease the computations, we also consider that we have precomputed
the values of cos(θ) and sin(θ) in the setup phase (only dependent on θ) as well as the values of
the coefficients U and V from Equation (1) (only dependent on A). The corresponding number of
flops and memory consumption is of the order

√
<, and thus neglected.

Let us now consider a matrix ", which entries "8 9 can be written as the sum of several
factors, i.e. "8 9 =

∑
:

"
(:)
8 9

. The computational cost to build ", denoted by F(1D8;3 "), then

includes the cost to build each factor " (:)
8 9

, as well as an addition to add this factors into "8 9 .
Furthermore, considering a vector D and the vector E = "D, we have for each entry E8 =

∑
9

"8 9D 9 =∑
9,:

∑
:

(" (:)
8 9
)D 9 . The computational cost to build "D includes one addition and one multiplication

for each factor " (:)
8 9

composing the matrix. In a matrix-free approach, each entry of the matrix
must be recomputed on-the-fly at each application, since the matrix is not kept in memory. As a
result, the computational cost for the matrix-free application of " can be decomposed in the cost
to construct the matrix (including one addition per factor), plus a cost to apply the matrix which
corresponds only to the multiplication by the entries of D (the addition is already accounted for).
We write that

F(<0CA8G-5 A44 ") = F(1D8;3 ") +F(0??;~ "), (35)

where F(0??;~ ") is simply the number of multiplications by D8 , i.e. the total number of different
factors" (:)

8 9
composing the matrix. This result is true for the matrix �, as well as the prolongation

and smoothing operators.
We now study the complexity of the three main components performed in the multigrid

cycle detailed in Algo. 1 and 2: the computation of the residual (including the restriction), the
smoothing procedure, and the coarsest grid solve. We first consider that the implicit extrapolation
is turned off, and will detail the differences in Section 5.5. In order to lighten this very technical
section, we only provide the main steps in order to compute the final complexity here. The whole
computation is added as an appendix. The final complexity estimates are given in Table 3.

5.2 Computation of the residual

The computation of the residual mainly involves the matrix-free application of the matrix � and
the restriction %) .

5.2.1 Matrix-free application of �

As introduced in Section 3, the matrix � is based on a finite difference scheme with a nine point
stencil in GMGPolar. When applying �, nine entries must be computed for each node in the
grid. These entries imply the computation of the three functions 0AA , 0θθ, and 0Aθ on the current
node and its neighboring nodes, from Equation (19), which we generically denote by 0GG .

In order to apply �, we distinguish two approaches, which are illustrated in Figure 5 for the
computation of a stencil. In a naive approach, here called � − C0:4, the algorithm loops over all
the grid nodes and computes the entries of the stencil directly, including the 0GG values for the
neighboring nodes. Overall, the values for 0AA and 0θθ must be computed three times for each

16 Philippe Leleux et al.

Table 3: Cost and number of applications for the functions used in the multigrid cycle. For each
group of functions (surrounded by horizontal lines), we provide a summary statistics in bold face.
If memory gets reused, the summarized memory is less than the sum of the previous rows. For
computations, the summary statistics is the sum of the previous rows. a1 and a2 are the number
of pre- and post-smoothing sweeps. We denote b the number of iterations for the convergence of
the multigrid cycle.

Function Memory Computation Applications Levels

right hand side < input – ; = 1
matrix-free �D < O ([F< (��) + 99]<) b

; = 1, · · · , ! − 1
matrix-free %)D < O ([7.25]<) b

residual 3< O ([F< (��) + 107.25]<) b ; = 1, · · · , ! − 1

build �! O (9<!) O (F< (��) + 74) 1
; = !

factorization �! O
(
<2
!
/2

)
O

(
<3
!
/3

)
1

coarse setup O
(
<2
!
/2

)
O

(
<3
!
/3 +F< (��) + 74

)
1 ; = !

compute �−1
!
I <! O

(
2<2

!
−<!

)
b ; = !

coarse apply <! O
(
2<2

!
−<!

)
b ; = !

build �B2B2 3< O ([2F< (��) + 67]<) 1
; = 1, · · · , ! − 1factorization �B2B2 O ([3 + 2`�]<) O ([3 + 7`�]<) 1

smoother setup O ([3 + 2`�]<) O ([2F< (��) + 70 + 7`�]<) 1 ; = 1, · · · , ! − 1

compute �−1B2B2 I < O ([5 + 4`�]<) (a1 + a2)b
; = 1, · · · , ! − 1matrix-free �B2B⊥2 DB⊥2 < O ([2F< (��) + 74]<) (a1 + a2)b

smoother apply 2< O ([2F< (��) + 80 + 4`�]<) (a1 + a2)b ; = 1, · · · , ! − 1

node, i.e., for the stencil of the current node and the two neighbors respectively from the same A
and θ. The values for the 0Aθ must be computed four times. In another approach, called �−68E4,
we loop over all nodes to compute their local 0GG values only once, and update the entries in
the matrix corresponding to the neighboring nodes. Thus, we directly divide by around three
the number of computations for the functions 0GG . The functions 0GG are composed of similar
elements, and we further decrease the computational cost by computing them simultaneously for
each node.

Remark 4 Based on the stencil definition from Equations (19)–(21), the 0Aθ functions used for
the diagonal updates originate from the neighbors with the same A or θ as the current node, thus
the curved arrows in Figure 5. In other words, we never need 0Aθ function evaluations at the
diagonal neighbors’ positions. In the rest of the paper, we simplify the representation by drawing
diagonal arrows for these relations.

Remark 5 In a finite element context, the A-give approach would correspond to looping over
the grid nodes and adding in the matrix the contributions of surrounding elements. The A-take
approach amounts to looping over the elements to update at once all the entries of the stiffness
matrix corresponding to its vertices.

Remember that the values of cos(θ), sin(θ), U , and V are precomputed and their cost is
asymptotically negligible as they only depend on either θ or A . The core element of the functions
0GG is the computation of the Jacobian �� of the transformation � , whose fixed cost depends

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 17

(a) A-take (b) A-give

Fig. 5: Schematic representation of the two approaches to apply the matrix �: take or give the
evaluations of the functions 0GG evaluations from or to the neighboring nodes, respectively.

on the chosen geometry. The computation of the three functions 0GG can then be obtained for
F< (0GG) = 19+F< (��) flops per node, see Appendix 8.2. If a subset of the 0GG is not needed, its
specific cost is subtracted from the total sum (4 flops for 0AA or 0θθ, and 5 flops for 0Aθ) but there
remains an irreducible common cost of 6 flops corresponding to �� .) Additionally, by computing
at once the 0GG of a whole line, with a fixed radius, it is possible to benefit from the vectorization
of modern computing architectures in order to increase the computing intensity.

Adding the small cost from computing the scaling coefficients in Equations (19)–(21) (see Ap-
pendix 8.3) gives the complexity of building the matrix �, i.e.,

F< (1D8;3 �) = F< (��) + 74 flops. (36)

As explained in Section 5.1, in order to apply � to a vector in a matrix-free fashion, each
factor composing the entries of � is multiplied with the corresponding vector value resulting in
F< (0??;~ �) = 25 flops. Finally, with (35) and its surrounding explanation, we get

F< (<0CA8G-5 A44 �D) = F< (1D8;3 �) +F< (0??;~ �) = F< (��) + 99 flops. (37)

5.2.2 Prolongation operator

The prolongation operator used in GMGPolar is a bilinear interpolation handling non-uniform
grids. The stencil of this operator differs depending on the type of the prolongated node, i.e.
depending on the neighboring coarse nodes. As defined in Table 1, there are four types of nodes
which updates are defined as

D; (A? , θ@) =



D;+1 (A? , θ@) (coarse node injection), if ? odd and @ odd,
1

:@+:@−1
[
:@D;+1 (A? , θ@−1) + :@−1D;+1 (A? , θ@+1)

]
, if ? odd and @ even,

1
ℎ?+ℎ?−1

[
ℎ?D;+1 (A?−1, θ@) + ℎ?−1D;+1 (A?+1, θ@)

]
, if ? even and @ odd,

1
(ℎ?+ℎ?−1) (:@+:@−1)

[
ℎ?:@D;+1 (A?−1, θ@−1)

+ℎ?:@−1D;+1 (A?−1, θ@+1) + ℎ?−1:@D;+1 (A?+1, θ@−1)
+ℎ?−1:@−1D;+1 (A?+1, θ@+1)

]
, if ? even and @ even.

(38)

18 Philippe Leleux et al.

By simple calculus, for a fine node (A? , θ@), the number of flops in order to build and apply % are
respectively

F< (1D8;3 %) =


0,
4,
4,

12,

and F< (0??;~ %) =


1, if ? odd and @ odd,
2, if ? odd and @ even,
2, if ? even and @ odd,
4, if ? even and @ even.

(39)

Since each type of update concerns around </4 nodes, we finally obtain that

F< (1D8;3 %) = 5 and F< (0??;~ %) = 2.25,

F< (<0CA8G-5 A44 %D) = F< (1D8;3 %) +F< (0??;~ %) = 7.25.
(40)

As for the restriction operator, i.e. ' = %) , we have the same complexity. The only difference
is that we loop over the fine nodes of the grid to apply the prolongation, and we loop over the
coarse nodes to apply the restriction. This way, the update of a specific node is completely inde-
pendent from the others, which gives a natural and efficient parallelization.

5.2.3 Full residual expression

Finally, the restricted residual is expressed as %) (5 − �D). In terms of memory consumption,
only the right-hand side, the solution and the residual vectors are needed (the restricted residual
becomes the right-hand side on the next coarser level). We then have

M(A4B83D0;) = 3<. (41)

And, by taking into account the difference between vectors 5 and �D in the residual (1 flop per
node), we obtain the final complexityF< (A4B83D0;) = F< (<0CA8G-5 A44 �D)+1+F< (<0CA8G-5 A44 %D)
for the restricted residual %) (5 −�D), as given in Table 3.

5.3 Smoothing

We now turn to the application of the smoother, i.e., determining how expensive is the appli-
cation of Equation (30) to each line. The matrices �B2B2 and �B2B⊥2 are submatrices of �, up to
some reordering of the rows and columns. We construct and/or apply them following an A-
give approach. Thus, we obtain similar computational complexities for their construction and
application as for �, see Appendix 8.4.1 for the full details.

Based on the stencils from Table 2, not all of the functions 0GG need to be computed for
the operators �B2B2 and �B2B⊥2 . The matrices �B2B2 are fully assembled in a setup phase in order to
apply �−1B2B2 during the smoothing steps. In this case, only the 0AA and 0θθ functions need to be
computed. As for the application of �B2B⊥2 , the 0

Aθ functions are needed for all nodes, however,
either the computation of the 0AA or the 0θθ functions are required for the circle and the radial
partial smoothers respectively.

Again, it is possible to group the computation of the functions 0GG and use vectorization.
Although for the matrix �, whole circle lines were computed at once, here we group circle lines
or radial lines respectively for each partial line smoother.

In order to build the matrix �B2B2 (resp. apply �B2B⊥2), we need to loop over the nodes cor-
responding to the partial smoother B2 but also over their neighbors, i.e. the nodes of the same
partial smoother B but with the other color. For example, in an A-give approach, to apply the

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 19

smoother �� , we also loop over the nodes �, . Then, after applying all the partial smoothers, we
have looped over all the grid nodes twice, implying to compute the Jacobian DF of the mapping
twice. Additionally, while the stencil of the �B2B2 is greatly reduced, a major part of the compu-
tations from � is kept because the central update of the stencil is the sum of the left, right, top,
and bottom updates. Thus, the computational cost corresponding to the application of �B2B⊥2 is
similar to the one for the construction of �B2B2 , with only the additional diagonal updates.

In the end, setting aside the computation of the Jacobian �� which must be performed twice
per node, the computational cost to build �B2B2 and to apply �B2B⊥2 represent respectively 2/3 and
3/4 of the operations required to build �, see Table 3 and Appendix 8.3.

Since the computational cost related to 0AA and 0Aθ is the same, the cost of the circle and
radial-line smoothers are identical. In fact, in terms of computational cost, the stencil of the
radial partial smoother is the same as a 90◦ rotation of the stencil for the circle partial smoother
with.

Once �B2B2 has been built, the relaxation step is applied at each iteration, for each type of
partial smoother. Considering each line of the smoothers separately as in Equation (30), the
structure of the corresponding matrix � (8)B2B2 is specific to the partial smoother used:

– for the circle-line smoother, � (8)B2B2 is a tridiagonal matrix with periodicity condition, see Fig-
ure 6a,

– for the radial-line smoother, � (8)B2B2 is a tridiagonal matrix, see Figure 6b. In the actual GMG-
Polar, the Dirichlet boundary condition would also appear in the form of a 1 as first entry in
the diagonal but we neglect this aspect for the computation of the asymptotic complexity.

(a) circle-line smoother (b) radial-line smoother

Fig. 6: Sparsity pattern of the matrix �B2B2 for a line of eight nodes.

Using a modified Thomas’ algorithm, we then compute and store an LU decomposition of the
�B2B2 matrices. For one line of = unknowns, the computational cost of the factorization is then
respectively O(10=) and O(3=) for the circle and the radial-line smoothers. See Appendix 8.4.2
for the algorithms. The total computational cost to factorize the �B2B2 matrices is obtained by
summing on all lines and all partial smoothers. Considering `� and `' the ratio of unknowns
associated with each type of smoother with respect to <, we obtain

F< (5 02C>. �B2B2) = 10`� + 3`' = 3 + 7`� , (42)

since `� + `' = 1. The latter cost is an abstraction giving the average cost per node to compute
the LU factorization. While there is no fill-in associated to the factorization of the matrix for the
radial smoother, the last row and column of the matrix will be filled for the LU decomposition
of the circle-line smoother. The LU decomposition of the matrices �B2B2 are stored in a sparse

20 Philippe Leleux et al.

matrix format, replacing the original �B2B2 in memory. Accounting for the fill-in, the associated
memory consumption is

M< (5 02C>. �B2B2) = 3 + 2`� . (43)

At each relaxation, simple forward and backward substitutions are then applied to solve Equa-
tion (30), based on the computed LU factorizations, for a cost of O(9=) and O(5=) respectively
for the circle and radial smoothers. The result is

F< (2><?DC4 �−1B2B2I) = 9`� + 5`' = 5 + 4`� , (44)

see Appendix 8.4.2 for the algorithms.
Thus, we obtain the final complexities of the smoothing steps: F< (B<>>Cℎ4A B4CD?) (computed

once), F< (B<>>Cℎ4A 0??;~) (at each iteration). As for the corresponding memory consumption,
we have M< (B<>>Cℎ4A B4CD?) = M< (5 02C>. �B2B2), then M< (B<>>Cℎ4A 0??;~) = 2 corresponding
to the two vectors �−1B2B2I, �B2B⊥2 DB⊥2 . Overall, the smoothing procedure costs M< (B<>>Cℎ4A) =

M< (B<>>Cℎ4A 0??;~) +M< (B<>>Cℎ4A B4CD?), as shown in Table 3.

5.4 Solving on the coarsest grid

On the coarsest grid of the multigrid hierarchy, GMGPolar uses a direct solver at each iteration
to compute the coarse grid correction 4! through the solution of the equation

�!4! = A!, (45)

where �! is the coarsest grid operator of size <!, and A! is the restricted residual transferred
from the finer grid level ! − 1. For this purpose, during the solver setup phase, the matrix �!
is first constructed with the computational cost F(1D8;3 �!) as detailed in Equation (36). The
corresponding memory consumption is M<! (1D8;3 �!) = 9 due to the nine point stencil. Since
the operator �! is symmetric, we can then compute its factorization �! = ΓΣΓ) , where Γ is lower
triangular and Σ is diagonal, for the known cost

F(5 02C>. �!) = O(<3
!/3). (46)

This factorization is also computed only once during setup and the Γ factor is stored in a sparse
matrix format. Due to the structure of the matrix �, resulting from the use of the nine point
finite differences stencil, the factorization fills-in, and the storage of the Γ and Σ factors is
M(5 02C>. �!) = O(<2

!
/2). These factors replace �! in memory. At each iteration, simple forward

substitution (solve ΓD = A!) and backward substitution (solve Γ) 4! = Σ−1D) are then applied to
solve Equation (45) for F(�!−1) = O(2<2

!
−<!) flops, which can be neglected compared to the

ΓΣΓ) factorization above.
Although the computational cost associated with the coarsest grid correction has a non-linear

complexity, this is contrasted by the relatively low dimension of the coarsest grid, i.e.,<! ≈</4!.
In order for the cost (46) to become lower than O(<), we then need the number of grid levels !
to respect

<3
!

3
< < ⇐⇒ ! >

ln
(
<2

3

)
3 ln(4) . (47)

For example, considering a finest system of size < = 106, the required number of levels is then
! > 6. There is a trade-off to find between a mild cost to solve on the coarsest grid, and a faster
convergence.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 21

5.5 Implicit extrapolation

The implicit extrapolation technique allows to increase the order of approximation of the solution
computed in GMGPolar without the explicit use of a higher order discretization. We now detail all
changes in complexity involved in the use of the implicit extrapolation, and show in particular that
the complexity stays mostly unchanged. We denote by F4G< (X) and M4G

< (V) the computational
cost of operation X and memory requirement of data structure V when using the extrapolation.

Note again that the extrapolation only acts between the two finest levels and that the
smoother on the finest level is only applied on the fine nodes. Let’s remind the reader that
the coarse grids are defined using standard coarsening as detailed in Section 4.1. Thus, starting
from the first grid node, the coarse nodes are chosen with a distance of two from each other.
Assuming without loss of generality that the first circle line and the first radial line are white,
half of their points are coarse nodes, i.e. kept on the next coarser grid level. As defined in (32),
these coarse nodes are kept out of the white smoothers. Written in terms of a linear equation,
instead of solving (30), we have

(
�
(8)
B,,5 ⊥ 0

0 �
(8)
B,,5 B,,5

) (
D
(8)
B,,5 ⊥

D
(8)
B,,5

)
=

(
D
(8)
B,,5 ⊥

5
(8)
B,,5
−� (8)

B,,5 B
⊥
,

D
(8)
B⊥
,

−� (8)B,,5 B,,5 ⊥D
(8)
B,,5 ⊥

)
(48)

for each line 8 of a white-colored smoother. Here, �B,,5 ⊥ is the identity matrix acting on the coarse
nodes and likewise we have denoted subvectors and matrices of � and D. Consequently, we only
solve the second line of the previous equation set. In order to simplify the notation, we will in
the following generically use � (8)B, B, for the nontrivial smoothing matrix � (8)B,,5 B,,5

.

– Using implicit extrapolation, the � (8)B, B, matrices are diagonal. In fact, the � (8)B, B, matrices
correspond to the submatrix of � restricted to the white fine nodes of the line 8 as also shown
in the previous equation. These fine nodes are independent from each other when using the
nine-point stencil, i.e. a stencil of length one. Consequently, only the central point of the
stencil is needed for each node of this type, i.e. the diagonal entry in the matrix, see Table 2.
Thus, the smoother matrices change from tridiagonal to diagonal. Then, setting aside the
cost to compute the Jacobian �� , the resulting computational cost represents around 2/3
of the cost without extrapolation. The matrices (� (8)B, B,)−1 are then trivial to apply, thus
F4G< (�−1B, B,) = `, . We only need to keep the diagonals in memory, i.e. M< (�B, B,) = `, .

– For the coarse white nodes corresponding to each partial smoother, the � (8)
B, B

⊥
,

matrices now

apply the nine point stencil except for the central update. In fact, � (8)
B2B
⊥
2
contains around `�/2

additional columns corresponding to the coarse white nodes. The result is an increased cost per
line, due to the additional nodes where all functions 0GG must be computed, and an increased
number of corresponding additional updates. However, since the partial smoother is only
applied on the fine nodes, � (8)

B, B
⊥
,

contains around `�/2 less rows when using extrapolation. As
a result, F4G< (<0CA8G-5 A44 �B2B⊥2) stays unchanged compared to the case without extrapolation,
as detailed in Appendix 8.4.1.

As for the black points, the extrapolation does not change the partial smoothers. Let’s introduce
ΔF
< (X) = F4G< (X) −F< (X), and ΔM

< (V) = M4G
< (V) −M< (V), the overheads from using the extrap-

olation scheme. Since the number of black and white lines only differs by one at the maximum,

22 Philippe Leleux et al.

we can write that `B, ≈ `B� , `, ≈ `� ≈ 1/2. Then, as detailed in Appendix 8.4.1, we obtain

ΔF
< (B<>>Cℎ4A B4CD?) = −9.75 − 2.5`� < −9.75,

ΔF
< (B<>>Cℎ4A 0??;~) = −2.5 − 2`� < −2.5,

ΔM
< (B<>>Cℎ4A) = −1.5 − `� < −1.5,

(49)

which means that the smoothing procedure is less expensive with the implicit extrapolation.
Furthermore, the implicit extrapolation introduces two prolongation operators. Considering

that <;+1 =<;/4, the operator %8= 9 simply corresponds to an injection operator and thus

F4G< (1D8;3 %8= 9) = 0 and F4G< (0??;~ %8= 9) =
{
1, if coarse node,
0, 4;B4

}
= 1/4. (50)

The operator %4G is very similar to the classical interpolation % , except when the neighboring
coarse nodes are on the diagonals. In this case (for a quarter of the nodes), we only keep the
top-left and bottom-right updates as seen in Table 1. Based on Equation (38), these updates cost
8 flops to construct %4G , and 2 flops to apply. We then obtain

F4G< (1D8;3 %4G) = 4, and F4G< (0??;~ %4G) = 1.75,

F4G< (<0CA8G-5 A44 %4GD) = F4G< (1D8;3 %4G) +F4G< (0??;~ %4G) = 5.75.
(51)

Finally, the computation of the residual on the coarsest grid changes to Equation (33), and
thus

ΔF
< (X) (A4B83D0;) = [F< (<0CA8G-5 A44 �D) + 1 +F< (<0CA8G-5 A44 %4GD)

+ 1/4(F< (<0CA8G-5 A44 �D) + 1) +F< (<0CA8G-5 A44 %8= 9D)]
− [F< (<0CA8G-5 A44 �D) + 1 +F< (<0CA8G-5 A44 %D)]
≈ 1/4(<0CA8G-5 A44 �D).

(52)

As a summary, the only differences in terms of computational cost from using the extrapo-
lation is mainly a less expensive construction of �B2B2 once during setup (minus at least 10 flops
per node; depending on the size of the circle smoother domain), and an overhead of a quarter of
an application of � per iteration (i.e. the application of � from the coarser grid level) to compute
the modified residual. This overhead does not change the overall complexity, in particular when
compared to what would be obtained from using an explicit higher degree discretization.

5.6 Complete and asymptotic complexities

Now, we summarize the complexity of the whole multigrid solver, separating the setup from the
actual multigrid cycle. We consider that we apply a1 and a2 pre- and post-smoothing steps and
that the convergence is obtained in b iterations. With and without extrapolation, we get

F((4CD?) = F< (B4CD? B<>>Cℎ4A)
!−1∑
;=1

<; +F(B4CD? 2>0AB4BC),

F("�) = b ([(a1 + a2)F< (B<>>Cℎ4A 0??;~) +F< (A4B83D0;)]
!−1∑
;=1

<; +F(2>0AB4BC)),

M("�) = [M< (A4B83D0;) +M< (B<>>Cℎ4A)]
!−1∑
;=1

<; +M(2>0AB4BC).

(53)

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 23

Due to standard coarsening, we have <; ≈</4; . As we are only considering orders, not exact
equality, we use the equal sign and obtain a geometric series expression

!−1∑
;=1

<; =<

!−1∑
;=1

(
1

4

);
=
4 − 1

4!−1

3
<

!→∞→ 4

3
<. (54)

By taking a large number of grid levels and thus considering that the coarsest grid cost can
be neglected, we obtain the linear asymptotic complexities

lim
!→∞

F((4CD?) = 4

3
F< (B4CD? B<>>Cℎ4A) ×<,

lim
!→∞

F("�) = 4b

3
[(a1 + a2)F< (B<>>Cℎ4A 0??;~) +F< (A4B83D0;)] ×<,

lim
!→∞

M("�) = 4

3
[M< (A4B83D0;) +M< (B<>>Cℎ4A)] ×< ≈ 12<.

(55)

The number of iterations was empirically shown to be independent of the problem size in
[KKR22], and the complexity of GMGPolar is thus optimal in both computations and mem-
ory.

6 Parallel implementation

In the previous section, we have demonstrated optimal linear complexity for GMGPolar, in
both memory and computations, using suited implementations. Also, most of the operations
can be vectorized as explained in the previous section. The implementation has laid the base
for parallelization as, e.g., the prolongation operator updates all of its entries independently
and the matrix operator updates all neighboring nodes by avoiding duplicate computations. In
order to make use of the shared memory infrastructure of modern computers, we will detail a
multihreading approach for GMGPolar. This parallelization is implemented with the OpenMP-
4.5 API.

6.1 Application of the intergrid transfer operators

The prolongation operator is the simplest operator to parallelize in our case. Its application
to a vector is performed by updating all entries of the output vector independently. In fact, all
entries in the output vector correspond to a fine node, and the values are computed as a weighted
sum of the neighboring coarse nodes values; see Equation (38). However, updating all nodes in
parallel can end up with each thread having too little computation to perform, we say that the
granularity may be too low. We can then improve the parallelization by grouping the fine nodes
of each row (with a fixed radius), which also has the advantage of vectorizing the computation
by grouping memory accesses.

As for the restriction operator, the idea is the same but the loop is performed over the
coarse nodes instead of the fine nodes, thus updating again the entries of the output vector
independently.

24 Philippe Leleux et al.

6.2 Matrix-free application of �

Concerning the application of the matrix � to a vector D, we could implement the same kind of
parallelization by updating all entries of the output vector independently, i.e. using the � − C0:4
approach with duplicate computations of the functions 0GG , as introduced in Section 5.2.1.

Using the �−68E4 approach, we avoid duplicate computations of the functions 0GG , by looping
over all nodes to update the neighboring nodes in the nine point stencil. Then, each entry of the
output vector, corresponding to a single grid node, is updated by all of its 8 neighbors. In terms
of parallelization, this introduces concurrent memory accesses between threads, and means that
we need some mechanism to prevent incoherence from such conflicts. We solve this issue by using
task-based parallelism and dependencies, respectively introduced in the revisions 3.0 and 4.0 of
OpenMP.

The principle of task-based parallelism is to separate parts of a complete code as tasks.
These tasks are put in a pool of tasks by the master thread. At runtime, the OpenMP threads
can pick and perform tasks as they become available, and so on until all the tasks have been
accomplished. Additionally, we can explicitly define dependency relations between tasks in order
to avoid conflicts from parallel updates. OpenMP interprets these dependencies by creating a
direct acyclic graph (DAG), named dependency graph where each vertex is a task, and the edges
define dependencies between these tasks. The threads can only run tasks which dependencies
have been resolved before. We obtain an asynchronous mechanism, which is essential to keep a
high level of parallelism and efficiency of our application on modern supercomputers.

As before, to prevent issues of granularity and use vectorization, we consider grouping the
computations corresponding to one circle line of the grid, i.e., a line with constant radius. We
then define as task C (8) the sequential loop over all nodes in the line 8 with radius A8 . In this loop,
we update the parts of �D corresponding to the neighbors of the nodes in line 8, i.e. all nodes in
the lines 8, 8 − 1, and 8 + 1. Since the nodes are considered sequentially inside a row, there can be
no conflict of update between two nodes of the same row. However, row 8 is also updated by the
rows 8 −1 and 8 +1, and thus, there can be conflicts from concurrent updates between these three
rows. We say that the tasks C (8) , C (8−1) , and C (8+1) are dependent from each other. Consequently,
we have that C (8) is independent from C (8+3) .

We can resolve these conflicts in OpenMP through the depend clauses with the following
relations for all 8 ∈ {1, · · · , =A }

C (8) −→
{

∅, if ∃: ∈ N0 s.t. 8 = 3: + 1,
C (8−1) , C (8+2) , else. (56)

Through the dependency mechanism in OpenMP, these relations define a directed graph which
automatically prevents conflicts when applying the matrix �. Taking the example of a grid with
nine divisions in the A direction, Figure 7 illustrates the relation (56), i.e. the dependency graph
between tasks. In summary, the tasks C (3:+1) are can be run right from the start because they
are independent from all other tasks. The execution continues with the tasks C (3:+2) , then with
the tasks C (3:+3) . We then have a theoretical maximum speedup of around =A/3 which ensures a
good scaling for large problems.

6.3 Smoothing

As in the Section 5.5, we define the first line for the circle and radial partial smoother as white.
Given the change from circle to radial smoothing of (26), the color of the outermost circle

smoother line will be defined. However, for large grids, the difference in smoothing between two

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 25

1 2 3 4 5 6 7 8 9

Fig. 7: Dependency graph for the application of �. Each circle/square is a task, i.e., the handling
of one line of nodes. Tasks C (3:+1) , : = 0, 1, 2, . . . are within a square and are independent from all
other tasks. An arrow from task C (8) to task C (9) , indicates that task C (8) must wait for task C (9)
to finish.

lines is minimal – so, to simplify the notation, we consider that the outermost line of the circle
partial smoother is white too. Based on the parallelism implemented for the application of �,
we can also parallelize the construction of the matrices �B2B2 during the setup. Here, we focus on
the parallelization of the complete smoother, i.e., applying all four of the partial smoothers B2
(B ∈ {�, '}, 2 ∈ {�,, }) in a block Gauss-Seidel approach.

Let’s remind Equation (30), i.e.

�
(8)
B2B2D

(8)
B2 =

(
5
(8)
B2 −�

(8)
B2B
⊥
2
D
(8)
B⊥2

)
,

showing that the smoothing procedure implies for each line the application of the operator � (8)
B2B
⊥
2

and the solution of the system itself. For these, we define the tasks C (8)
B2B
⊥
2
and C (8)B2B2 , respectively. As

before, in the case of the circle partial smoother, a line is a circle with constant radius, and for the
radial partial smoother, a line consists of the nodes with a constant angle. For reasons outlined
below, we number the lines in increasing order of the angle for the radial partial smoother, i.e.
indices 8 = 1, . . . , =θ correspond to angles θ1, . . . , θ=θ , but number the lines in decreasing order for
the circle partial smoother, i.e. indices 8 = 1, . . . , =` correspond to radii A=` , . . . , A=1 .

As detailed in Section 5.3, to use an A-give approach for the application of the �B2B⊥2 matrices
in the smoother, it is required to loop twice over all nodes, once per color of each smoother.
Also, the first circle in the domain corresponding to the radial partial smoother, i.e., the line
with radius A=`+1, must be handled in the circle partial smoother in order to fully update the A=`
line. This line is classically called a halo, and linked to the task C (0)

�,�
⊥
,

. Thus, there are =` + 1

tasks of type C (8)
�,�

⊥
,

, =` tasks of type C (8)
���

⊥
�

, and finally =θ of type C (8)
', '⊥

,

(resp. C (8)
'�'

⊥
�

). However,

the application of the specific (� (8)B2B2)−1 matrix is only required for the line 8 and not for the
neighboring ones. Thus, there are approximately =`/2 and =θ/2 tasks of type C (8)B2B2 for the circle
and radial partial smoothers. For these tasks, we keep the numbering of the complete circle (or
radial) partial smoothers, e.g. task C (8)

'2'2
corresponds to the 8-th line of the radial partial smoother

which is a line with constant angle θ8 .
At each relaxation iteration, it is then possible to run in parallel the application of all tasks,

for all smoothing types, as long as we respect the following dependencies:

1. Similarly to the application of the matrix �, there are conflicts from concurrent updates
between lines of the same type of B2 smoother. These conflicts can be prevented using depen-
dencies between tasks with the rules

C
(8)
B2B
⊥
2
−→

{
∅, if ∃: s.t. 8 = 3: + 1,

C
(8−1)
B2B
⊥
2
, C
(8+2)
B2B
⊥
2
, else. (57)

26 Philippe Leleux et al.

where 8 ∈ {1, · · · , =`} for the circle smoother, and 8 ∈ {1, · · · , =θ} for the radial smoother.
2. Naturally, (� (8)B2B2)−1 is applied on 5

(8)
B2 −�

(8)
B2B
⊥
2
D
(8)
B⊥2
, and thus depends on the update of � (8)

B2B
⊥
2
for

this line and the two neighboring lines. Thus, we impose the rule

C
(8)
B2B2 −→ C

(8−1)
B2B
⊥
2
, C
(8)
B2B
⊥
2
, C
(8+1)
B2B
⊥
2

(58)

where 8 ∈ {1, · · · , =`} for the circle smoother, and 8 ∈ {1, · · · , =θ} for the radial smoother.
3. Then, the application of a black smoother for a line must wait for the application of the

corresponding white smoother on the neighboring lines, i.e.

C
(8)
B�B
⊥
�

−→
{

C
(8)
B, B, , if 8 is a white line,

C
(8−1)
B, B, , C

(8+1)
B, B, , else.

(59)

where 8 ∈ {1, · · · , =`} for the circle smoother, and 8 ∈ {1, · · · , =θ} for the radial smoother.
4. Finally, there are also conflicts from the updates between the circle and radial smoothers. In

fact, to start the smoothing of radial lines, the outermost line =` of the circle smoother must
be finished. Thus, considering that the line =` is white and corresponds to task C (1)

�,�,
, we

impose the additional dependency

∀8 ∈ {1, · · · , =θ}, C (8)'2'⊥2 −→ C
(1)
�,�,

, (60)

In order to start the radial partial smoother as soon as possible, in parallel with the circle
partial smoother, we need to finish task C (1)

�,�,
first which is dependent on C (1)

�,�
⊥
,

, C (2)
�,�

⊥
,

and

C
(0)
�,�

⊥
,

. Thus, we choose to start the relaxation by sequentially performing the three latter

tasks, in parallel with all independent tasks C (3:+1)
B2B
⊥
2

, which explains the reverse numbering of
tasks for the circle partial smoother.

These dependencies are illustrated in Figure 8 on an example with five circle lines, and six
radial lines. Note that we do not include the dependencies corresponding to the first rule above,
since they follow the same rule as for the application of A but in a descending order, see Figure 7.

By accumulating all of these rules through the OpenMP dependencies, we obtain a directed
graph of tasks which prevents any conflicts from happening. Similarly to the application of �,
we then have an asymptotic maximum speed-up of b=`/3c + b=θ/3c, also ensuring a good scaling
for large problem sizes.

7 Numerical experiments

In the following, we will present numerical results for the model problem (1). The coefficients U
and V used here as well as the manufactured solution are obtained from the use cases in [Zon19], [KKR22]
and, precisely, [BLK+23, Eq. (18)-(19) and (23)]. These cases are inspired by the simulation of
plasma in tokamak fusion reactors. Here, we consider a Cartesian solution with oscillations
aligned with the Cartesian grid:

D (G,~) = �
(
1 + A (G,~)

'<0G

)6 (
1 − A (G,~)

'<0G

)6
cos(2cG) sin(2c~). (61)

Figure 9 illustrate the solution for the Shafranov and Czarny geometries.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 27

Circle White Circle Black

0*

1

2

3

4

5

1

3

5

1

2

3

4

5

2

4

R
ad

ia
lW

hi
te

R
ad

ia
lB

la
ck

1 2 3 4 5 6

1 3 5

1 2 3 4 5 6

2 4 6

Tasks:

tasks C (3:+1)
B2B
⊥
2

, C
(3:+2)
B2B
⊥
2

, C
(3:+3)
B2B
⊥
2

tasks C (8)B2B2

* halo

Dependencies:

2

3

4

Fig. 8: Dependency graph for the application of the smoother. Each node is a task, i.e., the
handling of a circle line of nodes. The tasks C (8)

B2B
⊥
2
, 8 = 2, 3, 5 and 8 = 2, 3, 5, 6, are represented by

circles and tasks C (8)
B2B
⊥
2
, 8 = 1, 4 are squares. Tasks C (8)B2B2 , 8 = 1, 2, . . ., are represented by triangles.

The different type of dependencies are colored: 2=blue, 3=green, and 4=red. For the sake of a
simple presentation, we do not display the dependencies from (57), as they are identical to what
is shown in Figure 7.

For the coefficients U and V, we set

U (A) = exp

− tanh ©­«
A (G,~)
'<0G

− A?
XA

ª®¬
 , (62)

V (A)= exp

tanh ©­«
A (G,~)
'<0G

− A?
XA

ª®¬
, (63)

where XA = 0.05 and A? = 0.7, as in [BLK+23], and '<0G = 1.3 by our own choice as in [KKR22].
Note that '<0G was set to 1 in [BLK+23]. See Figure 10 for an illustration of the coefficients U
and V.

28 Philippe Leleux et al.

(a) Shafranov geometry
(b) Czarny geometry

Fig. 9: Illustration of the manufactured solution (61) for the Shafranov and Czarny geometries.

Fig. 10: Coefficients U (62) and V (63) used in Equation (1).

The solver GMGPolar was initially developed for the Equation (1) with V = 0. Here, we use
a more general form to show that GMGPolar naturally extends to a nontrivial V coefficient,
exhibiting similar properties of convergence and accuracy as in the simpler case.

To handle the singularity introduced by the polar geometry at A1 = 0, GMGPolar has demon-
strated in [KKR22] the possibility through special considerations of the finite difference dis-
cretizations. However, we simplify these considerations by simply setting a minimum radius
A1 = 14 −8 and constructing Dirichlet boundary conditions on this innermost circle of the domain
from the manufactured solution. When considering the asymptotic computational and memory
complexities, we did not consider the boundary conditions, so this choice for A1 does not affect
this study.

In our experiments, the iterations are stopped based on a relative reduction threshold of
14 − 11 for the residual, or after a maximum of 300 iterations of GMGPolar. At each level of
the multigrid cycle, we perform one pre- and one post-smoothing step. We always use implicit
extrapolation and the matrix-free implementation of GMGPolar.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 29

Table 4: Numerical scalability of GMGPolar from 787k to 50m degrees of freedom on the Shafra-
nov geometry and Cartesian solution (61).

=A × =\ its ‖4AA ‖ℓ2 ord. ‖4AA ‖∞ ord.

769 × 1 024 70 3.18e-08 – 9.40e-07 -
1 537 × 2 048 67 2.86e-09 3.48 1.18e-07 3.00
3 073 × 4 096 64 2.55e-10 3.49 1.47e-08 3.00
6 145 × 8 192 61 2.26e-11 3.49 1.84e-09 3.00

Table 5: Numerical scalability of GMGPolar from 787k to 50m degrees of freedom on the Czarny
geometry and the Cartesian solution (61).

=A × =\ its ‖4AA ‖ℓ2 ord. ‖4AA ‖∞ ord.

769 × 1 024 56 2.31e-08 - 7.05e-07 -
1 537 × 2 048 54 2.01e-09 3.51 8.81e-08 3.00
3 073 × 4 096 51 1.79e-10 3.50 1.10e-08 3.00
6 145 × 8 192 49 1.58e-11 3.50 1.38e-09 3.00

Our experiments are performed using an OpenMP parallelization on a single node with 2-
sockets having 256 GB memory. Each socket is an AMD EPYC 7702 "Rome" processor at
2GHz containing 64 cores, constituting a separate NUMA (non-uniform memory access) domain.
Here, we fix the CPU frequency to 1.8 Ghz and only use one thread per core. We use LIKWID
5.2.2 [HWT10,GEHW22] for measuring the amount of computations in flops, and the memory
consumption in Mbytes. Finally, to solve the problem on the coarsest grid of GMGPolar, we use
MUMPS v5.4.1 [AAB+15].

In this section, we show the different types of scalability for GMGPolar from numerical
through weak and finally strong scaling.

7.1 Numerical scalability of GMGPolar

In this section, we first demonstrate numerical scalability for the model problem and the ge-
ometries considered. Note thatn numerical scalability of GMGPolar for other configurations and
smaller model problems has already been shown in [KKR22].

Here, we consider the right hand side given by the manufactured solution (61), called the
Cartesian solution. The problem is defined on the Shafranov geometry, see Figure 9a, and the
Czarny geometry, see Figure 9b. We construct grids of increasing refinement to get problems of
size from 845 to 547 DOFs.

Tables 4 and 5 provide the errors in (weighted) ℓ2 and ∞ norm with respect to the manu-
factured solution, and provide the error reduction order as ord. for both norms. The order is
calculated as the error reduction from one row to its predecessor, i.e.,

ord = log

(
‖err: ‖
‖err:−1‖

)
/log

(√
gridsize:−1
gridsize:

)
.

30 Philippe Leleux et al.

For both geometries, we obtain an approximation order around 3.5 (which is roughly below 4,
which we obtained for the polar use case) in ℓ2-norm as expected from the use of the implicit ex-
trapolation scheme. In fact, we obtain similar approximation orders as in [KKR21] and [KKR22]
but solving here the equation (1) with a non-zero V coefficient and also the Czarny geometry.
Note that the number of iterations in all cases stays relatively stable with respect to the problem
size. In fact, the number of iterations even tends to decrease for larger problems, e.g. from 56 to
49 iterations from the smallest to the largest problems on the Czarny geometry.

7.2 Weak scalability of GMGPolar

We now provide the weak scaling experiment for the exact same problems of the previous sections,
starting from 547 degrees of freedom (DOFs). We demonstrate the overall parallel efficiency of
GMGPolar in shared memory parallelism.

In Figure 11 we give the amount of computation in flops for the multigrid iterations of
GMGPolar depending on the problem size, as measured using likwid. We include the asymptotic
theoretical number of flops. The theoretical asymptotic computational complexity is computed
based on Eq. (55) with the actual number of iterations, completed by the results in Table 3 and
the specifities of the implicit extrapolation detailed in Section 5.5.

As expected, we observe that the complexity of GMGPolar is increasing linearly with the size
of the problem. Proving this is one of the main results from this article. The computational cost
measured in practice is twice as large as the theoretical one, which leaves space for optimiza-
tion. However, note that the expected theoretical numbers are asymptotic and that lower order
computations are not considered in the theoretical sum.

106 107

108

109

1010

1011

1012

1013

m

F
lo
ps

Measured
Theoretical

Flops

Shafranov
Czarny

Geometry

Fig. 11: Computational cost in flops when applying GMGPolar for the manufactured Carte-
sian solution (61) on the geometries Shafranov and Czarny. We include the number of flops as
measured by LIKWID as well as the theoretical (asymptotic) expectations.

Finally, we perform a weak scalability experiment with the parallel application of GMGPolar
on these same problems of size up to 547 DOFs, from 1 to 64 OpenMP threads. Here, each
thread handles a constant number of 547 DOFs, and the ideal behavior is obtained when the
execution time stays identical for all problem sizes. The setup phase of GMGPolar is (currently)
sequential, thus we focus again on the parallel execution of the multigrid iterations. Figure 12

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 31

gives the parallel efficiency of the multigrid cycle phase depending on the problem size. We
observe an excellent efficiency from 1 to 16 with 71% and 84% respectively for the Shafranov
and Czarny geometries. This parallel efficiency is obtained thanks to the efficient parallelization
scheme proposed in Section 6, using task-based parallelism. Using the full socket of 64 cores still
provides additional gain overall, with an efficiency staying around 50% in the case of Czarny,
although there is also potential for future improvement. In fact, the total computation time
only doubles while the problem size is multiplied by 64. Note that GMGPolar seems slightly
more scalable in the case of the Czarny geometry, it is likely that with the more expensive and
repetitive computation of the mapping of the geometry in the case of Czarny, the granularity of
the problem increases and this in turn improves the parallel efficiency of the implementation. In
the next section, we will detail the scalability of each parts of the multigrid cycle to identify the
ones currently limiting our parallel implementation.

1 4 16 64
0

20

40

60

80

100

OpenMP threads

P
ar
al
le
l
E
ffi
ci
en

cy
(%

)

Shafranov
Czarny

Geometry

Fig. 12: Weak scaling of GMGPolar. Parallel efficiency compared to the sequential run from
1 to 64 cores on grids of size 769 × 1024 to 6145 × 8192, manufactured Cartesian solution (61).

7.3 Strong scalability of GMGPolar

In this section, we focus on a finer discretizations of Eq. (1) for which we consider again the two
different geometries and the Cartesian solution (61). First, we perform a strong scaling experiment
by applying GMGPolar with 1 up to 64 OpenMP threads, on a grid of size 6145×8192, i.e. a grid
with about 50 million DOFs. Figure 13 presents the resulting execution times for the multigrid
cycle phase respectively for the Shafranov and Czarny geometries. Again, the setup phase is
excluded since it is sequential in our implementation. Additionally to the complete multigrid
iterations, we detail the efficiency of several inner steps: the smoothing, the computation of the
residual, the computation of the finest residual, the restriction and prolongation, the solution of
the coarse problem.

From Figure 13, we observe a very good overall scaling from 1 to 16 cores, where we get
a good speed-up of around 13. Although using the full socket of 64 cores still decreases the
execution time, the scalability decreases and we see there is potential for future improvement for
the other phases. The most efficient step is the smoothing which is often viewed as the critical
part in a multigrid method. In fact, up to 32 threads, the smoothing procedure shows a great
scalability. Then, the performance of the smoothing decreases but we still get a speed-up of

32 Philippe Leleux et al.

Fig. 13: Strong scaling of GMGPolar. From 1 to 64 cores on a grid of size 6145 × 8192,
Shafranov geometry Figure 2a (left) and Czarny geometry Figure 2b (right) and manufactured
solution (61).

around 35 when using 64 threads. This good scalability comes from the implemented task-based
parallelism, making use of the decomposition in lines of fixed radius and the limited interactions
between these.

Most of the other operations in GMGPolar have a minor effect on the total run time. For
example, the matrix-free application of the residual and prolongation operators do not scale
but have a low impact on the total execution time. Only the computation of the finest residual
significantly worsens the impact scalability and needs to be improved for future applications. In
fact, with 1 thread, computing the residual amounts to around 10% of the total execution time,
and increases to 30% with 64 threads.

8 Conclusion

In this paper, we have presented a matrix-free approach of GMGPolar which uses a nine-point
stencil inside a taylored, implicitly extrapolated multigrid scheme with zebra line smoothing
adapted to different parts of the domain. We have newly presented a rigorous analysis of flops
and memory usage and demonstrated optimal, linear asymptotic, complexity of the considered
solver in both computations and memory. Although the solution of the coarsest grid problem
does not have a linear complexity, considering a sufficiently large number of grid levels, it can be
neglected for the overall cost analysis of the GMGPolar solver. Our rigorous analysis is kept as
general as possible such that its framework ideas can be transferred to matrix-free approaches of
other stencil-based operators.

Furthermore, we have presented a task-based multithreaded parallelism for GMGPolar which
takes advantage of the disk-shaped geometry of the problem and defines dependencies accordingly.
We have demonstrated numerical, weak, and strong scalability for use cases from fusion plasma
applications. GMGPolar can now sufficiently handle disk-like geometries with tens and hundreds
of millions of degrees of freedom. Hereby, the implemented node-level parallelism scales very well

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver 33

from 1 to a 16, 32, or 64-fold of cores. Together with the results of [BLK+23], the solver is ready
to be coupled with gyrokinetic codes such as Gysela [GAB+16].

Future developments of GMGPolar will involve further optimizations of the run-time and the
use of accelerators for computation.

Declarations

Funding and Acknowledgements
We acknowledge the computing time granted on the HPC cluster CARO. Furthermore, we would
like to thank Nils Kanning for support on CARO and Melven Röhrig-Zöllner and Johannes
Wendler for fruitful hints and discussions on LIKWID and performance monitoring issues.

Conflicts of interest/Competing interests
None.

Availability of data and material
No particular data was used.

Code availability
The code is available on GitHub https://github.com/SciCompMod/GMGPolar and with tagged
version 1.0.2 and persistent identifier on zenodo https://doi.org/10.5281/zenodo.1040929.
Grids have been created with version 1.0.0, simulations have been performed with version 1.0.2.

Authors’ contributions
MJK, CK, and UR developed the numerical algorithm, the implementation was done by PL, CS,
MJK and CK. MJK and CK did the initial implementation in Matlab, PL and CS ported the
code to C/C++ and did the task-based parallelization. Simulations were conducted by MJK. All
authors wrote and revised the script.

References

AAB+15. Patrick Amestoy, Cleve Ashcraft, Olivier Boiteau, Alfredo Buttari, Jean-Yves L’Excellent, and Clé-
ment Weisbecker. Improving multifrontal methods by means of block low-rank representations. SIAM
Journal on Scientific Computing, 37(3):A1451–A1474, 2015.

Bar88. Saulo RM Barros. The Poisson equation on the unit disk: a multigrid solver using polar coordinates.
Applied Mathematics and Computation, 25(2):123–135, 1988.

BBG+18. Nicolas Bouzat, Camilla Bressan, Virginie Grandgirard, Guillaume Latu, and Michel Mehrenberger.
Targeting realistic geometry in Tokamak code Gysela. ESAIM: Proceedings and Surveys, 63:179–207,
2018.

Ber97. Klaus Bernert. g-extrapolation—theoretical foundation, numerical experiment, and application to
navier–stokes equations. SIAM Journal on Scientific Computing, 18(2):460–478, 1997.

BL11. Achi Brandt and Oren E Livne. Multigrid Techniques: 1984 Guide with Applications to Fluid Dy-
namics, Revised Edition. SIAM, 2011.

BLK+23. Emily Bourne, Philippe Leleux, Katharina Kormann, Carola Kruse, Virginie Grandgirard, Yaman
Güclü, Martin J. Kühn, Ulrich Rüde, Eric Sonnendrücker, and Edoardo Zoni. Solver comparison for
poisson-like equations on tokamak geometries. Journal of Computational Physics, 488:112249, 2023.

CH08. Olivier Czarny and Guido Huysmans. Bézier surfaces and finite elements for mhd simulations. Journal
of computational physics, 227(16):7423–7445, 2008.

GAB+16. Virginie Grandgirard, Jérémie Abiteboul, Julien Bigot, Thomas Cartier-Michaud, Nicolas Crouseilles,
Guilhem Dif-Pradalier, Ch Ehrlacher, Damien Esteve, Xavier Garbet, Ph Ghendrih, et al. A 5D
gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations. Computer
Physics Communications, 207:35–68, 2016.

https://github.com/SciCompMod/GMGPolar
https://doi.org/10.5281/zenodo.1040929

34 Philippe Leleux et al.

GEHW22. Thomas Gruber, Jan Eitzinger, Georg Hager, and Gerhard Wellein. LIKWID v5.2.2, August 2022.
https://zenodo.org/records/6980692.

HHP+21. Matthias Hoelzl, Guido Huijsmans, Stanislas Pamela, Marina Becoulet, Eric Nardon, Francisco Javier
Artola, Boniface Nkonga, Calin Atanasiu, Vinodh Bandaru, Ashish Bhole, et al. The JOREK non-
linear extended MHD code and applications to large-scale instabilities and their control in magnetically
confined fusion plasmas. Nuclear Fusion, 2021.

HWT10. G. Hager, G. Wellein, and J. Treibig. Likwid: A lightweight performance-oriented tool suite for x86
multicore environments. In 2012 41st International Conference on Parallel Processing Workshops,
pages 207–216, Los Alamitos, CA, USA, sep 2010. IEEE Computer Society.

JR96. Michael Jung and Ulrich Rüde. Implicit extrapolation methods for multilevel finite element compu-
tations. SIAM Journal on Scientific Computing, 17(1):156–179, 1996.

JR98. Michael Jung and Ulrich Rüde. Implicit extrapolation methods for variable coefficient problems. SIAM
Journal on Scientific Computing, 19(4):1109–1124, 1998.

KKR21. Martin Joachim Kühn, Carola Kruse, and Ulrich Rüde. Energy-minimizing, symmetric discretizations
for anisotropic meshes and energy functional extrapolation. SIAM Journal on Scientific Computing,
43(4):A2448–A2473, 2021.

KKR22. Martin J Kühn, Carola Kruse, and Ulrich Rüde. Implicitly extrapolated geometric multigrid on
disk-like domains for the gyrokinetic Poisson equation from fusion plasma applications. Journal of
Scientific Computing, 91(1):1–27, 2022.

LKS+23. Philippe Leleux, Martin J. Kühn, Christina Schwarz, Carola Kruse, Ulrich Rüde, and Allan Kuhn.
GMGPolar v1.02, December 2023. https://doi.org/10.5281/zenodo.10409297.

Rüd91. Ulrich Rüde. Extrapolation and related techniques for solving elliptic equations. Citeseer, 1991.
Sch21. Christina Schwarz. Geometric multigrid for the Gyrokinetic Poisson equation from fusion plasma

applications, 2021. Universität Erlangen-Nürnberg. https://elib.dlr.de/146684/.
TOS01. Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schüller. Multigrid. Academic Press, London

San Diego, 2001.
WC11. John Wesson and David J Campbell. Tokamaks, volume 149. Oxford university press, 2011.
ZG19. Edoardo Zoni and Yaman Güçlü. Solving hyperbolic-elliptic problems on singular mapped disk-like

domains with the method of characteristics and spline finite elements. Journal of Computational
Physics, 398:108889, 2019.

Zon19. Edoardo Zoni. Theoretical and numerical studies of gyrokinetic models for shaped Tokamak plasmas.
PhD thesis, Technische Universität München, 2019.

https://zenodo.org/records/6980692
https://doi.org/10.5281/zenodo.10409297
https://elib.dlr.de/146684/

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver i

Appendix A: Detailed computational complexity and analysis framework

In this appendix, we detail how to compute the complexity of the components constituting
GMGPolar. The main steps and results of this appendix are given in Section 5, and we use the
same notation as introduced in Section 5.1. We remind the reader that cos θ, sin θ, U , and V

are precomputed with a negligible cost compared to a linear complexity. While Appendix 8.1
provides exact number of flops for the geometries considered, Appendix 8.2 is kept general for
applications with mappings on curvilinear coordinates.

8.1 Jacobian of the mapping

Note that the algorithms we provide to compute the Jacobian are far from optimal. To stay
general with respect to the application, the corresponding codes are generated from the analytical
formula of the mapping function using the python library SymPy2 for symbolic mathematics.
Appendix 8.3 is written in general framework form so that it can be reused for other stencil-
based operators and Appendix 8.4 is applicable for circle-radial line smoothers (also providing
the extrapolation case).

In order to compute the entries of the matrix using the nine point stencil as introduced

in Section 3, the Jacobian of the geometry mapping �� :=

(
�AA �Aθ
�θA �θθ

)
is required. This Jacobian

naturally depends on the choice of the geometry. Based on Section 2, we can use:

1. The polar geometry with the Jacobian

��?>;0A =
1

'<0G

(
cos θ −A sin θ
sin θ A cos θ

)
, (64)

which can be computed with F< (��?>;0A) = 6 flops based on Algo. 3.

Algorithm 3 ��?>;0A : (2 mult., 4 div. = 6 flops)

Input: (A, θ), (cos θ, sin θ), '<0G .
1: �AA = cos θ/'<0G (1 div.)
2: �Aθ = −A sin θ/'<0G (1 mult., 1 div.)
3: �θA = sin θ/'<0G (1 div.)
4: �θθ = A cos θ/'<0G (1 mult., 1 div.)

2. The Shafranov geometry (3) with the Jacobian

��Bℎ05 A0=>E =
1

'<0G

(
−(^ − 1) cos θ − 2X A

'<0G
A (^ − 1) sin θ

(^ + 1) sin θ A (^ + 1) cos θ

)
(65)

which can be computed with F< (��Bℎ05 A0=>E) = 18 flops based on Algo. 4.
3. The Czarny geometry (4) with the Jacobian

��2I0A=~ =

(
− cos θ/Z A sin θ/Z

_b sin θ
2−Z

(
1 + YA cos θ

(2−Z)Z

)
_bA

2−Z

(
cos θ − YA sin θ2

(2−Z)Z

)) (66)

with Z =
√
Y (Y + 2 A

'<0G
cos θ) + 1 and b = 1/

√
1 − Y2/4, which can be computed withF< (��2I0A=~) =

112 flops based on Algo. 5.
2 https://www.sympy.org/en/index.html

https://www.sympy.org/en/index.html

ii Philippe Leleux et al.

Algorithm 4 ��Bℎ05 A0=>E: (8 mult., 5 add, 5 div. = 18 flops)

Input: (A, θ), (cos θ, sin θ), (X,^), '<0G .
1: �AA = (−2X A

'<0G
− ^ cos θ + cos θ)/'<0G (3 mult., 2 add, 2 div.)

2: �Aθ = A
'<0G

(^ sin θ − sin θ) (2 mult., 1 add, 1 div.)
3: �θA = (^ + 1) sin θ/'<0G (1 mult., 1 add, 1 div.)
4: �θθ = A

'<0G
(^ cos θ + cos θ) (2 mult., 1 add, 1 div.)

Algorithm 5 ���I0A=~ : (52 mult., 25 add, 23 div., 12 sqrt = 112 flops)
Input: (A, θ), (cos θ, sin θ), (Y, _), '<0G .

1: �AA =

(
− cos θ√

Y (Y+2 A
'<0G

cos θ)+1

)
/'<0G (3 mult., 2 add, 3 div., 1 sqrt)

2: �Aθ = A

(
sin θ√

Y (Y+2 A
'<0G

cos θ)+1

)
/'<0G (4 mult., 2 add, 3 div., 1 sqrt)

3: �θA =
©­«

_Y A
'<0G

sin θ cos θ
√
1−(1/4)Y2

(
2−

√
Y (Y+2 A

'<0G
cos θ)+1

)2√
Y (Y+2 A

'<0G
cos θ)+1

+ _ sin θ√
1−(1/4)Y2

(
2−

√
Y (Y+2 A

'<0G
cos θ)+1

) ª®¬ /'<0G
(22 mult., 11 add, 9 div., 5 sqrt)

4: �θθ = A
©­«

−_Y A
'<0G

sin2 θ
√
1−(1/4)Y2

(
2−

√
Y (Y+2 A

'<0G
cos θ)+1

)2√
Y (Y+2 A

'<0G
cos θ)+1

+ _ cos θ√
1−(1/4)Y2

(
2−

√
Y (Y+2 A

'<0G
cos θ)+1

) ª®¬ /'<0G
(23 mult., 11 add, 9 div., 5 sqrt)

8.2 functions 0GG

Using Equation (10), the functions 0GG are defined as(
0AA 1

20
Aθ

1
20

Aθ 0θθ

)
=
1

2
U��−1��−) | det(��) |

⇐⇒


0AA = 1

2U

(
� 2θθ + �

2
Aθ

)
/| det(��) |,

0θθ = 1
2U

(
� 2θA + �

2
AA

)
/| det(��) |,

0Aθ = U (�θθ �θA + �Aθ �AA) /| det(��) |,

(67)

with det(��) = �AA �θθ − �Aθ �θA .
Since the functions 0GG are built from the same elements, it is more efficient to compute all

three functions simultaneously with the cost F< (0GG) = 19 +F< (��), as detailed in Algo. 6.
In order to build/apply � or the smoother matrices �B2B2 and �B2B⊥2 , different combinations of

the functions 0GG must be computed with a corresponding computational cost. In fact, consid-
ering Algo. 6, there is a common cost of 6 flops for all three functions (lines 1 to 4) plus 4 flops,
4 flops, and 5 flops, respectively to compute 0AA , 0θθ, and 0Aθ.

8.3 Matrix-free application of �

We now detail the computation of the complexity for the construction and the matrix-free ap-
plication of the matrix �. We recall that the matrix is based on the nine point finite-difference
discretization introduced in Section 3 with the entries from Equations (19)–(21).

In this section, we establish some tools in order to compute the computational cost per node
required for the construction of a matrix in the context of discretized PDEs. We believe that our
method can be generalized to most approaches (using e.g. other finite difference stencils or finite

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver iii

Algorithm 6 0GG computation (DF, 13 mult., 4 add, 1 div., 1 abs. = 19 + F< (��))

1: Compute �� =

(
�AA �Aθ
�θA �θθ

)
(F< (��))

2: detDF = �AA �θθ − �Aθ �θA (2 mult., 1 add)
3: absdetDF = abs(detDF) (1 abs.)
4: coeff = 0.5U (A)/absdetDF (1 mult., 1 div.)

// Only for �, �B2B2 , and circle/extrapolation �B2B⊥2 , otherwise skip next line
5: 0AA = coeff × (�θθ �θθ + �Aθ �Aθ) (3 mult., 1 add)

// Only for �, �B2B2 , and radial/extrapolation �B2B⊥2 , otherwise skip next line
6: 0θθ = coeff × (�θA �θA + �AA �AA) (3 mult., 1 add)

// Only for �, �B2B⊥2 , otherwise skip next line
7: 0Aθ = 2coeff × (�θθ �θA + �Aθ �AA) (4 mult., 1 add)

= 6 + F< (��)

= 4

= 4

= 5

elements) in order to get a complete knowledge of how expensive constructing the discretized
operator is. As detailed below, our method is based on decomposing the computation of a stencil
in multiple contributions, and visualizing the corresponding costs as a diagram.

Construction of a generic matrix

Let us consider a square matrix " of size < such that its entries can be expressed as the sum
of a few contributions, i.e. "8 9 =

∑
:∈ 8 9

"
(:)
8 9

, where 8 9 depends on the entry (8, 9). Note that the

contributions are not uniquely defined and may vary depending on what shall be precomputed
and reused.

If we consider that the matrix is built from a discretization using a specific stencil, then
the non-zero entries of the matrix " are defined by the form of the stencil, and the sets of
contributions 8 9 can defined by the expression of each update in the stencil.

To explain our general approach, let us now consider the example of the nine-point sten-
cil (19)–(21) used in GMGPolar and a node with coordinate indices (B, C).

In this example, we directly use the coordinate indices (B, C) of each node instead of 8 or 9 and
we use � instead of " to distinguish the example from the general consideration. We assume
� to be ordered with the coordinate indices. This way, the matrix is defined up to a certain
renumbering which can be chosen freely upon implementation. Generally, we use 8 = B ∗=θ + C , i.e.
numbering nodes following the circles lines. Finally, to make the notation more visual, we replace
the coordinates (B, C) by ⊗, and coordinates (B ± 1, C ± 1) by an arrow indicating the direction of
the corresponding node with respect to the node (B, C) (e.g. ↘ for the coordinates (B − 1, C + 1)).

We have the expression of each update

[top] �⊗↑ = −:C+:C−1
ℎB

0AA⊗ +0AA↑
2 ,

[bottom] �⊗↓ = −:C+:C−1
ℎB−1

0AA↓ +0
AA
⊗

2 ,

[right] �⊗→ = −ℎB+ℎB−1
:C

0θθ⊗ +0θθ→
2 ,

[left] �⊗→ = −ℎB+ℎB−1
:C−1

0θθ←+0θθ⊗
2 ,

�����������
�⊗↗ =

0Aθ↑ +0
Aθ
→

4 , [top-right]

�⊗↖ =
0Aθ↑ +0

Aθ
←

4 , [top-left]

�⊗↘ =
0Aθ↓ +0

Aθ
→

4 , [bottom-right]

�⊗↙ =
0Aθ↓ +0

Aθ
←

4 , [bottom-left].

�⊗⊗ = −
[
�⊗↑ +�⊗↓ +�⊗→ +�⊗→

]
+ (ℎB + ℎB−1) (:C + :C−1)

4
VB,C | det��B,C |. [central].

(68)

iv Philippe Leleux et al.

Continuing the above example, we get the set of contributions ⊗↑ = {1, 2} with

�⊗↑ = �
(1)
⊗↑ +�

(2)
⊗↑ ,

�
(1)
⊗↑ = −

:C + :C−1
ℎB

0AA⊗
2
,

�
(2)
⊗↑ = −

:C + :C−1
ℎB

0AA↑
2
.

(69)

From Equation (68), we understand that some elements which are common to different up-
dates should be precomputed to save flops. In our example, the functions 0GG are to be computed
only once per node (B, C) while the sums and quotients of ℎ and : are cheap to compute. In a
general sense, we further write

"
(:)
8 9

= W:8 9G
:
8 9 ,

where we have certain variables - = (G:8 9)8 9 ∈{1,...,<},:∈ 8 9 to precompute and corresponding scalars
(W:8 9)8 9 ∈{1,...,<},:∈ 8 9 that will be recomputed each time. The distinction between - and the W:8 9 is
given by the individual costs of each value. In order to keep the memory usage small, - should
only contain a limited number of costly evaluations. Multiple appearances of the same value in
- are to be understood as a single evaluation. The computational complexity to build a matrix
", can then be expressed as

F(1D8;3 ") = F(?A42><?DC4 -) +
∑

8, 9 ∈{1,...,<},:∈ 8 9

(F(W:8 9) + 1) (70)

where F(?A42><?DC4 -) and F(W (:)
8 9
) are the computational complexity respectively for the pre-

computation of the variables G:8 9 and the coefficients W (:)
8 9

(including one flop for the multiplication

W
(:)
8 9
G:8 9) plus one flop corresponding to summing the factor " (:)

8 9
into the matrix entry "8 9 .

Additionally there can be factors " (:)
8 9

which appear multiple times, i.e. ∃(81, 91, :1), (82, 92, :2)
s.t. " (:1)

81 91
= "

(:2)
82 92

. An obvious example from GMGPolar is the fact that the central update of the
nine-point stencil is the sum of the left, right, bottom, and top updates, as seen in Equation (68).
We can then write:

F(1D8;3 ") = F(?A42><?DC4 -) +
∑
8, 9,:∈�

(F(W (:)
8 9
) + f:8 9) (71)

where � defines the set of factors (:)
8 9

such that factors " (:)
8 9

were factorized, and f:8 9 is the

number of occurrences of the factor " (:)
8 9

, i.e., which can be reused f:8 9 − 1 times. Finally, if there
are factors which are numerically different but correspond to the same computational cost and
number of occurences, we can write

F(1D8;3 ") = F(?A42><?DC4 -) +
∑
8, 9,:∈�̃

(F(W (:)
8 9
) + f:8 9)q

(:)
8 9

(72)

where �̃ was reduced further to factorize factors with the same cost, and q (:)
8 9

gives the number of

factors considered to have the same cost and number of occurences as" (:)
8 9

for the final calculus of
the computational complexity. To simplify, setting aside the precomputation of the G:8 9 elements,
for each aggregated factor in �̃ the cost is decomposed as

(#5 ;>?B +#>22DA4=24B) ×#5 02C>AB. (73)

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver v

Construction of A:

Upon implementation, one should take care of precomputing as much variables as possible, and
computing only once factors which are used several times. How this can be done depends on
the code. The general idea is to loop over all nodes and compute the entries of the matrix
corresponding to each node independently. As discussed in Section 5.2.1, we can consider two
approaches.

Table 6: Stencil representations of the construction of � in terms of computations for a single grid
node (B, C). Two implementations are considered: A-take and A-give. Functions to precompute
for the current node are given. The complexity column gives for each point in the stencil what
is the computational cost expressed as (#flops + #occurrences)×#factors, where #flops is
the complexity of computing the scaling coefficient of each factor, #occurrences is the number of
times this factor appears in the stencil updates (= 1 addition in the matrix entry), and #factors
is the number of different factors to compute with the same complexity. The colored lines indicate
which function 0GG is required for each computation: green, blue, and red respectively for 0AA ,
0θθ, and 0Aθ. The update column gives the factors in the stencil corresponding to each complexity.
The "∗" symbols indicate which factors are computed for the stencil of a neighboring grid node,
indicated by the arrow direction. Other factors are updated in the stencil of the current node.
Purple dots show the updated stencil points, and a rectangle stands for the central update.

\

A

precompute complexity update

�
-t
ak
e

B
,C

:
al
l

B
±
1
,C

:
0
A
A
,0
A
θ

B
,C
±
1
:
0
θθ
,0
A
θ

(6+1) [V]
(4 + 2) × 2(4 + 2) × 2

(1+1)×2

(1+1)×2

(1+1)×2

(1+1)×2

(4 + 2) × 2

(4 + 2) × 2

�⊗↖

�⊗↑,�⊗⊗
�⊗↗

�⊗←,�⊗⊗ �⊗⊗
�⊗→,�⊗⊗

�⊗↙
�⊗↓,�⊗⊗

�⊗↘

�
-g
iv
e

s,
t:
al
l

(6+1) [V]
(4 + 4) × 1(4 + 4) × 1

(1+1)×2

(1+1)×2

(1+1)×2

(1+1)×2

(4 + 4) × 1

(4 + 4) × 1

G(1)
↑→

,G(2)
←↓

�
(1)
⊗↑ ,�

(1)
⊗⊗

G(1)
↑⊗

,G(3)
↑↑

G(1)
↑←

,G(2)
→↓

�
(2)
⊗←,�

(8)
⊗⊗

G(2)
←⊗

,G(6)←←
�
(9)
⊗⊗

�
(1)
⊗→,�

(5)
⊗⊗

G(1)
→⊗

,G(7)→→

G(1)
↓→

,G(2)
←↑

�
(2)
⊗↓ ,�

(4)
⊗⊗

G(2)
↓⊗

,G(2)
↓↓

G(1)
↓←

,G(2)
→↑

�
(9)
⊗⊗

A-take: In a first approach, the loop is performed over each node (B, C) for which all entries
in the corresponding row are computed. In this approach, we precompute all the functions 0GG
required for the stencil, i.e. all three functions (0AA , 0θθ, 0Aθ) for the current node and its neighbors
(top, left, bottom, right) except 0θθ for the top and bottom nodes, and 0AA for the left and right
nodes. Based on Algo. 6, we get that F< (?A42><?DC4) = 5F< (��) + 79 flops.

vi Philippe Leleux et al.

Using the notation above, we then consider that each appearance of the functions 0GG or the
V coefficient in the stencil (68) defines a factor, resulting in 25 factors. The factors are numbered
in their order of appearance for each update in the stencil. It is easy for each of these factors to
get the corresponding number of flops. In fact, all of the 8 diagonal factors require 1 flop each
and appear only once, e.g. � (1)⊗↗ = 0Aθ↑ /4 appears only in �⊗↗. The top, bottom, left, and right

factors require 4 flops each and appear twice, e.g. � (1)⊗↑ = − (:C+:C−1)2ℎB
0AA⊗ appears in the top and

central updates. Finally, there is a single factor corresponding to the V coefficient which requires
7 flops.

We give a representation of this approach in the first line of Table 6. We draw one diagram,
called complexity, displaying the computational complexity corresponding to all factors, under
the form (#flops + #occurences) × #factors. For example, on the top place of the stencil,
we write the complexity (4 + 2) × 2 corresponding to each factor � (1)⊗↑ and � (2)⊗↑ , both needed in
the top and central update. A second diagram, called update, specifies for each complexity, which
factors of the stencil are computed. By summing all of these complexities, we then obtain the
final complexity per node

F< (1D8;3 �) = F< (?A42><?DC4) + 71 = 5F< (��) + 150 flops. (74)

A-give: Alternatively, the A-give approach ensures that each function 0GG is only computed
once. In this approach, the loop is performed over each node, where the local functions 0GG are
computed. The corresponding complexity is F< (?A42><?DC4) = F< (��) +19. Then, all the factors
requiring these 0GG functions are computed to update the matrix. These factors are part of the
matrix entries in the row and column corresponding to the current node.

It is then possible, as before, to simply compute factors for the stencil of the current node,
e.g. � (1)⊗↑ = −

(:C+:C−1)
2ℎB

0AA⊗ is involved in the top and central updates. However, this same factor also
appears in the bottom and, again, in the central update of the neighboring node placed above
in the grid, i.e. in �↑⊗ and �↑↑. The corresponding complexity for this factor is then (4 + 4) × 1.
Compared to the A-take approach, less factors are computed per node but their number of
occurrence is increased.

We give again the representation of this approach in Table 6. In the update column, we
additionally indicate with a "∗" symbol which factors are computed to update the stencil of
a neighboring grid node, with an arrow showing which neighbor. Factors without a "∗" symbol
simply correspond to updates for the current node. Note that the factors for the diagonal updates
of the stencil require only the functions 0GG from the neighboring nodes. For example, the top-
right update depends on the functions 0Aθ of the top and right neighboring nodes. Thus, there
never is a purple dot in the corresponding representation. By combinating all the factors, we
then obtain the final complexity per node

F< (1D8;3 �) = F< (?A42><?DC4) + 55 = F< (��) + 74 flops. (75)

The computational cost for the construction of � is thus much lower when using the A-give
approach. This is especially true for complex geometries such as Czarny (see Algo. 5), where
computing the Jacobian of the mapping would become the dominating part when building the
matrix.

In terms of memory, the matrix � contains nine entries per row and thus we have M< (�) = 9.
This cost only appears on the coarsest grid level where a direct solver is used to solve a linear
system based on �. On the other levels, � is applied with a matrix-free approach.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver vii

Matrix-free application (with A-give approach):

As we advocate to use the favorable A-give approach, we only present the final result for A-
give. The result for A-take can be computed easily. As detailed in Section 5.1, the computational
complexity from applying a matrix in a matrix-free fashion can be decomposed in its construction
cost F< (1D8;3 �), and the cost for its application F< (0??;~ �). The latter corresponds to the
number of factors in the stencil. With (75), we thus have

F< (0??;~ �) = 25,

F< (<0CA8G-5 A44 �D) = F< (1D8;3 �) +F< (0??;~ �) = F< (��) + 99.
(76)

8.4 Smoothing

8.4.1 �B2B2 and �B2B⊥2 matrices

We now detail the complexity from the construction of the matrices �B2B2 and the matrix-free
application of the �B2B⊥2 . For the same reasons as for the matrix � in section 8.3, we follow an
A-give type of approach. We focus on the case without extrapolation first, then detail the differ-
ences when using extrapolation.

Smoothing without extrapolation:
When constructing the operators, either �B2B2 or �B2B⊥2 , we need to loop over all nodes connected
to the nodes of the current partial smoother, i.e., the nodes with the same color (from B2), and the
nodes with the other color (from B⊥2). For example, when handling the �, (circle white) partial
smoother, we also need to loop over the nodes corresponding to the �⊥

,
= �� partial smoother

since these nodes are linked through the nine point stencil. Also, in order to update the nodes of
the outermost circle line of the circle partial smoother, we need to loop over the nodes in the first
circle line of the radial partial smoother. This line is classically called a halo. This is explained
in Section 5.3 in the main body of the article.

To get the corresponding computational complexities, we use the same approach and notation
as for the matrix �. We thus detail the complexity stencils in Table 7 in the case of the circle white
smoother (�,), distinguishing when the current node is from the current partial smoother, or
has the other color. The complete complexity for the smoother �, is then obtained by summing
these two cases.

Remark 6 Note that if we merge all the stencils in Table 7 (�B2B2 and �B2B⊥2 , for a node B2 and a
node B⊥2), we reconstruct the original 9-point stencil for �, see Table 6.

The complexities per node for the radial partial smoother are obtained with a 90° rotation,
with identical computational cost per node. Also, there is no difference in computational cost
per node depending on which partial smoother is applied. Thus, all partial smoothers behave in
the same way. Using Table 7 similarly as for the matrix �, we obtain the final complexities per
node

F< (1D8;3 �B2B2) = (14 +F< (��) + 33) [B2]

+ (10 +F< (��) + 10) [B⊥2]

= 2F< (��) + 67,
F< (1D8;3 �B2B⊥2) = (15 +F< (��) + 18) + (11 +F< (��) + 18)

= 2F< (��) + 62.

(77)

viii Philippe Leleux et al.

Table 7: Stencil representations for the construction of �B2B2 and �B2B⊥2 for the circle white partial
smoother (��,�, , ��,��) in the case without extrapolation. This representation follows the
same principles as Table 6. We distinguish two cases for each matrix: when the current node is of
the same color as the partial smoother (white), or when it is of the other color (black). Updates
of the local stencil are only present when considering a node of the same color as the partial
smoother. Note that all other partial smoothers behave in the same way.

\

A

Node type precompute complexity update

D
B
2
B
2
=
D
�
,
�
,

B 2
=
�
,

s,
t:
0
A
A
,0

θθ

(6+1)(V)
(4 + 4) × 1(4 + 4) × 1

(4 + 1) × 1

(4 + 1) × 1

(6+1)(V)

�
(1)
⊗⊗

�
(2)
⊗←,�

(8)
⊗⊗

G(2)
←⊗

,G(6)←←

�
(1)
⊗→,�

(5)
⊗⊗

G(1)
→⊗

,G(7)→→
�
(9)
⊗⊗

�
(4)
⊗⊗

B
⊥ 2
=
�
�

s,
t:
0
θθ

(4 + 1) × 1

(4 + 1) × 1

G(3)
↑↑

G(2)
↓↓

D
B
2
B
⊥ 2
=
D
�
,
�
�

B 2
=
�
,

s,
t:
0
θθ
,0
A
θ (1+1)×1

(1+1)×1

(1+1)×1

(1+1)×1

(4 + 1) × 1

(4 + 1) × 1

G(2)
←↓

�
(1)
⊗↑

G(2)
→↓

G(2)
←↑

�
(2)
⊗↓

G(2)
→↑

B
⊥ 2
=
�
�

s,
t:
0
A
θ

(1+1)×1

(1+1)×1

(1+1)×1

(1+1)×1

(4 + 1) × 1

(4 + 1) × 1

G(1)
↑→

G(1)
↑⊗

G(1)
↑←

G(1)
↓→

G(2)
↓⊗

G(1)
↓←

Finally, in order to apply �B2B⊥2 in a matrix-free fashion, as detailed in Section 5.1, we only
need the additional application cost F< (0??;~ �B2B⊥2) = 12 which corresponds to the number of

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver ix

factors to compute �B2B⊥2 . The latter number can be obtained by counting the factors from both
B2 and B⊥2 cases in Table 6. Finally, we get

F< (<0CA8G-5 A44 �B2B⊥2 D) = F< (1D8;3 �B2B⊥2) +F< (0??;~ �B2B⊥2) = 2F< (��) + 74. (78)

Smoothing with implicit extrapolation:
When using the implicit extrapolation, the smoother is applied only on the fine nodes. Let’s
consider without loss of generality that the first circle line of the grid (A = A1) is white. Let’s also
remind that the coarse grids are defined using standard coarsening as detailed in Section 4.1.
Thus, starting from the first grid node (A1, θ1), the coarse nodes are chosen with a distance of 2
from each other. With respect to �B2B2 and �B2B⊥2 , nothing changes in the partial smoothers for
black nodes when using extrapolation because they are all fine nodes. However, concerning the
white nodes, we distinguish the two cases, whether the current node in the loop is a fine node or
a coarse node.

We provide Table 8, again representing the complexity per node as well as the computed
factors for the construction of �B2B2 and �B2B⊥2 for white nodes of the circle partial smoother. This
table does not include the case of black nodes, which can still be found in Table 7 (case without
extrapolation). As before, the complexities for the radial smoother are identical to those of the
circle smoother.

Let us remember that the ratio of nodes for each color is expressed as `2 =<2/< ≈ 1/2, where
< is the total number of grid points, and <2 the number of grid points of color 2 ∈ {�,, }. Then,
the ratio of white fine and coarse nodes are ` 5 8=4

,
= `2>0AB4

,
= `, /2.

Remark 7 The number of black lines is identical to the number of white lines plus or minus 1.
Asymptotically, the previous approximations can be considered exact.

The complexity per node for black nodes is unchanged compared to the one without extrap-
olation. Following the same principles as before, using Table 8, we obtain

F4G< (1D8;3 �B2B2) =
[
`
5 8=4

,
(14 +F< (��) + 27) + `2>0AB4, (10 +F< (��) + 10) + `� (10 +F< (��) + 10)

]
[,]

+ [`� (14 +F< (��) + 33) + `, (10 +F< (��) + 10)] [�]

= 2F< (��) + 50.5`, + 67`�
≈ 2F< (��) + 58.75

F4G< (1D8;3 �B2B⊥2) =
[
`
5 8=4

,
(15 +F< (��) + 18) + `2>0AB4, (15 +F< (��) + 20) + `� (11 +F< (��) + 18)

]
[,]

+ [`� (15 +F< (��) + 18) + `, (11 +F< (��) + 18)] [�]

= 2F< (��) + 63`, + 62`�
≈ 2F< (��) + 62.5

F4G< (0??;~ �B2B⊥2)) = (4`
5 8=4

,
+ 6`2>0AB4, + 6`�) + (6`� + 6`,)

= 11`, + 12`�
≈ 11.5

F4G< (<0CA8G-5 A44 �B2B⊥2 D) = F4G< (1D8;3 �B2B⊥2) +F
4G
< (0??;~ �B2B⊥2)) = 2F< (��) + 74

(79)

Thus, when activating the extrapolation, the cost of applying �B2B⊥2 stays the same, and the cost
from building �B2B2 is decreased.

8.4.2 LU factorization for the partial smoothing

To apply the partial smoothers, it is necessary to solve the equation

�B2B2D = I (80)

x Philippe Leleux et al.

Table 8: Stencil representations for the construction of �B2B2 and �B2B⊥2 for white nodes when using
the circle white partial smoother

(��,�, , ��,��), in the case where implicit extrapolation is used. This representation follows the same
principles as Table 7. Additionally, we distinguish two cases for each matrix: when the current node is fine or

when it is coarse.

\

A

Node type precompute complexity update

D
B
2
B
2
=
D
�
,
�
,

B 2
=
�
,

(fi
ne
)

s,
t:
0
A
A
,0

θθ

(6+1)(V)
(4 + 1) × 1(4 + 1) × 1

(4 + 1) × 1

(4 + 1) × 1

(6+1)(V)

�
(1)
⊗⊗

�
(8)
⊗⊗ �

(5)
⊗⊗�

(9)
⊗⊗

�
(4)
⊗⊗

B 2
=
�
,

(c
oa
rs
e)

s,
t:
0
θθ

(4 + 1) × 1(4 + 1) × 1 G(6)←← G(7)→→

D
B
2
B
⊥ 2
=
D
�
,
�
�

B 2
=
�
,

(fi
ne
)

s,
t:
0
θθ
,0
A
θ

(4 + 1) × 1(4 + 1) × 1

(4 + 1) × 1

(4 + 1) × 1

�
(1)
⊗↑

�
(2)
⊗← �

(1)
⊗→

�
(2)
⊗↓

B 2
=
�
,

(c
oa
rs
e)

s,
t:
0
θθ
,0
A
θ

(4 + 1) × 1(4 + 1) × 1

(1+1)×1

(1+1)×1

(1+1)×1

(1+1)×1

G(2)
←↓

G(2)
→↓

G(2)
←⊗

G(1)
→⊗

G(2)
←↑

G(2)
→↑

which can be done with the combination of an LU factorization, using a modified Thomas’
algorithm, and the corresponding backward/forward substitution. Starting from the particular
sparsity pattern of � (8)B2B2 (see Section 5), we consider a separate line 8 of size =.

Complexity analysis and scalability of a matrix-free extrapolated geometric multigrid solver xi

– Circle smoother: tridiagonal matrix with periodicity conditions on the first and last rows.
Using Algo. 7, it is possible to compute an LU factorization of the matrix with 10= flops.
Using this factorization, it is possible to solve Equation (80) with 9= flops using Algo. 8. Due to
the last row and column filling-in, the resulting memory consumption is M< (LU(�B2B2)) = 5.
In order to save some memory footprint, the LU decomposition is written directly inside the
�B2B2 matrix. L is in the lower triangular part of the modified � (8)B2B2 with an omitted diagonal
of ones, U is the diagonal and upper triangular part of the modified � (8)B2B2 .

– Radial smoother: tridiagonal matrix. Using Algo. 9, it is possible to compute an LU factoriza-
tion of the matrix with 3= flops. Using this factorization, it is possible to solve Equation (80)
with 5= flops using Algo. 10. There is no fill-in, so the resulting memory consumption is
M< (LU(�B2B2)) = M< (�B2B2) = 3. Again, the LU decomposition is directly written over �B2B2 .

When using the extrapolation, the difference is that only the fine nodes are smoothed. Then,
in the case of the fine nodes in the white smoother, the �B, B, matrix becomes diagonal and can
be inverted trivially for 1 flop per entry. We remind the reader that the white nodes represent
half of all nodes, i.e., asymptotically we have `B, = `B� and `, = `� = 1/2, and that all nodes
are either white or black so `� + `' = 1. By summing all of the lines, we finally get:

– without extrapolation:

F< (LU(�B2B2)) = 10`� + 3`' = 3 + 7`�
F< (2><?DC4 �−1B2B2I) = 9`� + 5`' = 5 + 4`�

(81)

– with extrapolation, since only the fine nodes are smoothed, i.e., half of the white colored
nodes:

F< (LU(�B2B2)) = 0`, /2 + 10`�/2 + 3`'/2 = 1.5 + 3.5`�
F< (2><?DC4 �−1B2B2I) = `, /2 + 9`�/2 + 5`'/2 = 2.75 + 2`�

(82)

Algorithm 7 Compute � (8)
�2�2

= !
(8)
�2�2

*
(8)
�2�2

: O(10=) (here = is the length of a circle line)

Input: �(8)
�2�2

Output: �(8)
�2�2

contains the LU decomposition
1: for 8 = 1, · · · , = − 2 do
2: // update row 8 + 1
3: �(8 + 1, 8) = �(8 + 1, 8)/�(8, 8) (1 div.)
4: 2 = �(8 + 1, 8)
5: �(8 + 1, 8 + 1) = �(8 + 1, 8 + 1) − 2 �(8, 8 + 1) (1 add, 1 mult.)
6: �(8 + 1, =) = �(8 + 1, =) − 2 �(8, =) (1 add, 1 mult.)
7: // update last row
8: �(=, 8) = �(=, 8)/�(8, 8) (1 div.)
9: 2 = �(=, 8)
10: �(=, 8 + 1) = �(=, 8 + 1) − 2 �(8, 8 + 1) (1 add, 1 mult.)
11: �(=,=) = �(=,=) − 2 �(8, =) (1 add, 1 mult.)
12: end for

8.4.3 Complete smoothing

The only step left is to perform the difference between 5B2 and �B2B⊥2 D for F< (5B2 − �B2B⊥2 D) flop
per node. Separating the setup, which is only performed once, from a relaxation step performed

xii Philippe Leleux et al.

Algorithm 8 Solve ! (8)
�2�2

*
(8)
�2�2

G = I: O(9=) (here = is the length of a circle line)

Input: ! (8)
�2�2

*
(8)
�2�2

decomposition

Output: G = (�(8)
�2�2

)−1I
1: // Forward substitution: !~ = I

2: for 8 = 1, · · · , = − 2 do
3: ~ (8) = I (8)
4: I (8 + 1) = I (8 + 1) −�(8 + 1, 8) ~ (8) (1 add, 1 mult.)
5: I (=) = I (=) −�(=, 8) ~ (8) (1 add, 1 mult.)
6: end for
7: ~ (= − 1) = I (= − 1)
8: I (=) = I (=) −�(=,= − 1) ~ (= − 1) (1 add, 1 mult.)
9: ~ (=) = I (=)
10: // Backward substitution: *G = ~

11: G (=) = ~ (=)/�(=,=)(1 div.)
12: ~ (= − 1) = ~ (= − 1) −�(= − 1, =) G (=) (1 add, 1 mult.)
13: for 8 = = − 1, · · · , 2 do
14: G (8) = ~ (8)/�(8, 8) (1 div.)
15: ~ (8 − 1) = ~ (8 − 1) −�(8 − 1, 8) G (8) −�(8 − 1, =) G (=) (2 add, 2 mult.)
16: end for
17: G (1) = ~ (1)/�(1, 1) (1 div.)

Algorithm 9 Compute � (8)
'2'2

= !
(8)
'2'2

*
(8)
'2'2

: O(3=) (here = is the length of a radial line)

Input: �(8)
'2'2

Output: �(8)
'2'2

contains the LU decomposition
1: for 8 = 1, · · · , = − 1 do
2: �(8 + 1, 8) = �(8 + 1, 8)/�(8, 8) (1 div.)
3: �(8 + 1, 8 + 1) = �(8 + 1, 8 + 1) −�(8, 8 + 1) �(8 + 1, 8) (1 add, 1 mult.)
4: end for

Algorithm 10 Solve ! (8)
'2'2

*
(8)
'2'2

G = I: O(5=) (here = is the length of a radial line)

Input: ! (8)
'2'2

*
(8)
'2'2

decomposition

Output: G = (�(8)
'2'2
)−1I

1: // Forward substitution: !~ = I

2: for 8 = 1, · · · , = − 1 do
3: ~ (8) = I (8)
4: I (8 + 1) = I (8 + 1) −�(8 + 1, 8) ~ (8) (1 add, 1 mult.)
5: end for
6: ~ (=) = I (=)
7: // Backward substitution: *G = ~

8: for 8 = =, · · · , 2 do
9: G (8) = ~ (8)/�(8, 8) (1 div.)
10: ~ (8 − 1) = ~ (8 − 1) −�(8 − 1, 8) G (8) (1 add, 1 mult.)
11: end for
12: G (1) = ~ (1)/�(1, 1) (1 div.)

during the multigrid cycles, we obtain the final complexity as

F< (B<>>Cℎ4A B4CD?) = F< (1D8;3 �B2B2) +F< (LU(�B2B2))

=

{
(2F< (��) + 67) + (3 + 7`�), without extrapolation
(2F< (��) + 58.75) + (1.5 + 3.5`�), with extrapolation

}
,

=

{
2F< (��) + 70 + 7`� , without extrapolation
2F< (��) + 60.25 + 3.5`� , with extrapolation

}
,

F< (B<>>Cℎ4A 0??;~) = F< (<0CA8G-5 A44 �B2B⊥2 D) +F< (2><?DC4 �
−1
B2B2

I) +F< (5B2 −�B2B⊥2 D)

=

{
(2F< (��) + 74) + (5 + 4`�) + 1, without extrapolation
(2F< (��) + 74) + (2.75 + 2`�) + (1 − `, /2), with extrapolation

}
,

=

{
2F< (��) + 80 + 4`� , without extrapolation
2F< (��) + 77.5 + 2`� , with extrapolation

}
,

M< (B<>>Cℎ4A B4CD?) =
{
5`� + 3`' = 3 + 2`� , without extrapolation
`, /2 + 5`�/2 + 3`'/2 = 1.75 + `� , with extrapolation

}
.

(83)

	Introduction
	Model problem
	Discretization
	Geometric multigrid solver
	Computation and complexity
	Parallel implementation
	Numerical experiments
	Conclusion

