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A Delay-Based Output Feedback Controller for the Active Vibration
Damping of a Vibrating Thin Membrane*

Sami Tliba!, Islam Boussaada?>, Silviu-Tulian Niculescu?, Ricardo Falcon Prado’

Abstract— This paper addresses the problem of active vi-
bration control of a flexible axisymmetric membrane. This
mechanical system is equipped with two piezoelectric circular
chips where one of them works as an actuator, whereas the
other is used as a sensor. Both are glued on the membrane, one
on each side, and centered according to its axis of symmetry.
The design of the proposed controller is based on delayed pro-
portional actions. We exploit a property called Coexisting Real
Roots inducing Dominancy to an assignment of spectral values
in an appropriate region of the complex plane, corresponding
to a desired damping. The aim of this work is to examine
the performances of the proposed output feedback controller
in terms of vibration damping of the main observable and
controllable vibrating modes.

Index Terms— Time-delay systems, stability and stabilization,
active control of vibrations, partial pole placement

I. INTRODUCTION

Since 1930s and the theory of servomechanisms proposed
by Hazen [1], it is commonly accepted that, in most of
practical situations, the presence of time-delays in dynamical
processes is synonymous with instability and bad behaviors.
However, there are cases where the delay in the input can
induce a stabilizing effect on the dynamics of the system, and
the idea to use the delay as a control parameter is not new
(see, e.g., [2], [3], and the references therein). For instance, at
the end of the 70s, [4] introduced the so-called “proportional-
minus-delay” (PMD) controller and showed that such a
controller can replace the well-known PD-controller (quick
responses to input changes) with less sensitivity to high-
frequency noise. Such a controller was further exploited in
various case studies including, among others, the well-known
inverted pendulum (see, for instance, [5], [6], to cite only a
few).

In this work, we are exploiting the control structure
introduced in [7], whose idea is close to the PMD control
mentioned above in the sense that the controller structure is
of PMD type in both output/input signals and the delay is
used as a design parameter to improve the overall behavior
of the closed-loop system. In other words, for constructing
the input at a given time value, we need an appropri-
ate past information from both the input and the output.
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Despite its simplicity in terms of construction, such an
infinite-dimensional controller induces unexpected behaviors
in closed-loop. In the sequel, we are using such a control
law for performing the active vibration control of a flexible
axisymmetric membrane.

Regarding the delay as a control parameter, a second
important idea concerns the so-called multiplicity-induced-
dominancy (MID) property [8], [9] and the coexisting real
roots induced dominancy one [10], [11], where the authors
emphasized the existing links between the spectral abscissa'
of the corresponding characteristic function in the linear case
and the multiple real characteristic roots with the maximal
multiplicity or the maximal number of real roots 2. Finally,
these approaches and ideas open interesting perspective in
using the so-called partial pole placement method in con-
trolling dynamical systems.

In the sequel, in order to reduce the peaks of resonance
of the first three vibration modes for a flexible axisymmetric
membrane, the methodology described in [10] is applied.
The corresponding model was firstly introduced for control
purposes in [12].

The remaining paper is organized as follows: in Section II,
the axisymmetric membrane under consideration is presented
and its modelling is briefly explained. Section III provides a
description of the PPP-delayed controller design. Some nu-
merical simulations illustrating the efficiency of the proposed
method are presented in Section IV. Finally, the paper ends
with some concluding remarks.

The notations are standard.

II. SYSTEM DESCRIPTION AND ITS MODELLING

The considered system, depicted on Fig. 1, is a thin
metallic membrane with a clamped circular edge. This disc
is embedded into a mobile support that only moves along
the z axis. The support is submitted to an unknown motion,
characterized by an acceleration denoted d(¢) in the sequel.
This flexible membrane is equipped with two ceramic-based
piezoelectric chips. The thinner one is used as an actuator
with a thickness of 0.4 mm, whereas the other is used as
a sensor with a thickness of 0.7 mm. These circular chips
are assumed to be perfectly bounded on the disc, one on
each side, collocated and centered according to the axis of
symmetry of the disc. All the physical parameters of the

'The spectral abscissa is defined by the real part of the rightmost
characteristic root; see, for instance, [3] for a deeper discussion.

>The maximal real multiplicity or the maximal number of real roots
correspond to the degree of the corresponding characteristic function; see,
e.g. [8] for the definition and related properties
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Fig. 1: Axisymmetric flexible membrane (dimensions on the
right) inserted in the device which is subjected to vibrations
(Computer Aided Design figure on the left).

materials used here can be found in [12] and references
therein. The dimensions of the used elements are indicated
in Fig. 1.

The control signal (input), noted u(¢), is the voltage ap-
plied across the piezoelectric actuator. The measured output,
noted y(r), is the electric voltage across the piezoelectric
sensor. The disturbance signal d(¢) is the total acceleration
applied to the clamped circular edge of the structure. The
controlled output that is considered in this work, noted z(¢),
is the z component (see Figure 1) of the acceleration at the
center of the disc.

The mathematical modeling of the dynamical behavior
for such mechanical structures is based on several coupled
Partial Differential Equations (PDEs) in space and time-
dependent variables. See for example [12] or [13] and
references therein, for more details that are out of the scope
of this paper. Such equations are usually addressed through
numerical methods like the Finite Element Modeling (FEM)
[14]. This method leads to a set of Ordinary Differential
Equations (ODEs) that are linear but with an important
number of variables. Because of the numerical feature of this
method, it is worth mentioning that the physical parameters
of the PDEs are dissolved within numerical coefficients of
the corresponding ODEs.

An accurate model in state-space form is derived from
the set of ODEs thanks to a model reduction method called
modal analysis. It describes the inputs-to-outputs dynamical
behavior in the bandwidth of interest, say [0 —4000Hz] for
our system. This model, called the analysis model, is of order
12 and includes only the controllable and observable modes,
i.e. the axisymmetric ones.

A reduced-order control-oriented model is obtained from
the analysis one thanks to a reduction method based on state-
variable truncation. This model correspond to the synthesis
model. It is of order 6 and includes the dynamic of the first
three axisymmetric vibration modes.

Figure 2 shows the geometrical shapes of the vibration
modes in the synthesis model. The control input u is a scalar
signal, as well as the measured output signal. Then, the

considered flexible membrane is a single-input-single-output
system. The disturbance input d is the total acceleration
applied to the clamped edge of the structure. The controlled
output z is the vertical total acceleration of the membrane
center. The frequency responses of the full and reduced order
models, from the input d to the output d + z, are shown in
Fig. 3.

By denoting the Laplace variable by s, the model based
on transfer functions is given by

als) = M) g el
& llf(z)) ll/(z)) 0
_ Ngy(s Nyy(s
y(s) = 7‘/’(5) d(s)+ () u(s).
These polynomials are written as
Ny (s) := ;p, gz, s~ Ny (s) := kgp,onms ,
Nyy(s) := Zp, gy, S*, Nuy(s) := Zp Ny, 8, 2)
k= k=0

and

where a,, := 1 is imposed for simplicity. The numerical
values of the polynomials’ coefficients for the synthesis
model in (1) are given in Table I.

Nz —1.1482770092356 | nyz, —1.08684807395548
Nz —1.29576709733243-10% | g —1.22644794131004 - 10°
Ny, —5.92403731382423- 107 | 7y, —4.12495030494032 - 107
Nz, —3.05369213559935-10° | iy, —2.00512841757836 - 10°
na, | —7.53045748218982-10" | n,, | —2.21049785301237-10™
naz, —5.3167399068102- 10" | n,;, | —2.38029330082552-10'
Nz, 5.30487731413775-10" | n,, | —1.01734739641052-10%
Nay, | —1.48961486915325-1073 | nyy, 8.38247723151215- 102
nays | —1.68094799392667- 107" | nyy, 9.45916194730949
Ny, 7.50730900417259 - 10* | n,y, 5.8545095338644 - 10°
Ndys —1.12430891777554- 106 | n,y, 2.67284842906589 - 10°
nay, | —3.20992721534292-10" | n,y, 5.40386484579556 - 1013
Ny, 4.69023322107588-10" | n,y, 5.08699135510151- 10"
Ty, 1.7174289693222- 10" | nyy, 2.93494011490626 - 10'°

as 1.1284446931451-10> | a4 6.51670383450632 - 107

a3 2.98444480192078-10° | a» 5.72533172685257-10'

a 5.42593932182628- 10 | ao 3.04635759998437 - 102

TABLE I: Numerical values for the polynomials’ coefficients
in the case of the synthesis model.

III. CONTROL DESIGN

The main goal of the sought controller is to reduce the
peaks of resonance for the first three controllable/observable
modes, by using an output feedback controller, without
making unstable the vibration modes that are not in the
synthesis model. By using the same notations as in [15],
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(a) First mode at 120 Hz

Mode 6 at 497 6 Hz

(b) Second mode at 497.6 Hz

Made 15 at 1178 Hz

s
o
e

S
5
s
Sy
Tt

S
HEER

£l
57

=

e
R

a5

i
$77 AT

7

i
i
i
=

Y
i

4
4

L
iy g LV
g

-
4§
.
Ty
1

,gl
-
i
7
7E

(c) Third mode at 1178 Hz

First three controllable and observable axisymmetric vibration modes. The non-axisymmetric modes are not shown.
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Fig. 3: Frequency responses of the analysis (thin-green) and
synthesis (thick-dark blue) models.

the considered system is inserted in the output feedback
control structure of Fig. 5, where the reference signal is
always equal to zero. A rectangular impulse signal is used
for the disturbance input d. The control problem consists in
reducing the vibrations generated by the first three modes,
when the mobile support imposes a shock to the whole
flexible membrane. Let us define the output feedback control
law in frequency domain by

u(s) = K(s,7) y(s), 3)

where K (s, T) stands for the PPP controller. This last is given
in Laplace domain by

0(s, 7)

K(s,7):= Ps,7)

“4)

Ts

where O(s,7) = qo+dry e, and P(5,7) := po-+ prye”

After applying the inverse Laplace transform, this control
law given in time-domain writes as follows:

Pro q0 drg
u(t)=——u(t—1)+—y(t)——y(t—1 5)
() po( )po() po( )
which is nothing else than an output feedback control law
based on proportional actions plus delayed proportional
actions, including also past information of the control input.

Proposition 1 There exists a set of parameters qo, qry Do
Dry and T > 0 such that the controller (4) allows to assign
three negative dominant poles (spectral values) A1, Ay and
A3, for the system (1) in closed-loop with the control law (3).

IV. SIMULATION RESULTS

The PPP method gives the following numerical values
for the parameters of the controller in (4) that assigns
A1 = =500, A, = —550 and A3 = —600 as the dominant
roots of the characteristic polynomial for pg ~ 4.461108157,
pro =~ 3.051496534, g ~ 41.28980087, g9 ~ 36.40327852
and T ~ 3.358554554 - 10~*. Figure 6 shows the distribution
of the closed-loop poles, with a focus around the three as-
signed poles A, A, and A3. To show the performances of the
proposed PPP-controller, the time responses of both output
signals in open-loop (blue) and in closed-loop (orange) are
depicted in Fig. 4c, when the disturbance d is a rectangular
impulse (black), modelling a very brief shock imposed to the
whole flexible structure. The time response of the control
signal u is also plotted in Fig. 4c. A peak of magnitude
roughly equal to 12 V can be observed, a value that is quite
realistic for this kind of application.

V. CONCLUDING REMARKS

This work has shown the interest of using delays in a
control law as a design parameter. The practical application
that we have considered is a flexible axisymmetric membrane
equipped with a piezoelectric sensor and a piezoelectric
actuator in a collocated configuration. For this system, it
was expected to achieve an active vibration control thanks
to an output feedback controller. This controller have been
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Fig. 6: Distribution of the closed-loop poles when
po ~4.461108157, p,p ~3.051496534, go ~ 41.28980087,
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designed by using the partial pole placement approach in
order to ensure the damping of the first three observable and

controllable vibrating modes. The output feedback feature
opens the possibility to implement such a controller in an
experimental test bench.
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