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INTRODUCTION

Image-guided procedures have experienced a rapid in-
crease in popularity in recent years. The advancements
in medical imaging technology have led to a shift in
medical images from being used primarily for diagnosis
to being a critical tool in theragnostic and therapeutic
procedures. This shift has resulted in the emergence of
new fields such as interventional radiology (IR), thera-
peutic endoscopy (TE), and minimally invasive image-
guided surgery (IGS), with an increasing number of
professionals adopting these techniques in their clinical
practices due to improved outcomes [1]. One of the
most widely used imaging methods in these procedures
is X-ray-based imaging, including computed tomography
(CT), 2D C-arm fluoroscopy, and cone-beam CT scans.
These procedures typically require the use of contrast
agents (CA) to visualize soft tissues with high definition
and contrast. However, the use of CA presents several
challenges, including the limited volumes that can be
used and the toxicity of the agents when they are injected
intravascularly [2]. The CA also follows the patient’s
hemodynamics, leading to transient visualization and
asynchronous image guidance. In this paper, we aim
to address the technical issues related to contrasted X-
Ray images in image-guided therapy. We propose a deep
learning approach that will allow for the visualization of
vessels during image-guided procedures without the need
for contrast agents, making these procedures safer, and
more efficient, while providing real-time guidance.

MATERIALS AND METHODS

Before the intervention, a CT scan of the patient is
acquired, vessels and other structures of interest are seg-
mented and the planning of the intervention is performed.
At this stage, the poses of both the C-arm and the patient
are determined for the intervention. Then, at treatment
time, the C-arm and the patient are positioned as per
planning. However, due to breathing induced anatomical
deformations, segmented vessels cannot be superposed
to the fluoroscopic images. To compensate for these
deformations, a non-rigid registration method is required.
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Fig. 1 Each block in the Encoder downscales the feature maps
and increases their number by a factor of 2. In the Decoder, this
is reversed. The last decoder layer transforms the 128 feature
maps into a 2-channel 3D image.
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Using the planning CT scan of the patient, we generate a
dataset of Digitally Reconstructed Radiographs (DRRs)
and displacement field pairs. This dataset is then used to
train a neural network to recover a displacement field
from a single fluoroscopic image. At the time of the
intervention, the C-arm is adjusted to the planned pose, an
X-ray image is acquired, and the network predicts in real-
time the 3D deformation field which is used to warp the
segmented structures to visually augment the fluoroscoy.
Our fully convolutional network architecture is detailed
in 1. Features are extracted from the 2D input image and
then reshaped into 3D features. Finally, the 3D features are
decoded into a 3D displacement field. This displacement
field represents the non-rigid transform of the CT to the
anatomy visible in the fluoroscopic image.

We assume that the deformations at the time of the
intervention can be modeled as smooth and invertible
displacement fields, preventing unrealistic deformations
such as self intersection and excessive stretching or
compression. To obtain such deformations, we model
the displacement field as a sum of Gaussian Kernels.
Specifically, the displacement field is integrated over
n = 100 timesteps, while checking that smoothness and
invertibility constraints are preserved after each timestep.
The parameters of the Gaussian Kernels are randomized



12| —— prediction error
—— displacement amplitude

20

Mean RPD (mm)

0 10 20 30 40 50
Sample #

Fig. 2 The average RPD error of our method on the testing
data against the average RPD displacement.

Fig. 3 Augmented DRR at full inspiration (left), and full
expiration (right), with the predicted hepatic veins position.

at each step, following the principle of Domain Random-
ization. Using the DeepDRR framework [3], one DRR is
generated for each deformation of the pre-operative CT.

RESULTS

A human liver CT obtained from a patient of the Paul
Brousse hospital in Paris was used to generate a 10,000
sample dataset, split into 8,000 training samples and
2,000 validation samples. The maximum amplitude of
deformation in the dataset was 22mm and 40mm in the
LR direction and SI direction respectively.

The testing dataset was generated from the same 3D CT,
this time using BSpline transforms tailored to mimic a
breathing motion. Specifically, inhale and exhale phases
and sliding motion of the organs against the bones were
modeled. In this case, the maximum amplitude was 10mm
and 25mm for the SI and LR directions. The dataset
contains 5 inhale/exhale periods for a total of 50 samples.
The accuracy of the network was measured via the
reprojection distance (RPD) metric. Hepatic veins were
deformed using the ground truth and the predicted
displacement fields. The deformed mesh points were
projected onto the image plane and the 2D RPD error
was measured.

The mean RPD error on the testing dataset was 2.7
1.9 mm while the mean RPD displacement was 7.7
3.9 mm. Figure 4 shows the distribution of the error on
the hepatic veins. Figure 3 shows an example of image
augmentation by our method. A full video is available at
https://mimesis.inria.fr/project/augmented-fluoroscopy/.
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Fig. 4 The average RPD error in mm on the hepatic veins
position on the testing dataset.

DISCUSSION

Even though the testing data were generated differently
from the training data, the prediction of the network still
reduced the error from 7.7 to 2.7mm. This validates
our Domain Randomization approach, as the network
learns to map a deformed fluoroscopy to a displacement
field, and generalizes well on the testing data. This
constitutes an advantage over other methods that might
use a patient-specific motion prior obtained from a 4D-
CT to train a neural network to predict deformations
from a fluoroscopic image. A limitation arising from 2D
fluoroscopy is that the displacement perpendicular to the
image plane is not visible and thus cannot be predicted,
but this is mitigated by the fact that the resulting out-of-
plane error is also not visible on the augmented image.
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