1		Supplementary Results
2		
3	Supplementary Tables	
4		

5 Supplementary Table 1: Primer sequences for RT-qPCR assays

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
ACC1	GCCCACATCTCATCCAAAC	AGCAGCCCATCACTTCATC
APOB	AAGTGCCACCAGGATCAACT	CAGGGTTGAAGCCATACACC
CD36	GGCTGTGTTTGGAGGTATTC	TGTTGCTGCTGTTCATCATC
CPT1A	TCCATTGACAGCCTCCAG	AACCTCTTGACATTCCCCC
CYP4A11	GCCATTAGTGACCTGAACAACCTGG	ACTTGGTCTGTGTGCTGATGGGC
DGAT1	CATCCAGGTGGTTTCTCTGTTCCT	GGAATGCAGCCACAGCAAAGACAT
DGAT2	AGTGGCAATGCTATCATCAT	GAGGCCTCGACCATGGAAGAT
FABP1	TCAAGGGGGTGTCGGAAATC	GTGATTATGTCGCCGTTGAGTTC
FASN	AGCTGCCAGAGTCGGAGAA	TGTAGCCCACGAGTGTCTCG
FATP2	TCTTGGATGACACAGCAAAAATGT	TCAGAGTTTCAGGGTTTTAGCACTT
GPAT1	GCCGCTTCTGTTTCTACCAG	ACACCGGTTTCTGACTTTGG
HPRT	GGCGTCGTGATTAGTGATG	CAGAGGGCTACAATGTGATG
MTTP	TGAGGCAGTGGCCATAGAAAAT	CTTTGTCTTGATGAGCCTGGTA
PLIN2	GATGGCAGAGAACGGTGTGAAG	CAGGCATAGGTATTGGCAACTGC
RPL13A	AAGGTCGTGCGTCTGAAG	GAGTCCGTGGGTCTTGAG
SCD1	CACCCAGCTGTCAAAGAGAAGG	AGGACGATATCCGAAGAGGTGG
SREBP1C	GCGGAGCCATGGATTGCAC	CTCTTCCTTGATACCAGGCCC

⁶ 7

8

9 Supplementary Table 2: Antibodies used for Western blot

- 10
- Anti-beta actin rabbit, Abcam, ab 8227, (1/5000)
- Perilipin-2 Rabbit pAb, ABclonal, A6276, (1/1000)
- **•** CPT1A Rabbit pAb, ABclonal, A5307, (1/1000)
- 14 CD36/SR-B3 Rabbit pAb, ABclonal, A14714, (1/1000)
- Secondary antibody, IRDye® 680LT Goat anti-Mouse, LI-COR, 925-68020, (1/20000)
- Secondary antibody, IRDye[®] 800CW Goat anti-Rabbit, LI-COR, 925-32211, (1/10000)

Supplementary Table 3: Viability of 2D (A) and 3D (B) HepaRG cells after exposure to a 18 range of concentrations $(0.1 - 25 \mu M)$ of different EDCs. (A) Three distinct metabolic 19 activities: lysosomal, dehydrogenase and esterase, were measured, respectively, with neutral 20 21 red (displayed in red), resazurin (blue) and CFDA-AM (green) assays after 72 h and 14 days of exposure of 2D HepaRG cells. The medium was renewed every 2-3 days. The values are 22 23 the mean (in %) relative to the control of three independent experiments in duplicate. (B) 24 Viability of Hepoid-HepaRG 3D cells using CellTiter-glo assay after 72 h and 14 days of 25 treatment to different EDC families. The values are the mean (in %) relative to the control of 26 three independent experiments in triplicate.

		BPA			BPF			BPS			BP			CdCl2	2	p,	,p'-D[DE		DBP			DEHF)		PFOA			PFOS	
Concentrations	Neutral Red	Resazurin	CFDA-AM																											
														72 h																
100 nM	101	83	97	105	61	96	105	111	95	86	91	94	94	91	104	95	84	89	98	55	95	91	86	100	104	82	90	106	52	85
1μM	103	84	96	105	70	96	102	102	95	86	87	94	98	88	101	88	83	93	98	67	103	91	79	102	105	57	85	101	60	84
10 µM	100	84	98	106	74	101	102	102	98	83	98	97	40	96	78	78	88	96	97	69	105	92	90	102	109	69	89	115	70	93
25 µM	104	80	98	105	80	102	105	101	99	88	96	96	20	35	48	73	100	104	96	65	104	89	92	102	101	58	85	107	73	94
													14	day	s															
100 nM	97	106	96	108	91	90	93	90	86	100	99	98	74	108	92	100	82	90	84	101	87	83	112	91	78	112	96	87	97	92
1μM	99	86	95	96	86	89	99	84	89	100	92	97	83	100	96	97	83	94	84	102	89	79	98	90	81	101	96	80	102	95
10 µM	98	108	99	117	102	95	98	87	86	98	104	102	4	11	7	92	97	99	77	104	92	85	123	96	77	108	95	83	109	94
25 μM	103	95	99	114	101	100	99	84	86	98	92	99	6	4	6	91	107	105	83	104	104	82	139	96	80	106	99	87	130	102

В

Concentrations	centrations BPA BPI		BPS BP		CdCl2	p,p'-DDE	DBP	DEHP	PFOA	PFOS		% of Cell viability /			
	72 h														
0.1 μM	86	96	95	96	93	87	93	89	93	99		175			
1 μM	88	87	86	96	78	86	95	90	99	114		150			
10 µM	77	70	73	86	41	76	90	81	70	66		125			
25 μM	74	68	63	77	29	67	85	74	78	64		100			
	14 days														
0.1 μM	103	99	100	96	100	98	85	103	95	105		50			
1 μM	102	100	100	105	96	98	81	110	92	102		25			
10 µM	120	102	92	107	68	85	83	108	93	92		0			
25 μM	120	100	90	110	1	93	78	100	90	97					

27

Supplementary Figures 29

30

A - Steatosis induction under normal conditions

B - Steatosis induction under coexposure with fatty acid supplementation

Supplementary Figure 1: In vitro exposure protocols of 2D HepaRG cells to assess 33 impact of EDCs on lipid accumulation. Time 0 corresponds, in all cases, to 5 days after 34 seeding into 6-, 12- or 96-well plates (see Materials and Methods, 2.1 Compounds and cell 35 culture). (A) Steatosis induction of pollutants, alone, after 5 days of exposure under normal 36 culture conditions of HepaRG. (B) Steatosis induction of pollutants in combination with fatty 37

acids. Different fatty acid supplementations were used: 100 µM or 200 µM oleic acid (OA), a 38 mixture of palmitic and oleic acid (PA:OA, 50:50 µM). (C) Steatosis remaining; to assess the 39 capacity of EDCs to maintain lipid overload. Cells were exposed for 5 days to 200 µM OA to 40 induce steatosis. The fatty acid supplementation was then interrupted and cells were exposed 41 to pollutants alone for 5 more days. A steatosis maintenance percentage was specifically 42 defined: a maintenance of 100 % corresponds to a steatosis score identical to that of cells 43 44 treated for 5 days with 200 µM OA, while 0 % corresponds to the score of cells not exposed to any supplementation. The arrows indicate the days when the medium was renewed. 45 46

Raw picture

Layer mask

Steatosis index =

mean surface of lipid droplets X density of lipid droplets by cell

47

Supplementary Figure 2: Fluorescence microscopy image acquisition with data analysis 48 and steatosis scoring for 2D HepaRG. After exposure following the different protocols 49 (described in Supplementary Figure 1), cells were stained with Hoechst for nuclei (blue) and 50 51 Nile Red for neutral lipids (yellow). A layer mask was then created to select nuclei (green) and lipid droplets (red) in the cells by using the size and the intensity (exceeding the 52 53 background noise). To compare the impact of different treatments, a steatosis index, consisting of the mean surface area of the lipid droplets multiplied by the mean number of 54 lipid droplets per cell, was defined. 55

Supplementary Figure 3: Viability of 2D HepaRG cells following 5 days of exposure to (A) 58 EDCs under normal culture conditions, (B) EDCs in combination with 100 μ M oleic acid 59 (OA) and (C) EDCs in combination with a mixture of oleic and palmitic acid (PA:OA, 50:50 60 µM). Three distinct metabolic activities: dehydrogenase (white), esterase (grey) and 61 lysosomal (black) were measured, respectively, with neutral red, resazurin and CFDA-AM 62 assays. The medium was renewed every 2 days after the first treatment. The values are the 63 mean (in %) relative to the control of three to four independent experiments in triplicate. 64 Statistical analysis was performed using two-way ANOVA followed by a Tukey post-hoc test. 65 Stars represent the significance of the fold change as compared to the control (**, p < 0.01; 66 ***, p < 0.001; ****, p < 0.0001). 67

71 Supplementary Figure 4: (A) Assessment of triglyceride accumulation in HepaRG cells after 5 days of exposure to EDCs without or with supplementation with FA (PA:OA, 50:50 72 μM). (**B**, **C**, **D**) Assessment of steatosis index by fluorescence microscopy of HepaRG cells 73 following exposure to EDCs. Lipid accumulation was evaluated after 5 days of exposure to 74 75 EDCs (**B**) in combination with 200 μ M oleic acid (OA) or (**C**) under co-exposure with a mixture of palmitic and oleic acid (PA:OA, 50:50 µM). (D) The steatosis remaining was 76 measured in HepaRG cells by triglyceride assessment with fluorescence microscopy. Cells 77 were exposed for 5 days with 200 µM OA to induce a marked steatotic state and then exposed 78 for 5 days, without OA supplementation, to 25 µM EDCs. A steatosis maintenance percentage 79 80 was specifically defined: a maintenance of 100 % corresponds to a steatosis score identical to that of cells treated for 5 days with 200 µM OA, while 0 % corresponds to the score of cells 81 not exposed to any supplementation. To assess triglyceride accumulation, a steatosis index 82 (cf. Supplementary Figure 2) was used based on Nile Red staining and analysis with an 83 automated fluorescence microscope. Values are the mean \pm SEM relative to the control (in %) 84

- 85 from at least 5 (**B**), 4 (**C**) or 3 (**A**, **D**) independent experiments in triplicate. Statistical analysis
- 86 was performed using Kruskal-Wallis test with Dunn's correction (**B**), or using one-way
- ANOVA followed by a Dunnett post-hoc correction (**A**, **C**, **D**). **, p < 0.01; ***, p < 0.001.

Supplementary Figure 5: Impact of p,p'-DDE, DBP and DEHP exposure on *de novo* 90 lipogenesis gene expression in 2D HepaRG cells. The mRNA levels of (A) SREBP1C, (B) 91 92 SCD1, (C) ACC1 and (D) FASN were measured after 5 days of exposure to 25 μ M EDCs alone or in combination with 100 µM oleic acid (OA) or a mixture of palmitic and oleic acid 93 (PA:OA, 50:50 μ M). Values are the mean \pm SEM relative to the control from at least 3 94 independent experiments. Statistical analysis was performed on treatments having the same 95 supplementation condition using one-way ANOVA followed by a Bonferroni correction (A, 96 **B**, **C**) or Kruskal-Wallis test followed by a Dunn's correction (**D**). *, p < 0.05; **, p < 0.01; 97 *** p < 0.001; ****, p < 0.0001. 98

Supplementary Figure 6: Impact of p,p'-DDE, DBP and DEHP exposure on the 100 101 expression of genes related to triglyceride synthesis and storage in 2D HepaRG cells. The mRNA levels of (A) GPAT1, (B) DGAT1, (C) DGAT2 and (D) PLIN2 were measured after 5 102 103 days of exposure to 25 µM EDCs alone or in combination with 100 µM oleic acid (OA) or a mixture of palmitic and oleic acid (PA:OA, 50:50 μ M). Values are the mean \pm SEM relative 104 105 to the control from at least 3 independent experiments. Statistical analysis was performed on treatments having the same supplementation condition using one-way ANOVA followed by a 106 107 Bonferroni correction (A, C, D) or Kruskal-Wallis test followed by a Dunn's correction (B). *, p < 0.05; ***, p < 0.001; ****, p < 0.0001. 108

Supplementary Figure 7: Impact of p,p'-DDE, DBP and DEHP exposure on the 111 expression of genes related to fatty acid uptake in 2D HepaRG cells. The mRNA levels of 112 (A) FABP1, (B) FATP2 and (C) CD36 were measured after 5 days of exposure to 25 µM 113 EDCs alone or in combination with 100 µM oleic acid (OA) and a mixture of palmitic and 114 oleic acid (PA:OA, 50:50 μ M). Values are the mean \pm SEM relative to the control from at 115 least 3 independent experiments. Statistical analysis was performed on treatments having the 116 117 same supplementation condition using one-way ANOVA followed by a Bonferroni correction (A) or Kruskal-Wallis test followed by a Dunn's correction (B, C). *, p < 0.05; ***, p < 0.05; ****, p < 0.05; ***, p < 0.05; ***, p < 0.05; ***, p < 0.05; ****, p < 0.05; *** 118 0.001; ****, p < 0.0001. 119

120

Supplementary Figure 8: Impact of p,p'-DDE, DBP and DEHP exposure on the 121 expression of genes related to VLDL export in 2D HepaRG cells. The mRNA levels of 122 *MTTP* (A) and *APOB* (B) were measured after 5 days of exposure to 25 μ M EDCs alone or in 123 combination with 100 µM oleic acid (OA) or a mixture of palmitic and oleic acid (PA:OA, 124 50:50 μ M). Values are the mean \pm SEM relative to the control from at least 3 (A, B) 125 independent experiments. Statistical analysis was performed on treatments having the same 126 supplementation condition using one-way ANOVA followed by a Bonferroni correction (B) 127 or Kruskal-Wallis test followed by a Dunn's correction (A) *, p < 0.05. 128

130

Supplementary Figure 9: Impact of p,p'-DDE, DBP and DEHP on fatty acid oxidation in 2D HepaRG cells. The mRNA levels of (A) *CYP4A11* and (B) *CPT1A* were measured after 5 days of exposure to 25 μ M EDCs alone or in combination with 100 μ M oleic acid (OA) and a mixture of palmitic and oleic acid (PA:OA, 50:50 μ M). Values are the mean \pm SEM relative to the control from at least 3 independent experiments (A, B). Statistical analysis was performed on treatments having the same supplementation condition using a Kruskal-Wallis test with a Dunn's correction (A, B).