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Abstract

The paper examines the question of non-anonymous Growth In-
cidence Curves (na-GIC) from a Bayesian inferential point of view.
Building on the notion of conditional quantiles of Barnett (1976), we
show that removing the anonymity axiom leads to a complex and
shaky curve that has to be smoothed, using a non-parametric ap-
proach. We opted for a Bayesian approach using Bernstein polyno-
mials which provides confidence intervals, tests and a simple way to
compare two na-GICs. The methodology is applied to examine wage
dynamics in a US university with a particular attention devoted to
unbundling and anti-discrimination policies. Our findings are the de-
tection of wage scale compression for higher quantiles for all academics
and an apparent pro-female wage increase compared to males. But
this pro-female policy works only for academics and not for the para-
academics categories created by the unbundling policy.

Keywords: Conditional quantiles, non-anonymous GIC, Bayesian inference,
academic wage formation, gender policy.

1 Introduction

One of the main economic question is to understand how economic growth
affects different segments of the population, i.e., whether everyone benefits
from growth or only a small group of individuals and which ones. Growth in-
cidence curves have been introduced in Ravallion and Chen (2003) to address
this question. The purpose was to visualise who had benefited from growth
and in particular if growth has been pro-poor or not. The basic ingredient
of a GIC consists in comparing two quantile functions to explain changes in
the income distribution. However, it soon appeared that this initial tool had
a limit. When comparing quantiles, a GIC ignores the trajectory of individ-
uals belonging to these quantiles, relying on individual anonymity. Only the
global change in the income distribution was under scrutiny. If we want to
take into account social mobility for evaluating welfare, our interest should
rely in fact on a bivariate income distribution for building a complete growth
incidence curve, instead of considering two independent quantile functions
associated to two marginal income distributions.

The problem is however not trivial. A quantile function consists in
proposing an ordering and as noted by Barnett (1976), ordering and quan-
tiles are a one dimension property. There is no natural concept of a bivariate
ordering for a bivariate distribution F (x, y). Barnett (1976) has proposed
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a series of four sub-ordering principles in order to circumvent the prob-
lem: marginal ordering, reduced ordering, partial ordering and finally con-
ditional ordering. The economic literature about non-anonymous GIC (see
e.g. Grimm 2007, Van Kerm 2009, Jenkins and Van Kerm 2016 or Palmisano
and Peragine 2015 to quote just a few) has implicitly retained the notion of
conditional ordering of Barnett (1976). In a conditional ordering, a first di-
mension is chosen, usually the one corresponding to t− 1 or the initial state.
Conditionally on that ordering, the second component (corresponding to t)
is ordered by blocks. This approach allows to point out income dynamics. So
the literature on income dynamics considers individual transitions between
income classes (which can correspond to marginal quantile intervals) when
the non-anonymous GIC (na-GIC) relies on a conditional quantile function.
Therefore, transition matrices explain the probability of going from one group
of income to another group in the next period. The fact that these matri-
ces are built around groups operate a kind of smoothing because individuals
within one group are supposed to evolve similarly. In contrast, the condi-
tional quantile function, when it does not operate on blocks, can follow the
trajectory of each individual, and two individuals coming from the same ini-
tial quantile group do not have necessarily the same trajectory. So the graph
of a conditional quantile function can be quite shaky and needs smoothing
to become intelligible. Consequently, as we shall see later on, the estimation
of a na-GIC becomes fundamentally a non-parametric econometric problem.

The aim of the present paper is threefold. First, we want to characterise
the na-GIC as a growth rate computed between a marginal quantile function
defined at t − 1 and a conditional quantile function defined at t. Second,
we propose inference for na-GIC using a Bayesian semi-parametric frame-
work based on Bernstein polynomials. Finally, we apply this methodology
to examine wage dynamics in academia with a particular attention devoted
to unbundling and anti-discrimination policies.

The paper is organised as follows. In section 2, we present two concepts
for a na-GIC, show that both lead to a non-parametric regression and show
how Bernstein regression can be a nice solution. We detail the properties
of Bernstein polynomials and show how they are a nice alternative to cubic
B-splines. In section 3, we present a Bayesian inference for this problem.
We then detail how to compare models in order to select the degree k of the
Bernstein polynomial and show which kind of prior is sufficient for using a
marginal likelihood to select the degree of Bernstein polynomials. We end
this section by providing statistical tests for growth incidence curves. Section
4 is devoted to analysing how wage growth is distributed over the quantiles
in a large US public University, examining the gender pay gap in a different
way. Section 5 concludes.
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2 A non-parametric model for na-GIC based

on Bernstein polynomials

The aim of the Growth Incidence curve of Ravallion and Chen (2003) was to
measure the distributive impact of growth, and more specifically if growth
was more favorable to certain segments of the distribution than others. Their
answer is provided by the inspection of the growth rate of each quantile of
two marginal income distributions. Let Ft−1(x) and Ft(y) represent these
two marginal income distributions, a quantile function can be inferred from
each distribution separately so that the GIC can be approximated by:

gt(p) ≃ logF−1
t (p)− logF−1

t−1(p) = log y(p)− log x(p), (1)

where x(p) and y(p) are the respective quantile functions (or the derivative of
the respective generalised Lorenz curves). It is worth mentioning that there
is no need to have the same individuals or households in x and y. From a sta-
tistical point of view, two cross-section samples are sufficient for estimating
gt(p). The function gt(p) simply describes how growth has deformed the ini-
tial distribution. The procedure relies on an anonymity axiom, which means
that this measure is independent of the initial ranking of the individuals.

There are however relevant reasons for removing the anonymity axiom.
The statistician or the social planner may care about individual trajectories.
To reach that goal, we should no longer consider two marginal distributions
F (x) and F (y), but the entire joint distribution of incomes in t − 1 and
t, that is F (x, y). This is the starting point of all the literature on non-
anonymous GIC (na-GIC), as well as that of income or poverty dynamics.
However removing the anonymity axiom entails to solve much more complex
statistical problems, one of the objectives of the present paper.

2.1 Two concepts for na-GIC

The term and concept of a na-GIC has been formally introduced in the
literature by Grimm (2007). Let us start from the income quantile x(p) and
call px the order corresponding to this quantile function, so that x(px) are
the order statistics. Let assume that we observe the same individuals in the
next period and that y(p) is the quantile function of the second period. The
na-GIC of Grimm (2007) is simply defined as:

g(px) = log y(px)− log x(px). (2)

It corresponds thus to considering a quantile function computed from the
initial income distribution F (x) which is compared to a conditional quantile
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function extracted from F (y|X = x(px)). So the initial order is given by
F (x) and maintained over the second period. This is a conditional ordering
in the sense of Barnett (1976).

Van Kerm (2009) goes a step further (but without using the term na-GIC)
as he relates what he calls an income mobility profile (in fact a na-GIC) to
the income mobility literature, saying that “An income mobility profile is a
graphical tool to portray income mobility and identify the association between
individual movements and initial status”. Starting from the bivariate income
distribution F (x, y), he defines a distance function δ(x, y) that measures the
income growth for an individual between t− 1 and t. A mobility index M is
then defined as:

M =

∫

∞

0

∫

∞

0

δ(x, y)dF (x, y). (3)

Because we are not interested in mobility for itself, but only in a certain type
of mobility, for instance upward mobility or progressive mobility (see e.g.
Benabou and Ok 2001), the distance function δ(x, y) has to be directional as
detailed in Jenkins and Van Kerm (2016), verifying the following properties:

δ(x, x) = 0, δ(x, y) = −δ(y, x), δ(x, ρx) > 0 for ρ > 1. (4)

Scale or translation invariance can also be added. Possible choices for the
distance function are δ(x, y) = log y − log x for proportional income growth
or δ(x, y) = y − x for absolute income growth.

Let us define px = FX(x) as the rank of income x at period t − 1 and
x(px) the corresponding quantile function. The mobility profile, or in other
terms the na-GIC, is the function m(p) defined as:

m(p) = m(X, Y |X = x(px)) = δ(x(px), y(px)). (5)

The simple GIC would correspond to the distance function δ(x(px), y(py)) as
indicated in Jenkins and Van Kerm (2016).

Dominance conditions to compare two growth situations were developed
with different results in Bourguignon (2011), Jenkins and Van Kerm (2016)
and Palmisano and Peragine (2015). Starting with a S-Gini, Jenkins and
Van Kerm (2006) decompose inequality changes between progressivity and
re-ranking components. All these papers have considered the economic status
in the first period px as the reference. Lo-Bue and Palmisano (2020) adopt
another point of view and consider complete poverty trajectories and their
associated dominance conditions, independently of the initial status.
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2.2 Non-anonymous GIC as a non-parametric problem

The natural estimator for the quantile function x(p) is based on the definition
of order statistics with:

x(p = i/n) = (x[1], · · · , x[i], · · · , x[n]), (6)

where x[i] are the order statistics coming from the n ordered observations
such that x[1] < x[2] < · · · < x[n]. This natural estimator leads to a fairly
smooth curve with respect to p. There is no imperious need for smoothing
even if Yang (1985) has proposed a kernel estimate for the quantile function
which is equivalent to a Nadaraya-Watson non-parametric regression of the
order statistics x[i] over its rank i/n.

The na-GIC in equation (2) is based on the difference between the log of
a conditional quantile and the log of a marginal quantile. What would be
a natural estimator for a conditional quantile? By analogy with the natural
estimator of the marginal quantile x(p = i/n), a natural estimator for the
conditional quantile of y|x is obtained by first defining the order of x that
we call (i[1], i[2], . . . , i[n]) so that x[j] = xi[j] . This is equivalent to ordering
the bivariate variable (x, y) according to its first component x. The natural
estimator for a conditional quantile is then given by:

y(p = i[j]/n) = (yi[1], yi[2], . . . , yi[n]
). (7)

However, this natural estimator provides a very shaky function of p, so that
a generalisation of the non-parametric estimator of Yang (1985) proposed for
the usual quantile function becomes very useful in this case.

The na-GIC of Grimm (2007) provided in equation (2) considers the dif-
ference between two quantile functions and thus could justify the smoothing
of these two quantile functions separately. The mobility profile (5) of Van
Kerm (2009) on the contrary does not proceed by considering the difference of
two smoothed quantiles, but by defining the desired function as a conditional
expectation in itself, starting directly from the δ(·) function. More precisely,
the problem is defined as a regression of δ(x(px), y(px)) over px. Because the
conditional expectation is a non-linear function of p for which a parametric
form is not evident, a non-parametric approach is needed. Van Kerm (2006)
has proposed to use the local weighted regression of Cleveland (1979) to
regress δ(x(px), y(px)) over px, a method also used in Jenkins and Van Kerm
(2016).1 It has better properties at boundaries than the Nadaraya-Watson
kernel regression. In this paper, we propose to use Bernstein polynomials as

1The method is available in R with the function loess, implying the choice of a degree
of smoothing.
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they are more suitable for depicting changes at boundaries while Bayesian
inference can be derived straightforwardly.

2.3 Smoothing using Bernstein polynomials

Bernstein polynomials have been popular among engineers for approximating
a complicated function f(x) for x ∈ [0, 1]. The approximation gk(x) of f(x)
is given by the following polynomial of order k:

gk(x) =
k

∑

j=0

f(j/k)Cj
kx

j(1− x)k−j =
k

∑

j=0

f(j/k)bk(x, j), (8)

where Cj
k is the binomial coefficient and bk(x, j) = Cj

kx
j(1 − x)k−j. The

approximation can be made as precise as desired by increasing the order k of
the polynomial. It was used to prove the Weierstrass approximation theorem.
It is worth mentioning that if the support of x is outside the segment [0, 1],
say at values on the segment [a, b], it can be transformed so as to lie in the
required [0,1] interval, using y = (x− a)/(b− a).

Stadtmuller (1986), Tenbusch (1997) were the first to propose Bernstein
polynomials for curve estimation in a problem where the observations are n
observed couples (yi, xi):

yi = m(xi) + ǫi, ǫi ∼ N(0, σ2). (9)

The approximation of the unknown function m(xi) is given by running the
following regression:

yi =
k

∑

j=0

βjbk(x, j) + ǫi. (10)

In this model, the βj are the estimates of f(j/k) so gk(x) is now defined by:

gk(x) =
k

∑

j=0

βjC
j
kx

j(1− x)k−j. (11)

The regressors are deterministic functions of x and k forming a basis Z
defined as:

Z = [zi] = [bk(x, 0), · · · , bk(x, k)], (12)

with k + 1 columns and n rows. So the Bernstein coefficients f(j/k) are
estimated by a linear regression model without an intercept:

yi = ziβ + ǫi. (13)
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The degree k of the polynomial is directly related to the degree of smoothing
introducing a common bias-variance trade-off. A higher k will reduce the
bias at the cost of increasing the number of parameters, estimated with less
and less precision.

Remark 1 The matrix Z has some interesting properties. Whatever k, its
rows sum to 1.0, which explains the fact that regression (13) has to be run
without adding an intercept. When k = 1, the predicted values of y form a
straight line. So (β̂0 + β̂1)/2 is exactly equal to the mean of y. For k > 1,
the predicted values of y usually depart from a straight line, so the average
of the regression coefficients are only close to the mean of y. For k ≥ 3,
the vector formed by the row sum of the outer columns (Z[,1]+Z[,(k+1)])
is equivalent to 1 minus the vector formed by the row sum of all the inner
columns, i.e. rowSums(Z[,2:k]), up to a rounding error, using the syntax
of R.

2.4 Comparison with other methods

Bernstein polynomials have a certain number of advantages for non-
parametric regression. Brown and Chen (1999) underline that the competing
method of kernel regression has problems at the boundaries of x. Solving this
problem would mean considering different kernels inside the same regression
problem. This is naturally done when using Bernstein polynomials as can be
seen from the left panel of Figure 1 where we have displayed the elements
of the basis Z for k = 10. This property is particularly relevant since we
are generally concerned by the very poor and very rich in inequality studies.
Moreover in our particular case the explanatory variable is naturally in the
segment [0,1], with no transformation needed. Bernstein polynomials behave
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Figure 1: Comparing Bernstein polynomials with Cubic B-splines

like a variable asymmetric kernel, with different shapes depending on the
value of the explanatory variable p.
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A more serious competitor to Bernstein polynomials are splines which can
be seen as another way of building the basis Z when estimating regression
(13). Splines are defined by minimising a specific loss function in order to
approximate the regression function m(x):

n
∑

i=1

(yi −m(xi))
2 + λ

∫

(m′′(x))2dx, (14)

where λ is a smoothing parameter monitoring the smoothing penalty ex-
pressed as the second order derivative of the curve m(xi) to be found. Fol-
lowing Hardle (1990, pp. 56-65), this minimisation problem has a unique
solution mλ(x) over the space of twice differentiable functions which is pro-
vided by cubic splines.2 We have plotted on the right panel of Figure 1 cubic
B-splines with df = 11 (including a constant term).3 It results that Bernstein
polynomials and cubic B-splines reproduce the same general pattern.4

This can be shown through a small Monte Carlo experiment. We run
m = 1, 000 simulations with n draws from a bivariate lognormal distribution
with parameters

µ = (1.0, 1.2), Σ =

(

0.50 −0.20
−0.20 0.10

)

, (15)

and computed the empirical estimate of the na-GIC with δ(x(px), y(px)). We
then adjusted a linear regression model without intercept using first Bern-
stein polynomials, then B-splines and finally natural splines. We have chosen
various values of k for Bernstein polynomials and df=k+1 for splines, leading
the to the same number of regressors in each case.5 In Table 1, we report the
RMSE of each regression and its evaluation for the lower and upper 5% tails.
We consider k = 3, 5, 10 and n = 100, 1000. In all cases, Bernstein poly-
nomials should be preferred to splines, and particularly to natural splines.
Estimates based on Bernstein polynomials have a greater or equal accuracy
and precision whatever is the sample size or the degree of complexity of the
model. The advantage of Bernstein polynomials is especially visible for lower
and higher quantiles, provided the value of k is not too small. As underlined
before, this property is particularly interesting when one is concerned by

2See Hardle (1990, pp. 56-65) for more detailed and historical references.
3We have used the bs function of the R package splines.
4The similarity is due to the use of B-splines. If we had used natural splines, (function

ns of the R package splines), we would have obtained totaly different shapes, in particular
at the lower boundary.

5The R commands are bs(x, df=k+1,intercept = TRUE) for B-splines and ns(x,

df=k+1,intercept = TRUE) for natural splines.
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Table 1: The relative performance of Bernstein polynomials versus splines
n = 100 n = 1000

Bernstein B-splines Natural splines Bernstein B-splines Natural splines
k = 3

σ̂ 0.184 0.184 0.200 0.178 0.178 0.196
(0.025) (0.025) (0.030) (0.009) (0.009) (0.010)

ˆσ0.05 0.268 0.268 0.326 0.309 0.309 0.372
(0.126) (0.126) (0.141) (0.054) (0.054) (0.056)

ˆσ0.95 0.277 0.277 0.334 0.309 0.309 0.372
(0.141) (0.141) (0.158) (0.054) (0.054) (0.056)

k = 5
σ̂ 0.166 0.169 0.182 0.158 0.162 0.177

(0.019) (0.021) (0.026) (0.006) (0.007) (0.008)
ˆσ0.05 0.214 0.226 0.274 0.237 0.254 0.308

(0.114) (0.121) (0.140) (0.047) (0.048) (0.053)
ˆσ0.95 0.205 0.217 0.266 0.236 0.253 0.307

(0.103) (0.110) (0.129) (0.044) (0.046) (0.050)
k = 10

σ̂ 0.151 0.153 0.161 0.147 0.149 0.159
(0.013) (0.014) (0.019) (0.004) (0.005) (0.006)

ˆσ0.05 0.147 0.161 0.203 0.178 0.192 0.244
(0.064) (0.074) (0.102) (0.030) (0.034) (0.045)

ˆσ0.95 0.147 0.164 0.205 0.179 0.193 0.246
(0.066) (0.078) (0.108) (0.031) (0.036) (0.045)

Standard errors are indicated between parenthesis.

the very poor and very rich in inequality studies. Note nevertheless that B-
splines are not very far, compared to the poor result of natural splines (which
are known to have problems at the boundaries). The experiment relies on
a automatic choice for the knots, based on the quantiles. All the regressors
were significant in the experiment.

A final note on splines. One can think that with an optimal choice of the
knots, splines could lead to a slightly better fit than Bernstein polynomials
where the only possible choice is the value of k. This value is usually selected
using an information criteria such as the BIC or comparing marginal likeli-
hoods in a Bayesian framework as detailed below. There is no precise method
for choosing the knots in splines. Usually one starts from a great number of
knots around the quantiles of the explanatory variable and then selects the
significant knots by a variable selection method which can be quite tedious.
In a Bayesian framework, Dimatteo et al. (2001) have provided an automatic
Reversible-Jump MCMC algorithm to select the knots. However, the proce-
dure is time consuming, compared to the simple information criteria used to
select the degree of a Bernstein polynomial.
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2.5 Parametric restrictions

Choosing a high value for k increases the accuracy of the approximation to
m(x), but can lead to over-fitting. There is thus an incentive to be able
to introduce restrictions on the sequence of the β parameters in order to
constraint the shape of m̂(x). Those restrictions are introduced by different
sets of inequality constraints which have their origin from considering the
first or the second order derivatives of gk(x). Let us give the first derivative
as as example:

g′k(x) = k
k−1
∑

j=0

k(βj+1 − βj)C
j
k−1x

j(1− x)k−j−1. (16)

The sign of g′k(x) determines if m(x) is monotone increasing or decreasing.
The sign of each of the k elements of this sum depends only on the sign of
βj+1 − βj so that the monotonicity can be described by a restriction of the
form Aβ > 0 with A being a k × (k + 1) matrix defined by:

A =









1 −1 0 · · · 0
0 1 −1 0 · · ·

0 · · · 1 −1









. (17)

The restriction Aβ > 0 means that the k differences βj+1 − βj are positive,
which implies that m(x) is monotone increasing (monotone decreasing for
Aβ < 0). See Wang and Ghosh (2012) for other types of A matrices im-
plying for instance concave or convex restrictions. Wang and Ghosh (2012)
propose a classical estimator for β satisfying this type of restrictions. Using
a Bayesian approach, Ghosal and Ghosh (2022) propose a general inference
method for linear regression models with linear inequality constraints. An
over-parameterised regression model can lead to ambiguity about the general
shape of a na-GIC as seen in the next example.

Example 1 We took the same parameters as in the previous example, but
inflated the variance parameter of the second period by 2. For smoothing the
na-GIC obtained from this bivariate distribution, we used a Bernstein regres-
sion with k = 5. The graph of the first order derivative as reported in the
right panel of Figure 2 indicates that for k = 5 the derivative curve is always
negative, implying a strict negative slope for the smoothed na-GIC. However,
with k = 20 which implies a large over-parametrisation, the derivative can
be positive on some parts of the segment [0,1]. This illustrates the danger of
over-fitting and the necessity to choose carefully the order of the polynomial
k.
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Figure 2: Impact of smoothing and under-smoothing in a Bernstein regression

3 Bayesian inference for na-GIC

In this section, we develop Bayesian inference for na-GIC. We derive the
posterior na-GIC. We discuss the choice of the polynomial’s order and we
demonstrate how the choice of the prior can help in model selection. Last,
we provide statistical tests for growth incidence curves.

3.1 Posterior densities

Under normality of the error term, the likelihood function is:

l(y|θ, k) ∝ (σ2)−n/2|Z(k)′Z(k)|−1/2 exp−
1

2σ2
(y − Z(k)β)′(y − Z(k)β). (18)

In this notation, Z(k) is the Bernstein basis and its size depends on k, which
explains the presence of the factor |Z(k)′Z(k)|−1/2. When the analysis is
conducted conditionally on k, this factor can be neglected.

As we are in the framework of the linear regression model, there exist a
natural conjugate prior on (β, σ2) with:

ϕ(σ2) = fIG(σ
2|s0, ν0), (19)

ϕ(β|σ2) = fN(β|β0, σ
2M0), (20)

while a non-informative prior would mean:

ϕ(β) ∝ 1, ϕ(σ2) ∝ 1/σ2. (21)

Following standard textbook results (see e.g. Bauwens et al. 1999, pages
56-64), the posterior density of σ2 and β are respectively an inverted gamma2
and a Student:

ϕ(σ2|y) = fIG(σ
2|s∗, ν∗), ϕ(β|y) = ft(β|β∗,M∗, s∗, ν∗), (22)
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where the hyper-parameters are given by:

M∗ = Z(k)′Z(k) +M0, (23)

β∗ = M−1
∗

(Z(k)′y +M0β0), (24)

s∗ = y′y − β ′

∗
M∗β∗ + s0 + β ′

0M0β0, (25)

ν∗ = n+ ν0. (26)

We are interested in non-linear transformations of the parameters in or-
der to get the posterior density of the na-GIC. From the student posterior
density of β, we can obtain m draws, so that we can build a m × np ma-
trix M of posterior draws from the posterior density of the na-GIC on a
grid of np predetermined points of p. These draws are obtained using the
transformation β

(j)
i bk(x, i), where β

(j)
i is the jth draw of βi leading to:

M [j, .] =

k
∑

i=0

β
(j)
i C i

kp
i(1− p)k−i, (27)

From this matrix, we can determine a posterior confidence interval for the
na-GIC, by selecting specific row quantiles of M , (e.g. 0.05 and 0.95 for a
10% confidence interval). In the same vein, we can construct a m×np matrix
Ms of the derivative of the na-GIC. Elements of this second matrix are based
on the following transformation:

Ms[j, .] = k

k−1
∑

i=0

(β
(j)
i+1 − β

(j)
i )C i

k−1p
i(1− p)k−i−1. (28)

Constraints on the sign of the first derivative can be imposed with the
constraint Aβ > 0, following Koop (2003, pp.77-80). The prior density (20)
is transformed so as to obtain:

ϕ(β|σ2)× 1(Aβ > 0), (29)

where 1(·) is the indicator function. There is no longer an analytical formula
for the posterior density of β, but the later can easily be evaluated using
a simulation method. We simply draw random numbers from the uncon-
strained posterior Student posterior ϕ(β|y) = ft(β|β∗,M∗, s∗, ν∗) and reject
the draws that do not verify the constraint Aβ > 0. Even if constraining the
shape of the smoothed m(x) can be appealing, it does not solve the issue of
selecting the order k of the polynomial.
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3.2 Model comparison

The choice of k can be seen as a variable selection problem like in Curtis and
Ghosh (2009) and Choi et al. (2016). They both use the approach of Geweke
(1996) while they are in a context where they want to impose restrictions on
the shape of the Bernstein polynomial. However, even if they are confronted
to the same type of restrictions, Ding and Zhang (2016) prefer to use the
usual information criteria, i.e. the BIC, the AIC or the deviance information
criteria (DIC) of Spiegelhalter et al. (2002), in order to select the degree k
of the Bernstein basis. These quantities are:

BIC(k) = −2 log p(y|θ̂, k) + (k + 1) log(n), (30)

AIC(k) = −2 log p(y|θ̂, k) + 2(k + 1), (31)

DIC(k) = −2Eθ[log(p(y|θ))] + pD. (32)

In this writing, p(y|θ̂, k) is the posterior density or its approximation by
the likelihood function and θ̂ is the point where maximum of the posterior
density is reached. The expectation needed for the DIC is obtained in the
same way. Finally, pD is the effective dimension of the model as suggested
in Spiegelhalter et al. (2002). Because we have no hidden parameters, the
penalty pD can be simplified to 2(k + 1).

These selection methods work even when the prior density is non-
informative. In the case of an informative prior density, one can also rely
on the marginal likelihood to compare models as it is a direct ingredient for
posterior odds.6 Following Koop (2003, page 41), we can write the marginal
likelihood of our linear model as:

p(y|M) = (|M0|/|M∗|)
1/2 × s

ν0/2
0 /sν∗/2

∗
× Γ(ν∗/2)/Γ(ν0/2)× π−n/2. (33)

The model with the higher marginal likelihood is selected. Knowing the
structure of the Bernstein bases, the choice of appropriate prior information
can help to determine k. The minimum possible model is with k = 1 so
that Z(p, 1)β represents the equation of a straight line and the average of β
equals the empirical mean of y. When k > 1, the two extreme parameters
β0 and βk continue to play a crucial role in representing the general shape
of the curve when imposing the constraint β1 = · · · = βk−1 = 0. So the idea
is to be non-informative on β0 and βk while imposing the prior information

6We are grateful to a referee for this suggestion. Note that the BIC is an asymptotic
approximation of the marginal likelihood p(y|M) where M is the model to be evaluated as
p(y|M) = exp(−BIC/2 +O(1)). See e.g. Konishi and Kitagawa (2008, page 215, section
9.1.3) for a derivation using Laplace method. This might be useful for explaining some of
our results.
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that β1 = · · · = βk−1 = 0 in a probabilistic way. This is obtained for a prior
expectation equal to zero (β0 = 0) and devising a specific prior precision
matrix M0. Usually prior precision matrices are not easy to specify and the
G-prior of Zellner (1986) is a convenient solution. It results that our prior
precision matrix has the following form:

M0 = γ0







0 · · · 0
... Z̃ ′Z̃

...
0 · · · 0






(34)

where Z̃ = Z[, 2 : k] is a submatrix of Z obtained by removing its first and
last columns. γ0 is a tuning parameter that monitors the strength of the
prior information. The prior on σ2 is of less importance and we can choose
for instance s0 = 1 and ν0 = 3.7 Note that the proposed solution implied
that the precision matrix is singular, so that (33) cannot be evaluated. We
propose to replace the determinant |M0| in (33) by γk−1

0 |Z̃ ′Z̃| as by definition
|Z̃ ′Z̃| is strictly positive. For numerical reasons, we shall compute the log of
the marginal likelihood.

Example 2 We continue using our previous simulated data to illustrate the
role of γ0 for selecting k and visualize our results in Figure 3. With a very
small γ0 = 0.01, marginal likelihood and BIC provide the same answer of
k = 5 (remember that BIC is an asymptotic approximation of the marginal
likelihood), while DIC and AIC select a less parsimonious model with k = 9 as
expected. When increasing γ = 0.1, all the criteria provide the same answer
k = 5. When increasing again γ = 0.5, the marginal likelihood select a more
parsimonious model with k = 4 while the other criteria still prefer k = 5.
With the very strong γ = 1.0, the DIC selects k = 5, while the other criteria
select k = 4.

3.3 Statistical tests

The Bayesian approach is not only particularly relevant for model selection
but also for statistical tests. Most of hypotheses can be tested in a straight-
forward manner. Let us start with the simple growth incidence curve under
the anonymity axiom. We simply need to have a convenient modelling of
the two quantile functions indexed respectively by θ1 and θ2. Using m draws
from the posterior density of these parameters and build a m× np matrix of

7For an alternative way of building a prior density that incorporates restrictions, see
Bauwens et al. (2022) in a context of time series and long memory.
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Figure 3: Bayesian model choice

draws from the adequate transformation of these draws:

MGIC [j, .] = log y(p|θ
(j)
2 )− log x(p|θ

(j)
1 ). (35)

For modelling the quantile functions y(p|θ2) and x(p|θ2), we can use the
simple model of Kakwani (1980) detailed in Fourrier-Nicolai and Lubrano
(2021). For each quantile pi of matrix MGIC , we can compute the empirical
probability that g(pi) > 0 to know which quantiles have significantly grown:

Pr g(pi) > 0 ≃
1

m

m
∑

j=1

1(MGIC [j, i] > 0), (36)

where 1(·) is the indicator function. We could also test if certain quantiles
are growing more rapidly than the rest of the distribution (e.g. if we want
to test for pro-poor growth) by computing the empirical probability that
g(pt) > γt where γt is the average growth rate. In doing so, we compare two
marginal distributions using their quantile functions.

With the na-GIC, the statistical problem is quite similar once we have
obtained m draws from the parameters and stored their transformation de-
fined in (27). The interpretation is of course different as we look at the
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individual trajectories. Let us call the matrix (27) MnaGIC . The probability
that m(p) = δ(x(px), y(px)) > 0 is computed as:

Pr(m(pi) > 0) ≃
1

m

m
∑

j=1

1(MnaGIC [j, i] > 0). (37)

We can also compute the probability that the slope of the na-GIC is negative
for all pi using the matrix Ms of draws (28) corresponding to the the first
order derivative of the na-GIC curve:

Pr

(

∂m(pi)

∂pi

)

≃
1

m

m
∑

j=1

1(MsnaGIC [j, i] < 0). (38)

Numerous other hypotheses can be easily tested in a Bayesian approach pro-
vided they can be expressed in terms of the posterior parameters.

4 An application to wage academic dynamics

Understanding wage dynamics in academia is critical for society as it is at
the core of producing knowledge, innovation and intellectual capital. Stephan
(1996), in her survey paper, underlines the importance of the life cycle model
as a major mechanism for earning functions. But there is no dynamics in
these functions as they are estimated on cross sections. Her numerous follow-
ers tried to find complementary mechanisms, introducing various measures of
productivity which could, for instance, revert the negative relation between
wages and seniority (e.g. Moore et al. 1998). Gender issues came next as an
important concern. The recent paper of Blackaby et al. (2005) is considering
a small survey of 349 UK economists for estimating a probit equation to
explain rank achievement differences between males and females, underlying
the importance of outside offers, more important for males than for females.
For the Canadian University of Manitoba, Brown et al. (2011) attempt at
explaining the evolution of the gender pay gap between 1993 and 2003, fol-
lowing the introduction of an anti-discrimination policy in that university.
They derive the Wellington (1993) variant of the Oaxaca-Blinder decompo-
sition to explain the nature of changes. The major change is that for full
professors, more females were promoted but the yield of that rank became
lower for females. In this study, we aim to analyse the dynamics of academic
wages in light of the recent policy trends and their relation with the gender
pay gap.

17



4.1 Institutional background and data

Michigan State University (MSU) is a very large US public university with
more than 50,000 students. As all US public universities, it has the legal
obligation of publishing the wages of its members. It was possible to find
on its web site detailed pdf files containing names, wages, grade, type of
contract and seniority for two years 2006 and 2012, covering a total of 8,964
observations from which we build a panel of 4,855 individuals belonging to
five different broad colleges with Social Sciences, Science, Medicine, Agri-
culture and Humanities.8 Building a panel means that we have kept all the
individuals present in 2006, keeping for the while those who have left in 2012,
but excluding those who enter only in 2012. The balanced panel needed for
computing a na-GIC requires further exclusion of all those who have left
MSU in 2012. With the complete panel, we have a clear idea of individual
trajectories which cover both wage increase and promotion. Because we have
a clear description of their status, we can try to investigate the impact on
those trajectories that a major phenomenon could have, the unbundling as
described in e.g. Macfarlane (2011).

As in many UK and US universities, MSU is practicing an unbundling
policy which intends to separate the traditional academic tasks of teach-
ing, research and service into distinct jobs by introducing new positions like
Educator, Instructor, Lecturer, Specialist and Librarian-Archivist. For Mac-
farlane (2011), the objective was to “lower the costs of a university education
and obtain better productivity from those working to deliver it”. As a matter
of fact, these new jobs, which require only a Bachelor or a Master degree,
have a much lower mean wage: $51,907 against $96,494 for regular academics
(Assistant, Associate, Full, Endowed Professors) in 2006.9 These members
are most of the time recruited on a fixed term contract and the proportion of
females is more important. However, Macfarlane (2011) notes also that this
system leads universities “to restructure their reward systems around para-
academic or specialist professional career paths”. As a matter of fact, the
wage increase we observe at MSU is 24% for academics and 28% for para-
academics. Consequently, there is an interest to assess to what extent their
wage dynamics differ.

An important institutional feature at MSU is the anti-discrimination pol-
icy. We can find the following announcement on MSU web site in 2022:

8The college affiliation is detailed in the original data base. After those dates, the
information content of the published files diminished, names disappeared and 2012 is the
last useful available date.

9These figures were computed with the fully balanced panel, excluding thus those who
were present in 2006, but have left in 2012.
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Thus, even if not illegal, acts are prohibited under this policy if
they discriminate against any University community member(s)
through inappropriate limitation of employment opportunity , ac-
cess to University residential facilities, or participation in edu-
cation, athletic, social, cultural, or other University activities on
the basis of age, color, gender, gender identity , disability sta-
tus, height, marital status, national origin, political persuasion,
race, religion, sexual orientation, veteran status, or weight. [...]
For purpose of this Policy, “employment opportunity” is defined
as job access and placement, retention, promotion, professional
development, and salary.

So we can question gender pay gaps, keeping in mind previous studies like
Brown et al. (2011) who were examining the effectiveness of a policy intro-
duced in 1993 at the University of Manitoba. Note also that external factors
can explain the gender pay gap; for instance Monroe and Chiu (2010) who
were trying to check if gender discrimination can be due to an insufficient
number of female candidates in the hiring pool.

4.2 Descriptive statistics

Let consider the balanced panel of individuals who were present both in
2006 and 2012.10 The characteristics of this sample are displayed in Tables 2
and 3, indicating the distinction between males and females. Unfortunately,
the gender was not reported in the original dataset, then it was determined
manually using the first names. There were 47 unresolved cases for which
only first name’s initials were provided.

Table 2: Sample characteristics for academics stayers in 2006
Title Total Females Males Fem. freq Fem. wages

Freq Salary Freq Salary Freq Salary ratio ratio
Assistant Prof 462 69,538 206 66,289 252 72,379 0.446 0.953
Associate Prof 469 88,227 152 83,172 314 90,650 0.324 0.943
Full Prof 580 115,832 119 113,401 449 116,682 0.205 0.979
Endowed Prof 73 166,557 14 152,211 58 170,256 0.192 0.914
Total 1584 96,494 491 85,384 1,073 101,555 0.310 0.885
The last two columns indicate the ratio between females values and total average
values.

There is a clear decreasing proportion of females when climbing the ladder
of promotions. Female wages are lower than the average from 2% to 8%, and

10Note that this leads to exclude all individuals leaving the MSU between 2006 and
2012.
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the difference is maximum for Endowed Professors (8%). This is in coherence
with the results found in the literature.

Table 3: Sample characteristics for para-academics stayers in 2006
Title Total Females Males Fem. freq Fem. wages

Freq Salary Freq Salary Freq Salary ratio ratio
Instructor 125 41,579 75 41,472 49 41,978 0.600 0.997
Lecturer 10 47,088 3 48,069 7 46,668 0.300 1.021
Educator 132 46,073 73 41,006 59 52,342 0.553 0.890
Research Assoc 16 52,357 12 52,662 4 51,445 0.750 1.006
Specialist 239 58,286 122 53,845 117 62,916 0.510 0.924
Libra-Archiv 51 63,235 28 62,781 23 63,789 0.549 0.993
Total 573 51,907 313 48,585 259 56,007 0.564 0.888
The last two columns indicate the ratio between females values and total average
values.

The configuration is quite different with para-academic in Table 3. The
proportion of females is 0.564, and this majority is found in all the categories,
except for the marginal category Lecturer. On average, female earn 89% of
the average wage. But this difference is not at all homogeneous. For two
grades, females earn slightly more than the average. But for the highest
categories of specialist and librarian, they earn less than average. So finally,
wage differential between males and females is more complex than what we
found in the literature, once we take into account the unbundling.

4.3 na-GICs for academics and para-academics

Now we consider wage dynamics by computing the na-GIC. While the
marginal likelihood suggests k = 3, for the academics and k = 4 for the
para-academics, we select k = 4 in both cases for the sake of consistency.
Figure 4 displays slightly different wage dynamics between academics and
para-academics. In the top panels, we provide GIC and na-GIC for aca-
demics on the left and the ones for para-academics are provided on the right.
While the simple GIC indicates that all quantiles have benefited homoge-
neously from growth, the na-GIC instead indicates that individuals at the
lower quantiles tend to experience greater wage growth that those on the
upper part of the distribution.

The lower part of the panel provides the derivatives of the na-GIC for
academics and para-academics. For academics, the curve is increasing till the
second decile and decreasing after. Indeed, the na-GIC is over the average
growth rate up to the fourth decile, and lower after. Its slope is regularly
negative after the second decile. The na-GIC of the para-academics is quite
different. The first decile experienced a very high wage increase, up to 40%.
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The bottom panel displays the corresponding derivative of the na-GIC, which provides an
indication if the na-GIC is increasing or decreasing.

Figure 4: Who benefited from wage growth among Academics and para-
academics

The slope of the na-GIC is roughly zero between the third and seventh deciles
and for those deciles the wage increase is equal to the mean. Starting from
the eighth decile, the wage increase is lower than the mean, but the slope of
the curve is uncertain.

4.4 Gender issues

It is clear from Table 2 and 3 that females were earning less than males,
especially for academic positions in 2006. Brown et al. (2011) question the
role of gender policy in diminishing the gender gap at the University of
Manitoba. Their findings suggest that the gap did not disappear, but its
nature had changed. na-GICs can be used so as to show how the general wage
increase was distributed over the quantiles and that for males and females
separately. So by comparing the two na-GIC, we can look if a pro-active
policy was effective to decrease the gender pay gap.

Using the same degree k = 4, the left panel of Figure 5 shows that for
roughly all quantiles, the wage for female academic was slightly larger than
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Figure 5: Gender issues for wage dynamics

for male. However, we do not find the same configuration for para-academics
in the right panel. So if there was a pro-active compensation policy, it was
effective only for the most visible part of the academic staff, as it was earlier
suggested in Monroe and Chiu (2010). In their view, anti-discrimination
statements should rather be considered as an insurance against the risk of
lawsuits than a goal in itself. Indeed, Title IX (of the Education Amendments
of 1972) prohibits discrimination in education programs receiving federal
funds. Consequently administrations fear recognising gender discrimination
because of possible lawsuits. It results that anti-discrimination policies are
essentially a mean to “ultimately protects the institution against claims of
discrimination”, leading to an heterogeneity of responses according to the
level of risk.

We can complement the interpretation of these plots by computing the
probability that female got a higher pay rise than male for each point of
the curves. The results are provided in Table 4. The overall probability

Table 4: Statistical tests
p 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Academic males
naGIC > γ 0.91 1.00 1.00 0.99 0.54 0.08 0.01 0.00 0.00 0.00 0.00

Academic females
naGIC > γ 0.49 1.00 1.00 1.00 1.00 0.94 0.80 0.60 0.40 0.09 0.05

Comparing academic males and females
Pr(Female > Male) 0.21 0.57 0.91 0.99 0.99 0.98 0.98 0.96 0.95 0.98 0.90
Average 0.86

Comparing para-academic males and females
Pr(Female > Male) 0.59 0.35 0.18 0.10 0.17 0.48 0.87 0.98 0.99 0.91 0.29
Average 0.54

that females got a higher pay rise is 0.86 for academics, which confirms our
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Table 5: Promotion or administration?
Males Females

Promotion Admi Promotion Admi
Assist-Assoc 0.371 0.019 0.324 0.026
Assoc-Full 0.255 0.061 0.201 0.065
Full-Endow 0.038 0.072 0.023 0.070
Endow 0.064 0.200
These transition probabilities were computed using the unbal-
anced panel.

visual interpretation of the na-GIC plots. But this probability reduces to
0.54 for para-academics, thus raising doubts on the existence of an effective
anti-discrimination policy aiming to reduce the initial gender pay gap.

Taking an administrative position is said to be a secure way of getting
a wage increase as noted in Hamermesh et al. 1982. Table 5 indicates that
females have a higher tendency to take an administrative position, especially
when they are Endowed Professors. This is certainly part of the wage increase
we found with the na-GIC in Table 4. Para-academics do not have this
possibility, which might explain partly the fact that the gender pay gap
persists in this category.

5 Conclusion

In this paper, we have defined a na-GIC based on conditional ordering of
a bivariate distribution, following one of the options depicted in Barnett
(1976). This is coherent with the usual way of defining a na-GIC in the
literature, taking the initial ranking of the first period px as the reference.
For instance, when analysing if growth was pro-poor, the measure of Grimm
(2007) describes what has happened to those who were initially poor. But,
as underlined in Lo-Bue and Palmisano (2020), this approach ignores what
happens to those who become poor during the second period. Taking the
first period as the reference is justified on the ground of life trajectories,
careers in our empirical application, as initial conditions determine greatly
what is happening next. However, the reference ordering can be of particular
importance, specifically when assessing welfare. This motivates Lo-Bue and
Palmisano (2020) to prefer promoting more robust welfare criteria that take
into account all individual trajectories and not only those determined by the
initial conditions. To come back to Barnett (1976) paper, this would lead
to consider another ordering than conditional ordering, such as for instance
what he calls reduced ordering. However, by adopting such an ordering, we
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would depart from the quantile transition matrices of Formby et al. (2004)
and from all the related literature on the meaning of income mobility.

We have demonstrated that estimation of na-GIC is essentially a non-
parametric problem for which we have proposed a Bernstein regression in
order to model and smooth a conditional quantile function. In particular,
Bernstein polynomials seem to be more efficient for depicting changes in ex-
treme quantiles than other traditional methods. Bayesian inference turns out
to be particularly useful in this approach as it allows to develop straightfor-
wardly statistical tests associated with growth incidence curves but also to
help in model selection. In particular, we have proposed priors which can
help to determine the degree of the polynomial and we have derived four
criteria (marginal likelihood, BIC, AIC and DIC) for model selection in the
context of na-GICs.

We have applied our methodology to examine wage dynamics at the
Michigan State University between 2006 and 2012. Our results indicate that
the unbundling policy leads to two different wage mobility patterns while
this policy may worsen the efforts to alleviate gender discrimination. Fur-
thermore, our results suggest that this may partly due to the unequal access
to administrative promotions between academics and para-academics.

This paper contributes to the literature on income mobility by proposing
a new tool aiming to capture extreme variations among the lower and upper
parts of the distribution. Its main practical limitation relies on its inability
to take into account sample attrition which is an important empirical issue.
Being beyond the scope of this paper, we let this to further research.
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