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Abstract. This article is devoted to the study of products of random operators of the form M0,n �
M0 � � �Mn�1, where pMnqn¥0 is an ergodic sequence of positive operators acting on the space of
signed measures on some set X. Under suitable conditions, in particular, a Doeblin-type minoration
suited for non conservative operators, we obtain asymptotic results of the form

µM0,n � µphqrnπn,

for any positive measure µ, where h̃ is a random bounded function, prnqn¥0 is a random non negative
sequence and pπnq is a random sequence of probability measures on X. Moreover, h̃, prnq and pπnq
do not depend on the choice of the measure µ. We prove additionally that n�1 logprnq converges
almost surely to the Lyapunov exponent λ of the process pM0,nqn¥0 and that the sequence of random
probability measures pπnq converges weakly towards a random probability measure. These results
are analogous to previous estimates from Hennion (1997) in the case of d � d matrices, that were
obtained with different techniques, based on a projective contraction in Hilbert distance. In the case
where the sequence pMnq is i.i.d, we additionally exhibit an expression of the Lyapunov exponent λ
as an integral with respect to the weak limit of the sequence of random probability measures pπnq
and exhibit an oscillation behavior of rn and }µM0,n} when λ � 0. We provide a detailed comparison
of our assumptions with the ones of Hennion (1997) and present an example of application of our
results to the modelling of an age structured population.
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1. Introduction

1.1. General introduction. The study of products of random linear operators can be traced back to
the seminal article of Furstenberg and Kesten (1960), studying products of the form

M0,n �M0 . . .Mn�1,

where pMnqn¥0 is a stationary and metrically transitive sequence of p� p real or complex random
matrices. Under a mild irreducibility assumption, the authors exhibit a strong law of large numbers
on the norm of M0,n, in the form

lim
nÑ8

1

n
log }µM0,n} � λ,

where λ is a deterministic number called Lyapunov exponent of the sequence pMnqn¥0, defined as

λ � lim
nÑ8

1

n
E rlog }M0,n}s � inf

n¥1

1

n
E rlog }M0,n}s ,

where the norm }�} can be chosen to be any submultiplicative norm. Under additional positivity and
boundedness assumptions on the entries of the matrices pMnq, Furstenberg and Kesten (1960) also
prove a strong law of large numbers for the entries M0,npi, jq of the products : for any i, j P t1, . . . , du,
almost surely,

lim
nÑ8

1

n
logM0,npi, jq � λ.

These estimates on the behavior of the entries of M0,n were then extended to the case of products
of invertible matrices, see e.g. Guivarc’h and Liu (2001) and Bougerol and Lacroix (1985). These
works rely on a careful study of the action of invertible matrices on the projective space PpRdq.
To strengthen the results from Furstenberg and Kesten (1960) on products of matrices with non
negative entries and relax their assumptions, Hennion (1997) studied the action of MdpR�q on the
projective space PpRd

�q, endowed with the so called (pseudo)-Hilbert distance dH previously defined
in Busemann and Kelly (1953) and Birkhoff (1957). This distance is particularly well adapted to
this problem, since the contraction coefficient of the projective action of a matrix with respect
to dH is explicit in terms of its entries, in particular, any matrix with nonnegative entries in 1-
contracting and any matrix with positive entries is strictly contracting. Under the assumption that
almost surely, for n large enough, M0,n has all positive entries, Hennion obtains the asymptotic
decomposition

M0,npi, jq � λnRnpiqLnpjq � o
nÑ8

pλnq,

where λn is the dominant eigenvalue of M0,n and Ln, Rn are the associated left and right eigenvectors,
with the normalizations }Rn} � 1 and xLn, Rny � 1. Moreover pRnqn¥0 almost surely converges
to a random vector R, pLn{}Ln}qn converges in distribution, and

�
n�1 log λn

�
n¥1

almost surely
converges to the Lyapunov exponent λ.
Such results have important implications, in particular in the field of populations dynamics. Indeed,
a population composed of d types of individuals, evolving in a fluctuating environment, without
interacting which each other, can be modelled by a linear model of the form

xn � xn�1Mn�1, (1.1)

where xn is a row vector of Rd
� encoding the mass of individuals of each type at time n and

Mn�1 � pMn�1pi, jqq1¤i,j¤d is a random matrix encoding the rates at which individuals of each
type i create individuals of each type j between times n� 1 and n. In such a time-inhomogeneous
population model, the understanding of the asymptotics of xn amounts to the understanding of the
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matrix product M0,n.
Moreover, such products also appear in the study of multitype Galton-Watson processes in random
environment (MGWRE), which were introduced in Athreya and Karlin (1971). They are a gener-
alization of Galton-Watson processes to the case where the distribution of the (random) offspring
of an individual depends on a notion of type and on a random environment that changes through
time. When conditioning a MGWRE on the environment sequence, one obtains a so-called quenched
population model, which satisifies (1.1), where xn is the expectation of the population conditionally
on the environmental sequence. The value of the Lyapunov exponent λ of the underlying matrix
product separates three regimes of the MGWRE : subcritical (λ   0), critical (λ � 0), supercritical
(λ ¡ 0). These three regimes have different properties. In particular, when λ ¤ 0, the MGWRE
goes extinct with probability 1, when λ ¡ 0, the MGWRE survives with positive probability. This
separation between regimes was established in Athreya and Karlin (1971) and Kaplan (1974), using
results from Furstenberg and Kesten (1960). More recent advances in the study of random matrix
products - in particular Hennion’s article- were key to the last developments of the theory of MG-
WRE in random environments, see e.g. Pham (2018); Le Page et al. (2018); Grama et al. (2023).
Products of random infinite dimensional operators have also been the subject of some investiga-
tion. In the case where the involved operators are the transition matrices of some Markov chain, in
other words if they are conservative (in the sense that M1 � 1), ergodicity results are obtained by
Cogburn (1984), completed with some more precise results in Orey (1991). Various limit theorems
(law of large numbers, existence of Lyapunov exponents, central limit theorem, local central limit
theorem, Large Deviation principle) have also been obtained on products of ergodic sequences of
infinite dimensional operators using spectral techniques by Dragičević et al. (2018). The stability
of the Lyapunov exponents under perturbation is studied in Atnip et al. (2022); Froyland et al.
(2019). Ergodicity of products of random operators was also obtained in Kifer (1996) in the case
where they act on some compact space X.
In this paper, we would like to obtain similar ergodicity results for products of infinite dimensional
positive operators, thus extending the results of Kifer (1996) without any topological assumption
on X, in particular without compacity. We have in particular in mind applications to population
models with an infinite number of types. We first consider such a set X, typically infinite, en-
dowed with a σ-algebra X , and build a set K� of positive linear operators acting both on the
space of signed measures MpXq on the left and the space of measurable bounded functions BpXq
on the right. Then, we let pMnq be a stationary, ergodic sequence of elements of K� and define the
products M0,n � M0 � � �Mn�1. The approach of Hennion (1997) can be extended to this infinite
dimensional setup. Indeed, it is possible to define the Hilbert distance dH on the projective positive
cone of an infinite dimensional vector space and to obtain a nice characterisation of the operators
that are (strictly) contracting with respect to dH . We refer the reader to Ligonnière (2023) for a
proof of these facts. However, as we explain in Section 4, this characterisation leads to stronger
positivity assumptions in an infinite dimensional context than it did in the finite dimensional one.
For example, such an extension of Hennion’s approach would not be able to deal with products of
infinite Leslie matrices that we present in Section 5.
For this reason, we use a different contraction method to obtain a projective contraction. This
method aims at extending the Doeblin contraction techniques for Markov operators to a product
of non conservative operators (that is operators M such that M1 � 1 in general). To do so, we
consider the auxiliary family of Markov operators PN

k,n, defined for each k ¤ n ¤ N as

δxP
N
k,nf �

δxMk,npfmn,N q

mk,N pxq
,

where, for x P X,

mk,npxq � δxMk,n1.
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These Markov operators are related to the projective action µ �Mk,n �
µMk,n

}µMk,n}
of Mk,n on measures

by :
δx �Mk,n � δxP

n
k,n � δxP

n
k,k�1 � � �P

n
n�1,n,

for any x P X. We provide sufficient conditions for the Markov operators pPn
k,k�1qk n to satisfy

Doeblin minorations of the form δxP pfq ¥ cνpfq, which guarantees that they are contracting in
total variation. This allows to obtain a notion of projective contraction of the Mk,n on the set of
signed measures. Such auxiliary operators were already introduced and already applied to study
both homogeneous semi-groups of operators, e.g. in Del Moral and Miclo (2002); Champagnat and
Villemonais (2016) and inhomogeneous ones, e.g. in Bansaye et al. (2020). We consider here a
random sequence of operators pMnq, i.e a discrete time, random, time-inhomogeneous semi group,
and assume this sequence is stationary and ergodic. The stationary and ergodic framework allows
us to provide more explicit assumptions, and we obtain a finer asymptotic analysis of the sequence
pM0,nqn¥0. Namely, we prove that the following almost sure approximation in total variation holds
for n large enough

}µM0,n � µphqrnπn}TV ¤ δn}µM0,n}TV , (1.2)
where δ   1, h is a random bounded function, rn is a positive random number and pπnq is a sequence
of random probability measures on X, which are all independent of the measure µ. We prove
additionally that pn�1 logprnqq converges almost surely to the Lyapunov exponent of the process
M0,n, and that the sequence pπnq of random probabilities converges in distribution with respect to
the total variation topology towards a random probability measure Λ on M1pXq. Additionally, we
show in Theorem 2.2 that when the sequence pMnq is i.i.d, the probability distribution Λ and the
Lyapunov exponent λ are related as follows :

λ �

»
log }µM}dΛpµqdPpMq,

where P refers to the law of the operators pMnq, thus extending a result stated in Bougerol and
Lacroix (1985) in finite dimension. Finally, still under the assumption that pMnq is i.i.d, we show
in Theorem 2.3 that, when λ � 0, it holds almost surely, for any µ PM�pXq � t0u,

lim sup
nÑ8

log }µM0,n} � �lim inf
nÑ8

}µM0,n} � �8, (OSC)

except in a situation knowed as Null-Homology.
These results should allow to extend many known results on MGWRE with a finite type set to a class
of MGWRE with an infinite type set X. In particular, our results imply that when the Lyapunov
exponent λ is nonpositive, outside of Null-Homology, the quenched population size µM0,n1 satisfies
lim inf
nÑ8

µM0,n1 � 0 almost surely. By a classical first moment argument, this is a sufficient condition
for the almost sure extinction of the population. The survival of the population when λ ¡ 0 is a
more delicate problem and will be the object of a forecoming article.

1.2. Framework and notations. Let pX,X q be a measurable set of arbitrary cardinality, such that
for all x P X, the singleton txu P X . We denote by BpXq the Banach space of bounded measurable
functions on X, endowed with the supremum norm, and B�pXq the cone of nonnegative functions of
BpXq. The vector space of signed measures, noted MpXq, and the cone of nonnegative elements of
MpXq, noted M�pXq, are endowed with the total variation norm } � }TV . Note that }µ}TV � µpXq
for any µ PM�pXq. Let M1pXq be the set of probability measures on pX,X q. For any measurable
set A P X , let 1A P BpXq be the indicator function of A. For short, we note 1 � 1X P BpXq the unit
function on X. We also note δx PM1pXq the Dirac measure at x.

Let K� be the set of maps Q of the form:

Q : X� X ÝÑ R�,
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such that, for any x P X, for any A P X , the map x ÞÑ Qpx,Aq is measurable, the map A ÞÑ Qpx,Aq
is a positive and finite measure on pX,X q and ~Q~ :� supxPXQpx,Xq   8.

Such a map Q P K� naturally operates on BpXq by setting, for any f P BpXq, and any x P X,

Qfpxq �

»
X
fpyqQpx, dyq.

Note that |Qfpxq| ¤ }f}8~Q~, thus Qf P B�pXq as soon as f P B�pXq and Q acts as a bounded
positive operator with norm ~Q~ on BpXq. Moreover, for any positive measure µ P M�pXq, and
any Q P K�, the positive measure µQ on X is well defined by setting, for any nonnegative function
f ,

µQpfq � µpQfq �

»
X
Qfpxqµpdxq.

Note that µQ has indeed finite mass µQp1q � µpQ1q ¤ ~Q~µp1q   8 since µ is assumed to be
a finite measure. This action can therefore naturally be extended to the set of signed measures
MpXq, where Q acts as a bounded linear operator with norm ~Q~.

Thus, the elements of K� operate as positive linear operators both on the sets of bounded
measurable functions and on the set of signed measures on X, with a duality relation between
these two actions. Moreover, it is also possible to define a projective action � of K� onto the
projective space associated with M�pXq, ie the set of probability measures M1pXq, by setting, for
any µ PM�pXq and any M P K� such that µM � 0,

µ �M �
µM

}µM}TV
PM1pXq.

Finally, the set K� is naturally endowed with an associative, non commutative product, defined by
: for any Q1, Q2 P K�, any x P X and any A P X ,

Q1Q2px,Aq �

»
y
Q1px, dyqQ2py,Aq.

This product is compatible with the left and right actions defined above, in other words, for any
Q1, Q2 P K�, any µ PM�pXq, and f P B�pXq,

µpQ1Q2q � pµQ1qQ2 and Q1Q2pfq � Q1pQ2fq,

and whenever µ PM�pXq and µQ1Q2 � 0,

µ � pQ1Q2q � pµ �Q1q �Q2.

The operator norm ~ � ~ satisfies the submultiplicativity relation

~Q1Q2~ ¤ ~Q1~~Q2~.

Remark 1.1. In the case of a finite or countable set X, any measure on X is atomic thus an operator
Q P K� on X corresponds to a matrix indexed by X with nonnegative entries. The product of
operators of K� corresponds to the matrix product and the respective left and right actions of K�

on signed measures and bounded functions correspond to the product of matrices respectively with
the vectors of ℓ1pXq (seen as row vectors) and of ℓ8pXq (seen as column vectors).

We consider a dynamical system pΩ,A,P, θq, where pΩ,A,Pq is a probability set and θ : Ω ÝÑ Ω
is a measurable transformation, which preserves the probability P, i.e P � θ�1 � P.
Let M : Ω ÝÑ K� be a measurable map. We denote as N0 the set of nonnegative integers and note,
for each n P N0,

Mn �M � θn.

Note that the sequence pMnqnPN0 is stationary. For each k   n, ω P Ω, let us define the random
product

Mk,npωq �Mkpωq � � �Mn�1pωq � pM � θkpωqq � � �
�
M � θn�1pωq

�
P K�.
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with the convention Mk,kpωq � Id P K�. Notice that Mk,k�npωq � M0,n � θ
kpωq. The operators

satisfy the following semi group property : for any k ¤ n ¤ N , any µ PMpXq, any f P BpXq
µMk,N pωqf � µMk,npωqMn,N pωqf. (1.3)

Moreover, for any x P X, k ¤ n, ω P Ω, we set

mk,npx, ωq � δxMk,npωq1 � }δxMk,npωq}TV .

Notice in particular that for any positive measure µ,

}µMk,N} � µpmk,N q � µMk,N1 � µMk,nmn,N .

Let us point out additionally that ~Mk,npωq~ � supxPXmk,npx, ωq � }mk,np�, ωq}8, and that for any
k ¤ n ¤ N , ~Mk,N~ ¤ ~Mk,n~~Mn,N~. Finally, to shorten the notations, we often omit the depen-
dence in ω, writing for example mk,npxq � mk,npx, ωq, and ~Mk,n~ � }mk,n}8 � supxPXmk,npx, ωq.

1.3. Assumptions. We list here several hypotheses that will be used in the rest of the article.

A1. The dynamical system pΩ,A,P, θq is ergodic.

We recall that a dynamical system is ergodic when any measurable set A P A such that θ�1pAq �
A satisfies PpAq P t0, 1u.

A2. For almost all ω P Ω, the function x ÞÑ m0,1px, ωq is a positive function.

By stationarity, A2 implies that Ppdωq-almost surely, the product Mk,npωq is a continuous, non
zero, positive linear operator. We introduce the integrability property

A3. E
�
log� }m0,1}8

�
  8.

In particular, recalling that }mk,n}8 � ~Mk,n~, by submultiplicativity of the norm ~ �~, A1 and
A3 imply that E log� p~Mk,n~q   8 for all k ¤ n.

We call admissible coupling constants a measurable map pν, c, dq : ω P Ω ÞÑ pνω, cpωq, dpωqq P
M1pXq � r0, 1s2 such that for P-almost any ω P Ω,

i) for all x P X and all f P B�pXq, the couple pνω, cpωqq satisfies

δxMpωqpfq ¥ cpωq}δxMpωq}νωpfq (1.4)

ii) for all n ¥ 0, the couple pνω, dpωqq satisfies

νωpm1,nq ¥ dpωq~M1,n~ (1.5)

When an admissible triplet is defined, we define the random variable

γpωq � cpωqdpωq.

Note that taking c � d � 0 and any measurable map ω ÞÑ νω defines an admissible triplet, however
in this case γ � 0. Our main assumption is therefore

A4. There exists an admissible triplet ω ÞÑ pνω, cpωq, dpωqq such that Prγ ¡ 0s ¡ 0.

2. Statement of the results and structure of the paper

2.1. Main results. Set
γ̄ :� exp pE rlogp1� γqsq P r0, 1s,

and notice that A4 yields γ̄   1. Under the previous assumptions, we prove the following Theorem:

Theorem 2.1. Let M : Ω ÝÑ K� be a measurable map and assume that Assumptions A1,A2 and
A4 hold. Then,
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i) Ppdωq-almost surely, there exists a random function hPBpXq such that, for any δPpγ̄Prγ¡0s, 1q,
for n large enough, for any finite measures µ1, µ2 PM�pXq � t0u,����µ1M0,n �

µ1phq

µ2phq
µ2M0,n

����
TV

¤ δn}µ1M0,n}. (2.1)

Such a function h is unique up to a multiplicative constant.
ii) There exists a probability measure Λ on the space M1pXq, such that for any probability mea-

sure µ, the sequence of random probability measures pµ �M0,nq converges in distribution to-
wards Λ, in the space M1pXq, endowed with the total variation norm.

iii) Assuming additionally A3, for almost any ω P Ω and any finite, positive, non-zero measure
µ,

1

n
log }µM0,n} ÝÑ

nÑ8
inf
NPN

1

N
E rlog~M0,N~s � λ P r�8,8q. (2.2)

Note that the estimate (1.2) can be derived from Theorem 2.1 by a choice of an arbitrary measure
µ2, and by setting

πn � µ2 �M0,n, rn �
}µ2M0,n}

µ2phq
,

The rest of this paper focuses on the independent case, that is, the case where the sequence of
operators pMnq is i.i.d, with a law called P. This can be obtained by setting pΩ,A,Pq to be the
product space Ω � pK�q

N, P � PbN and M : pK�q
N
Ñ K�, pNkqk¥0 ÞÑ N0. In this independent

case, we are able to characterize the measure Λ on the projective space M1pXq as the only invariant
measure left invariant by the projective action of the matrices pMnq. In other words, it is the only
invariant probability measure of the Markov chain pµnqn¥0 defined by

µn �
µ0M0,n

}µ0M0,n}
PM1pXq.

A classical cocyle property yields the decomposition

log }µ0M0,n}TV �
n�1̧

k�0

logp}µkMk}q �
n�1̧

k�0

ρpµk,Mkq, (2.3)

where pµk,Mkq is a Markov chain on M1pXq �K�, with the unique invariant probability measure
Λ b P. These property allows us to obtain additional insight over the asymptotic behavior of
the mass of the measure µM0,n. To do so, we introduce the following strengthened versions of
assumptions A3 and A4:

A3+. E r|log }m0,1}8|s   8.

A4+. There exists an admissible triplet pν, c, dq such that E |logpγq|   8.

Note that A4+ implies in particular that Prγ ¡ 0s � 1. Under these assumptions we are able to
link the Lyapunov exponent λ, which governs the exponential growth of the mass of the measure
}µMk,n}, with the asymptotic projective distribution Λ on M1pXq.

Theorem 2.2. Consider an i.i.d sequence pMnq of elements of K� with law P, suppose assumptions
A1, A2, A3+ and A4+ hold. Then, the almost sure convergence (2.2) also holds in L1pΛ b Pq,
that is » ���� 1n log }µM0,n} � λ

���� dΛpµqdPbnpM0, � � � ,Mn�1q ÝÑ
nÑ8

0.

As a consequence,

λ �

»
log }µM}dΛpµqdPpMq. (2.4)
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Moreover, in the critical case where λ � 0, the law of large numbers (2.2) is not enough to
know whether lim inf }µM0,n} and lim sup }µM0,n} are 0, a positive real number, or �8. Answering
these questions is the objective of our last theorem. When λ � 0, the sequence pMnq is i.i.d and
µ0 � Λ, the increments ρpµk,Mkq of the sum (2.3) are centered and form an ergodic sequence. By
analogy with a centered random walk with i.i.d increments, we expect their sum log }µ0M0,n} to
oscillate between �8 and �8. More formally, we use the theory of Markov random walks, and in
particular Alsmeyer (2001), which establishes this oscillation property exists, except in some case
called Null-Homology. In our context, we say that there is Null Homology when there exists some
function η : M1pXq ÞÑ R such that dpΛb Pqpµ,Mq-a.s.

log }µM} � ηpµ �Mq � ηpµq. (NH)

When (NH) does not hold, using results from Alsmeyer (2001), we indeed obtain the oscillation
of log }µM0,n} for any initial measure µ. On the contrary, when (NH) holds, it is clear that
log }µ0M0,n} � ηpµnq � ηpµ0q, thus log }µ0M0,n} may or may not oscillate, depending on η. More
formally, our result is

Theorem 2.3. Consider an i.i.d sequence pMnq of elements of K� with law P, suppose assumptions
A1, A2, A3 and A4+ hold. Assume additionally that λ � 0. Then, if (NH) does not hold, we
have

lim inf
nÑ8

log }µM0,n} � �8 and lim sup
nÑ8

log }µM0,n} � �8 (OSC)

for any µ P M�pXq � t0u. If (NH) holds, let µ0 � Λ, and let us note a   b P r�8,�8s the
respective infinimum and supremum of the support of the random variable ηpµ0q. It holds

a � �8 ô P� a.s., for any µ PM�pXq � t0u, lim inf
nÑ8

log }µM0,n} � �8

and
b � �8 ô P� a.s., for any µ PM�pXq � t0u, lim sup

nÑ8
log }µM0,n} � �8.

The notion of Null Homology already appears in the framework of products of p�p non-negative
matrices, and Hennion (1997) provides some geometric condition which prevents Null-Homology
(see in particular Theorem 5 of Hennion (1997)). We are unfortunately not able to generalize this
condition in the infinite dimensional case.

2.2. Structure of the paper. Section 3 contains the proofs of Theorems 2.1, 2.2 and 2.3. More
precisely, in Subsection 3.1, we recall how the coefficient γ allow to control some contraction rates
of the operators M0,n. These results are adapted from Bansaye et al. (2020). In Subsection 3.2, we
use the ergodic structure, in particular Assumptions A1 and A4 to obtain a geometric decay of the
error terms that appeared in our previous estimations. In Subsection 3.3 we derive the three claims
of Theorem 2.1. Finally, in Subsection 3.4, we focus on the case where the sequence pMnq is i.i.d.
In this case, a study of the invariant measures and the ergodicity properties of the Markov chains
pµ0 �M0,nqn¥0 and pµ0 �M0,n,Mnqn¥0, allows to prove Theorems 2.2 and 2.3.

Section 4 is dedicated to a comparison of our results with those obtained based on Hilbert
contractions. More precisely, we show how natural conditions coming from Hilbert contractions
techniques provide more tractable sufficient conditions for our Assumptions (in particular A4),
both in finite and infinite dimension.

In Section 5, we apply our results to study products of infinite Leslie Matrices. This constitutes
an example of an interesting class of systems that cannot be studied using the Hilbert metric.
More precisely, we provide in Subsection 5.2 reasonable sufficient conditions under which a product
of Leslie matrices modelling the behavior of an age structured population satisfies assumptions
A1 to A4. However, when these conditions are not satisfied, it can be quite difficult to exhibit an
admissible triplet such that γ ¡ 0, even on a deterministic and constant sequence of Leslie Matrices.
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To illustrate this fact, we present in Subsection 5.3 an example of system where γ � 0 even if all
the other assumptions are satisfied.

3. Proofs

3.1. Contraction results based on inhomogeneous Doeblin minoration. Given an admissible triplet
pν, c, dq, we define for every k ¥ 0 the r0, 1s-valued random variables ck � ckpωq � cpθkpωqq,
dk�1 � dk�1pωq � dpθkpωqq and γk � γkpωq � γpθkpωqq, as well as the M1pXq valued random
variable νk � νθkpωq. Notice that c � c0 and d � d1, that the sequences pckqk¥0, pdkqk¥1, pγkqk¥0

are all stationary sequences and that for all k ¥ 0,

γk � ckdk�1.

Moreover the random variables νk, ck, dk�1 satisfy some time-shifted versions of (1.4) and (1.5).
Indeed, for any f P B�pXq and any x P X, it holds

δxMk,k�1pfq ¥ ckmk,k�1pxqνkpfq, P� a.s. (3.1)

and for any n ¥ k,

νkpmk�1,nq ¥ dk�1~Mk�1,n~ � dk�1 sup
xPX

mk�1,npxq, P� a.s. (3.2)

The first step towards proving Theorem 2.1 is establishing

Proposition 3.1. Suppose A2 and let ω ÞÑ pνω, cpωq, dpωqq be an admissible triplet. Then, Ppdωq-
almost surely, for any k ¤ n ¤ N and any finite measures µ1, µ2 PM�pXq � t0u, it holds

}µ1 �Mk,n � µ2 �Mk,n}TV ¤ 2
n�1¹
i�k

p1� γiq, (3.3)

and, if n ¥ 1, it also holds Ppdωq-a.s.

γn�1

����µ1pmk,N q

µ1pmk,nq
�

µ2pmk,N q

µ2pmk,nq

���� ¤ 2
µ2pmk,N q

µ2pmk,nq

n�1¹
i�k

p1� γiq. (3.4)

This result was already introduced in Bansaye et al. (2020) in a somewhat different setup. We
have chosen to state and prove it here for the sake of completeness. Its proof is based on performing
a Doeblin minoration on a well-chosen sequence of auxiliary Markov operators pPN

k,nq. This Doeblin
property yields (3.3), a contraction property for the projective action of Mk,n on the space of
measures M�pXq. We derive then Equation (3.4), which describes how the growth of the mass
}µMk,t} between times t � n and t � N depends on the initial measure µ.

Let us introduce now the operators PN
k,n upon which we perform the desired Doeblin minoration.

Under assumption A2, Ppdωq-almost surely, for any k ¤ n ¤ N , x ÞÑ mk,npxq and x ÞÑ mn,N pxq

are positive functions on X. For each k ¤ n ¤ N , an operator PN
k,npωq can be defined Ppdωq-almost

surely, as follows : for each x P X, for each positive measurable f : X ÝÑ R,

δxP
N
k,nf �

δxMk,npfmn,N q

mk,N pxq
,

PN
k,n is a positive and conservative operator (i.e. PN

k,n1 � 1q. Indeed, by Equation (1.3), for any
x P X,

δxP
N
k,n1 �

δxMk,nmn,N

δxMk,N1
� 1.

Moreover, PN
k,n satisfies the relation :

PN
k,n � PN

k,k�1 � � �P
N
n�1,n.
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Note that PN
k,n is a matrix when X is countable and then, for any x, y P X,

PN
k,npx, yq �

mn,N pyq

mk,N pxq
Mk,npx, yq.

These operators satisfy a Doeblin contraction property summed up in

Lemma 3.2. Assume Assumption A2 holds and let ω ÞÑ pνω, cpωq, dpωqq be an admissible triplet.
Then Ppdωq-almost surely, all the PN

k,npωq are well defined, and it holds

i) For any n ¤ N � 1, there exists a random probability measure νn,N on X such that, for any
x P X,

δxP
N
n,n�1 ¥ cndn�1νn,N � γnνn,N .

ii) For any signed measures ρ1, ρ2, of same mass and any n ¤ N � 1,��ρ1PN
n,n�1 � ρ2P

N
n,n�1

��
TV

¤ p1� γnq}ρ1 � ρ2}TV .

iii) For any k ¤ n ¤ N and any signed measures ρ1, ρ2 of same mass,

��ρ1PN
k,n � ρ2P

N
k,n

��
TV

¤
n�1¹
i�k

p1� γiq }ρ1 � ρ2}TV .

Notice that in this lemma, our single assumption is A2. It allows the pPN
k,nq to be defined Ppdωq-

almost surely. In particular, A4 is not assumed, we allow γnpωq � 0, in which case we just obtain
that PN

n,n�1 is 1-contracting.

Proof of Lemma 3.2: Let ω P Ω such that all the PN
k,n are well defined. For any x P X and any

f P B�pXq, it holds,
δxMn,n�1pfmn�1,N q ¥ cnmn,n�1pxqνnpfmn�1,N q,

thus

δxP
N
n,n�1f �

δxMn,n�1pfmn�1,N q

mn,N pxq
¥ cn

νnpfmn�1,N qmn,n�1pxq

mn,N pxq
,

with, by definition of dn�1 :

dn�1mn,N pxq � dn�1δxMn,n�1pmn�1,N q ¤ νnpmn�1,N qmn,n�1pxq.

Therefore,

δxP
N
n,n�1f ¥ cndn�1

νpfmn�1,N q

νpmn�1,N q
� cndn�1νn,N pfq � γnνn,N pfq,

setting

νn,N p�q �
νnp�mn�1,N q

νnpmn�1,N q
,

which is a probability measure. This concludes the proof of i).
Let us prove now ii). This result is a classical consequence of the previous point using the theory
of Markov operators. A Markov operator P is said to be δ-Doeblin (with δ ¡ 0) when there exists
a probability measure µ such that δxPf ¥ δµpfq for any x in the state space and any f P B�pXq.
Furthermore, such an operator is 1� δ contracting in total variation : for any signed measure ρ of
mass 0,

}ρP }TV ¤ p1� δq}ρ}TV .

This property trivially holds for δ � 0 : any positive operator satisfies δxPf ¥ 0 when f is a non
negative function, and any Markov operator is 1 � p1 � 0q-contracting in total variation. In our
context, the previous point of the lemma yields that Ppdωq-almost surely, for any n ¤ N � 1, and
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any ν PM1pXq, the Markov operator PN
n,n�1 is γn-Doeblin. Therefore, for any ρ1, ρ2 PMpXq, such

that ρ1p1q � ρ2p1q, noting ρ � ρ1 � ρ2, it holds��ρPN
n,n�1

��
TV

¤ p1� γnq}ρ}TV .

This proves ii), let us move now to iii). Since all the PN
n,n�1 are conservative operators, the image

of a measure of mass 0 by PN
n,n�1 is a measure of mass 0. The equality PN

k,n � PN
k,k�1 � � �P

N
n�1,n,

yields
���ρPN

k,n

���
TV

¤ p1� γn�1q}ρP
N
k,n�1}TV . By induction, we deduce

��ρPN
k,n

��
TV

¤
n�1¹
i�k

p1� γiq }ρ}TV .

This concludes the proof. □

Proof of Proposition 3.1: Let us prove first Inequality (3.3). Applying Lemma 3.2, iii) with n � N
and ρ � δx � δy, we get, Ppdωq-almost surely

��δxPn
k,n � δyP

n
k,n

��
TV

¤
n�1¹
i�k

p1� γiq }δx � δy}TV ¤ 2
n�1¹
i�k

p1� γiq.

Hence, for any f P BpXq and x, y P X,����δxMk,npfq

mk,npxq
�

δyMk,npfq

mk,npyq

���� ¤ 2 }f}8

n�1¹
i�k

p1� γiq.

Let µ1 and µ2 be two positive measures. The inequality����δxMk,npfq �mk,npxq
δyMk,npfq

mk,npyq

���� ¤ 2mk,npxq }f}8

n�1¹
i�k

p1� γiq,

yields, after integrating with respect to µ1pdxq :����µ1Mk,npfq � µ1pmk,nq
δyMk,npfq

mk,npyq

���� ¤ 2µ1pmk,nq }f}8

n�1¹
i�k

p1� γiq,

so that ����µ1 �Mk,npfq �
δyMk,npfq

mk,npyq

���� ¤ 2 }f}8

n�1¹
i�k

p1� γiq.

Integrating now with respect to µ2pdyq, we obtain

|µ1 �Mk,npfq � µ2 �Mk,npfq| ¤ 2 }f}8

n�1¹
i�k

p1� γiq,

and finally

}µ1 �Mk,n � µ2 �Mk,n}TV ¤ 2
n�1¹
i�k

p1� γiq.

Let us move now to the proof of Inequality (3.4). Applying Inequality (3.3) to the function x ÞÑ
mn,N pxq, one gets����µ1pmk,N q

µ1pmk,nq
�

µ2pmk,N q

µ2pmk,nq

���� ¤ 2 }mn,N}8

n�1¹
i�k

p1� γiq � 2~Mn,N~
n�1¹
i�k

p1� γiq.

By (3.1) and (3.2) it holds,
dn ~Mn,N~ ¤ νn�1pmn,N q
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and
µ2pmk,N q � µ2Mk,n�1Mn�1,nmn,N ¥ cn�1µ2pmk,nqνn�1pmn,N q.

Combining these identities we obtain, Ppdωq-almost surely,

cn�1dn

����µ1pmk,N q

µ1pmk,nq
�

µ2pmk,N q

µ2pmk,nq

���� ¤ 2
µ2pmk,N q

µ2pmk,nq

n�1¹
i�k

p1� γiq.

Thus taking an infimum in ν, this yields, Ppdωq-almost surely,

γn�1

����µ1pmk,N q

µ1pmk,nq
�

µ2pmk,N q

µ2pmk,nq

���� ¤ 2
µ2pmk,N q

µ2pmk,nq

n�1¹
i�k

p1� γiq.

This ends the proof. □

3.2. Asymptotic estimates under ergodicity assumptions. For any n such that γn�1 � 0 and any
k ¤ n, we define

Γk,n �
1

γn�1

n�1¹
i�k

p1� γiq, (3.5)

and we set Γk,n � �8 when γn�1 � 0. With these notations, Equation (3.4) can be rewritten����µ1pmk,N q

µ1pmk,nq
�

µ2pmk,N q

µ2pmk,nq

���� ¤ 2Γk,n
µ2pmk,N q

µ2pmk,nq
. (3.6)

In this subsection, we use the ergodicity Assumption A1, as well as Assumption A4, which provide
a control on the sequence of Doeblin coefficients pγnq. In the following lemma, we use these as-
sumptions to establish a geometric decay of both

±n�1
i�k p1� γiq and Γk,n as nÑ8. More precisely,

(3.8) provides the geometric decay of
±n�1

k�1p1 � γiq using Birkhoff’s ergodic theorem. To derive
the decay of Γk,n as n Ñ 8 we need additionally to avoid that γn�1 is either 0 or too close to 0.
Under Assumption A4+ the coefficients pγnqn¥0 are almost surely all nonzero, and (3.10) provides
a sufficient control for the geometric decay of Γk,n. Under the weaker assumption A4, it is possible
however that γn�1 � 0 for some values of n. We can however focus on some random times at which
γn�1 is greater that some predetermined level ε ¡ 0. We define those random times by

tnuε � maxti ¤ n|γi�1 ¥ εu Y t�8u (3.7)

for all n ¥ 0 and all ε ¡ 0. (3.9) establishes that the subsequence of pΓk,nqn¥0 associated with the
random times ptnuεqn¥0 still enjoys some slower geometric decay.

Lemma 3.3. Assume that assumptions A1, A2 and A4 hold. Then for any k ¥ 0,�
k�n�1¹
i�k

p1� γiq

� 1
n

ÝÑ
nÑ8

γ̄   1,Ppdωq � almost surely (3.8)

Moreover, for all ε ¡ 0 such that Prγ ¥ εs ¡ 0, it holds

lim sup
nÑ�8

�
Γk,tnuε

	 1
n
¤ γ̄Prγ¥εs   1,Ppdωq � almost surely. (3.9)

Finally, assuming additionally A4+, it holds

lim
nÑ8

�
1

γn


 1
n

� 1,Ppdωq � almost surely. (3.10)
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Proof of Lemma 3.3: We recall first that by definition, for any ω P Ω

p1� γiqpωq � p1� γq � θipωq.

Notice then that, by Assumption A4, for almost every ω P Ω, γpωq P p0, 1s . Thus logp1� γpωqq P
r�8, 0q and γ̄ � exp pE rlogp1� γpωqqsq P r0, 1q.

Thus for any k,

log

�
��k�n�1¹

i�k

p1� γiq

� 1
n

�
� �

1

n

n�1̧

i�0

logp1� γkq � θ
i.

Since θ is an ergodic map, by Birkhoff’s ergodic theorem, for any k ¥ 0,

1

n

n�1̧

i�0

logp1� γk�iq ÝÑ
nÑ8

E rlogp1� γqs � log γ̄, Ppdωq � almost surely.

This yields (3.8). Moreover, under A4, for ε small enough, by Birkhoff’s ergodic theorem, it holds
almost surely

lim
nÑ8

1

n
#t1 ¤ k ¤ n|γk�1 ¥ εu � Prγ ¥ εs ¡ 0.

However
tnuε ¥ #t1 ¤ k ¤ n|γk�1 ¥ εu

by definition of tnuε . Thus, almost surely

lim inf
nÑ8

tnuε
n

¥ Prγ ¥ εs ¡ 0,

in particular, limnÑ8 tnuε � �8 almost surely.
As a consequence, for any k ¥ 0, it holds P-a.s., for n large enough

�
Γk,tnuε

	 1
n
�

�
� 1

γtnuε�1

tnuε�1¹
i�k

p1� γiq

�



1
n

¤

�
1

ε


 1
n

exp

�
�tnuε � k

n

1

tnuε � k

tnuε�1¸
i�k

logp1� γiq

�



where almost surely

lim
nÑ8

1

tnuε � k

tnuε�1¸
i�k

logp1� γiq � logpγ̄q.

Hence

lim sup
nÑ8

�
Γk,tnuε

	 1
n
¤ exp

�
lim inf
nÑ8

�
tnuε
n



logpγ̄q



¤ γ̄Prγ¥εs.

This concludes the proof of (3.9). Let us move to the proof of Inequality (3.10).
Notice first that since γn ¤ 1 for all n,

lim inf
nÑ8

�
1

γn


 1
n

¥ 1.

Let us prove now the converse inequality. Let us define for each b ¡ 1,

Ynpbq �
� logpγnq

logpbq
¥ 0,

and
Nb �

¸
nPN0

1
p1{γnq

1
n¡b

�
¸
nPN0

1Ynpbq¡n.
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For a given value of b, the sequence pYnpbqqnPN0 is stationary, thus

EpNbq �
¸
nPN0

P rYnpbq ¡ ns �
¸
nPN0

P rY0pbq ¡ ns .

It is a well known fact that for a nonnegative random variable Y ,

ErY s   8 ô
¸
n¥0

PpY ¡ nq   8.

By Assumption A4, it holds E rY0pbqs   8 and E rNbs   8 for all b ¡ 1. Therefore, Ppdωq-almost

surely, Nb   8, thus
�

1
γn

	 1
n
¤ b for n large enough and lim sup

nÑ8

�
1
γn

	 1
n
¤ 1. Finally,

lim
nÑ8

�
1

γn


 1
n

� 1, Ppdωq � almost surely.

□

Putting the estimates from Lemma 3.3 together with Proposition 3.1, we obtain

Proposition 3.4. Assume A1, A2, A4 hold. Let ε ¡ 0 such that Prγ ¥ εs ¡ 0. Then, Ppdωq-
almost surely, for any k P N0, there exists a bounded, non-negative measurable function hk such
that, for n large enough, for any µ1, µ2 PM�pXq � t0u,����µ1Mk,n �

µ1phkq

µ2phkq
µ2Mk,n

����
TV

¤ ∆ε
k,n}µ1Mk,n}, (3.11)

where almost surely, for n large enough

∆ε
k,n :�

8Γk,tnuε

1� 2Γk,tnuε

.

is well-defined and positive, and

lim sup
nÑ8

�
∆ε

k,n

� 1
n ¤ γ̄Prγ¥εs   1. (3.12)

Furthermore, Ppdωq-almost surely, a function hk satisfying (3.11) is unique up to a multiplicative
constant.

Proof of Proposition 3.4: We recall first that by (3.9), it holds almost surely

lim
nÑ8

Γk,tnuε
� 0. (3.13)

As a consequence, almost surely, for n large enough, 2Γk,tnuε
  1, thus ∆ε

k,n is indeed well-defined
and positive. We also derive (3.12) from (3.9) and (3.13). As a consequence, limnÑ8∆ε

k,n � 0
almost surely.

Let us assume now that there exists a positive function hk satisfying Inequality (3.11). Then, if
x, y P X, setting µ1 � δx, µ2 � δy and applying this inequality to the constant function 1, we almost
surely get, for n large enough����mk,npxq �

hkpxq

hkpyq
mk,npyq

���� ¤ ∆ε
k,nmk,npxq � o

nÑ8
pmk,npxqq.

Thus

lim
nÑ8

hkpxq

hkpyq

mk,npyq

mk,npxq
� 1,

which readily implies that
hkpxq

hkpyq
� lim

nÑ8

mk,npxq

mk,npyq
.
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This yields the unicity of hk up to a multiplicative constant, when it exists. Let us now prove the
existence of a function hk satisfying (3.11).

By Inequality (3.4), with µ1 � δx, µ2 � δy, one gets, Ppdωq-almost surely, for any k ¤ n ¤ N :����mk,N pxq

mk,N pyq
�

mk,npxq

mk,npyq

���� ¤ 2Γk,n
mk,npxq

mk,npyq
, (3.14)

where the right-hand-side term is infinite on the event tγn�1 � 0u. Setting

diamk,npx, yq � sup
N1,N2¥n

����mk,N1pxq

mk,N1pyq
�

mk,N2pxq

mk,N2pyq

���� ,
this yields, for any x, y P X,

diamk,npx, yq ¤ 4Γk,n
mk,npxq

mk,npyq
.

Exchanging the roles of x, y, one gets :

min rdiamk,npx, yq,diamk,npy, xqs ¤ 4Γk,n. (3.15)

For all k ¥ 0, x, y P X, both the sequences pdiamk,npx, yqqn¥k, pdiamk,npy, xqqn¥k are non-
increasing, and as a consequence from the definition of tnuε, tnuε ¤ n, thus it holds

min rdiamk,npx, yq,diamk,npy, xqs ¤ min
�
diamk,tnuε

px, yq,diamk,tnuε
py, xq

�
¤
�
4Γk,tnuε

	
ÝÑ
nÑ8

0, (3.16)

Ppdωq-almost surely, for n large enough, by (3.13). Thus one of the sequences pdiamk,npx, yqqn¥k,
pdiamk,npy, xqqn¥k has 0 as an adherence value. Since these sequences are non decreasing and
positive, they converge, thus, P-a.s., one of them tends to 0. Without loss of generality, suppose
that

diamk,npx, yq ÝÑ
nÑ8

0.

Then, the sequence of positive real numbers
�
mk,npxq
mk,npyq

	
n¥k

is a Cauchy sequence, it converges to a

nonnegative limit lkpx, yq. Moreover, as a consequence from the definition of tnuε, for all k ¤ n ¤ N ,
it holds tnuε ¤ n ¤ N and thus k ¤ k ^ tnuε ¤ N . Applying (3.14) yields therefore�����mk,N pxq

mk,N pyq
�

mk,k^tnuε
pxq

mk,k^tnuε
pyq

����� ¤ 2Γk,k^tnuε

mk,k^tnuε
pxq

mk,k^tnuε
pyq

. (3.17)

In particular, letting N Ñ8 in (3.17) proves that the limit lkpx, yq � limNÑ8
mk,N pxq
mk,N pyq

satisfies�����lkpx, yq � mk,k^tnuε
pxq

mk,k^tnuε
pyq

����� ¤ 2Γk,k^tnuε

mk,k^tnuε
pxq

mk,k^tnuε
pyq

(3.18)

Almost surely, it holds moreover for n large enough

k ^ tnuε � tnuε and 2Γk,k^tnuε
¤

1

4
.

Plugging this into Equation (3.18) yields, for n large enough�����mk,tnuε
pxq

mk,tnuε
pyq

� lkpx, yq

����� ¤ 1

4

mk,tnuε
pxq

mk,tnuε
pyq

.



108 Maxime Ligonnière

Since
mk,tnuε

pxq

mk,tnuε
pyq ¡ 0, this implies that lkpx, yq � limnÑ8

mk,npxq
mk,npyq

¡ 0 and consequently,

mk,npyq

mk,npxq
ÝÑ
nÑ8

1

lkpx, yq
  8.

Note that Proposition 3.1 allows to prove that Ppdωq-almost surely, (3.14) holds jointly for any
k ¤ n ¤ N and any x, y P X, thus so does (3.16). Thus Ppdωq-almost surely, all the sequences of
the form

�
mk,npxq
mk,npyq

	
n¥k

for all k ¥ 0, x, y P X converge to a positive limit as n ÝÑ 8.

Now, let us fix an arbitrary element x0 P X, and set hkpxq � lim
nÑ8

mk,npxq
mk,npx0q

for all x. The function
hk is positive and satisfies, for any x, y P X,

mk,N pxq

mk,N pyq
ÝÑ
NÑ8

hkpxq

hkpyq
.

Plugging this into Equation (3.17), we obtain almost surely, for n large enough�����hkpxqhkpyq
�

mk,tnuε
pxq

mk,tnuε
pyq

����� ¤ 2Γk,tnuε

mk,tnuε
pxq

mk,tnuε
pyq

. (3.19)

Consequently,

hkpxq ¤ hkpyq
�
1� 2Γk,tnuε

	 mk,tnuε
pxq

mk,tnuε
pyq

¤ hkpyq
�
1� 2Γk,tnuε

	 }mk,tnuε
}8

mk,tnuε
pyq

  8,

by A2, which implies that hk is bounded.
Notice now that for n large enough, taking N � n in (3.17) yields�����mk,npxq

mk,npyq
�

mk,tnuε
pxq

mk,tnuε
pyq

����� ¤ 2Γk,tnuε

mk,tnuε
pxq

mk,tnuε
pyq

(3.20)

Therefore, combining (3.20) with (3.19), we obtain����hkpxqhkpyq
�

mk,npxq

mk,npyq

���� ¤
�����mk,npxq

mk,npyq
�

mk,tnuε
pxq

mk,tnuε
pyq

������
�����mk,N pxq

mk,N pyq
�

mk,tnuε
pxq

mk,tnuε
pyq

�����
¤ 4Γk,tnuε

mk,tnuε
pxq

mk,tnuε
pyq

(3.21)

Once again, we recall that almost surely, for n large enough

2Γk,tnuε
  1.

Therefore (3.17) yields P-a.s., for n large enough

mk,tnuε
pxq

mk,tnuε
pyq

¤
1

1� 2Γk,tnuε

mk,npxq

mk,npyq
. (3.22)

Plugging this into (3.21) finally yields����hkpxqhkpyq
�

mk,npxq

mk,npyq

���� ¤ 4Γk,tnuε

1� 2Γk,tnuε

mk,npxq

mk,npyq
�

∆ε
k,n

2

mk,npxq

mk,npyq
(3.23)
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Moreover, for any positive and finite measure µ1 P M�pXq, any y P X, integrating (3.23) with
respect to µ1pdxq, one gets ����µ1phkq

hkpyq
�

µ1pmk,nq

mk,npyq

���� ¤ ∆ε
k,n

2

µ1pmk,nq

mk,npyq
,

Thus

|mk,npyqµ1phkq � µ1pmk,nqhkpyq| ¤
∆ε

k,n

2
µ1pmk,nqhkpyq.

Integrating with respect to any positive and finite measure µ2pdyq, this yields

|µ2pmk,nqµ1phkq � µ1pmk,nqµ2phkq| ¤
∆ε

k,n

2
µ1pmk,nqµ2phkq,

and finally, ����µ1phkq

µ2phkq
�

µ1pmk,nq

µ2pmk,nq

���� ¤ ∆ε
k,n

2

µ1pmk,nq

µ2pmk,nq
. (3.24)

Let us prove now that hk satisfies Inequality (3.11). It holds����µ1Mk,n �
µ1phkq

µ2phkq
µ2Mk,n

����
TV

¤}µ1Mk,n � µ1pmk,nqµ2 �Mk,n}TV

�

����µ1pmk,nqµ2 �Mk,n �
µ1phkq

µ2phkq
µ2Mk,n

����
TV

.

On the one hand, applying Inequality (3.3), one has, almost surely, for n large enough

}µ1Mk,n � µ1pmk,nqµ2 �Mk,n}TV ¤ µ1pmk,nq }µ1 �Mk,n � µ2 �Mk,n}TV

¤ 2
n�1¹
i�k

p1� γiqµ1pmk,nq

¤ 2

tnuε�1¹
i�k

p1� γiqµ1pmk,nq

¤
∆ε

k,n

2
µ1pmk,nq.

On the other hand, by Equation (3.24), it holds P-a.s., for n large enough����µ1pmk,nqµ2 �Mk,n �
µ1phkq

µ2phkq
µ2Mk,n

����
TV

¤ µ2pmk,nq

����µ1pmk,nq

µ2pmk,nq
�

µ1phkq

µ2phkq

����
¤

∆ε
k,n

2
µ1pmk,nq.

Finally, for n large enough, it indeed holds almost surely for n large enough����µ1Mk,n �
µ1phkq

µ2phkq
µ2Mk,n

����
TV

¤ ∆ε
k,n}µ1Mk,n}TV .

This ends the proof. □

The control provided in (3.11) only holds for large enough values of n which are random and
depend on k. Under the stronger assumption A4+, it is possible to obtain a control which is
uniform in k ¤ n.
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Proposition 3.5. Assume A1, A2, A4+ hold. Then almost surely, for any k ¤ n and any measure
µ1, µ2 PM�pXq � t0u, it holds����µ1Mk,n �

µ1phkq

µ2phkq
µ2Mk,n

����
TV

¤ 4Γk,n}µ1Mk,n} � o
nÑ8

pδn}µ1Mk,n}q, (3.25)

for any δ P pγ̄, 1q.

Proof of Proposition 3.5: We start by letting N go to infinity in (3.14) and obtain, almost surely,
for all k, n P N0 and all x, y P X����hkpxqpxqhkpyq

�
mk,npxq

mk,npyq

���� 2Γk,n
mk,npxq

mk,npyq
, (3.26)

where by A4+ almost surely, γn�1 ¡ 0 for all n ¥ 1. Replacing (3.23) by (3.26) in the proof of
Proposition 3.4, we obtain first����µ1pmk,nq

µ2pmk,nq
�

µ1phkq

µ2phkq

���� ¤ 2Γk,n
µ1pmk,nq

µ2pmk,nq
(3.27)

for any non-zero positives measures µ1, µ2. From this we derive both

}µ1Mk,n � µ1pmk,nqµ2 �Mk,n}TV ¤ µ1pmk,nq }µ2 �Mk,n � µ2 �Mk,n}TV

¤ 2
n�1¹
i�k

p1� γiqµ1pmk,nq

¤ 2Γk,nµ1pmk,nq

and ����µ1pmk,nqµ2 �Mk,n �
µ1phkq

µ2phkq
µ2Mk,n

����
TV

¤ µ2pmk,nq

����µ1pmk,nq

µ2pmk,nq
�

µ1phkq

µ2phkq

����
¤ 2Γk,nµ1pmk,nq,

which we combine to obtain����µ1Mk,n �
µ1phkq

µ2phkq
µ2Mk,n

����
TV

¤}µ1Mk,n � µ1pmk,nqµ2 �Mk,n}TV

�

����µ1pmk,nqµ2 �Mk,n �
µ1phkq

µ2phkq
µ2Mk,n

����
TV

¤ 4Γk,n}µ1Mk,n}.

□

3.3. Proof of Theorem 2.1.

Proof of assertion i) : Uniform geometric ergodicity: Let us take k � 0 in Proposition 3.4. Then,
for any ε ¡ 0, Ppdωq-almost surely, noting h � h0, it holds for any finite and positive measures
µ1, µ2, on X, ����µ1M0,n �

µ1phq

µ2phq
µ2M0,n

����
TV

¤ ∆ε
0,n}µ1M0,n},

where, Ppdωq-almost surely,

lim sup
nÑ8

�
∆ε

0,n

� 1
n ¤ γ̄Prγ¥εs P r0, 1q.

Let now δ P pγ̄Prγ¡0s, 1q. For ε ¡ 0 small enough, δ ¡ γ̄Prγ¥εs. As a consequence, Ppdωq-almost
surely, for n large enough, (depending on ω),

∆ε
0,n ¤ δn.
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Thus, Ppdωq-almost surely, for any δ P pγ̄, 1q, for n large enough and any positive and finite measures
µ1, µ2, ����µ1M0,n �

µ1phq

µ2phq
µ2M0,n

����
TV

¤ δn}µ1M0,n}TV .

This proves Equation (2.1). □

Proof of assertion ii): The proof relies on a classical time-reversal technique, see e.g. Cogburn
(1984); Orey (1991), or Hennion (1997) for a version that is closer to our context. As stated in
Cornfeld et al. (1982, II.10.4, pp.239-241), the ergodic system pΩ,A,P, θq can be extended as an
invertible ergodic system pΩ,A,P, θq, such that Ω � Ω, θ|Ω � θ, and θ is a bijective, bimeasurable,
measure preserving and ergodic mapping. The definitions of Mk,n, cn, dn, νn, γn can be naturally
extended to all k ¤ n in Z, and one still has cn � c � θ

n, dn � d � θ
n, γn � γ � θ

n for n P Z.
Assumption A4 implies that all the pγnqnPZ are almost surely positive and have log-moments.

Therefore, Lemma 3.2 and Proposition 3.1 extend to indexes k ¤ n ¤ N P Z.
For nonnegative n ¤ N , for any positive measures µ1, µ2 on X, one has in particular

}µ1 �M�n,0 � µ2 �M�n,0}TV ¤ 2
n�1¹
i�0

p1� γ�i�1q. (3.28)

With µ2 � µ1M�N,�n, this yields :

}µ1 �M�n,0 � µ1 �M�N,0}TV ¤ 2
n�1¹
i�0

p1� γ�i�1q.

Noticing that θ is now an ergodic automorphism of the measured space Ω, and applying Birkhoff-
Khinchin Ergodic Theorem as stated in Cornfeld et al. (1982, Theorem 1, p.11), one gets, for almost
any ω P Ω

1

n

n�1̧

i�0

logp1� γ�i�1q � θ
�i

ÝÑ
nÑ8

E rlogp1� γ�1qs � E rlogp1� γqs .

Thus �
n�1¹
i�0

p1� γ�i�1q

� 1
n

ÝÑ
nÑ8

exp pE rlogp1� γqsq � γ̄   1.

Therefore, almost surely, the sequence pµ1 �M�n,0qnPN0
is a Cauchy sequence in the space M1pXq

of probabilities on X, endowed with the total variation norm. It thus converges almost surely to a
random probability πµ1 on X. For any finite, positive non-zero measures µ1, µ2, plugging πµ1 , πµ2

into (3.28), one proves that for almost any ω,

πµ1 � πµ2 .

Thus, there exists a random probability π, such that, almost surely, for any positive measure µ

µ �M�n,0 ÝÑ
nÑ8

π in total variation distance.

By stationarity of θ,
µ �M�n,0

d
� µ �M0,n,

which proves that, noting Λ the distribution of π,

µ �M0,n
d
ÝÑ
nÑ8

Λ.

□

Before proving the last assertion of Theorem 2.1, we need to present the following lemma which
establishes a sharp lower bound on some triangular inequality.
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Lemma 3.6. Assume A2 holds. Then, for any 0 ¤ k   n and any µ PM�pXq

γk}µM0,k�1}TV ~Mk�1,n~ ¤ }µM0,n}TV ¤ }µM0,k�1}TV ~Mk�1,n~. (3.29)

Proof of Lemma 3.6: Let µ PM�pXq � t0u and 0 ¤ k   n.

µM0,n � pµM0,kqMkMk�1,n ¥ ck}µM0,k�1}TV νkMk�1,n,

thus

}µM0,n}TV � µM0,n1 ¥ ck}µM0,k�1}pνkMk�1,nqp1q � ck}µM0,k�1}TV }νkMk�1,n}TV .

By definition of dk�1, it holds additionally

}νkMk�1,n} ¥ dk�1~Mk�1,n~.

Combining the two previous inequalities, we get

}µM0,n}TV ¥ ckdk�1}µM0,k�1}TV ~Mk�1,n~ � γk}µM0,k�1}TV ~Mk�1,n~

To obtain the second inequality of the lemma we simply write

}µM0,n} � µM0,n1

� µM0,k�1Mk�1,n1

¤ sup
xPX

δxMk�1,n1� µM0,k�11

¤ ~Mk�1,n~}µM0,k�1}TV .

□

Proof of assertion iii): We notice first that for any fixed integer, the P�almost sure convergence

n�1 log~M0,n~ ÝÑ
nÑ8

λ :� inf
N¥1

1

N
E rlog~M0,N~s

is a classical consequence of Kingsman’s subbaditive ergodic theorem and the subadditivity property:

log~M0,n�p~ ¤ log~M0,n~ � log~Mn,n�p~ .

Note that applying this theorem requires Assumption A3 to ensure the integrability of log� ~M0,n~.
It is also classical that the same convergence holds for shifted sequences : for any k ¥ 0,

n�1 log~Mk,n~ ÝÑ
nÑ8

λ (3.30)

almost surely.
Let now µ be a positive, finite measure on X. Let k ¥ 0. From Lemma 3.6, it holds for n ¥ k

γk}µM0,k}TV ~Mk,n~ ¤ }µM0,n}TV ¤ }µM0,k}TV ~Mk,n~.

Thus ���� 1n log }µM0,n}TV �
1

n
log~Mk,n~

���� ¤ 1

n
p|log }µM0,k}| � |log γk|q ÝÑ

nÑ�8
0

almost surely on the event tγk ¡ 0u. Combining this last estimate with (3.30) proves that the
convergence

1

n
log }µM0,n} ÝÑ

nÑ8
λ

holds almost surely on the event tγk ¡ 0u, thus also on the event
�

k¥0tγk ¡ 0u. Under Assumptions
A1 and A4, Pr

�
k¥0tγk ¡ 0us � 1, by Birkhoff’s ergodic theorem, thus the convergence (2.2) holds

Ppdωq-almost surely. □
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3.4. The independent case : proof of Theorems 2.2 and 2.3. Let us introduce the Markov chain
pµnqn¥0 with state space M1pXq, defined by µn�1 � µn �Mn � µ0 �M0,n�1. The process pµn,Mnqn¥0

is then clearly also a Markov chain with state space M1pXq �K� and transition kernel :

Qfpµ,Mq �

»
fpµ �M,NqdPpNq.

We denote Pχ̄ the law of the Markov chain ppµn,Mnqqn¥0 when pµ0,M0q is distributed according to
a measure χ̄ on M1pXq�K�. Theorems 2.2 and 2.3 rely on the study of the invariant measures and
the ergodicity properties of the Markov chains pµnqn¥0 and pµn,Mnqn¥0. In particular, we show
that the limit distribution Λ of the Markov chain pµnq is its only invariant distribution. This is
stated in the following proposition.

Proposition 3.7. Suppose pMnqn¥0 is an i.i.d sequence of elements of K� distributed according to
P, and satisfying the assumptions of Theorem 2.1. Then

i) For any initial distribution χ on M1pXq, the Markov chain pµnqn¥0 converges weakly to Λ.
ii) Λ is the only invariant measure of the Markov chain pµnqn¥0.
iii) Λb P is the only invariant measure of the Markov chain pµn,Mnqn¥0.

As a consequence, the dynamical systems associated with the Markov chains pµnqn¥0 and pµn,Mnqn¥0

are ergodic.

To prove Proposition 3.7, we need to define the convolution operation � between probability
measures on M1pK�q as follows : For any Q1,Q2 P M1pK�q, Q1 �Q2 is the law of N1N2, where
pN1, N2q � Q1 bQ2. We note, for any Q P M1pK�q, Q�n the n-th convolution power of Q. As an
example, if N0, . . . , Nn�1 are i.i.d with law Q, Q�n is simply the distribution of N0,n � N0 � � �Nn�1.
Given a probability distribution χ on M1pXq and Q on K�, we also note χ

�
� Q the law of µ � N ,

where pµ,Nq � χ b Q. These operations, previously defined in Bougerol and Lacroix (1985) in a
finite dimensional context, satisfy some elementary properties, summed up in the following lemma.

Lemma 3.8. Let Q1,Q2,Q3 be probability measures on K� and χ be a probability measure on
M1pXq, it holds

i) pQ1 �Q2q �Q3 � Q1 � pQ2 �Q3q,
ii) pχ

�
�Q1q

�
�Q2 � χ

�
� pQ1 �Q2q,

iii) For each Q P M1pK�q, χ ÞÑ χ
�
�Q is continuous with respect to the topology of convergence

in law on M1pM1pXqq.

Proof of Lemma 3.8: Consider pN1, N2, N3q � Q1 bQ2 bQ3. It holds

N1N2N3 � pN1N2qN3 � N1pN2N3q,

with pN1N2qN3 � pQ1 �Q2q �Q3 and N1pN2N3q � Q1 � pQ2 �Q3q. This yields i).
Let us prove now point ii). Consider pµ,N1, N2q � χbQ1 bQ2. It holds

µ � pN1N2q � pµ �N1q �N2,

with µ � pN1N2q � χ
�
� pQ1 �Q2q and pµ �N1q �N2 � pχ

�
�Q1q

�
�Q2. This yields ii).

Let us move to the proof of iii). Consider a sequence of probability measures pχnq on M1pXq,
converging in distribution to χ. Let us show that pχn

�
� Qqn¥0 converges in distribution towards

χ
�
�Q. Let f be a continuous, bounded function on M1pXq, it holds :»

fpµqdpχn
�
�Qqpµq �

» »
fpµ �NqdχnpµqdQpNq �

»
χnpgN qdQpNq,
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where, for each N P K�, the function gN : µ ÞÑ fpµ �Nq is continuous and bounded. Thus

χnpgN q �

»
fpµ �Nqdχnpµq Ñ

»
fpµ �Nqdχpµq � χpgN q.

This yields, by dominated convergence, as nÑ8,»
χnpgN qdQpNq �

»
fpµqdpχn

�
�Qqpµq ÝÑ

»
χpgN qdQpNq �

» »
fpµ �NqdχpµqdQpNq,

which implies iii).
□

Proof of Proposition 3.7: Let f be a continuous and bounded function on M1pXq, it holds

χ
�
� P�npfq �

»
fpµqdpχ

�
� P�nqpµq �

» »
fpµ �M0,nqdχpµqdP�npM0,nq.

However, for any µ PM1pXq, Theorem 2.1, iiq states that pδµ
�
� P�nqn¥0 converges weakly towards

Λ. Thus, for any µ PM1pXq, as nÑ8»
fpµ �M0,nqdP�npM0,nq � pδµ

�
� P�nqpfq ÝÑ

nÑ8
Λpfq.

By dominated convergence, this yields

χ
�
� P�npfq �

» »
fpµ �M0,nqdχpµqdP�npM0,nq ÝÑ

nÑ8
Λpfq,

which proves the weak convergence
χ

�
� P�n ÝÑ

nÑ8
Λ

in the metric space M1pM1pXqq, for any probability distribution χ. This proves i).
Since, by Lemma 3.8, iii), the map µ ÞÑ µ

�
� P is continuous, this proves that Λ is one of its fixed

points, namely :
Λ � Λ

�
� P.

On the other hand, if χ
�
� P � χ, the sequence pχ

�
� P�nqn¥0 is constant and converges to χ. By

unicity of the limit, it holds
χ � Λ.

This proves that Λ is the only invariant measure of the Markov chain pµnq, i.e. ii).
Let pµ0,M0q � Λb P. Then µ1 � µ0 �M0 � Λ

�
� P, M1 � P and M1 is independent of µ0, M0 and

thus µ1. Therefore pµ1,M1q � ΛbP, and ΛbP is thus an invariant measure of the Markov chain
pµn,Mnqn¥0.

Conversely, consider now a probability measure χ̄ on M1pXq � K�, suppose it is an invariant
measure of the Markov chain ppµn,Mnqqn¥0. The definition of the transition kernel Q implies that
µ1 � µ0 � M0, M1 � P and M1 is independent of pµ0,M0q, and therefore M1 is independent of
µ1. However the second term pµ1,M1q of the Markov chain is distributed according to χ̄Q � χ̄ by
invariance. Thus χ̄ is of the form χ̄ � χb P.

Additionally, if pµ0,M0q � χ̄ � χbP, then µ1 � µ0 �M0 � χ
�
�P. But by invariance of χ̄, µ1 � χ,

thus
χ

�
� P � χ.

By Proposition 3.7, this implies that χ � Λ. Finally, this proves that Λ b P is the only invariant
measure of the Markov chain pµn,Mnqn¥0. By Corollary 5.12 of Hairer (2018), since both the
processes pµnqn¥0 and pµn,Mnqn¥0 are Markov chains with a unique invariant measure, they are
both ergodic. □

One additional lemma is required before proving Theorem 2.2.
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Lemma 3.9. Let pMnqn¥0 be an i.i.d sequence of elements of K� with law P, satisfying the as-
sumptions A1, A2 and A4+. The sets

t@µ PM1pXq, lim sup
nÑ8

log }µM0,n} � �8u,

tDµ PM1pXq, lim sup
nÑ8

log }µM0,n} � �8u

and the event
tlim sup

nÑ8
log~M1,n~ � �8u

coincide up to PbN-negligible events. A similar statement holds replacing lim sup by � lim inf in the
three events.

Proof of Lemma 3.9: From Lemma 3.6, with k � 0, we get

γ0}µM0}TV ~M1,n~ ¤ }µM0,n}TV ¤ }µM0}TV ~M1,n~,

where γ0}µM0}TV ¡ 0 almost surely by A2 and A4+. The lemma is a straightforward consequence
of this inequality. □

Let us prove now Theorem 2.2.

Proof of Theorem 2.2, i): Let us notice first that when µ is a probability measure, ρ : pµ,Mq ÞÑ
log }µM} satisfies the cocycle property

ρpµ0,M0,nq � log }µ0M0,n}

�
n�1̧

k�0

log

�
}µ0M0,k�1}

}µ0M0,k}




�
n�1̧

k�0

log }pµ0 �M0,kqMk}

�
n�1̧

k�0

ρpµk,Mkq. (3.31)

From Equation (3.31), we derive

1

n
log }µ0M0,n} �

1

n

n�1̧

k�0

ρpµk,Mkq.

By Birkhoff’s Ergodic Theorem, since pµk,Mkq is an ergodic Markov chain, with stationary distri-
bution Λ b P, this quantity converges PΛbP -almost surely and in L1pPΛbPq towards

³
ρdpΛ b Pq

provided ρ is an L1 function with respect to Λ b P. Let us check now this integrability property.
Let pµ0, pMnqn¥0q � Λb PN. Then, applying (3.29) with n � 2 yields

γ0}µ0M0}~M1~ ¤ }µ0M0,2} ¤ }µ0M0}~M1~.

Noting µ1 � µ0 �M0, we get, since }µ0M0} � 0 almost surely,

γ0~M1~ ¤ }µ1M1} ¤ ~M1~,

thus
|ρpµ1,M1q| ¤ | log }M1}| � | logpγ0q|.

Note that pµ1,M1q � ΛbP, since by definition µ1 � µ0 �M0 and pµ0, pMnqnPNq � ΛbPbN. Thus,
under A3+ and A4+, it holds

E r|ρpµ1,M1q|s �

»
|ρ|dpΛb Pq ¤ E| log }M1}| � E| logpγ0q|   8.
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This proves that ρ is integrable with respect to ΛbP, thus the convergence n�1 logp}µ0M0,n}q ÝÑ
nÑ8³

ρ dΛbP holds in L1pΛb Pq and PΛbP-almost surely. Since by Theorem 2.1, almost surely, for all
µ, it holds n�1 log }µM0,n} ÝÑ

nÑ8
λ, by unicity of the almost sure limit,

λ �

»
ρ dpΛb Pq.

□

Proof of Theorem 2.3, ii): Note now Xn � ρpµn�1,Mn�1q, for n ¥ 1. Then it holds, for n ¥ 0, for
any probability measure µ0

pµn�1, Xn�1q � pµn �Mn, ρpµn,Mnqq.

Thus, pµn, Xnqn¥0 is a Markov chain on M1pXq � R such that

P rpµn�1, Xn�1q P A�B|pµn, Xnqs �

»
1Apµn �Mq1B pρpµn,Mqq dPpMq.

Thus Sn � log }µM0,n} � X1 � � � � �Xn is a Markov random walk associated with pµn, Xnq, in the
sense of Alsmeyer (2001). Suppose that λ � 0. By Theorem 2.1, it holds

n�1Sn � n�1 log }µM0,n} ÝÑ
nÑ8

0,

dPΛbPbN pµ, pMnqn¥0q-almost surely, thus in probability with respect to PΛbPbN . Since moreover,
pµnq is an ergodic Markov chain, the assumptions of Alsmeyer (2001) are satisfied. If there exists a
function η such that PΛbP -almost surely, for n ¥ 1,

Xn � ηpµnq � ηpµn�1q, (3.32)

then taking n � 1 shows that we are in the case of Null Homology (NH). In this case, it holds
moreover

log }µ0M0,n} � X1 � � � � �Xn � ηpµnq � ηpµ0q.

Thus, almost surely, noting a, b the respective infimum and supremum of the support of ηpµq, when
µ � Λ, since the sequence pµnq is a stationary and ergodic sequence with law Λ, it holds

lim inf
nÑ8

log }µ0M0,n} � a� ηpµ0q, and lim sup
nÑ8

log }µ0M0,n} � b� ηpµ0q.

Thus the almost sure finiteness of these quantities are respectively equivalent to the finiteness
of a and b. If Equation (3.32) does not hold, then we are in the setup of Theorem 2 or 3 of
Alsmeyer (2001). These two Theorems imply that the Markov Random Walk pSnq oscillates :
lim supSn � �8 and lim inf Sn � �8 PΛbP�almost surely. However, by Lemma 3.9, ii), this
implies that PbN-almost surely, for every µ PM1pXq,

lim sup
nÑ8

log }µM0,n} � �lim inf
nÑ8

log }µM0,n} � �8.

This concludes the proof. □

4. Sufficient conditions under uniform positivity assumptions

In the finite dimensional case X � t1, . . . , pu, that is when studying products of p � p matrices,
similar (and actually, more complete) results are obtained in Hennion (1997). They rely on the very
mild assumption

A5. P
��

kPN

!
M0,k P

�

S
)�

� 1,
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where
�

S refers to the set of p � p matrices with positive entries. We expect that this approach,
based on Hilbert contractions, might be extended in infinite dimensional contexts. This will require
to introduce the notion of uniformly positive operators to strengthen the notion of positive matrices,
and state an infinite dimensional generalization of A5, as we explain in Subsection 4.2.

This section aims at comparing our assumptions both with A5, and its natural generalization in
infinite dimension.

We did not success in proving that A5 alone is enough for our assumptions to hold. However we
provide mild additional assumptions that, together with A5, constitute sufficient conditions for our
assumptions (A2, A3, A4, A4+) to hold, and thus for Theorems 2.1, 2.2, 2.3 to apply.

4.1. The finite dimensional case. Let us focus in this subsection on the case where X is finite, let
us note p � |X|. Consider a stationary and ergodic sequence pMnqnPN0 of p� p matrices with non-
negative entries. Checking whether Assumptions A1, A2, A3 are satisfied is quite straightforward,
since these three assumptions only involve the law of the first matrix of the sequence. Let us see
now how the additional Assumption A5 can help exhibit an admissible triplet in order to check
that Assumptions A4 holds.

Lemma 4.1. Consider a random, stationary sequence of p�p matrices Mn � pMnpx, yqqx,yPX, with
nonnegative entries, satisfying A2 and A5. Then for any measurable map ω P Ω ÞÑ νpωq PM1pXq,
there exists a random variable d : ω ÞÑ dpωq such that Prd ¡ 0s � 1 and (1.5) holds.

Proof : The following decomposition holds : for any 1 ¤ k ¤ n, x P X, ω P Ω

m1,npxq � δxM1,n1 � δxM1,kmk,n �
¸
zPX

M1,kpx, zqmk,npzq.

Thus
ν0pm1,nq � ν0M1,n1 �

¸
y,zPX

ν0pyqM1,kpy, zqmk,npzq,

where we note ν0 � νω. The fact that ν0 is a probability measure yields, for any 1 ¤ k ¤ n :

m1,npxq ¤ sup
y,zPX

�
M1,kpx, zq

M1,kpy, zq


 ¸
yPX

ν0pyqM1,kpy, zqmk,npzq ¤ sup
y,zPX

M1,kpx, zq

M1,kpy, zq
ν0pm1,nq,

with the convention M1,kpx,zq
M1,kpy,zq

� 0 as soon as M1,kpx, zq � 0 and M1,kpx,zq
M1,kpy,zq

� 8 if M1,kpx, zq � 0 and
M1,kpy, zq � 0. Thus, for any n ¥ k,

~M1,n~

ν0pm1,nq
�
}m1,n}8
ν0pm1,nq

¤ sup
x,y,zPX

M1,kpx, zq

M1,kpy, zq
. (4.1)

This yields

inf
x,y,zPX

M1,kpy, zq

M1,kpx, zq
¤ inf

n¥k

ν0pm1,nq

}m1,n}8
, (4.2)

and therefore

sup
kPN

inf
x,y,zPX

M1,kpy, zq

M1,kpx, zq
¤ lim inf

n

ν0pm1,nq

~M1,n~
.

By Assumption A5, Ppdωq- almost surely, there exists a random integer kω such that M1,kωpωq P
�

S.
Since X is finite, we get, for P-almost any ω,

1   inf
x,y,zPX

M1,kωpy, zq

M1,kωpx, zq
  sup

kPN
inf

x,y,zPX

M1,kpy, zq

M1,kpx, zq
¤ lim inf

n

ν0pm1,nq

~M1,n~
.
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Assumption A2 implies moreover that that for all n, P-almost any ω P Ω, ν0pm1,nq
~M1,n~

¡ 0. Thus,
setting

dpωq � inf
nPN

ν0pm1,nq

~M1,n~
,

pν, dq satisfies (3.1) and dpωq ¡ 0, Ppdωq-a.s. □

This provides nice sufficient conditions for A4 or A4+ to hold.

Proposition 4.2. Consider a random, stationary sequence of p�p matrices Mn � pMnpx, yqqx,yPX,
with nonnegative entries, satisfying A1, A3, A5. We assume that there exists a measurable map

ω P Ω ÞÑ pνω, cpωqq PM1pXq � r0, 1s

such that Prc ¡ 0s ¡ 0 and (1.4) hold. Then there exists a random variable d such that pν, c, dq is
an admissible triplet with Prγ ¡ 0s ¡ 0. Thus assumption A4 holds and Theorem 2.1 applies.
If moreover

i) E r� log cs   8,
ii) there exists an deterministic integer N P N0 such that

E

�
log sup

x,y,zPX

M0,N px, zq

M0,N py, zq

�
  8, (4.3)

iii)
³
rlog νωpm1,2qs

� dPpωq   8,
Then A4+ also holds.

Note that since X is finite, pδi, cq satisfies (1.4) as soon as c ¤ min1¤j¤p
M0pi,jq°p
l�1 M0pi,lq

, thus A4
holds if with positive probability, M0 has a row with only nonzero coefficients.

Proof : By Lemma 4.1, setting

dpωq � inf
nPN

νωpm1,nq

~M1,n~
,

ω ÞÑ pνω, dpωqq satisfies (1.5) and Prd ¡ 0s � 1. Noting γpωq � cpωqdpωq � c0pωqd1pωq, we notice
that Prd1 ¡ 0s � Prd ¡ 0s � 1 and Prc ¡ 0s ¡ 0. It holds thus Prγ ¡ 0s ¡ 0 : A4 is satisfied. This
proves the first part of the proposition. Let us suppose now that i)-iii) hold. Since E r� log cs   8,
then Prc ¡ 0s � 1 and Prγ ¡ 0s � 1. Let us now prove now that E| log γ|   8. By the inequality

| log γ| � � logpγq ¤ � logpcq � logpdq

and hypothesis Er| logpcq|s   8, it remains to check that Er| logpdq|s   8. Inequality (4.1) implies
that Ppdωq-almost surely, for any k ¥ 1,

� log d � log sup
nPN

~M1,n~

νωpm1,nq
¤ max

�
log sup

x,y,zPX

M1,k�1px, zq

M1,k�1py, zq
, max
1¤n¤k

log
~M1,n~

νpm1,nq

�

¤ log sup
x,y,zPX

M1,k�1px, zq

M1,k�1py, zq
�

¸
1¤n¤k

log
~M1,n~

νωpm1,nq
.

In particular, setting k � N and applying condition (4.3), it holds by stationarity

E

�
log sup

x,y,zPX

M1,N�1px, zq

M1,N�1py, zq

�
  8.
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Consequently, it suffices to prove that E
�
log

~M1,n~

ν0pm1,nq

�
  8 for any n ¥ 1. Let us decompose this

quantity as

E
�
log

~M1,n~

ν0pm1,nq

�
¤ E plog~M1,n~q

�looooooooomooooooooon
Apnq

�E
�
plog ν0pm1,nqq

��looooooooooomooooooooooon
Bpnq

. (4.4)


 On the one hand, the inequality ~M1,n~ ¤
n�1¹
i�1

~Mi,i�1~ readily yields

Apnq ¤
n�1̧

i�1

E
�
logp~Mi,i�1~q

�
�
� pn� 1qE

�
logp~M0,1~q

�
�
  8.


 On the other hand, for any x P X and Ppdωq-a.s.

m1,npxq � δxM1,2m2,n ¥ c1m1,2pxqν1pm2,nq,

where ck � cpθkpωqq and νk � νθkpωq. Consequently, integrating with respect to ν0pdxq, we obtain

ν0pm1,nq � ν0M1,2m2,n ¥ c1pωqν0pm1,2qνθpωqpm2,nq Ppdωq�a.s,
which yields, by induction

ν0pm1,nq ¥
n�1¹
k�1

ckνk�1pmk,k�1q.

Consequently, Ppdωq-a.s.,

plog ν0pm1,nqq
� ¤

n�1̧

k�1

� log ck � rlog νk�1pmk,k�1qs
� .

By stationarity, we deduce

Bpnq ¤
n�1̧

k�1

E r� log cks � E
�
plog νk�1pmk,k�1qq

��
� pn� 1qE r� log c0s � E

�
plog ν0pm1,2qq

��   8.

Finally, combining these estimates, we get, for any n P N0,

E
�
log

~M1,n~

ν0pm1,nq

�
¤ pn� 1qE

�
� log c0 � log rν0pm1,2qs

� � plog }m0,1}8q
��   8.

□

4.2. Extension in infinite dimension. When X is infinite, we need to strengthen the notion of positive
matrices as follows.

Definition 4.3. A positive linear map M on BpXq is uniformly positive if there exists K P R�
�, h P

B�pXq, such that, for any f P B�pXq there exists bpfq P R�, satisfying
1

K
bpfqh ¤Mpfq ¤ Kbpfqh.

Notice that when X is finite, a matrix of
�

S is uniformly positive. Moreover, in Hennion’s work,
assumption A5 is used as a sufficient condition to obtain projective contraction properties on the
product Mk,n, with respect to a projective distance called the Hilbert distance (once again, see
Busemann and Kelly (1953); Birkhoff (1957); Ligonnière (2023) for a complement on this distance).
In an infinite dimensional setting, this distance can still be defined, and the projective action
associated with a positive operator is contracting if and only if the operator is uniformly positive (a
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proof of this claim is proposed in Ligonnière (2023)). Uniform positivity is therefore the appropriate
infinite dimensional generalization of positivity in our context, and condition A5 can thus naturally
be replaced with the restrictive condition

A5’. P p
�

nPN tM0,n " 0uq � 1,

where we note M " 0 iff M is uniformly positive.
The present subsection aims at comparing our result with the natural extensions of Hennion’s

work to infinite dimensional settings. For this purpose, the following Lemma extends the idea of
Lemma 4.1 to an infinite dimensional setup, assuming A5’ instead of A5.

Lemma 4.4. Consider a random stationary sequence of elements of K�, satisfying A2 and A5’.
Then for any measurable map ω P Ω ÞÑ νpωq P M1pXq, there exists a random variable d such that
Prd ¡ 0s � 1 and (1.5) holds.

Proof : For almost any ω and any 1 ¤ k ¤ n, mk,n P BpXq, it holds,
m1,npxq

νpm1,nq
�

δxM1,kmk,n

ν0M1,kmk,n
¤ sup

yPX,fPBpXq

δyM1,kf

ν0M1,kf
.

Taking a supremum in x P X, we get, for any k ¤ n,
~M1,n~

ν0pm1,nq
¤ sup

yPX,fPBpXq

δyM1,kf

ν0M1,kf
. (4.5)

By A5’, let kω be a random integer such that Ppdωq-almost surely, M1,kωpωq " 0. Then, almost
surely, there is K P R�

�, h P B�pXq such that for any f P B�pXq, there exists bpfq ¥ 0, satisfying

K�1bpfqh ¤M1,kωf ¤ Kbpfqh. (4.6)

From (4.6), we deduce K�1m1,kωpxq ¤ hpxqbp1q ¤ Km1,kωpxq. By A2, m1,kω is a bounded and
positive function, thus so is h. Moreover, bp1q ¡ 0, ν0pm1,kq ¤ Kν0phqbp1q, thus νphq ¡ 0.
Therefore, for any x P X, any f P B�pXq, it holds Ppdωq almost surely:

δxM1,kωf

ν0M1,kωf
¤ K2 hpxq

ν0phq
¤ K3 ~M1,kω~

bp1qν0phq
¤ K4 ~M1,kω~

ν0pm1,kωq
. (4.7)

Finally, combining (4.7) with (4.5), we get for almost any ω,

lim sup
n

~M1,n~

ν0pm1,nq
¤ sup

n¥kω

~M1,n~

ν0pm1,nq
¤ K4~M1,kω~

νpm1,kωq
  8.

Since moreover almost surely, for all n ¥ 1, ~M1,n~
ν0pm1,nq

is finite, then almost surely,

sup
nPN

~M1,n~

ν0pm1,nq
  8.

Let us set
dpωq � inf

n¥1

ν0pm1,nq

~M1,n~
.

Then d clearly satisfies (1.5) and Prd ¡ 0s � 1. □

The uniform positivity property is interesting to deal with many systems where the mass is
sufficiently well mixed. We illustrate this on the following example.

Example 4.5. Take X � r0, 1sd, choose an ergodic dymanical system pΩ,A,P, θq and associate with
each ω P Ω a bounded measurable function mω : XÑ R�, and a continuous function Qω : X2 Ñ R�

�,
such that

³
XQωpx, yqdy � 1 for all x and all ω. We define M by setting, for each ω P Ω and f P BpXq,

Mpωqpfq : x ÞÑ mωpxq

»
X
fpyqQωpx, yqdy.
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Notice that mωpxq � }δxMpωq}. Our system clearly satisfies A1 and A2. Assumptions A3 and
A3+ just translate into a log-integrability assumption on ω ÞÑ }mω}8 � ~Mpωq~.
In terms of populations, this model can represent the spatial evolution of a population in the compact
domain X. The quantity mωpxq represents the size of the offspring of an individual located at x, and
the kernel Qωpx, yq represents the dispersion of its offspring in the domain X. The dependence in
ω of these quantities models an time inhomogeneity of these quantities. Mpωq is clearly uniformly
positive, for each ω, since

K�1
ω mωµpfq ¤Mpωqpfq ¤ mωµpfqKω,

where µ refers to the Lebesgue measure on X, and

Kω � max

��
inf
u,v

Qωpu, vq


�1

, sup
u,v

Qωpu, vq

�
  8

since X is compact and Qω is continuous and positive. Setting νω � µ and cω � K�1
ω for all ω, the

left hand side inequality implies (1.4). Moreover, since Mpωq is uniformly positive, A5’ holds, thus
by Lemma 4.4 there exists a random variable d such that Prd ¡ 0s ¡ 0 and ω ÞÑ pνω, dpωqq satisfy
(1.5). Therefore A4 holds and Theorem 2.1 applies.
One can notice additionally that in this context, each matrix of the product is almost surely uni-
formly positive, therefore the proof of Lemma 4.4 yields the explicit control

dpωq ¡

³
M1,2p1qpxqdx

K4
ω supxPXM1,2p1qpxq

�

³
mθpωqpxqdx

K4
ω}mθpωq}8

.

Thus A4+ reduces to a log-integrability condition both on the coefficient Kω and on the quotient³
mωpxqdx
}mω}8

.

This example illustrates how Proposition 4.2 from the previous subsection can be adapted, re-
placing A5 by A5’. To tackle the integrability of log γ, one can replace (4.3) by

E

�
log sup

xPX,fPBpXq

δxM1,Nf

ν0M1,Nf

�
  8. (4.8)

This yields a counterpart of Proposition 4.2 in a infinite dimensional setup.

5. Application to products of random infinite Leslie Matrices

The previous section focused on products of matrices with positive entries, and more generally,
products of uniformly positive operators. This kind of products can be efficiently studied with
methods based on projective contractions relatively to the Hilbert metric. The main interest of our
techniques, based on Doeblin contractions, is their application to products of operators which are
not uniformly positive. The goal of this section is to illustrate how such products can be studied
with our theorems. We have chosen to focus here on a quite simple but natural example with no
uniform positivity properties : the infinite Leslie Matrices.

5.1. Introduction to Leslie matrices. In this section, we set X � N0, thus the operators of K� can
be represented as infinite matrices. We choose to consider infinite Leslie matrices, which have the
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following form : for any ω P Ω,

Mpωq �

�
�������

f0pωq s0pωq 0 0 . . .
f1pωq 0 s1pωq 0 . . .

f2pωq 0 0 s2pωq
. . .

f3pωq 0 0 0
. . .

...
...

...
...

. . .

�
������

. (5.1)

where the entries pfkpωqqkPN0
, pskpωqqkPN0

are nonnegative real numbers, and supxPX sxpωq�fxpωq  
8. Notice that such a matrix is not uniformly positive, since there are zeros on every row and every
column but the first one. Moreover, if Q is a product of k matrices of this shape, the px, yq-entry
rQsx,y � 0 whenever y ¥ x�k�1. This prevents any product of such matrices from being uniformly
positive. This example is therefore a typical situation where A5’ does not hold.

Such matrices appear naturally when studying the dynamics of a population counting individuals
according to their age. The coefficients fx (respectively sx) represent the mean number of individuals
of age 0 (respectively of age x � 1) created by an individual of age x, that is the mean size of the
offspring of an individual of age x (respectively the survival rate of individuals of age x). Usually,
only a finite number of age classes are defined, thus X � J0, pK, and one considers finite versions
of such matrices, called Leslie matrices, see for example Caswell (2010). However, it is natural to
extend their definition to an infinite number of age classes (X � N0) obtaining infinite matrices with
this shape. Indeed, several articles already study age-structured populations with an unbounded set
of possible ages, see e.g. Bansaye et al. (2020); Jasińska and Kozitsky (2022); Oelschläger (1990).
Therefore, products of random matrices shaped as in (5.1) model the dynamics of an age structured
population evolving in a randomly changing environment which affect their reproductive behavior.
This is the kind of matrices we are studying in this section. Let us note from now on

skxpωq � sx � θ
kpωq and fk

x pωq � fx � θ
kpωq,

so that pskx, fk
x qxPX are the nonzero entries of the random matrix Mkpωq � M � θk. We introduce

the quantities

d1pωq � sup
kPN0,x¤yPX

fk
y pωq

fk
x pωq

¥ 1,

and

d2pωq � sup
xPX,kPN0

s0xpωq � � � s
k
x�kpωq

s00pωq . . . s
k
kpωq

¥ 1,

which are useful to construct an admissible triplet.

5.2. Ergodic behavior of products of random Leslie Matrices. The following proposition provides
sufficient conditions for assumptions A3 and A4 to hold in the case of products of infinite Leslie
matrices.

Proposition 5.1. Consider a random matrix product with X � N0 and suppose that for any ω P Ω,
Mpωq is of the form of equation (5.1), with supxPX sxpωq�fxpωq   8. Suppose that A1 is satisfied,
and Ppdωq-almost surely, it holds

i) fxpωq � sxpωq ¡ 0 for all x P X ;
ii) E

�
log� psupxPX sx � fxq

�
  8 ;

then A2 and A3 hold. If moreover

iii) There exists a deterministic real A ¡ 0 such that Ppdωq-almost surely, supx¤y
f0
y

f0
x
¤ A,

iv) PrsupxPX
s0x
f0
x
  8, d

2
� θ   8s ¡ 0
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then Assumption A4 holds, and so do the conclusions of Theorem 2.1.
Finally, if additionally

v) Ppdωq-almost surely, supxPX
sx
fx
  8 and E

�
log�psupxPX

sx
fx
q
�
  8,

vi) Ppdωq-almost surely, d2pωq   8 and E |log d2|   8,

then M satisfies also Assumption A4+.

In Proposition 5.1, we’ve reduced Assumptions A2 to A4 to a series of conditions on the law
of the coefficients of the random matrix M0, together with finiteness and integrability conditions
on d2. The hardest conditions to check are the ones involving d2, since checking them requires to
consider the joint law of all the M0,n and not only M0. We were not able to find a general sufficient
condition for the positivity and log�integrability of d2. However, we provide the following quite
restrictive sufficient condition.

Remark 5.2. Consider a random, stationary sequence of matrices of the form of equation (5.1), and
assume that there exists an integer x0 P X, such that almost surely, the sequence psxpωqqx¥x0 is non
increasing. Suppose also that almost surely, for all x ¤ x0, sx ¡ 0. Then, Ppdωq-almost surely

d2 ¤

�
sup
i¤x0

sup
x¤y¤x0

siy
six

�x0

  8.

Moreover, if E
���log siy

six

���   8 for any x ¤ y ¤ x0, then E| log d2|   8.

In the context of an age structured population, sx represents the frequency of individuals of age x
surviving to the next time step, and thus being replaced by individuals of age x�1. Assuming that
psxpωqqx¥x0 is decreasing implies that the older individuals get, the more they tend to die, which
is a reasonable assumption. However this condition is somewhat unsatisfying in a more general
setting.

We split the proof of Proposition 5.1 into several lemmas that involve different groups of assump-
tions. Notice first that most quantities involved in Assumptions A2 to A4 are explicit in terms of
the pfx, sxq. Indeed :

Lemma 5.3. Consider a product of stationary random Leslie matrices, in the form of equation
(5.1). Then A2 and A3 are satisfied if and only if all the following conditions hold simultaneously :


 Ppdωq-almost surely, for each x P X, fxpωq ¡ 0 or sxpωq ¡ 0

 E

�
log� psupxPX fx � sxq

�
  8.

Proof : This lemma is straightforward after noticing that for any x P X, ω P Ω,

m0,1px, ωq � fxpωq � sxpωq.

□

Moreover, in this model, (1.4) is well behaved and it is quite clear how to construct a non trivial
couple pν, cq.

Lemma 5.4. Consider a product of stationary, random Leslie matrices and assume that A2 holds.
Consider a map ω ÞÑ pνω, cpωqq. Then for almost any ω such that νω � δ0, (1.4) implies cpωq � 0.
If νω � δ0, then (1.4) is equivalent to

cpωq ¤ inf
xPX

fxpωq

fxpωq � sxpωq
�

�
1� sup

xPX

sxpωq

fxpωq


�1

.

Proof : Notice that for any x P X, ω P Ω,

δxM0,1 � fxpωqδ0 � sxpωqδx�1.
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Let ω P Ω such that νω � δ0. Then, there exists k ¡ 0 such that νωpkq ¡ 0. In particular (1.4)
implies

0 � fkpωqδ0p1kq � skpωqδk�1p1kq ¥ cpωqm0,1pkqνpkq,

By A2, almost surely, m0,1pkq ¡ 0, which implies that cpωq � 0. Conversely, if νω � δ0, (1.4)
implies

fxpωqδ0 � sxpωqδx�1 ¥ cpωqm0,1pxqδ0,

which is equivalent to
fxpωq ¥ cpωqm0,1pxq � cpωqpfxpωq � sxpωqq

for all x P X. This yields the desired result. □

As a consequence, we set from now on νω � δ0 and cω �
�
1� supxPX

sxpωq
fxpωq

�1
	�1

. Assumption
iv) of Proposition 5.1 guarantees that Prc ¡ 0s ¡ 0. Let us try now to exhibit a random variable d
such that pν � δ0, dq satisfy (1.5).

Lemma 5.5. Consider a product of stationary random Leslie matrices, of the form of equation
(5.1). Set

dpωq �
1

d1 � θpωqd2 � θpωq
.

Then pδ0, dq satisfy (1.5).

Proof : Let n ¥ 1, x P X, ω P Ω, it holds

m1,npxq � δxM0 � � �Mn�11 �
¸

i0,i1,���inPN0

δxpi0qM1pi0, i1q � � �Mn�1pin�1, inq.

Thus
m1,npxq �

¸
i1,���inPN0

M1px, i1q � � �Mn�1pin�1, inq.

Let us rearrange this sum according to the first index k ¤ n such that ik � 0 :

m1,npxq �
ņ

k�1

¸
i1,���ik�1¡0

M0px, i1q � � �Mk�1pik�1, 0q
¸

ik�1,���inPN0

Mkp0, ik�1q � � �Mn�1pin�1, inq

�
¸

i1,���in¡0

M0px, i1q � � �Mn�1pin�1, inq.

Notice that ¸
ik�1,���inPN0

Mkp0, ik�1q � � �Mn�1pin�1, inq � mk,np0q.

Moreover, the matrices Mk are shaped according to (5.1). Thus for any i ¥ 0, j ¡ 0, in order for
Mkpi, jq to be non zero, one must have j � i� 1. Thus :

m0,npxq �
ņ

k�1

M0px, x� 1q � � �Mk�1px� k� 1, 0qmk,np0q �M0px, x� 1q � � �Mn�1px� n� 1, x� nq.

Therefore

m0,npxq �
n�1̧

i�0

s0xs
1
x�1 . . . s

i�1
x�i�1f

i
x�imi�1,np0q � s0x . . . s

n�1
x�n�1.

This is true in particular for x � 0 :

m0,np0q �
n�1̧

i�0

s00s
1
1 . . . s

i�1
i�1f

i
imi�1,np0q � s00 . . . s

n�1
n�1.
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By definition of d1, d2, it holds, for any k P N0 and any x P N0,

f i
x�i ¤ d1f i

i ,

and
s0xs

1
x�1 . . . s

i�1
x�i�1 ¤ d2s00s

1
1 . . . s

i�1
i�1.

Therefore, controlling independently each term of the sum yields

m0,npxq ¤ d1d2
n�1̧

i�0

s00s
1
1 . . . s

i�1
i�1f

i
imi�1,np0q � d2s00 . . . s

n�1
n�1 ¤ d1d2m0,np0q,

thus for all n ¥ 0
1

d1pωqd2pωq
¤ inf

xPX

m0,np0q

m0,npxq
.

By stationarity,
1

d1pθpωqqd2pθpωqq
¤ inf

n¥1

m1,np0q

}m1,n}8
.

As a consequence, setting dpωq � pd1pθpωqqd2pθpωqqq�1 is enough for ω ÞÑ pδ0, dpωqq to satisfy
(1.5). □

Let us focus on d1pωq.

Lemma 5.6. Consider a random product of matrices of the form of equation (5.1), satisfying A1.
Then the random variable d1 is Ppdωq-almost surely finite if and only if there exists A ¡ 0 such that

P

�
sup
x¤y

f0
y

f0
x

¤ A

�
� 1. (5.2)

In this case d1pωq ¤ A, Ppdωq-almost surely. If (5.2) fails, then d1pωq � �8, Ppdωq� almost surely.

Proof : Notice that

d1pωq � sup
kPN0

sup
x¤y

fk
y

fk
x

� sup
kPN0

X � θkpωq.

where

Xpωq � sup
x¤y

fypωq

fxpωq
� sup

x¤y

f0
y

f0
x

.

Since θ is an ergodic mapping, supkPN0
X � θk is Ppdωq-almost surely equal to the supremum of the

support of X. In particular supkPN0
X � θk is finite almost surely if the support of X is bounded.

Conversely, if the support of X is unbounded, then supkPN0
X � θk is infinite almost surely. □

Putting these lemmas together allows to prove Proposition 5.1.

Proof of Proposition 5.1: The assumptions i), ii) of Proposition 5.1 are the conditions mentioned
in Lemma 5.3. Hence, this lemma allows to check A2 and A3. We set now for any ω, νω � δ0

cpωq �

�
1� sup

xPX

sxpωq

fxpωq


�1

and
dpωq �

1

d1pθpωqqd2pθpωqq
.

Lemma 5.4 and Lemma 5.5 respectively guarantee that (1.4) and (1.5) are satisfied. By Lemma
5.6, assumption iii) guarantees that d1pωq   8,Ppdωq�almost surely, and by stationarity, the same
holds for d1 � θpωq. As a consequence, since by iv) Prd2 � θ ¡ 0, c0 ¡ 0s ¡ 0, it holds with positive
probability γpωq � cpωqdpθpωqq � cpωq pd1pθpωqqd2pθpωqqq�1 ¡ 0 thus Prγ ¡ 0s ¡ 0. This proves
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that i)-iv) imply A4.
If moreover assumptions v), vi) hold, then d2 � θ and supxPX

sxpωq
fxpωq

are finite Ppdωq�a.s., thus γ ¡ 0

almost surely. In this case it also holds

E| log γ| ¤ E r� log cs � E r� log ds .

On the one hand,

E r� log cs �

»
log

�
1� sup

xPX

sxpωq

fxpωq



dPpωq.

Notice that for any positive real variable X, logp1�Xq is integrable as soon as logpXq� is integrable.
Since we’ve assumed that »

log

�
sup
xPX

sxpωq

fxpωq


�
dPpωq   8,

then
Er� log cs   8.

On the other hand,
E r� log ds ¤ E log d1 � E log d2.

Since supx¤y
f0
y

f0
x
¤ A almost surely, then by stationarity, almost surely,

1 ¤ d1 � sup
kPN0

sup
y¥x

fk
y

fk
x

¤ A.

Thus log d1 is bounded and integrable. We have assumed additionally that log d2 was integrable.
This is enough to conclude to the integrability of | log γ|, which proves assumption A4+. □

5.3. A situation where γ � 0. It was not clear to us how strong an assumption A4 is, or whether it
was hard to find a system breaking it while satisfying all the other assumptions. We shall present
here an example of an infinite Leslie matrix, such that γ � 0 even if all other assumptions are
satisfied. This example is in a deterministic environment, that is |E | � 1, Ω � EN0 , |Ω| � 1. The
random matrix Mpωq is therefore constant, and M0,n �Mn. Let us set :

M �

�
�������

δmp0q p1� δqmp0q 0 0 . . .
δmp1q 0 p1� δqmp1q 0 . . .

δmp2q 0 0 p1� δqmp2q
. . .

δmp3q 0 0 0
. . .

...
...

...
...

. . .

�
������

. (5.3)

where δ P p0, 1q, and mpxq � δmpxq � p1� δqmpxq is the mean offspring size of an individual of age
x. Such a model satisfies A2 and A3, as soon as x ÞÑ mpxq is bounded and positive, since δ ¡ 0.
The ergodicity and integrability properties are trivially satisfied since this model is in a constant

environment. Moreover, Lemma 5.4 applies, therefore setting ν � δ0, and c �
�
1� supxPX

sx
fx

	�1
�

δ, the couple pν, cq satisfies (1.4). Let us prove that we can tune the parameters x ÞÑ mpxq and
c � δ in such a way that the only d satisfying (1.5) is d � 0.

Consider a sequence of integers pεxqxPN0 P t0, 1u
N0 , such that :


 There are arbitrarily long subsequences of consecutive 1 in the sequence pεxq.

 Noting Sx �

°x�1
k�0 εk,

Sx
x ÝÑ 0 as xÑ8.


 There exists α   1 such that for all x P N0, Sx
x ¤ α.
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Let a be a real number such that a ¡ 1. Then, we set, for any x P X,

mpxq � 1� pa� 1qεx.

Defined as such, m is a positive and bounded function, thus Assumptions A2 and A3 are satisfied.
This yields that for any sequence pxiq,

n�1¹
i�0

mpxiq � a
°n�1

i�0 εxi .

Moreover, since this model is in constant environment, M0,n �M1,n�1 �Mn, thus

m1,n�1pxq � m0,npxq �
¸

x0�x,...xnPN
xi�1Ptxi�1,0u

δNpx0,...xnqp1� δqn�Npx0,...xnq
n�1¹
i�0

mpxiq ¥ p1� δqn
n�1¹
i�0

mpx� iq,

where Npx0, . . . xnq � |t1 ¤ i ¤ n|xi � 0u|. Then

m0,npxq ¥ p1� δqna
°x�n�1

i�x εi ,

In particular, x can be chosen such that εx � � � � εx�n�1 � 1, which implies that

}m0,n}8 ¥ m0,npxq ¥ pap1� δqqn.

On the other hand

m0,np0q ¤ 2n sup
x0�0,...xnPN0

xi�1Ptxi�1,0u

n�1¹
i�0

mpxiq ¤ 2na

supx0�0,...xnPN0

xi�1Ptxi�1,0u

°n�1
i�0 εxi

.

A sequence pxiq0¤i¤n of integers such that x0 � 0 and for each i, xi�1 P txi � 1, 0u is entirely
determined by the sequence pTkqk of the lengths of its excursions away from zero. By convention, if
there are only p excursions away from zero, we set Tp such that T0� � � � � Tp � n and Tp�1 � � � � �
Tn � 0. The pxT0�����Ti�1qi¤p are the only zero terms in the sequence px1, . . . xnq, and T0�� � ��Tn ¤
n� 1. Thus

sup
x0�0,...xnPN
xi�1Ptxi�1,0u

n�1̧

i�0

εxi ¤ sup
T0�...Tn�n

ņ

i�0

STi ¤ α
ņ

i�0

Ti ¤ αn,

and
m0,np0q ¤ p2aαqn.

Hence
}m1,n�1}8
m1,n�1p0q

�
}m0,n}8
m0,np0q

¥

�
ap1� δq

2aα


n

�

�
a1�αp1� cq

2


n

ÝÑ
nÑ8

8,

whenever a1�αp1�cq
2 ¡ 1. For (1.5) to hold, we must have d ¤ infn¥1

�
m1,np0q
}m1,n}8

	
. Thus for any values

of α, δ P p0, 1q, if a is large enough, then (1.5) implies d � 0.
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