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Ergodic behavior of products of random positive operators
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Abstract. This article is devoted to the study of products of random operators of the form My, =
My - -+ M,_1, where (M,),=0 is an ergodic sequence of positive operators acting on the space of
signed measures on some set X. Under suitable conditions, in particular, a Doeblin-type minoration
suited for non conservative operators, we obtain asymptotic results of the form

uMo =~ p(h)rnmn,

for any positive measure 1, where h is a random bounded function, (rn)n>0 is a random non negative
sequence and (m,) is a random sequence of probability measures on X. Moreover, h, (r,,) and (m,,)
do not depend on the choice of the measure u. We prove additionally that n~=!log(r,) converges
almost surely to the Lyapunov exponent X of the process (M )n>0 and that the sequence of random
probability measures (m,) converges weakly towards a random probability measure. These results
are analogous to previous estimates from Hennion (1997) in the case of d x d matrices, that were
obtained with different techniques, based on a projective contraction in Hilbert distance. In the case
where the sequence (M,,) is i.i.d, we additionally exhibit an expression of the Lyapunov exponent A
as an integral with respect to the weak limit of the sequence of random probability measures ()
and exhibit an oscillation behavior of ry, and ||Mo,, | when A = 0. We provide a detailed comparison
of our assumptions with the ones of Hennion (1997) and present an example of application of our
results to the modelling of an age structured population.
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1. Introduction

1.1. General introduction. The study of products of random linear operators can be traced back to
the seminal article of Furstenberg and Kesten (1960), studying products of the form

Moy =My ... My 1,

where (M,,)n>0 is a stationary and metrically transitive sequence of p x p real or complex random
matrices. Under a mild irreducibility assumption, the authors exhibit a strong law of large numbers
on the norm of My, in the form

.1
lim —log [uMon| = A,
n—w N,
where A is a deterministic number called Lyapunov exponent of the sequence (M,,),>0, defined as
.1 .1
A= lim ~E[log |Mon[] = inf —E [log [Mox|],

where the norm ||-| can be chosen to be any submultiplicative norm. Under additional positivity and
boundedness assumptions on the entries of the matrices (M,,), Furstenberg and Kesten (1960) also
prove a strong law of large numbers for the entries My 5, (4, j) of the products : for any i, j € {1,...,d},
almost surely,

lim 1 log Mo, (i,7) = A

n—wmn
These estimates on the behavior of the entries of My, were then extended to the case of products
of invertible matrices, see e.g. Guivarc’h and Liu (2001) and Bougerol and Lacroix (1985). These
works rely on a careful study of the action of invertible matrices on the projective space P(R%).
To strengthen the results from Furstenberg and Kesten (1960) on products of matrices with non
negative entries and relax their assumptions, Hennion (1997) studied the action of My(R ) on the
projective space P(Ri), endowed with the so called (pseudo)-Hilbert distance d previously defined
in Busemann and Kelly (1953) and Birkhoff (1957). This distance is particularly well adapted to
this problem, since the contraction coefficient of the projective action of a matrix with respect
to dp is explicit in terms of its entries, in particular, any matrix with nonnegative entries in 1-
contracting and any matrix with positive entries is strictly contracting. Under the assumption that
almost surely, for n large enough, My, has all positive entries, Hennion obtains the asymptotic
decomposition

M07n(’i,j) = AR (i) L () + ngw(/\n)’

where A, is the dominant eigenvalue of My, and L, ,, are the associated left and right eigenvectors,
with the normalizations ||R,| = 1 and (L, R,) = 1. Moreover (R,)n>0 almost surely converges
to a random vector R, (Ly/|Ly|), converges in distribution, and (n~'logAy) almost surely
converges to the Lyapunov exponent .

Such results have important implications, in particular in the field of populations dynamics. Indeed,
a population composed of d types of individuals, evolving in a fluctuating environment, without
interacting which each other, can be modelled by a linear model of the form

Tp = Tp—1Mp_1, (11>

n=1

where x, is a row vector of ]Ri encoding the mass of individuals of each type at time n and
My 1 = (Mn-1(i,J))1<; j<q 1 a random matrix encoding the rates at which individuals of each
type 4 create individuals of each type j between times n — 1 and n. In such a time-inhomogeneous
population model, the understanding of the asymptotics of z,, amounts to the understanding of the
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matrix product Mo,,.

Moreover, such products also appear in the study of multitype Galton-Watson processes in random
environment (MGWRE), which were introduced in Athreya and Karlin (1971). They are a gener-
alization of Galton-Watson processes to the case where the distribution of the (random) offspring
of an individual depends on a notion of type and on a random environment that changes through
time. When conditioning a MGWRE on the environment sequence, one obtains a so-called quenched
population model, which satisifies (1.1), where x,, is the expectation of the population conditionally
on the environmental sequence. The value of the Lyapunov exponent A\ of the underlying matrix
product separates three regimes of the MGWRE : subcritical (A < 0), critical (A = 0), supercritical
(A > 0). These three regimes have different properties. In particular, when A < 0, the MGWRE
goes extinct with probability 1, when A > 0, the MGWRE survives with positive probability. This
separation between regimes was established in Athreya and Karlin (1971) and Kaplan (1974), using
results from Furstenberg and Kesten (1960). More recent advances in the study of random matrix
products - in particular Hennion’s article- were key to the last developments of the theory of MG-
WRE in random environments, see e.g. Pham (2018); Le Page et al. (2018); Grama et al. (2023).
Products of random infinite dimensional operators have also been the subject of some investiga-
tion. In the case where the involved operators are the transition matrices of some Markov chain, in
other words if they are conservative (in the sense that M1 = 1), ergodicity results are obtained by
Cogburn (1984), completed with some more precise results in Orey (1991). Various limit theorems
(law of large numbers, existence of Lyapunov exponents, central limit theorem, local central limit
theorem, Large Deviation principle) have also been obtained on products of ergodic sequences of
infinite dimensional operators using spectral techniques by Dragicevic¢ et al. (2018). The stability
of the Lyapunov exponents under perturbation is studied in Atnip et al. (2022); Froyland et al.
(2019). Ergodicity of products of random operators was also obtained in Kifer (1996) in the case
where they act on some compact space X.

In this paper, we would like to obtain similar ergodicity results for products of infinite dimensional
positive operators, thus extending the results of Kifer (1996) without any topological assumption
on X, in particular without compacity. We have in particular in mind applications to population
models with an infinite number of types. We first consider such a set X, typically infinite, en-
dowed with a c-algebra X, and build a set KT of positive linear operators acting both on the
space of signed measures M(X) on the left and the space of measurable bounded functions B(X)
on the right. Then, we let (M,,) be a stationary, ergodic sequence of elements of Xt and define the
products My, = My--- My_1. The approach of Hennion (1997) can be extended to this infinite
dimensional setup. Indeed, it is possible to define the Hilbert distance dg on the projective positive
cone of an infinite dimensional vector space and to obtain a nice characterisation of the operators
that are (strictly) contracting with respect to dp. We refer the reader to Ligonnicre (2023) for a
proof of these facts. However, as we explain in Section 4, this characterisation leads to stronger
positivity assumptions in an infinite dimensional context than it did in the finite dimensional one.
For example, such an extension of Hennion’s approach would not be able to deal with products of
infinite Leslie matrices that we present in Section 5.

For this reason, we use a different contraction method to obtain a projective contraction. This
method aims at extending the Doeblin contraction techniques for Markov operators to a product
of non conservative operators (that is operators M such that M1 # 1 in general). To do so, we
consider the auxiliary family of Markov operators PéYn, defined for each k <n < N as

(5IP]£V f _ 5:Jch,n(fmn,N)
o my, N ()

where, for x € X

M () = 0o My 1.
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,U‘Mk,n

These Markov operators are related to the projective action - My, ,, = T o

by :

of My, , on measures

0y My = 05 PPy = 00 Py P,

TTLL*LTH
for any x € X. We provide sufficient conditions for the Markov operators (P,?k +1)k<n to satisfy
Doeblin minorations of the form 0,P(f) = cv(f), which guarantees that they are contracting in
total variation. This allows to obtain a notion of projective contraction of the My, on the set of
signed measures. Such auxiliary operators were already introduced and already applied to study
both homogeneous semi-groups of operators, e.g. in Del Moral and Miclo (2002); Champagnat and
Villemonais (2016) and inhomogeneous ones, e.g. in Bansaye et al. (2020). We consider here a
random sequence of operators (M,,), i.e a discrete time, random, time-inhomogeneous semi group,
and assume this sequence is stationary and ergodic. The stationary and ergodic framework allows
us to provide more explicit assumptions, and we obtain a finer asymptotic analysis of the sequence
(Mon)n=0.- Namely, we prove that the following almost sure approximation in total variation holds
for n large enough

| Mo — H(h)rnﬂnHTV < 8" uMon|Tv, (1.2)
where § < 1, h is a random bounded function, r,, is a positive random number and (7,,) is a sequence
of random probability measures on X, which are all independent of the measure y. We prove
additionally that (n~'log(r,)) converges almost surely to the Lyapunov exponent of the process
Moy, and that the sequence (m,) of random probabilities converges in distribution with respect to
the total variation topology towards a random probability measure A on M;(X). Additionally, we
show in Theorem 2.2 that when the sequence (M,,) is i.i.d, the probability distribution A and the
Lyapunov exponent A are related as follows :

A= [ log L dngnap (),

where P refers to the law of the operators (M), thus extending a result stated in Bougerol and
Lacroix (1985) in finite dimension. Finally, still under the assumption that (M,,) is i.i.d, we show
in Theorem 2.3 that, when A = 0, it holds almost surely, for any p e M4 (X) — {0},

lim sup log ||uMo || = —liminf||uMo .| = +oo, (0SC)
n—0 n—0

except in a situation knowed as Null-Homology.

These results should allow to extend many known results on MGWRE with a finite type set to a class
of MGWRE with an infinite type set X. In particular, our results imply that when the Lyapunov
exponent A is nonpositive, outside of Null-Homology, the quenched population size Mg, 1 satisfies
liﬁri) i£fﬂM07n1 = 0 almost surely. By a classical first moment argument, this is a sufficient condition

for the almost sure extinction of the population. The survival of the population when A > 0 is a
more delicate problem and will be the object of a forecoming article.

1.2. Framework and notations. Let (X, X) be a measurable set of arbitrary cardinality, such that
for all z € X, the singleton {z} € X. We denote by B(X) the Banach space of bounded measurable
functions on X, endowed with the supremum norm, and B4 (X) the cone of nonnegative functions of
B(X). The vector space of signed measures, noted M(X), and the cone of nonnegative elements of
M(X), noted M (X), are endowed with the total variation norm || - |py. Note that ||u|ry = u(X)
for any pu € M4 (X). Let M7(X) be the set of probability measures on (X, X'). For any measurable
set Ae X, let 14 € B(X) be the indicator function of A. For short, we note 1 = 1x € B(X) the unit
function on X. We also note 0, € M;(X) the Dirac measure at x.
Let KT be the set of maps @ of the form:

Q:Xx X — R,
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such that, for any = € X, for any A € X, the map x — Q(x, A) is measurable, the map A — Q(z, A)
is a positive and finite measure on (X, X) and ||Q|| := sup,ex Q(z, X) < o0.
Such a map @ € Kt naturally operates on B(X) by setting, for any f € B(X), and any = € X,

ff Q. dy).

Note that |Qf(x)] < | flo||Q|l, thus Qf € B+(X) as soon as f € B (X) and @ acts as a bounded
positive operator with norm ||Q|| on B(X). Moreover, for any positive measure u € M (X), and
any Q € K, the positive measure @ on X is well defined by setting, for any nonnegative function

/.
Q) = 1(Qf) = fX Qf (&) u(de).

Note that p@ has indeed finite mass pQ(1) = p(QL) < ||Q||u(1l) < oo since u is assumed to be
a finite measure. This action can therefore naturally be extended to the set of signed measures
M(X), where @ acts as a bounded linear operator with norm [|Q||.

Thus, the elements of Kt operate as positive linear operators both on the sets of bounded
measurable functions and on the set of signed measures on X, with a duality relation between
these two actions. Moreover, it is also possible to define a projective action - of Kt onto the
projective space associated with M (X), ie the set of probability measures M1(X), by setting, for
any p € Mo (X) and any M € K* such that uM # 0,

Finally, the set KT is naturally endowed with an associative, non commutative product, defined by
: for any Q1,Q2 € KT, any z € X and any A € X,

Q1Qa(x, A) = f Q1 (. dy)Qa(y, A).
)

This product is compatible with the left and right actions defined above, in other words, for any
Q1,Q2€ K, any pe M (X), and f € By (X),

1(@1Q2) = (1Q1)Q2 and Q1Q2(f) = Q1(Qaf),
and whenever p € M (X) and u@1Q2 # 0,

pe (Q1Q2) = (p- Q1) - Q2.

The operator norm || - || satisfies the submultiplicativity relation

[Q1Q2]| < [|Q1 ][ Q2]]-

Remark 1.1. In the case of a finite or countable set X, any measure on X is atomic thus an operator
Q € K™ on X corresponds to a matrix indexed by X with nonnegative entries. The product of
operators of KT corresponds to the matrix product and the respective left and right actions of K
on signed measures and bounded functions correspond to the product of matrices respectively with
the vectors of £1(X) (seen as row vectors) and of /*(X) (seen as column vectors).

We consider a dynamical system (€2, A, P, 0), where (£2, A, P) is a probability set and 6 : Q@ — Q
is a measurable transformation, which preserves the probability P, i.e Po§~! = P.
Let M : Q@ — K be a measurable map. We denote as Ny the set of nonnegative integers and note,
for each n € Ng,

M, = M o 0",
Note that the sequence (My,)nen, is stationary. For each k < n, w € 2, let us define the random
product
Mion(@) = Mi(@) - My 1) = (M 0 6%(w)) -~ (M 0 0"~ (w)) € K.
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with the convention My x(w) = Id € K*. Notice that My gin(w) = Moy, © 0% (w). The operators
satisfy the following semi group property : for any k < n < N, any p e M(X), any f € B(X)

pMy N (W) f = pMpp(w) M, N (W) f. (1.3)
Moreover, for any z € X, k < n, w € €2, we set
Mg (T, w) = 62 Mign (W)L = (0o Mpg o (w) | 7v -
Notice in particular that for any positive measure p,
|uMy N| = p(myn) = pMe N1 = pMy pmp, N

Let us point out additionally that || M}, ,,(w)|| = sup,ex M n(z, w) = [|Mppn (-, w)|lw, and that for any
E<n <N, | Mpn|| < || Mgnlll|Mn,n||- Finally, to shorten the notations, we often omit the depen-
dence in w, writing for example my, ,(z) = My p(z,w), and || My, || = Mk nlo = SUPLex Mk 7 (2, w).

1.3. Assumptions. We list here several hypotheses that will be used in the rest of the article.
Al. The dynamical system (2, A, P,0) is ergodic.
We recall that a dynamical system is ergodic when any measurable set A € A such that §=1(A) =
A satisfies P(A) € {0, 1}.
A2. For almost all w € Q, the function x — my (z,w) is a positive function.

By stationarity, A2 implies that P(dw)-almost surely, the product My, ,(w) is a continuous, non
zero, positive linear operator. We introduce the integrability property

A3. E[log™ [moaw] < .

In particular, recalling that |mpy [l = || Mg, by submultiplicativity of the norm || - |||, A1 and
A3 imply that Elog™ (|| Mj,,||) < oo for all k < n.
We call admissible coupling constants a measurable map (v,c,d) : w € Q — (v, c(w),d(w)) €
M;(X) x [0,1]? such that for P-almost any w € €2,
i) for all z € X and all f € B4 (X), the couple (v, c(w)) satisfies

e M(w)(f) = e(w)]|0:M (w)[[ve(f) (1.4)
ii) for all n > 0, the couple (1, d(w)) satisfies
Vo(min) = d(w)[| M| (1.5)

When an admissible triplet is defined, we define the random variable
Y(w) = c(w)d(w).

Note that taking ¢ = d = 0 and any measurable map w — v, defines an admissible triplet, however
in this case v = 0. Our main assumption is therefore

A4. There exists an admissible triplet w — (v, ¢(w), d(w)) such that P[y > 0] > 0.

2. Statement of the results and structure of the paper

2.1. Main results. Set
7 := exp (E [log(1 —~)]) € [0, 1],
and notice that A4 yields 4 < 1. Under the previous assumptions, we prove the following Theorem:

Theorem 2.1. Let M : Q — KT be a measurable map and assume that Assumptions A1,A2 and
A/ hold. Then,
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i) P(dw)-almost surely, there exists a random function he B(X) such that, for any §e (371> 1),
for n large enough, for any finite measures pi, po € M4 (X) — {0},

‘ p1(h)

w1 Moy, 1o (h) p2 Mo -
Such a function h is unique up to a multiplicative constant.
it) There ezists a probability measure A on the space M1(X), such that for any probability mea-
sure u, the sequence of random probability measures (p - My,) converges in distribution to-
wards A, in the space M1(X), endowed with the total variation norm.
iii) Assuming additionally A 3, for almost any w € Q and any finite, positive, non-zero measure

K

< 5" Mo (2.1)

1
—E [log || M, = A€ [—o0, ). 2.2
inf I [log || Mo, [] = A € [0, 0) (22)
Note that the estimate (1.2) can be derived from Theorem 2.1 by a choice of an arbitrary measure
2, and by setting
lp2 Mo
= - M, =12 =70
Tn H2 0,ns Tn M2(h) s
The rest of this paper focuses on the independent case, that is, the case where the sequence of
operators (M,,) is i.i.d, with a law called P. This can be obtained by setting (2, .A,P) to be the
product space Q@ = (KT)N, P = PN and M : (KN - K, (Ni)r=0 — No. In this independent
case, we are able to characterize the measure A on the projective space M1(X) as the only invariant

measure left invariant by the projective action of the matrices (M,,). In other words, it is the only
invariant probability measure of the Markov chain (py,)n>0 defined by

1 .
—log |uMopp| — inf
n n—00

oMo r,
= ———"" ¢ M;(X).
i = Taoddy,] & M)

A classical cocyle property yields the decomposition

n—1 n—1
log | toMon|rv = Y log(|luxMil) = > plue, M), (2.3)
k—0 =0

where (ug, My) is a Markov chain on M7 (X) x KT, with the unique invariant probability measure
A ® P. These property allows us to obtain additional insight over the asymptotic behavior of
the mass of the measure uMyp,. To do so, we introduce the following strengthened versions of
assumptions A3 and A4:

A3+. E[flog [mollw]] < co.
A4+. There exists an admissible triplet (v, ¢, d) such that E |[log(v)| < 0.

Note that A4+ implies in particular that P[y > 0] = 1. Under these assumptions we are able to
link the Lyapunov exponent A, which governs the exponential growth of the mass of the measure
| My, ||, with the asymptotic projective distribution A on M (X).

Theorem 2.2. Consider an i.i.d sequence (M) of elements of KT with law P, suppose assumptions
Al, A2, A3+ and A+ hold. Then, the almost sure convergence (2.2) also holds in L'(A @ P),
that is

1
f ‘nlog | Mo —*‘dA(mdP@"(Mo,--- s My—1) — 0.

n—eo

As a consequence,

A:jmmwﬂmeMM» (2.4)
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Moreover, in the critical case where A = 0, the law of large numbers (2.2) is not enough to
know whether liminf || Mg ,, | and limsup [|Mo | are 0, a positive real number, or +00. Answering
these questions is the objective of our last theorem. When A = 0, the sequence (M,,) is i.i.d and
o ~ A, the increments p(pug, M) of the sum (2.3) are centered and form an ergodic sequence. By
analogy with a centered random walk with i.i.d increments, we expect their sum log | oMo | to
oscillate between —oo0 and +00. More formally, we use the theory of Markov random walks, and in
particular Alsmeyer (2001), which establishes this oscillation property exists, except in some case
called Null-Homology. In our context, we say that there is Null Homology when there exists some
function 7 : M1(X) — R such that d(A ® P)(u, M)-a.s.

log [|uM || = n(p - M) —n(p). (NH)

When (NH) does not hold, using results from Alsmeyer (2001), we indeed obtain the oscillation
of log |puMoy| for any initial measure p. On the contrary, when (NH) holds, it is clear that
log | oMo | = n(pn) — n(po), thus log|poMo,,|| may or may not oscillate, depending on 7. More
formally, our result is

Theorem 2.3. Consider an i.i.d sequence (M,) of elements of K with law P, suppose assumptions
Al, A2 A3 and A+ hold. Assume additionally that A\ = 0. Then, if (NH) does not hold, we
have
lim inf log || Mo n| = —00 and limsuplog || Mo | = +o0 (OSC)
n—00 n—>00

for any p € My(X) —{0}. If (NH) holds, let up ~ A, and let us note a < b € [—o0, +w0] the
respective infinimum and supremum of the support of the random variable n{pg). It holds

a=—-—0<P—as., for any p e M4 (X) — {0}, limior.}flog | Mo || = —o0

and
b=+4w < P—as., for any pe M, (X) — {0}, limsuplog | Mo || = +00.
n—oo

The notion of Null Homology already appears in the framework of products of p x p non-negative
matrices, and Hennion (1997) provides some geometric condition which prevents Null-Homology
(see in particular Theorem 5 of Hennion (1997)). We are unfortunately not able to generalize this
condition in the infinite dimensional case.

2.2. Structure of the paper. Section 3 contains the proofs of Theorems 2.1, 2.2 and 2.3. More
precisely, in Subsection 3.1, we recall how the coefficient v allow to control some contraction rates
of the operators My ,. These results are adapted from Bansaye et al. (2020). In Subsection 3.2, we
use the ergodic structure, in particular Assumptions A1 and A4 to obtain a geometric decay of the
error terms that appeared in our previous estimations. In Subsection 3.3 we derive the three claims
of Theorem 2.1. Finally, in Subsection 3.4, we focus on the case where the sequence (M,,) is i.i.d.
In this case, a study of the invariant measures and the ergodicity properties of the Markov chains
(o - Mo n)nz=0 and (po - Mo pn, My )n>0, allows to prove Theorems 2.2 and 2.3.

Section 4 is dedicated to a comparison of our results with those obtained based on Hilbert
contractions. More precisely, we show how natural conditions coming from Hilbert contractions
techniques provide more tractable sufficient conditions for our Assumptions (in particular A 4),
both in finite and infinite dimension.

In Section 5, we apply our results to study products of infinite Leslie Matrices. This constitutes
an example of an interesting class of systems that cannot be studied using the Hilbert metric.
More precisely, we provide in Subsection 5.2 reasonable sufficient conditions under which a product
of Leslie matrices modelling the behavior of an age structured population satisfies assumptions
A1 to A4. However, when these conditions are not satisfied, it can be quite difficult to exhibit an
admissible triplet such that v > 0, even on a deterministic and constant sequence of Leslie Matrices.
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To illustrate this fact, we present in Subsection 5.3 an example of system where v = 0 even if all
the other assumptions are satisfied.

3. Proofs

3.1. Contraction results based on inhomogeneous Doeblin minoration. Given an admissible triplet
(v,c,d), we define for every k > 0 the [0, 1]-valued random variables ¢ = cx(w) = c(0F(w)),
dps1 = dpp1(w) = d(0*(w)) and v, = v (w) = V(0¥ (w)), as well as the M;(X) valued random
variable v = vgk(,,). Notice that ¢ = ¢y and d = dy, that the sequences (ck)k=0, (di)k=1, (Vk)k=0
are all stationary sequences and that for all k£ > 0,

Ve = Ckdii1-

Moreover the random variables vy, ¢, d11 satisfy some time-shifted versions of (1.4) and (1.5).
Indeed, for any f € B4 (X) and any = € X, it holds

0o My o1 (f) = crmp ps1 (2)vi(f), P — aus. (3.1)

and for any n > k,

n(z), P—as. (3.2)

Vg (Mp+1,0) =
The first step towards proving Theorem 2.1 is establishing

Proposition 3.1. Suppose A2 and let w — (v, c(w),d(w)) be an admissible triplet. Then, P(dw)-
almost surely, for any k < n < N and any finite measures p, puo € M4 (X) — {0}, it holds

Hul : Mk,n w2 My, "HTV 2 H 1 - '7z (33)

and, if n = 1, it also holds P(dw)-a.s

X pa(miN)  pa(men) | _
() a(min) |

,U2 mE.N) T
1 — 3.4
:UZ mk’n H 72 ( )

i=k

This result was already introduced in Bansaye et al. (2020) in a somewhat different setup. We
have chosen to state and prove it here for the sake of completeness. Its proof is based on performing
a Doeblin minoration on a well-chosen sequence of auxiliary Markov operators (Pkfvn) This Doeblin
property yields (3.3), a contraction property for the projective action of My, on the space of
measures M (X). We derive then Equation (3.4), which describes how the growth of the mass
| £ M} 4| between times t = n and t = N depends on the initial measure y.

Let us introduce now the operators P,an upon which we perform the desired Doeblin minoration.
Under assumption A2, P(dw)-almost surely, for any k < n < N,  — my,(z) and  — my, y(z)
are positive functions on X. For each k < n < N, an operator P{¥ (w) can be defined P(dw)-almost
surely, as follows : for each z € X, for each positive measurable f : X — R,

5ka,n(fmn,N)
mp, N ()

5P, f =

P,ﬁvn is a positive and conservative operator (i.e. P,ivn]l = 1). Indeed, by Equation (1.3), for any
T e X,

Moreover, P,ﬁvn satisfies the relation :
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Note that Pévn is a matrix when X is countable and then, for any x,y € X,

N (Y)

Plg\,[n(xa y) = ka()

Mk n(x y)

These operators satisfy a Doeblin contraction property summed up in

Lemma 3.2. Assume Assumption A2 holds and let w — (v, c(w),d(w)) be an admissible triplet.
Then P(dw)-almost surely, all the P,fn(w) are well defined, and it holds

i) For any n < N — 1, there exists a random probability measure v, y on X such that, for any
reX,

4 Pn n+l = CndnJern,N = TnVn,N-

it) For any signed measures p1, p2, of same mass and any n < N — 1,

lep’r]z\,[n-i-l Pn "H‘lHTV (1 - ’Vn)le - pQHTV'

iii) For any k < n < N and any signed measures p1, p2 of same mass,

|1 P, — p2 PRy < H 1= %) lp1 = p2llgy -

Notice that in this lemma, our single assumption is A2. It allows the (P,ivn) to be defined P(dw)-
almost surely In particular, A4 is not assumed, we allow 7, (w) = 0, in which case we just obtain
that PN 'n1 18 1-contracting.

Proof of Lemma 3.2: Let w € ) such that all the P,Q]n are well defined. For any x € X and any
f e B4(X), it holds,

51Mn,n+1(fmn+1,N) > Cnmn,n+1($)yn(fmn+1,1\/)>
thus

5ﬂcjwn,n-i-l(annJrl,N) < Vn(fanrl,N)mn,n-i-l(x)

5 P - = tn
n n+1f mn7N (ZU) mn,N (1’)

with, by definition of d,, 1 :

)

dn-‘rlmn,N(x) = dn+15;an,n+1(mn+1,N) < Vn(mn+1,N)mn,n+l(x)~

Therefore,
v(fmns1,N)

O P > cndy,

= cpdn1Vn N (f) = Ytn N (f),

setting

Vn(' Mp4+1,N )

Vn(mn+1,N) ’

which is a probability measure. This concludes the proof of 7).

Let us prove now ii). This result is a classical consequence of the previous point using the theory
of Markov operators. A Markov operator P is said to be d-Doeblin (with § > 0) when there exists
a probability measure p such that §,Pf = ou(f) for any z in the state space and any f € B (X).
Furthermore, such an operator is 1 — § contracting in total variation : for any signed measure p of
mass 0,

Vn,N(') =

lpPlrv < (1=0)|plrv.
This property trivially holds for § = 0 : any positive operator satisfies 0, Pf = 0 when f is a non
negative function, and any Markov operator is 1 = (1 — 0)-contracting in total variation. In our
context, the previous point of the lemma yields that P(dw)-almost surely, for any n < N — 1, and
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any v € M;(X), the Markov operator P 'ni1 18 Yn-Doeblin. Therefore, for any p1, p2 € M(X), such
that p1(1) = po(1), noting p = p1 — p2, it holds

0P iilpy < (1 =) lplzv-

This proves 44), let us move now to 44i). Since all the PN ., are conservative operators, the image

n,n+
of a measure of mass 0 by P n n+1 18 a measure of mass 0. The equality P,i\fn = Pé\fk IR P,{V_ Ln
yields HpP,ﬁVnHTV < (1 =v-1)|pPY, |rv. By induction, we deduce
n—1
<[Ta=wlelpy -
i=k
This concludes the proof. ]

Proof of Proposition 3.1: Let us prove first Inequality (3.3). Applying Lemma 3.2, iii) with n = N
and p = d; — &y, we get, P(dw)-almost surely

162PF = 6y PPy < 1‘[ 1= i) [0z — 0yl <2 H 1—).
Hence, for any f € B(X) and z,y € X,

5ka7n(f) B 51/Mk:,n(f) n—1 o
n(z) M (y) ‘ <2|fle H(l Vi)

i—k
Let p1 and p2 be two positive measures. The inequality
M () = i (@) D < oy ) 111, [T )
mkm(y) i=k
yields, after integrating with respect to u1(dx) :
Sy Mpyn(f) (=
11 Mi (f) = pin (g ) === < 201 (mgen) | Lo [ [ (1= 7)),
mk,n(y) i=k
so that
Sy Mp. 1 (f) ‘ (=
- M, — YRRV <9 1 — ).
1 k,n(f) mk,n(y) HfHoo Zl_l[C( '72)
Integrating now with respect to ua(dy), we obtain
n—1
1 - My () = p2 - My () < 20 f oo [ (1 =),
i=k

and finally

21_[ (1— ).

Let us move now to the proof of Inequality (3.4). Applymg Inequality (3.3) to the function z —
my, N (), one gets

|1 - My, —

—1 n—1
pr(meN)  po(meN) n
s _ ’ < 2 m N 1—~)=2 M N 1 —~,).
i)~ ol | < 210l [10 =30 =2 T [0 =)

By (3.1) and (3.2) it holds,
dn [| My N || < w1 (min,x)
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and
po(mi,N) = poMpp—1Mp—1nmp N = Cne1p2(Mp 1) Vn—1 (M, N ).

Combining these identities we obtain, P(dw)-almost surely,

n—1
m m m
o d, plmen) _ pa(men) | o pa(me) [T ).
Ul(mk’,n) NQ(mk,n) NQ(mk,n) ik
Thus taking an infimum in v, this yields, P(dw)-almost surely,
n—1
1\Mg, N 2\MEk, N 2\Mg,N
s pa(my,N)  p2(muN) <2#( ) (1= ).
Ml(mk,n) NZ(mk,n) NZ(mk,n) ik
This ends the proof. O

3.2. Asymptotic estimates under ergodicity assumptions. For any n such that v,_; # 0 and any
k < n, we define

1 n—1
Tin = —— [ [ (1 =), (3.5)
TYn—1 i—k

and we set I', , = +00 when ~,_1 = 0. With these notations, Equation (3.4) can be rewritten

p(me )  pa(meN)

B pi2 (M, )
p1(men)  po(men)

" () (3.6)

S k;7

In this subsection, we use the ergodicity Assumption A1, as well as Assumption A4, which provide
a control on the sequence of Doeblin coefficients (). In the following lemma, we use these as-
sumptions to establish a geometric decay of both ]_[?;kl(l — ;) and I', ,, as n — o0. More precisely,
(3.8) provides the geometric decay of Hz;%(l — ;) using Birkhoff’s ergodic theorem. To derive
the decay of Iy, as n — o0 we need additionally to avoid that «y, 1 is either 0 or too close to 0.
Under Assumption A4 the coefficients (7,,)n>0 are almost surely all nonzero, and (3.10) provides
a sufficient control for the geometric decay of I, ;,. Under the weaker assumption A4, it is possible
however that 7,1 = 0 for some values of n. We can however focus on some random times at which
Yn—1 is greater that some predetermined level € > 0. We define those random times by

{n}. = max{i < n|y_1 = e} U {—0} (3.7)

for all n > 0 and all € > 0. (3.9) establishes that the subsequence of (I'y ,)n>0 associated with the
random times ({n}_)n>0 still enjoys some slower geometric decay.

Lemma 3.3. Assume that assumptions A1, A2 and AJ hold. Then for any k = 0,

k+n—1 n
( H (1-— %)) 27 < 1,P(dw) — almost surely (3.8)
i=k

Moreover, for all € > 0 such that P[y = ¢]| > 0, it holds

3=

lim sup (Pk,{n}5> < 771Zel < 1, P(dw) — almost surely. (3.9)

n—-+o0

Finally, assuming additionally A/ -, it holds

1\7#
lim () = 1,P(dw) — almost surely. (3.10)

n—o0 ")/n



Ergodic behavior of products of random positive operators 105

Proof of Lemma 5.5: We recall first that by definition, for any w € €2

(1 =7)(w) = (1 =7) 08 (w).
Notice then that, by Assumption A4, for almost every w € Q, y(w) € (0,1] . Thus log(1l — y(w)) €

[~90,0) and 7 = exp (E [log(1 — y(w))]) € [0, 1):
Thus for any k,

k+n—1 % n—1
log < 11 (1—%)> Zlog 1— ) 0 0%

i=k =0
Since # is an ergodic map, by Birkhoff’s ergodic theorem, for any k > 0,

— Z log(1 — Yg+i) . E [log(1 — v)] = log ¥, P(dw) — almost surely.

This yields (3.8). Moreover, under A4, for € small enough, by Birkhoff’s ergodic theorem, it holds
almost surely
nlggon#{l k< nly—1 z2e} =Py =e] > 0.

However
(n}, > #{1 <k <nlys >}
by definition of {n}_. Thus, almost surely

lim inf @

> P[y > ¢] >0,
n—00 n

in particular, lim,,« {n}, = 400 almost surely.

As a consequence, for any k = 0, it holds P-a.s., for n large enough

1

g 1 e oy (mh-k 1 TE
Po,)” = (1) <() exp [ e log(1
(k’{ }5> Viny. -1 H 2 n {n}.—k ZZ,:C
where almost surely
{n}.—1
S g —k: Z log(1 =) = log(%).

Hence

1
lim sup (Fk {n}. ) " <exp (ligi(gf ({T;}E) log(7)> < AFD=el,

n—aoo

This concludes the proof of (3.9). Let us move to the proof of Inequality (3.10).
Notice first that since v, < 1 for all n,

1\ =
lim inf () > 1.
n—0o0 ’}/n

Let us prove now the converse inequality. Let us define for each b > 1,

—log(vn)

Yn(b) = log(b)

=0,

and

= 2 Vb= 2 e

neNg neNg
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For a given value of b, the sequence (Y;,(b))nen, is stationary, thus
E(N,) = > P[V,(b) >n] = > P[Yy(b) > n].
neNg n€No
It is a well known fact that for a nonnegative random variable Y,
E[Y] <o < Y PY >n) <.
n=0

By Assumption A4, it holds E [Y;(b)] < o0 and E [N,] < oo for all b > 1. Therefore, P(dw)-almost
1

1

surely, N, < oo, thus (%) " < b for n large enough and lim sup (%) " < 1. Finally,

n—ao0

1\~
lim () =1, P(dw) — almost surely.

n—o ’)/n

Putting the estimates from Lemma 3.3 together with Proposition 3.1, we obtain

Proposition 3.4. Assume A1, A2, A/ hold. Let € > 0 such that P[y = €] > 0. Then, P(dw)-
almost surely, for any k € Ny, there exists a bounded, non-negative measurable function hy such
that, for n large enough, for any uy, us € M (X) — {0},

h
s N PV (3.11)
p2(hy) TV
where almost surely, for n large enough
OOt
kn * 1— 2Fk,{n}6 :
1s well-defined and positive, and
1
limsup (Af,,,)" <70% < 1. (3.12)

n—aoo

Furthermore, P(dw)-almost surely, a function hy satisfying (3.11) is unique up to a multiplicative
constant.

Proof of Proposition 3./: We recall first that by (3.9), it holds almost surely
nlglc}o ij{n}g = 0. (3.13)

As a consequence, almost surely, for n large enough, 2Ty, < 1, thus Ai}n is indeed well-defined
and positive. We also derive (3.12) from (3.9) and (3.13). As a consequence, lim, . A7, =0
almost surely. 7

Let us assume now that there exists a positive function hy, satisfying Inequality (3.11). Then, if
z,y € X, setting j11 = 0z, 2 = 9, and applying this inequality to the constant function 1, we almost
surely get, for n large enough

M) )] < k() = 0 (Mpn(2)).

Ml =3 w) nooo

Thus
hi(x) mea(y)

n—00 hy (y) My (x)

9

which readily implies that
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This yields the unicity of Ay up to a multiplicative constant, when it exists. Let us now prove the
existence of a function hy, satisfying (3.11).
By Inequality (3.4), with p1 = g, 2 = dy, one gets, P(dw)-almost surely, for any k < n < N:

mg, N () _ M () Mg () (3.14)
1 ) .
mgN(Y) M (y) M (Y)
where the right-hand-side term is infinite on the event {7,_1 = 0}. Setting
diamy,(z,y) = sup | lD) M)
Ny Nozn | TN (Y) e N, (Y)
this yields, for any x,y € X,
diamy. (7, y) < AT, k)
M (Y)
Exchanging the roles of xz,y, one gets :
min [diamy, ,(z, y), diamy, , (y, z)] < 4T 5. (3.15)

For all £ > 0, z,y € X, both the sequences (diamy ,(z,y))n>k, (diamy, ,,(y,)),>r are non-
increasing, and as a consequence from the definition of {n}_, {n}, <n, thus it holds

min [diamk,n(‘r’ y)a diamk,n (ya 1")] < min I:Cliarnk,{n}E (CC, y)v diarnk,{n}E (y7 .%‘)]

n—o0

< (41“,67{”}5) — 0, (3.16)

P(dw)-almost surely, for n large enough, by (3.13). Thus one of the sequences (diamy, ,(z, y))n>k,
(diamy, ,(y, z))n>k has 0 as an adherence value. Since these sequences are non decreasing and
positive, they converge, thus, P-a.s., one of them tends to 0. Without loss of generality, suppose
that

diamy, ,,(z,y) - 0.

mkn(m)
mk,n(y)
nonnegative limit {3, (z, y). Moreover, as a consequence from the definition of {n}_, forall k <n < N,
it holds {n}, <n < N and thus k <k A {n}, < N. Applying (3.14) yields therefore

Then, the sequence of positive real numbers ( ) is a Cauchy sequence, it converges to a
nzk

m T m T
MmN (2) _ Mkt () 20 kn ), Mk, 7). (3.17)
me,N(Y) Mg gafny, (Y) M kafny, (Y)
In particular, letting N — o0 in (3.17) proves that the limit I (z,y) = limy e :zzxgg satisfies
MEg ka{n} (.%’) ME ka{n} (‘T)
Lo(z,y) — —Frme T op o kAl 3.18
( ) MEka{n}, (y) rtnke MEkr{n}, (y) ( )

Almost surely, it holds moreover for n large enough

=

k A {n}. ={n}, and 2Fk,k/\{n}8 <
Plugging this into Equation (3.18) yields, for n large enough

1mk, n (.’L‘)
_ lk(x’y) < ,{7}6

Mk fny, ()
T Amy gy (y)

My (ny(Y)
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My (T)

My, (n}, (%)
mk,n(y)

"nk:,{n}‘E (y)

Since > 0, this implies that lx(z,y) = lim, > 0 and consequently,

mk,n(y) . 1
My (x) now (2, y)

< 0.

Note that Proposition 3.1 allows to prove that P(dw)-almost surely, (3.14) holds jointly for any
k <n < N and any z,y € X, thus so does (3.16). Thus P(dw)-almost surely, all the sequences of

the form (L”(x)> for all £ = 0,z,y € X converge to a positive limit as n — 0.
mk:,n(y) n=k

Now, let us fix an arbitrary element zy € X, and set hx(x) = lim M@ for all 2. The function

n—>oomk’,n(1’0)
hy is positive and satisfies, for any z,y € X,

my N (T) N hi(z)
miN(Yy) Nowo hi(y)

Plugging this into Equation (3.17), we obtain almost surely, for n large enough

my, iy ( my iy (
hi(y) M gny_ () <My fny, (V)
Consequently,
M (n_(2)
hi(x) < hg(y) (1 + 20, 0 | ————
I gy oo
S hp(y) (1+ 2T ) ————=—
( )( ot }5> My (ny_(Y)
by A2, which implies that hj is bounded.
Notice now that for n large enough, taking N = n in (3.17) yields
men () Mk gy (2) Mg (ny_(2)
- S ey, — = (3.20)
Min(y) M0y (Y) M (ny. (Y)
Therefore, combining (3.20) with (3.19), we obtain
hi(z) Mg (z) Mpn(2) Mgy (@) g n(2) Mgy, (2)
he(y)  men@| | men(y)  mepy @ | men@) oM ()
M (n_ ()
ATy gy — e (3.21)
Fiinke Mk {n}, (y)
Once again, we recall that almost surely, for n large enough
2Fk,{n}s < 1.
Therefore (3.17) yields P-a.s., for n large enough
ME,{n}, (z) 1 mk,n(x) (3.22)
Mgy (Y) 1= 2T oy Mipen (y)
Plugging this into (3.21) finally yields
hi(@) _ men(@)| - Akgny, man(@) Bl () (3.23)

he(y) M)~ 1= 204y Min(y) 2 mpa(y)
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Moreover, for any positive and finite measure py € M4 (X), any y € X, integrating (3.23) with
respect to pi(dz), one gets

pi(he)  pa(meg,) <Ai,n,u1(mk,n)

hi(y) men() | 2 man(y)’

Thus

€
Ak,n

2
Integrating with respect to any positive and finite measure ps(dy), this yields

e (y) pa (Pk) — pa (Mg o) e (y)| < 1 (M) e ().

€

L (min)p2(hr),

|2 (mn )i (hie) — pa () pz (hi)| < —5

and finally,

‘,Ufl(hk) _ H1 (mk,n) < Ai‘,n :U’l(mk‘,n) (3 24)

pa(hy)  p2(myn) 2 pa(min)
Let us prove now that hy satisfies Inequality (3.11). It holds

‘ ~ pa(ha)

1 My, oM,
On the one hand, applying Inequality (3.3), one has, almost surely, for n large enough

< lpa M — pa (mpg ) pi2 - Mgl

TV
pa (hy)
112 () M2 M

+ ‘

i (g ) pro - M, —
TV

H/Lle,n — M1 (mk,n)/@ « My v S M (mkm) H,Ul My — 2 - Mk,nHTV

n—1

<2[ [ =) pa(men)
ik
{n}.—1

<2 [] (0 =v)pa(mpn)
ik

€

k.n

=Ry ().
On the other hand, by Equation (3.24), it holds P-a.s., for n large enough
k?
< 7"#1 (mk,n)

' ~ pa(ha)
2

- M M
/‘Ll(mk,n)/i? k,n ,UQ(hk)MQ k,n
Finally, for n large enough, it indeed holds almost surely for n large enough
h
My, — a k)MQMk,n
p2(hi) TV
This ends the proof. (|

N

pa(mpn) — pa(hy)
N2(mk:,n) /LQ(hk)

< U2 (mk,n)
TV

&€

< ALl M|y

The control provided in (3.11) only holds for large enough values of n which are random and
depend on k. Under the stronger assumption A 4--, it is possible to obtain a control which is
uniform in k£ < n.
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Proposition 3.5. Assume A1, A2, AJ+ hold. Then almost surely, for any k < n and any measure
M1, g2 € M+(X) - {0}7 it holds

h
:ule,n - Ml( k)MQMk,n
pi2(hi)

for any § € (7,1).
Proof of Proposition 3.5: We start by letting N go to infinity in (3.14) and obtain, almost surely,
for all k,n € Ng and all z,y € X
‘hk(l’)(ﬂ?) My () M (T)
hi(y) M (Y) M (y)’

where by A4-f almost surely, v,-1 > 0 for all n > 1. Replacing (3.23) by (3.26) in the proof of
Proposition 3.4, we obtain first

S Akl Myl = o (6" Myn
v

), (3.25)

k,n (326)

pa(myep) () p1(mi ) (3.27)
< N .
p2(men)  p2(hy) p2(my )
for any non-zero positives measures ji1, 2. From this we derive both
1 My — p1 (M) iz - Mgl gy < g1 (M) |2 - My — pio - M|y
n—1
<2 [ [ =) pa(min)
i=k
< 2Fk,n,u1 (mk,n)
and
w1 (hy) p1(men) (ht)
w1 (Mg )2 - My — oMy, < po(my, — -
' Ondbiz Min =y Misn | S P20 | Y ™ aalin)
< 2Fk:,nﬂ1 (mk,n)a
which we combine to obtain
hy
‘Mle,n _ )ka,n < My — pa(mgn) iz - M
p2(hi) TV
1 (P
+ ‘Ml(mk,n)uz - My, — fa )M2Mk,n
MQ(hk) TV
< ATy |l 1 M |-
O

3.3. Proof of Theorem 2.1.

Proof of assertion i) : Uniform geometric ergodicity: Let us take k = 0 in Proposition 3.4. Then,
for any € > 0, P(dw)-almost surely, noting h = hg, it holds for any finite and positive measures

M1, p2, ON X) ‘

where, P(dw)-almost surely,

p(h)
My, — My,
o =y 2o

g 8,n||u1M0,nH7
TV

limsup (Aj,,)" < =<l e [0, 1).

n—a0
Let now 6 € (319 1), For ¢ > 0 small enough, § > 371722, As a consequence, P(dw)-almost
surely, for n large enough, (depending on w),

€ n
O,né(s'
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_ p1(h)

Thus, P(dw)-almost surely, for any § € (7, 1), for n large enough and any positive and finite measures
pMon — —<paMon| <"1 Moy
p2(h)

M1, 42,
‘ TV

This proves Equation (2.1). O

Proof of assertion ii): The proof relies on a classical time-reversal technique, see e.g. Cogburn
(1984); Orey (1991), or Hennion (1997) for a version that is closer to our context. As stated in
Cornfeld et al. (1982, 11.10.4, pp.239-241), the ergodic system (2,.4,P,6) can be extended as an
invertible ergodic system (Q, A, P, ), such that Q = Q, f|q = 6, and 0 is a bijective, bimeasurable,
measure preserving and ergodic mapping. The definitions of My, ,,, ¢y, dn, Vn, v, can be naturally
extended to all K < n in Z, and one still has ¢, = cogn7 dn, = do@n, Yo = 08" for n € Z.
Assumption A4 implies that all the (7, )nez are almost surely positive and have log-moments.

Therefore, Lemma 3.2 and Proposition 3.1 extend to indexes k < n < N € Z.

For nonnegative n < N, for any positive measures j1, o on X, one has in particular

n—1
It - Mo = o - M_pollpyy < 2] [(1 = 7=im0). (3.28)
i=0
With po = p1 M_ Ny, this yields :
n—1
g1 - M _po—p1 - M _Npollpy, <2 H(l —Y_i 1)
i=0

Noticing that 6 is now an ergodic automorphism of the measured space €, and applying Birkhoff-
Khinchin Ergodic Theorem as stated in Cornfeld et al. (1982, Theorem 1, p.11), one gets, for almost
any w € €2

n—1

1 ——

- D log(l—v_i1)of — Eflog(1 —~-1)] = Eflog(1 —~)].
i=0

Thus )

n—1 n

(H(l - 7—z‘—1)> —> exp (Eflog(1-7)]) =7 < L.

i=0
Therefore, almost surely, the sequence (1 - M_;, ) neN, 18 @ Cauchy sequence in the space M (X)
of probabilities on X, endowed with the total variation norm. It thus converges almost surely to a
random probability 7, on X. For any finite, positive non-zero measures fi1, p12, plugging m,,, 7,
into (3.28), one proves that for almost any w,

Ty = Tpuo-

Thus, there exists a random probability m, such that, almost surely, for any positive measure p

p-M_,, 0 — min total variation distance.
n—o0

By stationarity of 8,
d
M- an,O = K- MO,TH
which proves that, noting A the distribution of m,
d
e Mo = A
O

Before proving the last assertion of Theorem 2.1, we need to present the following lemma which
establishes a sharp lower bound on some triangular inequality.
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Lemma 3.6. Assume A2 holds. Then, for any 0 < k <n and any p € M (X)

Ve luMo g1 |7v [ Mi4+1,n v < | pMogs1llov | Mi+1nl- (3.29)
Proof of Lemma 5.6: Let p€ M4 (X) — {0} and 0 < k < n.

| < luMo,n

pMon = (WMo ) MMy 1.0 = cil|pMo g1 | 7v Ve My 41,0,
thus

|uMonlrv = uMopl = cpf|pMo g1 | (Ve Mig1,0) (1) = e Mo gs1 v v My 107y

By definition of di, 1, it holds additionally

vk Myy1m] = di1 || My y1,m

Combining the two previous inequalities, we get

Mo,

To obtain the second inequality of the lemma we simply write
|lMon| = pMo 1

= uMo g1 My 11,1
< sup 6ka+1,n]l X ,U'MO,k-‘rl]l

zeX
< [Mi+1,n

ITv = crdiyil|pMo g1 |Tv (| Miy il = vl pMo g1 7v | My 10|l

Mo ga|Tv -
g

Proof of assertion iii): We notice first that for any fixed integer, the P—almost sure convergence
1
-1 R L
- log |[Monll —> A= inf R [log || Mo,n]l]
is a classical consequence of Kingsman’s subbaditive ergodic theorem and the subadditivity property:

log || Mo,n+ ||| < log || Mo,nll| +log || My ntp]l -

Note that applying this theorem requires Assumption A3 to ensure the integrability of log™ || Mo || .
It is also classical that the same convergence holds for shifted sequences : for any k = 0,

nlog [| M| — A (3.30)

almost surely.
Let now p be a positive, finite measure on X. Let £ > 0. From Lemma 3.6, it holds for n > k

v | Ml

| < luMo,n

YiellpMo k|| v [ M n ITv < Mo

Thus

I| <

(Jlog [|uMo k|| + [logyk|) — 0

1 1 1
- log [|pMo | 7v — - log || Mp,n " n—s-+00

almost surely on the event {7, > 0}. Combining this last estimate with (3.30) proves that the
convergence

1

—log [[pMon| — A

n n—00

holds almost surely on the event {y; > 0}, thus also on the event | J;~ {7 > 0}. Under Assumptions
Al and A4, P[{J,>0{m > 0}] = 1, by Birkhofl’s ergodic theorem, thus the convergence (2.2) holds
P(dw)-almost surely. O
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3.4. The independent case : proof of Theorems 2.2 and 2.5. Let us introduce the Markov chain
(#n)n=0 with state space M1 (X), defined by jtn11 = pin - My = pio- Mo nr1. The process (pin, Mn),,~
is then clearly also a Markov chain with state space M;(X) x K1 and transition kernel :

Qf (. M) = j f(u- M, N)AP(N).

We denote Py the law of the Markov chain ((tn, My)),,~o when (uo, Mo) is distributed according to
a measure Y on M1 (X) x *. Theorems 2.2 and 2.3 rely on the study of the invariant measures and
the ergodicity properties of the Markov chains (g, )n>0 and (fn, My)n=0. In particular, we show
that the limit distribution A of the Markov chain (u,) is its only invariant distribution. This is
stated in the following proposition.

Proposition 3.7. Suppose (M,)n=0 is an i.i.d sequence of elements of KT distributed according to
P, and satisfying the assumptions of Theorem 2.1. Then

i) For any initial distribution x on M1(X), the Markov chain (un)n=0 converges weakly to A.
ii) A is the only invariant measure of the Markov chain (tn)n>o0-
i) A ®P is the only invariant measure of the Markov chain (pin, Mp), -

As a consequence, the dynamical systems associated with the Markov chains (fin)n=0 and (fn,Mp)n=0
are ergodic.

To prove Proposition 3.7, we need to define the convolution operation * between probability
measures on M1 (K1) as follows : For any Q1,92 € M1(K™), Q1 Qs is the law of Nj Ny, where
(N1, N2) ~ Q1 ® Qo. We note, for any Q € M1 (K1), Q*" the n-th convolution power of Q. As an
example, if Ny, ..., N,_; are i.i.d with law Q, Q*" is simply the distribution of Ny, = No -+ Np_1.

Given a probability distribution y on M1(X) and Q on KT, we also note y * Q the law of y - N,
where (u, N) ~ x ® Q. These operations, previously defined in Bougerol and Lacroix (1985) in a
finite dimensional context, satisfy some elementary properties, summed up in the following lemma.

Lemma 3.8. Let Q1,Qs, Q3 be probability measures on K and x be a probability measure on
M1 (X), it holds

i) (Q1xQ2) » Q3 = Q1 x (Q2 x Q3),
i) (x* Q1) x Q2 = x * (Q1 * Q)
i4i) For each Q € My(K%), x — x * Q is continuous with respect to the topology of convergence
in law on Mi(M;(X)).

Proof of Lemma 3.5: Consider (N7, Na, N3) ~ Q1 ® Q2 ® Q3. It holds
N1NyN3 = (N1N2)N3 = N1(N2N3),

with (NlNQ)Ng ~ (Ql * Qg) * Qg and Nl(N2N3) ~ Ql * (Q2 * Qg) This yields 2)
Let us prove now point 7). Consider (u, N1, N2) ~ x ® Q1 ® Qs. It holds

o (N1N2) = (- N1) - Na,

with - (N1 No) ~ x * (Q1 * Q2) and (i - N1) - No ~ (x * Q1) * Q2. This yields ).
Let us move to the proof of 7). Consider a sequence of probability measures (x,) on M;(X),

converging in distribution to x. Let us show that (x, x Q)n=0 converges in distribution towards
x * Q. Let f be a continuous, bounded function on M;(X), it holds :

f F)d(xm * Q) = f J Fli- N)dxa(u)dQ(N) = f Yagn)dQ(N),
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where, for each N € KT, the function gy : = f(p - N) is continuous and bounded. Thus

Yalgn) = f £~ N)dxn () — f £ N)dx(n) = x(gw).

This yields, by dominated convergence, as n — <0,

| ntan)ae() = [ e Q) — [ xtamaQ) = | [ flu Wyaxuaow),

which implies iii).

Proof of Proposition 3.7: Let f be a continuous and bounded function on M;(X), it holds
P = [ e P = [ [ £r Mo dP™ ().

However, for any p € M;(X), Theorem 2.1, ii) states that (J, * P*"),>0 converges weakly towards
A. Thus, for any p e M;(X), asn —
ff(u + Mon)dP*" (Moz) = (0, P*")(f) — A(f)-

n—aeo

By dominated convergence, this yields

P = [ [ 50 Mo )dx (P (Vo) — AP

which proves the weak convergence
x*P" — A
n—o

in the metric space Mj(M; (X)), for any probability distribution x. This proves 3).
Since, by Lemma 3.8, ), the map pu — pu % P is continuous, this proves that A is one of its fixed
points, namely :

A=AxP.
On the other hand, if y * P = Y, the sequence (x * P*"),=¢ is constant and converges to y. By
unicity of the limit, it holds

x = A.

This proves that A is the only invariant measure of the Markov chain (uy,), i.e. 7).
Let (o, My) ~ A®P. Then py = pg - My ~ A* P, My ~ P and M is independent of g, My and
thus p;. Therefore (1, M1) ~ A® P, and A ® P is thus an invariant measure of the Markov chain
(,U,n, Mn)n}O-

Conversely, consider now a probability measure y on M;(X) x KT, suppose it is an invariant
measure of the Markov chain ((gn, My)),,q- The definition of the transition kernel () implies that
w1 = po - Mo, My ~ P and M is independent of (ug, My), and therefore M; is independent of
u1. However the second term (u1, M7) of the Markov chain is distributed according to Y@ = x by
invariance. Thus y is of the form y = x ® P.

Additionally, if (ug, Mg) ~ ¥ = x®P, then 1 = po- My ~ x*P. But by invariance of ¥, p1 ~ x,
thus

X*P = x.
By Proposition 3.7, this implies that x = A. Finally, this proves that A ® P is the only invariant
measure of the Markov chain (pn, Mp), o By Corollary 5.12 of Hairer (2018), since both the

processes (fin)n=0 and (jn, M), o are Markov chains with a unique invariant measure, they are
both ergodic. O

One additional lemma is required before proving Theorem 2.2.
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Lemma 3.9. Let (M,)n=0 be an i.i.d sequence of elements of Kt with law P, satisfying the as-
sumptions A1, A2 and AJ+. The sets

{Vp e My(X),limsuplog |uMo,, | = +o0},
n—o0

{3p € M (X),limsuplog |puMp | = +o0}
n—o0

and the event
{limsuplog || M1 || = 400}
n—o0

coincide up to PON-negligible events. A similar statement holds replacing lim sup by — lim inf in the
three events.

Proof of Lemma 5.9: From Lemma 3.6, with k£ = 0, we get

< |pMopllry <

where yo|uMo| v > 0 almost surely by A2 and A4-+. The lemma is a stralghtforward consequence
of this inequality. O

Let us prove now Theorem 2.2.

Proof of Theorem 2.2, i): Let us notice first that when p is a probability measure, p : (u, M) —
log | M || satisfies the cocycle property

p(po, Mon) =

=Zlo <|M0 LI

oMok |

n—1

log || (g0 - Mo k) My||
k=0
n—1

Z Pk, My). (3.31)

From Equation (3.31), we derive

n—1

= % D o, My).

k=0

By Birkhoff’s Ergodic Theorem, since (u, M) is an ergodic Markov chain, with stationary distri-
bution A ® P, this quantity converges Pagp-almost surely and in £!(Pagp) towards § pd(A @ P)
provided p is an £! function with respect to A ® P. Let us check now this integrability property.
Let (po, (Mn),=q) ~ A®P". Then, applying (3.29) with n = 2 yields

Yol oMol My < |noMo2ll < o Moll[| M ]]-
Noting u1 = po - My, we get, since |uoMpl|| # 0 almost surely,
Yol Mal| < |pada] < || M,

thus
lp(p1, My)| < |log | M1|]| + |log(7o)l-

Note that (p1, M1) ~ A® P, since by definition p; = uo - Mo and (pg, (My)nen) ~ A ® PEN. Thus,
under A3+ and A4+, it holds

E{lo(u1, M1)|] = leld(/\®7’) < E[log |Mi]]| + E[log(v0)| < oo.
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This proves that p is integrable with respect to A®P, thus the convergence n=! log(|| oMo |) —
n—ao0

§ pdA ®P holds in L}(A@P) and Ppgp-almost surely. Since by Theorem 2.1, almost surely, for all
p, it holds ntlog | Mo, — A, by unicity of the almost sure limit,
n—0o0

A= de(A@)p).

0

Proof of Theorem 2.3, ii): Note now X, = p(tin—1, Mp—1), for n = 1. Then it holds, for n > 0, for
any probability measure g

(Nn+1= Xn-i—l) = (Un ' Mm p(ﬂnv Mn))
Thus, (tn, Xn)n=0 is @ Markov chain on M;(X) x R such that

P(pn11, Xns1) € A x B|(pn, Xn)] = JHA(Mn - M) (p(pn, M)) dP(M).
Thus S,, = log |uMo | = X1 + -+ + X, is a Markov random walk associated with (py,, Xy), in the
sense of Alsmeyer (2001). Suppose that A = 0. By Theorem 2.1, it holds
118, = n~log Mo — 0,
n—00
dP ygpen (i, (My)n=0)-almost surely, thus in probability with respect to Pygpen. Since moreover,

(in) is an ergodic Markov chain, the assumptions of Alsmeyer (2001) are satisfied. If there exists a
function 7 such that Ppgp-almost surely, for n > 1,

Xn = n(pn) = nttn-1), (3.32)

then taking n = 1 shows that we are in the case of Null Homology (NH). In this case, it holds
moreover

log [|poMon| = X1 + -+ + Xy = n(pn) — n(o)-

Thus, almost surely, noting a, b the respective infimum and supremum of the support of n(u), when
i~ A, since the sequence (u,,) is a stationary and ergodic sequence with law A, it holds

lim inflog || o Mon| = @ = n(uo), and limsuplog|uoMon| = b —n(s0)-
- n—00
Thus the almost sure finiteness of these quantities are respectively equivalent to the finiteness
of a and b. If Equation (3.32) does not hold, then we are in the setup of Theorem 2 or 3 of
Alsmeyer (2001). These two Theorems imply that the Markov Random Walk (S,) oscillates :
limsup S,, = +00 and liminf S, = — Pygp—almost surely. However, by Lemma 3.9, i), this
implies that P®N-almost surely, for every p e Mi(X),
lim sup log | Mo,n|| = —liminflog Mo | = +c0.
n—aeo

n—o0

This concludes the proof. O

4. Sufficient conditions under uniform positivity assumptions

In the finite dimensional case X = {1,...,p}, that is when studying products of p x p matrices,
similar (and actually, more complete) results are obtained in Hennion (1997). They rely on the very
mild assumption

45. P |Upers {Mon € $}| =1,
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where S refers to the set of p X p matrices with positive entries. We expect that this approach,
based on Hilbert contractions, might be extended in infinite dimensional contexts. This will require
to introduce the notion of uniformly positive operators to strengthen the notion of positive matrices,
and state an infinite dimensional generalization of A5, as we explain in Subsection 4.2.

This section aims at comparing our assumptions both with A5, and its natural generalization in
infinite dimension.

We did not success in proving that A5 alone is enough for our assumptions to hold. However we
provide mild additional assumptions that, together with A5, constitute sufficient conditions for our
assumptions (A2, A3, A4, A4-}) to hold, and thus for Theorems 2.1, 2.2, 2.3 to apply.

4.1. The finite dimensional case. Let us focus in this subsection on the case where X is finite, let
us note p = |X|. Consider a stationary and ergodic sequence (My)nen, of p x p matrices with non-
negative entries. Checking whether Assumptions A1, A2, A3 are satisfied is quite straightforward,
since these three assumptions only involve the law of the first matrix of the sequence. Let us see
now how the additional Assumption A5 can help exhibit an admissible triplet in order to check
that Assumptions A4 holds.

Lemma 4.1. Consider a random, stationary sequence of p x p matrices M, = (M, (z,y)), yexs With

nonnegative entries, satisfying A2 and A5. Then for any measurable map w € Q — v(w) € M;(X),
there exists a random variable d : w +— d(w) such that P[d > 0] =1 and (1.5) holds.

Proof: The following decomposition holds : forany 1 <k <n,ze X, we )
ml,n(-r) = 5xM17n]l = 5acM1,kmk,n = Z Ml,k(xu Z)mk,n(z)-
zeX
Thus

VO(ml,n) = VOJMI,H]1 = Z VO(y)Ml,k(yaZ)mk,n(z)a
y,2€X

where we note vy = v,,. The fact that 1 is a probability measure yields, for any 1 < k < n :

Mlk(x,z)> M (2, 2)
mi,(x) < sup (’ voly Ml,k Y, Z2)ME n(Z < sup ——————vo(min),
) < 2 (§5y 7)) 2 WM Imin(s) < s )
with the convention ]\1\2];782 = 0 as soon as M (z,2) = 0 and % = o0 if My i(z,2) # 0 and
M k(y,z) = 0. Thus, for any n > k,

Muall _ fmiale _ o Mise2) )

Vo(ml,n) Vo(ml,n) x,y,2€X Ml,k(y7 Z)
This yields

M
g Muk@.2) e vo(man) (4.9)

z,y,2€X Ml,k(xa Z) nzk Hml,n”OO ’

and therefore
M
sup inf ALk 2) g g 200TA)
keN T,Y,2€X Ml,k(% z) n |||M1n|||

*)

By Assumption A5, P(dw)- almost surely, there exists a random integer k,, such that M j (w) € S.
Since X is finite, we get, for P-almost any w,

M M ,
1< inf 71’]%('% ?) <sup inf 71’k(y ?) < liminf L(ml’n).
z,y,2€X Ml,kw (95, Z) keN T,y,2€X MLk(x, Z) n H‘Ml,n H
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Assumption A 2 implies moreover that that for all n, P-almost any w € 2, TITJ(\ZL 17";{”) > 0. Thus,

setting

d(w) = inf L(ml n)

(v, d) satisfies (3.1) and d(w) > 0, P(dw)-a.s. O
This provides nice sufficient conditions for A4 or A4+ to hold.

Proposition 4.2. Consider a random, stationary sequence of p x p matrices M, = (M,(x, y))%yex,
with nonnegative entries, satisfying A1, A3, A5. We assume that there exists a measurable map

we N (Y, cw)) e Mi(X) x[0,1]

such that Plc > 0] > 0 and (1.1) hold. Then there exists a random variable d such that (v,c,d) is
an admissible triplet with P[y > 0] > 0. Thus assumption A/ holds and Theorem 2.1 applies.
If moreover

i) E[—logc| < o0,
i) there exists an deterministic integer N € Ng such that

M,
E |log sup M

< 0, 4.3
2y,2ex Mo, N (Y, 2) (4.3)

i) § [logvy,(mi2)]” dP(w) < o,
Then A4+ also holds.

Note that since X is finite, (J;,c) satisfies (1.4) as soon as ¢ < minjgj<p XIPL]\;J()ZD’ thus A4

holds if with positive probability, My has a row with only nonzero coefficients.
Proof: By Lemma 4.1, setting

. Vi (ml n)
W)= STl
w = (1, d(w)) satisfies (1.5) and P[d > 0] = 1. Noting y(w) = ¢(w)d(w) = co{w)di(w), we notice
that P[d; > 0] = P[d > 0] =1 and P[¢ > 0] > 0. It holds thus P[y > 0] > 0 : A4 is satisfied. This
proves the first part of the proposition. Let us suppose now that i)-iii) hold. Since E[—logc] < oo,
then P[c > 0] = 1 and P[y > 0] = 1. Let us now prove now that E|log~y| < c0. By the inequality

|logy| = —log(y) < —log(c) — log(d)

and hypothesis E[|log(c)|] < o0, it remains to check that E[|log(d)|] < c. Inequality (4.1) implies
that P(dw)-almost surely, for any k > 1,

_ [ M| M i1 (, 2)
—logd = logsup —————~ < max | log sup ————, max log
neN Veo(mMi1n) vyzeX M1gr1(y, 2) 1<n<k ~ v(maiy)
M jy1(z, 2) IMAwI
<log sup ———— .
x,y,2€X M k41 ya g Vw m1 n)

In particular, setting & = N and applying condition (4.3), it holds by stationarity

M
E |log sup L() < 0.
oy,2ex M1 Nv1(y, 2)
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M
Consequently, it suffices to prove that E [log 7”| ( 1’n”|)] < oo for any n = 1. Let us decompose this
bo\min
quantity as
(R + _
E [log ———— | < E (log || M E (1 . 4.4
1o L3 ] < B tog 41, ) + B [l v0m1,))] m
A(n) B(n)
n—1
| < H || M i41]| readily yields
=1

Z [log (|| Mii41]1) ] = (n — DE [log([| Mo [)) 7] < oo.

e On the other hand, for any z € X and P(dw)-a.s
min(x) = 0, M1 oman = cim o(x)v1(may),
where ¢ = c(0¥(w)) and vy = Vgk(w)- Consequently, integrating with respect to vo(dx), we obtain
vo(man) = voMiamap = Cl(w)l/o(ng)Vg(w) (mayn) Pldw)—

which yields, by induction

n—1
vo(mip) = H CkVk—1 (M fit1)-
k=1
Consequently, P(dw)-a.s
n—1
(logvo(min))™ < 2 —log ¢y, + [log vg—1(myk+1)]”
k=1

By stationarity, we deduce

Z —logex] + E [(log l/k71(mk,k+1))_]

= (n — 1E[—logco| + E [(logvo(mi2)) | < o0.
Finally, combining these estimates, we get, for any n € Ny,

E [log M] < (n— 1)E[—logco + log [vo(ma2)]™ + (

I/O(ml,n) )+] =

O

4.2. Eatension in infinite dimension. When X is infinite, we need to strengthen the notion of positive
matrices as follows.

Definition 4.3. A positive linear map M on B(X) is uniformly positive if there exists K e R% ,h €
B (X), such that, for any f € B4 (X) there exists b(f) € R, satisfying

LW < M(f) < Kb(f)h.

Notice that when X is finite, a matrix of Sis uniformly positive. Moreover, in Hennion’s work,
assumption A5 is used as a sufficient condition to obtain projective contraction properties on the
product My, ,,, with respect to a projective distance called the Hilbert distance (once again, see
Busemann and Kelly (1953); Birkhoff (1957); Ligonniére (2023) for a complement on this distance).
In an infinite dimensional setting, this distance can still be defined, and the projective action
associated with a positive operator is contracting if and only if the operator is uniformly positive (a
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proof of this claim is proposed in Ligonniére (2023)). Uniform positivity is therefore the appropriate
infinite dimensional generalization of positivity in our context, and condition A5 can thus naturally
be replaced with the restrictive condition

AB’. P(UneN {MOJL > O}) = 17

where we note M >» 0 iff M is uniformly positive.

The present subsection aims at comparing our result with the natural extensions of Hennion’s
work to infinite dimensional settings. For this purpose, the following Lemma extends the idea of
Lemma 4.1 to an infinite dimensional setup, assuming A5’ instead of A5.

Lemma 4.4. Consider a random stationary sequence of elements of Kt, satisfying A2 and A5°.
Then for any measurable map w € Q — v(w) € My (X), there exists a random variable d such that
Pld > 0] =1 and (1.5) holds.
Proof: For almost any w and any 1 < k < n, my, € B(X), it holds,

ml,n(l') _ 6xM1,kmk,n < 5yM1,kf

X sup .
yex, reB(x) YoMk f

v(min)  voMigmy,
Taking a supremum in x € X, we get, for any k < n,
M1

VO(ml,n)

5yMl,kf

< .
yex, reB(x) YoMk f

~

(4.5)

By A5’ let k, be a random integer such that P(dw)-almost surely, My (w) » 0. Then, almost
surely, there is K € R, h € B4 (X) such that for any f € B, (X), there exists b(f) > 0, satisfying

K™'b(f)h < My, f < Kb(f)h. (4.6)

From (4.6), we deduce K~'my g, (x) < h(z)b(1) < Kmi g, (x). By A2, myy, is a bounded and
positive function, thus so is h. Moreover, b(1) > 0, vy(mi k) < Kirp(h)b(1), thus v(h) > 0.
Therefore, for any x € X, any f € B4 (X), it holds P(dw) almost surely:

0aMije, f 2 M@) s [Migll _ poa 1M, ||

< _— 4.7
vttt S wm) S E s @) S volm) o
Finally, combining (4.7) with (4.5), we get for almost any w,
M M M
imeup WMl _ o WMl Ml
no vo(min)  nzk, vo(min) v(mik,)
Since moreover almost surely, for all n > 1, % is finite, then almost surely,
M
WMl _
neN VO(ml,n)
Let us set ( )
. lmin
d(w) = inf ——2+.
)= 2 gl
Then d clearly satisfies (1.5) and P[d > 0] = 1. O

The uniform positivity property is interesting to deal with many systems where the mass is
sufficiently well mixed. We illustrate this on the following example.

Ezample 4.5. Take X = [0, 1]%, choose an ergodic dymanical system (2, A, P, #) and associate with
each w € Q a bounded measurable function m, : X — R, and a continuous function Q,, : X*> — R%,
such that §i Qu(x,y)dy = 1 for all x and all w. We define M by setting, for each w € Q and f € B(X),

M(@)(f) : > my(z) fx (1) Qu(z, 9)dy.
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Notice that my,(x) = | M(w)|. Our system clearly satisfies A1 and A2. Assumptions A3 and
A3+ just translate into a log-integrability assumption on w — |my o = [[M(w)]|.

In terms of populations, this model can represent the spatial evolution of a population in the compact
domain X. The quantity m,,(z) represents the size of the offspring of an individual located at z, and
the kernel Q,(z,y) represents the dispersion of its offspring in the domain X. The dependence in
w of these quantities models an time inhomogeneity of these quantities. M(w) is clearly uniformly
positive, for each w, since

K mup(f) < M(w)(f) < mop(f) Ko,

where p refers to the Lebesgue measure on X, and

-1
K, = max ((inf Qw(u,v)> ,sup Qu (u, v)) <

u,v u,v

since X is compact and @, is continuous and positive. Setting v, = y and ¢, = K ! for all w, the
left hand side inequality implies (1.4). Moreover, since M (w) is uniformly positive, A5’ holds, thus
by Lemma 4.4 there exists a random variable d such that P[d > 0] > 0 and w — (v, d(w)) satisfy
(1.5). Therefore A4 holds and Theorem 2.1 applies.

One can notice additionally that in this context, each matrix of the product is almost surely uni-
formly positive, therefore the proof of Lemma 4.4 yields the explicit control

§Mip(M)(@)de  fmg(@)de
K supyex Mip() () Kd|mglo’

d{w) >

Thus A4+ reduces to a log-integrability condition both on the coefficient K, and on the quotient
§mo(z)dz

Imofe -

This example illustrates how Proposition 4.2 from the previous subsection can be adapted, re-
placing A5 by A5’. To tackle the integrability of log -y, one can replace (4.3) by

S M
E|log sup 9z M f

< 0. (4.8)
veX, feB(x) VoM N f

This yields a counterpart of Proposition 4.2 in a infinite dimensional setup.

5. Application to products of random infinite Leslie Matrices

The previous section focused on products of matrices with positive entries, and more generally,
products of uniformly positive operators. This kind of products can be efficiently studied with
methods based on projective contractions relatively to the Hilbert metric. The main interest of our
techniques, based on Doeblin contractions, is their application to products of operators which are
not uniformly positive. The goal of this section is to illustrate how such products can be studied
with our theorems. We have chosen to focus here on a quite simple but natural example with no
uniform positivity properties : the infinite Leslie Matrices.

5.1. Introduction to Leslie matrices. In this section, we set X = Ny, thus the operators of £t can
be represented as infinite matrices. We choose to consider infinite Leslie matrices, which have the
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following form : for any w € €,

folw) so(w) 0 0
fi(w) 0 s1{w) 0

M(w) = | folw) 0 0 sa(w) . (5.1)
Bw o0 0 0

where the entries (fi.(w))pen,: (5k(W))geny, are nonnegative real numbers, and sup,ex sz (w)+ fz(w) <
o0. Notice that such a matrix is not uniformly positive, since there are zeros on every row and every
column but the first one. Moreover, if @ is a product of k matrices of this shape, the (z,y)-entry
[Q],, = 0 whenever y > x+k+1. This prevents any product of such matrices from being uniformly
positive. This example is therefore a typical situation where A5’ does not hold.

Such matrices appear naturally when studying the dynamics of a population counting individuals
according to their age. The coefficients f, (respectively s, ) represent the mean number of individuals
of age 0 (respectively of age x + 1) created by an individual of age x, that is the mean size of the
offspring of an individual of age x (respectively the survival rate of individuals of age x). Usually,
only a finite number of age classes are defined, thus X = [0, p], and one considers finite versions
of such matrices, called Leslie matrices, see for example Caswell (2010). However, it is natural to
extend their definition to an infinite number of age classes (X = Ny) obtaining infinite matrices with
this shape. Indeed, several articles already study age-structured populations with an unbounded set
of possible ages, see e.g. Bansaye et al. (2020); Jasinska and Kozitsky (2022); Oelschlager (1990).
Therefore, products of random matrices shaped as in (5.1) model the dynamics of an age structured
population evolving in a randomly changing environment which affect their reproductive behavior.
This is the kind of matrices we are studying in this section. Let us note from now on

(@) = 5,00 (w) and fE(w) = fo 0 6" (w),

T

so that (s%, f¥),ex are the nonzero entries of the random matrix My (w) = M o #*. We introduce
the quantities

F(w
d(w)= sup fy(@)

>1
keNo z<yex [R(w) ~

)

and

O(w)---s%, (w
d”(w) = sup ( ) x—]'g_k( )

2€X keN, sg(w) c.sp(w)
which are useful to construct an admissible triplet.

217

5.2. Ergodic behavior of products of random Leslie Matrices. The following proposition provides
sufficient conditions for assumptions A3 and A4 to hold in the case of products of infinite Leslie
matrices.

Proposition 5.1. Consider a random matriz product with X = Ny and suppose that for any w € §2,
M(w) is of the form of equation (5.1), with sup,ex Sz(w) + fo(w) < 0. Suppose that A1 is satisfied,
and P(dw)-almost surely, it holds

i) fo(w) + sz(w) >0 forallz e X ;

it) E[log" (sup,ex sz + f2)] < ;
then A2 and A3 hold. If moreover

0
i11) There exists a deterministic real A > 0 such that P(dw)-almost surely, sup,,, %

N
=

) Y 7
iv) P[sup,ex < o0,d of < o] >0
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then Assumption A/ holds, and so do the conclusions of Theorem 2.1.
Finally, if additionally

v) P(dw)-almost surely, sup,ex # <0 and E [log+(supwex ;—z)] < 0,
vi) P(dw)-almost surely, d"(w) < oo and E [logd”| < oo,
then M satisfies also Assumption A/ +.

In Proposition 5.1, we’ve reduced Assumptions A2 to A4 to a series of conditions on the law
of the coefficients of the random matrix My, together with finiteness and integrability conditions
on d”. The hardest conditions to check are the ones involving d”, since checking them requires to
consider the joint law of all the M, and not only My. We were not able to find a general sufficient
condition for the positivity and log —integrability of d”. However, we provide the following quite
restrictive sufficient condition.

Remark 5.2. Consider a random, stationary sequence of matrices of the form of equation (5.1), and
assume that there exists an integer g € X, such that almost surely, the sequence (s;(w))z>z, is non
increasing. Suppose also that almost surely, for all z < xg, s, > 0. Then, P(dw)-almost surely

| o
" S;J
d" < |sup sup — < 00.

; i
i<z r<y<wzo Sg

. Si
Moreover, if E ‘log =
8"1/‘

< oo for any = < y < g, then E|logd”| < 0.

In the context of an age structured population, s, represents the frequency of individuals of age x
surviving to the next time step, and thus being replaced by individuals of age x + 1. Assuming that
(82(w))zsaz, is decreasing implies that the older individuals get, the more they tend to die, which
is a reasonable assumption. However this condition is somewhat unsatisfying in a more general
setting.

We split the proof of Proposition 5.1 into several lemmas that involve different groups of assump-
tions. Notice first that most quantities involved in Assumptions A2 to A4 are explicit in terms of
the (fz, sz). Indeed :

Lemma 5.3. Consider a product of stationary random Leslie matrices, in the form of equation
(5.1). Then A2 and A3 are satisfied if and only if all the following conditions hold simultaneously :
e P(dw)-almost surely, for each x € X, fz(w) >0 or sz(w) >0
o E[log" (sup,ex fo + 52)] < 0.
Proof: This lemma is straightforward after noticing that for any x € X, w € (,

mo,1(z,w) = fe(w) + sz(w).
O

Moreover, in this model, (1.4) is well behaved and it is quite clear how to construct a non trivial
couple (v, ¢).

Lemma 5.4. Consider a product of stationary, random Leslie matrices and assume that A2 holds.
Consider a map w — (v,,c(w)). Then for almost any w such that v, # dg, (1.4) implies c(w) = 0.
If v, = 0o, then (1.4) is equivalent to

. fz(w) o su sx(w) -
W) <y ) (1 e fx(w>> ‘

Proof: Notice that for any x € X, w € Q,
62 Mo1 = fo(w)do + Sz(w)dzt1-
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Let w € Q such that v, # dp. Then, there exists k& > 0 such that v, (k) > 0. In particular (1.4)
implies
0= fre(w)do(Lx) + sk (w)dpr1(Lx) = c(w)mo,1 (k)v(k),
By A2, almost surely, mg (k) > 0, which implies that c¢(w) = 0. Conversely, if v, = do, (1.4)
implies
fo(w)do + sz(w)dzr1 = e(w)mo,1(z)do,
which is equivalent to
fo(w) Z c(w)mo () = c(w)(fo(w) + s2(w))

for all x € X. This yields the desired result. O

—1\ —1
As a consequence, we set from now on v, = §p and ¢, = <1 + SUp ex % ) . Assumption

iv) of Proposition 5.1 guarantees that P[c > 0] > 0. Let us try now to exhibit a random variable d
such that (v = do, d) satisfy (1.5).

Lemma 5.5. Consider a product of stationary random Leslie matrices, of the form of equation
(5.1). Set
1

d(w) = d' o f(w)d" o H(w)

Then (d9,d) satisfy (1.5).
Proof: Let n > 1,z € X, w € §, it holds
min(z) = 0, Mo+ Mp_11 = 2 0z (i0) M1 (0, 1) - - - My—1(in—1,%n)-

10,81, in€Np
Thus
min() = > Mi(x,i1) - My_1(in_1,in).

11 ,-“inENO

Let us rearrange this sum according to the first index k& < n such that iy, =0 :

m (@ Z D1 M) Mp_1(ik-1,0) Do Mp(0,iks1) - My 1(in1,n)

k=141,1_1>0 tkt1,1n€ENp
+ 2 Mo(l‘,il) "-Mnfl(’b'nfl,in).
i1, in >0

Notice that
D M(0,ikg1) -+ My 1 (in1,n) = Mg (0).
ik+1,9n€Np
Moreover, the matrices M} are shaped according to (5.1). Thus for any ¢ > 0,5 > 0, in order for
My.(i,7) to be non zero, one must have j =i + 1. Thus :

mon(x ZMO z,x+1)- - Mp_1(x +k—1,0)mp »(0) + Mo(z, 2 +1)--- My_1(x+n—1,2+n).
k=1
Therefore
mo, n( 2 stx-‘rl m+z 1fx+lmz+1 n(0) + 82’ T 821711_1

This is true in particular for x = 0 :

mon(0) = > 5081 st 1 fimir1n(0) +50... 55~
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By definition of d’,d”, it holds, for any k € Ny and any x € Ny,
f;-{—i < d/fiia

and
0.1 i—1
SgSzy+1 - Sx-i—z 1

d”S i—1
051 - St
Therefore, controlling independently each term of the sum yleld

n—1
mon(z) < d'd" Z s9s1 . s fimi1 o (0) + d"sY .. "1 < d'd"mo.n(0),
i=0

thus for all m = 0

71 < inf mg,n(O)'
d'(w)d"(w) ~ zeX mo,(x)
By stationarity,
1 i M (0) m1,n(0)
TONE ) S n HmlnHoo
As a consequence, setting d(w) = (d'(0(w))d"(8(w))) * is enough for w — (8o, d(w)) to satisfy
(1.5). 0

Let us focus on d'(w).

Lemma 5.6. Consider a random product of matrices of the form of equation (5.1), satisfying A1.
Then the random variable d' is P(dw)-almost surely finite if and only if there exists A > 0 such that

— 1. (5.2)

f(]
P [bup <A
A f

In this case d'(w) < A, P(dw)-almost surely. If (5.2) fails, then d'(w) = +00, P(dw)— almost surely.

Proof: Notice that
k

d'(w) = sup sup =% = sup X o 0% (w).
keNp z<y fx keNg
where 0
X(w)—s pfy( ) ZSupfy

Y f:c( ) Y fg
Since 6 is an ergodic mapping, supyen, X © 6% is P(dw)-almost surely equal to the supremum of the
support of X. In particular supyey, X © 0% is finite almost surely if the support of X is bounded.
Conversely, if the support of X is unbounded, then supyey, X © 6" is infinite almost surely. O

Putting these lemmas together allows to prove Proposition 5.1.

Proof of Proposition 5.1: The assumptions i), i) of Proposition 5.1 are the conditions mentioned
in Lemma 5.3. Hence, this lemma allows to check A2 and A3. We set now for any w, v, = dg

)= (1o s

1
d'(0(w))d"(0(w))
Lemma 5.4 and Lemma 5.5 respectively guarantee that (1.4) and (1.5) are satisfied. By Lemma
5.6, assumption 4i) guarantees that d'(w) < 00, P(dw)—almost surely, and by stationarity, the same
holds for d’ o f(w). As a consequence, since by iv) P[d” 0§ > 0,co > 0] > 0, it holds with positive
probability v(w) = c¢(w)d(8(w)) = c(w) (d'(0(w))d"(B(w)))™" > 0 thus P[y > 0] > 0. This proves

and

d(w) =
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that i)-iv) imply A4.
If moreover assumptions v), vi) hold, then d” o 6 and sup,cx % are finite P(dw)—a.s., thus v > 0
almost surely. In this case it also holds

Ellogy| < E[-logc] + E[—logd].
On the one hand,

E[-logc] = f log (1 + sup Sﬂﬁ(w)) dP(w).

zeX fx (w)

Notice that for any positive real variable X, log(1+ X) is integrable as soon as log(X)

Since we've assumed that
52 (w) -
log <Sup ) dP(w) < oo,
J reX fm(w) ( )

* is integrable.

then
E[—log ] < c0.
On the other hand,
E[-logd] < Elogd + Elogd".

0
Since sup,.<, % < A almost surely, then by stationarity, almost surely,
k
1<d = supsup% < A.
keNg y=x f T
Thus log d’ is bounded and integrable. We have assumed additionally that logd” was integrable.
This is enough to conclude to the integrability of | log~y|, which proves assumption A4--. O

5.3. A situation where v = 0. It was not clear to us how strong an assumption A4 is, or whether it
was hard to find a system breaking it while satisfying all the other assumptions. We shall present
here an example of an infinite Leslie matrix, such that v = 0 even if all other assumptions are

satisfied. This example is in a deterministic environment, that is |€] = 1, Q = Yo |Q| = 1. The
random matrix M (w) is therefore constant, and My, = M". Let us set :
om(0) (1 —0)m(0) 0 0
om(1) 0 (1 —=9)m(1) 0
M= | 0m(2) 0 0 (L=0m(2) |, (5.3)
om(3) 0 0 0 '

where § € (0,1), and m(x) = dm(x) + (1 — d)m(z) is the mean offspring size of an individual of age
x. Such a model satisfies A2 and A3, as soon as x — m(x) is bounded and positive, since § > 0.
The ergodicity and integrability properties are trivially satisfied since this model is in a constant

-1
environment. Moreover, Lemma 5.4 applies, therefore setting v = gy, and ¢ = (1 + SUPgex j}—z) =

J, the couple (v, c) satisfies (1.4). Let us prove that we can tune the parameters z — m(x) and
¢ = 0 in such a way that the only d satisfying (1.5) is d = 0.
Consider a sequence of integers (£;)zen, € {0, 1}"°, such that :

e There are arbitrarily long subsequences of consecutive 1 in the sequence ().

Se

e Noting S, = a,;(llek, 22— (0 as x — 0.

e There exists a < 1 such that for all x € Ng, % < a.
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Let a be a real number such that a > 1. Then, we set, for any x € X,
m(z) =14 (a —1)ey.

Defined as such, m is a positive and bounded function, thus Assumptions A2 and A3 are satisfied.
This yields that for any sequence (z;),

n—1 .
H m(w;) = ai=o =i,

n—1
ml,n+1(a7) _ mO,n(fL‘) _ 2 6N(:vo,-..;rn)(1 _ 5)n—N(zo,...mn) H m(.% > 1 — 5 H {L‘ + Z

To=2,...tnEN =0 =0
z;+16{z;+1,0}

where N (zo,...x,) = |{1 << n|z; = 0}]. Then
Mon(x) = (1 = 6)"aii=s =,
In particular, x can be chosen such that e, = ---£,1,-1 = 1, which implies that

= mon(z) = (a(l —6))".

On the other hand

n—1 SUP20=0,...2,ENg Z?;Ol €x;
mon(0) < 2" sup H m(x;) < 2"a  @i+1€{ri+1,0}

x0=0,. ..xn€Ng i=0

x1+1e{x1+1 0}
A sequence (z;)o<i<n of integers such that zp = 0 and for each i, x;y; € {z; + 1,0} is entirely
determined by the sequence (T}) of the lengths of its excursions away from zero. By convention, if
there are only p excursions away from zero, we set T}, such that Ty +---+71, =nand Ty = --- =
T, = 0. The (7, +...41,_, )i<p are the only zero terms in the sequence (x1,...xzy), and To+---+71;, <
n — 1. Thus

n
sup 25% < sup ZSTi <a2Ti < an,
z9=0,...x, €N i—0 To+...Tn:ni:0 i—0

lee{m +1,0}

and
mon(0) < (2a%)".
Hence
Hml,n-i-lHoo _ HmO,nHoo > al—® 1 —c e
mi n+1(0) mO n(o) - 2aa n—0 ’
whenever M > 1. For (1.5) to hold, we must have d < inf,,>; (|\Trr;117;(\\02 ) Thus for any values

of a, 0 € (0, ), if a is large enough, then (1.5) implies d = 0.
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