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ERGODIC BEHAVIOR OF PRODUCTS OF RANDOM POSITIVE

OPERATORS

MAXIME LIGONNIÈRE

Abstract. This article is devoted to the study of products of random operators of the
form M0,n “ M0 ¨ ¨ ¨Mn´1, where pMnqnPN is an ergodic sequence of positive operators
on the space of signed measures on a space X. Under suitable conditions, in particular,
a Doeblin-type minoration suited for non conservative operators, we obtain asymptotic
results of the form

µM0,n » µph̃qrnπn,

where h̃ is a random bounded function, prnqně0 is a random non negative sequence and
πn is a random probability measure on X. Moreover, h̃, prnq and πn do not depend on
the choice of the measure µ. We prove additionally that n´1 logprnq converges almost
surely to the Lyapunov exponent λ of the process pM0,nqně0 and that the sequence of
random probability measures pπnq converges weakly towards a random probability mea-
sure. These results are analogous to previous estimates from [Hen97] in the case of d ˆ d

matrices, that were obtained with different techniques, based on a projective contraction
in Hilbert distance. In the case where the sequence pMnq is i.i.d, we additionally exhibit
an expression of the Lyapunov exponent λ as an integral with respect to the weak limit
of the sequence of random probability measures pπnq and exhibit an oscillation behavior
of rn when λ “ 0. We provide a detailed comparison of our assumptions with the ones of
[Hen97] and present some example of applications of our results, in particular in the field
of population dynamics.
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2 ERGODIC BEHAVIOR OF PRODUCTS OF RANDOM POSITIVE OPERATORS

1. Introduction

1.1. General introduction. The study of products of random linear operators can be
traced back to the seminal article of Furstenberg and Kesten [FK60], studying products of
the form

M0,n “ M0 . . .Mn´1,

where pMnqně0 is a stationary sequence of d ˆ d real or complex random matrices. Under
a mild irreducibility assumption, the authors exhibit a law of large numbers on the norm
of M0,n, involving a deterministic number called Lyapunov exponent, defined as

λ “ lim
nÑ8

E

„

1

n
log }M0,n}



“ inf
ně1

1

n
E rlog }M0,n}s ,

where the norm } ¨ } can be chosen to be any submultiplicative norm. Under additional
positivity and boundedness assumptions on the entries of the matrices pMnq, [FK60] also
proves a law of large numbers for the entries M0,npi, jq of the products : almost surely,

lim
nÑ8

n´1 logM0,npi, jq “ λ.

These estimates on the behavior of the entries of M0,n were then extended to the case of
products of invertible matrices, see e.g. [GL01] and [BL85]. These works rely on a careful
study of the action of invertible matrices on the projective space PpRdq.
To strengthen the results from [FK60] on products of matrices with non negative entries and
relax their assumptions, Hennion [Hen97] studied the action of MdpR`q on the projective
space PpRd

`q, endowed with the so called (pseudo)-Hilbert distance dH previously defined
in [BK53] and [Bir57]. This distance is particularly well adapted to this problem, since the
contraction coefficient of the projective action of a matrix with respect to dH is explicit in
terms of its entries, in particular, any matrix with positive entries is strictly contracting.
Under the assumption that almost surely, for n large enough, M0,n has all positive entries,
Hennion obtains the asymptotic decomposition

M0,npi, jq “ λnRnpiqLnpjq ` o
nÑ8

pλnq,

where λn is the dominant eigenvalue of M0,n and Ln, Rn are the associated left and right
eigenvectors, with the normalizations }Rn} “ 1 and xLn, Rny “ 1. Moreover pRnqně0 al-
most surely converges to a random vector R, pLn{}Ln}qn converges in distribution, and
`

n´1 log λn

˘

ně1
almost surely converges to the Lyapunov exponent λ.

Such results have important implications, in particular in the field of populations dynam-
ics. Indeed, a population composed of d types of individuals, evolving in a fluctuating
environment, without interacting which each other, can be modelled by a linear model of
the form

(1.1) xn “ xn´1Mn´1,

where xn is a row vector of Rd
` encoding the mass of individuals of each type at time n and

Mn´1 “ pMn´1pi, jqq1ďi,jďd is a random matrix encoding the rates at which individuals of
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each type i create individuals of each type j between times n ´ 1 and n. In such a time-
inhomogeneous population model, the understanding of the asymptotics of xn amounts to
the understanding of the matrix product M0,n.
Moreover, such products also appear in the study of multitype Galton-Watson processes
in random environment (MGWRE), which were introduced in [AK71]. They are a gener-
alization of Galton-Watson processes to the case where the distribution of the (random)
offspring of an individual depends on a notion of type and on a random environment that
changes through time. When conditioning a MGWRE on the environment sequence, one
obtains a so-called quenched population model, which satisifies (1.1) where xn is the ex-
pectation of the population conditionally on the environmental sequence. The value of the
Lyapunov exponent λ of the underlying matrix product separates three regimes of the MG-
WRE : subcritical (λ ă 0), critical (λ “ 0), supercritical (λ ą 0). These three regimes have
different properties, in particular, when λ ď 0, the MGWRE goes extinct with probability
1, when λ ą 0, the MGWRE survives with positive probability. This separation between
regimes was established in [AK71] and [Nor74], using results from [FK60]. More recent
advances in the study of random matrix products - in particular Hennion’s article- were
key to the last developments of the theory of MGWRE in random environments, see e.g.
[Cam18; LPD18; GLP23].
In this paper, we study the infinite dimensional counterpart of products of random matri-
ces, having in particular in mind applications to population models with an infinite number
of types. We first consider a set X, typically infinite, and build a set K` of positive linear
operators acting both on the space of signed measures MpXq on the left and the space of
measurable bounded functions BpXq on the right. Then, we let pMnq be a stationary, ergodic
sequence of elements of K` and define the products M0,n “ M0 ¨ ¨ ¨Mn´1. The approach of
[Hen97] can be extended to this infinite dimensional setup. Indeed, it is possible to define
the Hilbert distance dH on the projective positive cone of an infinite dimensional vector
space and to obtain a nice characterisation of the operators that are (strictly) contracting
with respect to dH . We refer the reader to [Lig] for a proof of these facts. However, as
we explain in Section 4, this characterisation leads to stronger positivity assumptions in an
infinite dimensional context than it did in the finite dimensional one. For example, such an
extension of Hennion’s approach would not be able to deal with products of infinite Leslie
matrices that we present in Section 5.
For this reason, we use a different contraction method to obtain a projective contraction.
This method aims at extending the Doeblin contraction techniques for Markov operators
to a product of non conservative operators (that is operators M such that M1 ‰ 1 in
general). To do so, we consider the auxiliary family of Markov operators PN

k,n, defined for
each k ď n ď N as

δxP
N
k,nf “

δxMk,npfmn,Nq

δxMk,N p1q
,

where, for x P X, mk,npxq “ δxMk,n1. These Markov operators are related to the projective

action µ ¨ Mk,n “
µMk,n

}µMk,n} of Mk,n on measures by :

µ ¨ Mk,n “ µPn
k,n “ µPn

k,k`1 ¨ ¨ ¨Pn
n´1,n.
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We provide sufficient conditions for these Markov operators to satisfy Doeblin minorations
of the form δxP pfq ě cνpfq, which guarantees that they are contracting in total varia-
tion. This allows to obtain a notion of projective contraction of the Mk,n on the set of
signed measures. Such auxiliary operators were already introduced and already applied to
study both homogeneous semi-groups of operators [DM02; CV16] and inhomogeneous ones
[BCG20]. We consider here a random sequence of operators pMnq, i.e a discrete time, ran-
dom, time-inhomogeneous semi group, and assume this sequence is stationary and ergodic.
The stationary and ergodic framework allows us to provide more explicit assumptions, and
we obtain more developed asymptotic results on pMnq. Namely, we prove that the following
almost sure approximation in total variation holds for n large enough

(1.2)
›

›

›
µM0,n ´ µph̃qrnπn

›

›

›

TV
ď ηn}µM0,n}TV ,

where η ă 1, h̃ is a random bounded function, rn is a positive random number and pπnq is
a sequence of random probability measures on X, which are all independent of the measure
µ. We prove additionally that pn´1 logprnqq converges almost surely to the Lyapunov ex-
ponent of the process M0,n, and that the sequence pπnq of random probabilities converges
in distribution with respect to the total variation topology towards a random probability
measure Λ.

Additionally, we show in Theorem 2 that when the sequence pMnq is i.i.d, the probability
distribution Λ and the Lyapunov exponent λ are related as follows :

λ “

ż

log }µM}dΛpµqdPpMq,

where P refers to the law of the operators pMnq, thus extending a result stated in [BL85]
in finite dimension. Finally, still under the assumption that pMnq is i.i.d, we show that,
when λ “ 0 it holds almost surely, for any µ P M`pXq ´ t0u,

lim sup
nÑ8

log }µM0,n} “ ´lim inf
nÑ8

}µM0,n} “ `8,

except in a situation knowed as Null-Homology.
These results should allow to extend many known results on MGWRE with a finite type

set to a class of MGWRE with an infinite type set X. In particular, our results imply
that when the Lyapunov exponent λ is nonpositive, the quenched population size µM0,n1

satisfies lim inf
nÑ8

µM0,n1 “ 0 almost surely. By a classical first moment argument, this is a

sufficient condition for the almost sure extinction of the population. The survival of the
population when λ ą 0 is a more delicate problem and will be the object of a forecoming
article.

1.2. Framework and notations. Let pX,X q be a measurable set of arbitrary cardinality,
such that for all x P X, the singleton txu P X . We denote by BpXq the Banach space of
bounded measurable functions on X, endowed with the supremum norm, and B`pXq the
cone of nonnegative functions of BpXq. The vector space of signed measures, noted MpXq
and the cone of nonnegative elements of MpXq, noted M`pXq are endowed with the total
variation norm } ¨ }TV . Note that }µ}TV “ µpXq for any µ P M`pXq. Let M1pXq be the
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set of probability measures on pX,X q. For any measurable set A P X , let 1A P BpXq be the
indicator function of A. For short, we note 1 “ 1X P BpXq the unit function on X. We also
note δx P MpXq the Dirac measure at x.

Let K` be the set of maps Q of the form:

Q : X ˆ X ÝÑ R
`,

such that, for any x P X, for any A P X , the map x ÞÑ Qpx,Aq is measurable, the map
A ÞÑ Qpx,Aq is a positive and finite measure on pX,X q and ~Q~ :“ supxPXQpx,Xq ă 8.

Such a map Q P K` naturally operates on BpXq by setting, for any f P BpXq, and any
x P X,

Qfpxq “

ż

X

fpyqQpx, dyq.

Note that |Qfpxq| ď }f}8~Q~, thus Qf P B`pXq as soon as f P B`pXq and Q acts as a
bounded positive operator with norm ~Q~ on BpXq. Moreover, for any positive measure
µ P M`pXq, and any Q P K`, the positive measure µQ on X is well defined by setting, for
any nonnegative function f ,

µQpfq “ µpQfq “

ż

X

Qfpxqµpdxq.

Note that µQ has indeed finite mass µQp1q “ µpQ1q ď ~Q~µp1q ă 8 since µ is assumed
to be a finite measure. This action can therefore naturally be extended to the set of signed
measures MpXq, where Q acts as a bounded linear operator with norm ~Q~.

Thus, the elements of K` operate as positive linear operators both on the sets of bounded
measurable functions and on the set of signed measures on X, with a duality relation between
these two actions. Moreover, it is also possible to define a projective action ¨ of K` onto
the projective space associated with M`pXq, ie the set of probability measures M1pXq, by
setting, for any µ P M`pXq and any M P K` such that µM ‰ 0,

µ ¨ M “
µM

}µM}TV
P M1pXq.

Finally, the set K` is naturally endowed with an associative, non commutative product,
defined by : for any Q1, Q2 P K`, any x P X and any A P X ,

Q1Q2px,Aq “

ż

y

Q1px, dyqQ2py,Aq.

This product is compatible with the left and right actions defined above, in other words,
for any Q1, Q2 P K`, any µ P M`pXq, and f P B`pXq,

µpQ1Q2q “ pµQ1qQ2 and Q1Q2pfq “ Q1pQ2fq,

and whenever µ P M`pXq and µQ1Q2 ‰ 0,

µ ¨ pQ1Q2q “ pµ ¨ Q1q ¨ Q2.

The operator norm ~ ¨ ~ satisfies the submultiplicativity relation

~Q1Q1~ ď ~Q1~~Q2~.
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Remark 1. In the case of a finite or countable set X, any measure on X is atomic, an
operator Q P K` on X corresponds to a matrix indexed by X with nonnegative entries. The
product of operators of K` corresponds to the matrix product and the respective left and
right actions of K` on signed measures and bounded functions correspond to the product of
matrices respectively with the vectors of ℓ1pXq (seen as row vectors) and of ℓ8pXq (seen as
column vectors).

We consider a dynamical system pΩ,A,P, θq, where pΩ,A,Pq is a probability set and
θ : Ω ÝÑ Ω is a measurable transformation, which preserves the probability P, i.e P˝θ´1 “ P.
Let M : Ω ÝÑ K` be a measurable map. We denote as N0 the set of nonnegative integers
and note, for each n P N0,

Mn “ M ˝ θn.

Note that the sequence pMnqnPN0
is stationary. For each k ă n, ω P Ω, let us define the

random product

Mk,npωq “ Mkpωq ¨ ¨ ¨Mn´1pωq “ pM ˝ θkpωqq ¨ ¨ ¨
`

M ˝ θn´1pωq
˘

P K`.

with the convention Mk,kpωq “ Id P K`. Notice that Mk,k`npωq “ M0,n ˝ θkpωq. The
operators satisfy the following semi group property : for any k ď n ď N , any µ P MpXq,
any f P BpXq

(1.3) µMk,Npωqf “ µMk,npωqMn,N pωqf.

Moreover, for any x P X, k ď n, ω P Ω, we set

mk,npx, ωq “ δxMk,npωq1 “ }δxMk,npωq}TV .

Notice in particular that for any positive measure µ,

}µMk,n} “ µpmk,Nq “ µMk,N1 “ µMk,nmn,N ,

Let us point out additionally that ~Mk,npωq~ “ supxPXmk,npx, ωq “ }mk,np¨, ωq}8, and
that for any k ď n ď N , ~Mk,N~ ď ~Mk,n~~Mn,N~. Finally, to shorten the nota-
tions, we often omit the dependence in ω, writing for example mk,npxq “ mk,npx, ωq, and
~Mk,n~ “ }mk,n}8 “ supxPX mk,npx, ωq.

1.3. Assumptions. We list here several hypotheses that will be used in the rest of the
article.

A1. The dynamical system pΩ,A,P, θq is ergodic.

We recall that a dynamical system is ergodic when any measurable set A P A such that
θ´1pAq “ A satisfies PpAq P t0, 1u.

A2. For almost all ω P Ω, the function x ÞÑ m0,1px, ωq is a positive function.

By stationarity, A2 implies that Ppdωq-almost surely, the product Mk,npωq is a continu-
ous, non zero, positive linear operator. We introduce the integrability properties

A3. E
“

log` }m0,1}8

‰

“ E log` p~M0,1~q ă 8.

and
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A3+. E r|log }m0,1}8|s “ E log p~M0,1~q ă 8.

In particular, by submultiplicativity of the norm ~¨~, A1 and A3 imply that E log` p~Mk,n~q ă 8
for all k ď n.

In this work, we control the products pM0,nqnPN using the random sequence pγkqkPN

defined as

γkpωq “ sup
νPM1pXq

cνkpωqdνk`1pωq,

where for any k P N0, for any probability measure ν P M1pXq, we set

cνkpωq “ inf
xPX,fPB`pXq,νpfqą0

δxMk,k`1pωqpfq

νpfqmk,k`1pxq
,

dνk,npωq “
νMk,n1

supxPX δxMk,n1
“

νpmk,np¨, ωqq

~Mk,npωq~
P r0, 1s,

and

dνkpωq “ inf
něk

dνk,npωq.

Note that cνkpωq is the largest element of r0, 1s satisfying

δxMk,k`1pωqpfq ě cνkpωqmk,k`1px, ωqνpfq

for all x P X and f P B`pXq. Similarly, dνkpωq is the largest element of r0, 1s satisfying

νpmk,nq ě dνkpωq~Mk,n~ ě dνkpωqmk,npxq

for all x P X and n P N0. For each k P N0, each ν P M1pXq, the quantities cνk, d
ν
k,n, d

ν
k are

measurable functions of ω P Ω with values in r0, 1s. Moreover, cνk “ cν0˝θk, dνk,k`n “ dν0,n˝θk,

dνk “ dν0 ˝ θk, and γk “ γ0 ˝ θk. We assume

A4. For P-almost any ω, γ0pωq ą 0, and moreover E |logpγ0q| ă 8.

Once again, by stationarity, under A4, it holds Ppdωq-almost surely, for any k ě 0,
γkpωq ą 0.

2. Statement of the results and structure of the paper

2.1. Main results. Set

η̃ :“ exp pE rlogp1 ´ γ0qsq P r0, 1s,

and notice that A4 yields η̃ ă 1. Under the previous assumptions, we prove the following
Theorem:

Theorem 1. Let M : Ω ÝÑ K` be a measurable map and assume that Assumptions A1,A2

and A4 hold. Then,
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i) Ppdωq-almost surely, there exists a random function h P BpXq such that, for any
η P pη̃, 1q, for n large enough, for any finite measures µ1, µ2 P M`pXq ´ t0u,

(2.1)

›

›

›

›

µ1M0,n ´
µ1phq

µ2phq
µ2M0,n

›

›

›

›

TV

ď ηn}µ1M0,n}.

Such a function h is unique up to a multiplicative constant.
ii) There exists a probability measure Λ on the space M1pXq, such that for any probabil-

ity measure µ, the sequence of random probability measures pµ ¨ M0,nq converges in
distribution towards Λ, in the space M1pXq, endowed with the total variation norm.

iii) Assuming additionally A3, for almost any ω P Ω and any finite, positive, non-zero
measure µ,

(2.2)
1

n
log }µM0,n} ÝÑ

nÑ8
inf
NPN

1

N
E rlog~M0,N~s “ λ P r´8,8q.

Note that the estimate (1.2) can be derived from Theorem 1 by a choice of an arbitrary
measure µ2, and by setting

πn “ µ2 ¨ M0,n, h̃ “
h

µ2phq
, rn “ }µ2M0,n},

Part of our study focuses on the independent case, that is, when the sequence of operators
pMnq is i.i.d, with a law called P. This can be obtained by setting pΩ,A,Pq to be the product

space Ω “ pK`q
N
, P “ PbN and M : pK`q

N
Ñ K`, pNkqkě0 ÞÑ N0.

In this independent case, we can obtain additional insight over the asymptotical behavior
of the mass of the measure µM0,n.

Theorem 2. Consider an i.i.d sequence pMnq of elements of K` with law P, suppose
assumptions A1, A2, and A4 hold.

i) Under the additional assumption A3+, the almost sure convergence (2.2) also holds
in L1pΛ b Pq, that is

ş
›

›

1
n
log }µM0,n} ´ λ

›

› dΛpµqdPbnpM0, ¨ ¨ ¨Mn´1q ÝÑ
nÑ8

0. As a
consequence,

(2.3) λ “

ż

log }µM}dΛpµqdPpMq “

ż

ρpµ,MqdΛ b Ppµ,Mq.

ii) If λ “ 0, under Assumption A3, the following dichotomy holds.
Either for any µ P M`pXq ´ t0u, almost surely

(OSC) lim inf
nÑ8

log }µM0,n} “ ´8 and lim sup
nÑ8

log }µM0,n} “ `8

or there exists a function η : M1pXq ÞÑ R such that dpΛ b Pqpµ,Mq-almost surely

(NH) log }µM} “ ηpµ ¨ Mq ´ ηpµq.

When (NH) holds, let µ0 „ Λ. If the infimum of the support of ηpµ0q is finite (resp
is infinite), then almost surely, for any µ P M`pXq ´ t0u, lim inf

nÑ8
log }µM0,n} P R

(resp. lim inf
nÑ8

log }µM0,n} “ ´8). The same holds for lim sup
nÑ8

log }µM0,n}.
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2.2. Structure of the paper. Section 3 contains the proofs of Theorems 1 and 2. More
precisely, in Subsection 3.1, we recall how the coefficients γn allow to control some contrac-
tion rates of the operators M0,n. These results are adapted from [BCG20]. In Subsection
3.2, we use the ergodic structure, in particular Assumptions A1 and A4 to obtain a geo-
metric decay of the error terms that appeared in our previous estimations. Finally, in
Subsection 3.3 we derive the three claims of Theorem 1. In Subsection 3.4, we focus on
the case where the sequence pMnq is i.i.d. In this case, a study of the invariant measures
and the ergodicity properties of the Markov chains pµ0 ¨ M0,nqně0 and pµ0 ¨ M0,n,Mnqně0,
allows to prove Theorem 2.

Section 4 is dedicated to a comparison of our results with those obtained based on
Hilbert contractions. More precisely, we show how natural conditions coming from Hilbert
contractions techniques provide more tractable sufficient conditions for our Assumptions
(in particular A4), both in finite and infinite dimension.

In Section 5, we apply our results to study products of Leslie Matrices. This constitutes
an example of an interesting class of systems that cannot be studied using the Hilbert
metric. More precisely, we provide in Subsection 5.2 reasonable sufficient conditions under
which a product of Leslie matrices modelling the behavior of an age structured population
satisfies assumptions A1 to A4. However, when these conditions are not satisfied, it can
be quite difficult to check that γ0 ą 0, even on a deterministic and constant sequence of
Leslie Matrices pMnq. To illustrate this fact, we present in Subsection 5.3 an example of
system where γ0 “ 0 even if all the other assumptions are satisfied.

3. Proofs

3.1. Contraction results based on inhomogeneous Doeblin minoration. The first
step towards proving Theorem 1 is establishing

Proposition 3. Suppose A2. Then, Ppdωq-almost surely, for any k ď n ď N and any
finite measures µ1, µ2 P M`pXq ´ t0u, it holds

(3.1) }µ1 ¨ Mk,n ´ µ2 ¨ Mk,n}
TV

ď 2

n´1
ź

i“k

p1 ´ γiq,

and

(3.2) γn´1

ˇ

ˇ

ˇ

ˇ

µ1pmk,N q

µ1pmk,nq
´

µ2pmk,N q

µ2pmk,nq

ˇ

ˇ

ˇ

ˇ

ď
µ2pmk,Nq

µ2pmk,nq
2

n´1
ź

i“k

p1 ´ γiq.

This result was already introduced in [BCG20] in a somewhat different setup. We have
chosen to state and prove it here for the sake of completeness. Its proof is based on
performing a Doeblin minoration on a well-chosen sequence of auxiliary Markov operators
pPN

k,nq. This Doeblin property yields (3.1), a contraction property for the projective action

of Mk,n on the space of measures M`pXq. We derive then Equation (3.2), which describes
how the growth of the mass }µMk,t} between times t “ n and t “ N depends on the initial
measure µ.
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Let us introduce now the operators PN
k,n upon which we perform the desired Doeblin

minoration. Under assumption A2, Ppdωq-almost surely, for any k ď n ď N , x ÞÑ mk,npxq
and x ÞÑ mn,N pxq are positive functions on X. For each k ď n ď N , an operator PN

k,npωq

can be defined Ppdωq-almost surely, as follows : for each x P X, for each positive measurable
f : X ÝÑ R,

δxP
N
k,nf “

δxMk,npfmn,Nq

mk,Npxq
,

PN
k,n is a positive and conservative operator (i.e. PN

k,n1 “ 1q. Indeed, by Equation (1.3), for
any x P X,

δxP
N
k,n1 “

δxMk,nmn,N

δxMk,N1
“ 1.

Moreover, PN
k,n satisfies the relation :

PN
k,n “ PN

k,k`1 ¨ ¨ ¨PN
n´1,n.

Note that PN
k,n is a matrix when X is countable and then, for any x, y P X,

PN
k,npx, yq “

mn,N pyq

mk,Npxq
Mk,npx, yq.

These operators satisfy a Doeblin contraction property summed up in

Lemma 4. Assume Assumption A2 holds, then Ppdωq-almost surely, all the PN
k,npωq are

well defined, and it holds

i) For any ν P M1pXq, any n ď N ´ 1, there exists a random probability measure νn,N
on X such that, for any x P X,

δxP
N
n,n`1 ě cνnd

ν
n`1,Nνn,N ě cνnd

ν
n`1νn,N .

ii) For any signed measures ρ1, ρ2, of same mass and any n ď N ´ 1,
›

›ρ1P
N
n,n`1 ´ ρ2P

N
n,n`1

›

›

TV
ď p1 ´ γnq}ρ1 ´ ρ2}TV .

iii) For any k ď n ď N and any signed measures ρ1, ρ2 of same mass,

›

›ρ1P
N
k,n ´ ρ2P

N
k,n

›

›

TV
ď

n´1
ź

i“k

p1 ´ γiq }ρ1 ´ ρ2}TV .

Notice that in this lemma, our single assumption is A2. It allows the pPN
k,nq to be defined

Ppdωq-almost surely. In particular, A4 is not assumed, we allow γnpωq “ 0, in which case
we just obtain that PN

n,n`1 is 1-contracting.

Proof of Lemma 4. Let ω P Ω such that all the PN
k,n are well defined. Let ν P M1pXq. By

definition of cνn, for any x P X and any f P B`pXq, it holds,

δxMn,n`1pfmn`1,Nq ě cνnmn,n`1pxqνpfmn`1,N q,
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thus

δxP
N
n,n`1f “

δxMn,n`1pfmn`1,Nq

mn,Npxq
ě cνn

νpfmn`1,Nqmn,n`1pxq

mn,N pxq
,

with, by definition of dνn`1,N :

dνn`1,Nmn,N pxq “ dνn`1,NδxMn,n`1pmn`1,N q ď νpmn`1,N qmn,n`1pxq.

Therefore,

δxP
N
n,n`1f ě cνnd

ν
n`1,N

νpfmn`1,Nq

νpmn`1,N q
“ cνnd

ν
n`1,Nνn,N pfq,

setting

νn,Np¨q “
νp¨mn`1,N q

νpmn`1,Nq
,

which is a probability measure. This concludes the proof of i).
Let us prove now ii). This result is a classical consequence of the previous point using the
theory of Markov operators. A Markov operator P is said to be δ-Doeblin (with δ ą 0)
when there exists a probability measure µ such that δxPf ě δµpfq for any x in the state
space and any f P B`pXq. Furthermore, such an operator is 1 ´ δ contracting in total
variation : for any signed measure ρ of mass 0,

}ρP }TV ď p1 ´ δq}ρ}TV .

This property trivially holds for δ “ 0 : any positive operator satisfies δxPf ě 0 when f

is a non negative function, and any Markov operator is 1 “ p1 ´ 0q-contracting in total
variation. In our context, the previous point of the lemma yields that Ppdωq-almost surely,
for any n ď N ´ 1, and any ν P M1pXq, the Markov operator PN

n,n`1 is cνnd
ν
n`1-Doeblin.

Therefore, for any ρ1, ρ2 P MpXq, such that ρ1p1q “ ρ2p1q, noting ρ “ ρ1 ´ ρ2, it holds
›

›ρPN
n,n`1

›

›

TV
ď p1 ´ cνnpωqdνn`1pωqq }ρ}TV .

Finally, recalling that

γn “ sup
νPM1pXq

cνnd
ν
n`1,

and taking an infimum, we get :
›

›ρPN
n,n`1

›

›

TV
ď p1 ´ γnq}ρ}TV .

This proves ii), let us move now to iii). Since all the PN
n,n`1 are conservative opera-

tors, the image of a measure of mass 0 by PN
n,n`1 is a measure of mass 0. The equality

PN
k,n “ PN

k,k`1 ¨ ¨ ¨PN
n´1,n, yields

›

›

›
ρPN

k,n

›

›

›

TV
ď p1 ´ γn´1q}ρPN

k,n´1}TV . By induction, we de-

duce
›

›ρPN
k,n

›

›

TV
ď

n´1
ź

i“k

p1 ´ γiq }ρ}TV .

This concludes the proof. �
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Proof of Proposition 3. Let us prove first Inequality (3.1). Applying Lemma 4, iii) with
n “ N and ρ “ δx ´ δy, we get, Ppdωq-almost surely

›

›δxP
n
k,n ´ δyP

n
k,n

›

›

TV
ď

n´1
ź

i“k

p1 ´ γiq }δx ´ δy}TV ď 2

n´1
ź

i“k

p1 ´ γiq.

Hence, for any f P BpXq and x, y P X,

ˇ

ˇ

ˇ

ˇ

δxMk,npfq

mk,npxq
´

δyMk,npfq

mk,npyq

ˇ

ˇ

ˇ

ˇ

ď 2 }f}8

n´1
ź

i“k

p1 ´ γiq.

Let µ1 and µ2 be two positive measures. The inequality

ˇ

ˇ

ˇ

ˇ

δxMk,npfq ´ mk,npxq
δyMk,npfq

mk,npyq

ˇ

ˇ

ˇ

ˇ

ď 2mk,npxq }f}8

n´1
ź

i“k

p1 ´ γiq,

yields, after integrating with respect to µ1pdxq :

ˇ

ˇ

ˇ

ˇ

µ1Mk,npfq ´ µ1pmk,nq
δyMk,npfq

mk,npyq

ˇ

ˇ

ˇ

ˇ

ď 2µ1pmk,nq }f}8

n´1
ź

i“k

p1 ´ γiq,

so that
ˇ

ˇ

ˇ

ˇ

µ1 ¨ Mk,npfq ´
δyMk,npfq

mk,npyq

ˇ

ˇ

ˇ

ˇ

ď 2 }f}8

n´1
ź

i“k

p1 ´ γiq.

Integrating now with respect to µ2pdyq, we obtain

|µ1 ¨ Mk,npfq ´ µ2 ¨ Mk,npfq| ď 2 }f}8

n´1
ź

i“k

p1 ´ γiq,

and finally

}µ1 ¨ Mk,n ´ µ2 ¨ Mk,n}
TV

ď 2

n´1
ź

i“k

p1 ´ γiq.

Let us move now to the proof of Inequality (3.2). Applying Inequality (3.1) to the function
x ÞÑ mn,N pxq, one gets

ˇ

ˇ

ˇ

ˇ

µ1pmk,N q

µ1pmk,nq
´

µ2pmk,Nq

µ2pmk,nq

ˇ

ˇ

ˇ

ˇ

ď 2 }mn,N}8

n´1
ź

i“k

p1 ´ γiq “ 2~Mn,N~
n´1
ź

i“k

p1 ´ γiq.

By definition of cνn´1 and dνn, it holds, for any ν P M1pXq,

dνn ~Mn,N~ ď νpmn,N q

and

µ2pmk,N q “ µ2Mk,n´1Mn´1,nmn,N ě cνn´1µ2pmk,nqνpmn,N q.
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Combining these identities we obtain, Ppdωq-almost surely, for any ν P M1pXq:

cνn´1d
ν
n

ˇ

ˇ

ˇ

ˇ

µ1pmk,N q

µ1pmk,nq
´

µ2pmk,N q

µ2pmk,nq

ˇ

ˇ

ˇ

ˇ

ď 2
µ2pmk,N q

µ2pmk,nq

n´1
ź

i“k

p1 ´ γiq.

Thus taking an infimum in ν, this yields, Ppdωq-almost surely,

γn´1

ˇ

ˇ

ˇ

ˇ

µ1pmk,N q

µ1pmk,nq
´

µ2pmk,N q

µ2pmk,nq

ˇ

ˇ

ˇ

ˇ

ď 2
µ2pmk,N q

µ2pmk,nq

n´1
ź

i“k

p1 ´ γiq.

This ends the proof. �

3.2. Asymptotic estimates under ergodicity assumptions. In this subsection, we use
the ergodicity Assumption A1, as well as Assumption A4, which provide a control on the
sequence of Doeblin coefficients pγnq. Together, these assumptions allow to prove that the
right-hand side terms of (3.1) and (3.2) decay at least geometrically fastly.

Proposition 5. Assume that assumptions A1, A2 and A4 hold. Then for any k ě 1,

(3.3)

˜

k`n´1
ź

i“k

p1 ´ γiq

¸
1

n

ÝÑ
nÑ8

η̃ ă 1, for almost all ω P Ω

and

(3.4) lim
nÑ8

ˆ

1

γn

˙
1

n

“ 1, for almost all ω P Ω.

Proof of Proposition 5. We recall first that by definition, for any ω P Ω

p1 ´ γiqpωq “ p1 ´ γ0q ˝ θipωq.

Notice then that, by Assumption A4, for almost every ω P Ω, γ0pωq P p0, 1s . Thus
logp1 ´ γ0pωqq P r´8, 0q and η̃ “ exp pE rlogp1 ´ γ0pωqqsq P r0, 1q.

Thus for any k,

log

»

–

˜

k`n´1
ź

i“k

p1 ´ γiq

¸
1

n

fi

fl “
1

n

n´1
ÿ

i“0

logp1 ´ γiq ˝ θk`i.

Since θ is an ergodic map, by Birkhoff’s ergodic theorem, for any k ě 0,

1

n

n´1
ÿ

i“0

logp1 ´ γk`iq ÝÑ
nÑ8

E rlogp1 ´ γ0qs “ log η̃, Ppdωq ´ almost surely.

This yields (3.3).
Let us move to the proof of Inequality (3.4). Notice first that since γn ď 1 for all n,

lim inf
nÑ8

ˆ

1

γn

˙
1

n

ě 1.



14 ERGODIC BEHAVIOR OF PRODUCTS OF RANDOM POSITIVE OPERATORS

Let us prove now the converse inequality. Let us define for each b ą 1,

Ynpbq “
´ logpγnq

logpbq
ě 0,

and

Nb “
ÿ

nPN0

1
p1{γnq

1
n ąb

“
ÿ

nPN0

1Ynpbqąn.

For a given value of b, the sequence pYnpbqqnPN0
is stationary, thus

EpNbq “
ÿ

nPN0

P rYnpbq ą ns “
ÿ

nPN0

P rY0pbq ą ns .

It is a well known fact that for a nonnegative random variable Y ,

ErY s ă 8 ô
ÿ

ně0

PpY ą nq ă 8.

By Assumption A4, it holds E rY0pbqs ă 8 and E rNbs ă 8 for all b ą 1. Therefore,

Ppdωq-almost surely, Nb ă 8, thus
´

1
γn

¯
1

n
ď b for n large enough and lim sup

nÑ8

´

1
γn

¯
1

n
ď 1.

Finally,

lim
nÑ8

ˆ

1

γn

˙
1

n

“ 1, Ppdωq ´ almost surely.

�

Putting the estimates from Proposition 5 together with Proposition 3, we obtain

Proposition 6. Assume A1, A2, A4 hold. Then, Ppdωq-almost surely, for any k P N0,
there exists a measurable function hk such that, for any n for any µ1, µ2 P M`pXq,

(3.5)

›

›

›

›

µ1Mk,n ´
µ1phkq

µ2phkq
µ2Mk,n

›

›

›

›

TV

ď
4

γn´1

n´1
ź

i“k

p1 ´ γiq}µ1Mk,n} “ o
nÑ8

p}µ1Mk,n}q.

Furthermore, Ppdωq-almost surely, such a function is unique up to a multiplicative constant.

Proof of Proposition 6. Let us assume that there exists a positive function hk satisfying
Inequality (3.5). Then, if x, y P X, setting µ1 “ δx, µ2 “ δy and applying this inequality to
the constant function 1, we almost surely get

ˇ

ˇ

ˇ

ˇ

mk,npxq ´
hkpxq

hkpyq
mk,npyq

ˇ

ˇ

ˇ

ˇ

ď
4

γn´1

n´1
ź

i“k

p1 ´ γiqmk,npxq “ o
nÑ8

pmk,npxqq,

since by Proposition 5, Ppdωq-almost surely, γn´1
´1

śn´1
i“k p1 ´ γiq “ o

nÑ8
p1q. Thus

lim
nÑ8

hkpxq

hkpyq

mk,npyq

mk,npxq
“ 1,
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which readily implies that
hkpxq

hkpyq
“ lim

nÑ8

mk,npxq

mk,npyq
.

This yields the unicity of hk up to a multiplicative constant, when it exists. Let us now
prove the existence of such a function hk.

By Inequality (3.2), with µ1 “ δx, µ2 “ δy, one gets, Ppdωq-almost surely, for any
k ď n ď N :

(3.6)

ˇ

ˇ

ˇ

ˇ

mk,N pxq

mk,N pyq
´

mk,npxq

mk,npyq

ˇ

ˇ

ˇ

ˇ

ď
2

γn´1

mk,npxq

mk,npyq

n´1
ź

i“k

p1 ´ γiq.

Setting

diamk,npx, yq “ sup
N1,N2ěn

ˇ

ˇ

ˇ

ˇ

mk,N1
pxq

mk,N1
pyq

´
mk,N2

pxq

mk,N2
pyq

ˇ

ˇ

ˇ

ˇ

,

this yields, for any x, y P X,

diamk,npx, yq ď
4

γn´1

mk,npxq

mk,npyq

n´1
ź

i“k

p1 ´ γiq.

Exchanging the roles of x, y, one gets :

(3.7) min rdiamk,npx, yq,diamk,npy, xqs ď
4

γn´1

n´1
ź

i“k

p1 ´ γiq,

and Proposition 5 yields, Ppdωq-almost surely,

min rdiamk,npx, yq,diamk,npy, xqs ÝÑ
nÑ8

0.

Hence, one of the two sequences pdiamk,npx, yqq
něk

and pdiamk,npy, xqq
něk

has zero as
an adherence value. Since both sequences are non increasing, it implies that one of them
converges to 0. Without loss of generality, suppose that

diamk,npx, yq ÝÑ
nÑ8

0.

Then, the sequence of nonnegative real numbers
´

mk,npxq
mk,npyq

¯

něk
is a Cauchy sequence, it

converges to a nonnegative limit lkpx, yq. Thus Equation (3.6) yields, for n large enough
ˇ

ˇ

ˇ

ˇ

mk,npxq

mk,npyq
´ lkpx, yq

ˇ

ˇ

ˇ

ˇ

ď
2

γn´1

mk,npxq

mk,npyq

n´1
ź

i“k

p1 ´ γiq ď
1

4

mk,npxq

mk,npyq
.

Since
mk,npxq
mk,npyq ą 0, this implies that lkpx, yq ą 0 and consequently,

mk,npyq

mk,npxq
ÝÑ
nÑ8

1

lkpx, yq
ă 8.

Note that Proposition 3 allows to prove that Ppdωq-almost surely, (3.6) holds jointly for
any k ď n ď N and any x, y P X, thus so does (3.7). Thus Ppdωq-almost surely, all the
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sequences of the form
´

mk,npxq
mk,npyq

¯

něk
for all x, y P X converge as n ÝÑ 8.

Now, let us fix an arbitrary element x0 P X, and set hkpxq “ lim
mk,npxq
mk,npx0q for all x. The

function hk is positive and satisfies, for any x, y P X,

mk,npxq

mk,npyq
ÝÑ
nÑ8

hkpxq

hkpyq
.

Plugging this limit into Equation (3.6), we obtain

(3.8)

ˇ

ˇ

ˇ

ˇ

mk,npxq

mk,npyq
´

hkpxq

hkpyq

ˇ

ˇ

ˇ

ˇ

ď
2

γn´1

mk,npxq

mk,npyq

n´1
ź

i“k

p1 ´ γiq.

Consequently,

hkpxq ď hkpyq

˜

1 `
2

γn´1

n´1
ź

i“k

p1 ´ γiq

¸

mk,npxq

mk,npyq
ď hkpyq

˜

1 `
2

γn´1

n´1
ź

i“k

p1 ´ γiq

¸

}mk,n}8

mk,npyq
ă 8,

by A2, which implies that hk is bounded. Moreover, for any positive and finite measure
µ1 P M`pXq, any y P X, integrating (3.6) with respect to µ1pdxq, one gets

ˇ

ˇ

ˇ

ˇ

µ1pmk,nq

mk,npyq
´

µ1phkq

hkpyq

ˇ

ˇ

ˇ

ˇ

ď
2

γn´1

n´1
ź

i“k

p1 ´ γiq
µ1pmk,nq

mk,npyq
,

Thus

|µ1pmk,nqhkpyq ´ mk,npyqµ1phkq| ď
2

γn´1

n´1
ź

i“k

p1 ´ γiqµ1pmk,nqhkpyq.

Integrating with respect to any positive and finite measure µ2pdyq, this yields

|µ1pmk,nqµ2phkq ´ µ2pmk,nqµ1phkq| ď
2

γn´1

n´1
ź

i“k

p1 ´ γiqµ1pmk,nqµ2phkq,

and finally,

(3.9)

ˇ

ˇ

ˇ

ˇ

µ1pmk,nq

µ2pmk,nq
´

µ1phkq

µ2phkq

ˇ

ˇ

ˇ

ˇ

ď
2

γn´1

n´1
ź

i“k

p1 ´ γiq
µ1pmk,nq

µ2pmk,nq
.

Let us prove now that hk satisfies Inequality (3.5). It holds
›

›

›

›

µ1Mk,n ´
µ1phkq

µ2phkq
µ2Mk,n

›

›

›

›

TV

ď }µ1Mk,n ´ µ1pmk,nqµ2 ¨ Mk,n}
TV

`

›

›

›

›

µ1pmk,nqµ2 ¨ Mk,n ´
µ1phkq

µ2phkq
µ2Mk,n

›

›

›

›

TV

.

On the one hand, applying Inequality (3.1), one has

}µ1Mk,n ´ µ1pmk,nqµ2 ¨ Mk,n}
TV

ď µ1pmk,nq }µ2 ¨ Mk,n ´ µ2 ¨ Mk,n}
TV

ď 2

n´1
ź

i“k

p1´γiqµ1pmk,nq.
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On the other hand, by Equation (3.9),
›

›

›

›

µ1pmk,nqµ2 ¨ Mk,n ´
µ1phkq

µ2phkq
µ2Mk,n

›

›

›

›

TV

ď µ2pmk,nq

ˇ

ˇ

ˇ

ˇ

µ1pmk,nq

µ2pmk,nq
´

µ1phkq

µ2phkq

ˇ

ˇ

ˇ

ˇ

ď
2

γn´1

n´1
ź

i“k

p1 ´ γiqµ1pmk,nq.

Finally,
›

›

›

›

µ1Mk,n ´
µ1phkq

µ2phkq
µ2Mk,n

›

›

›

›

TV

ď 2

n´1
ź

i“k

p1 ´ γiqµ1pmk,nq

ˆ

1 `
1

γn´1

˙

ď
4

γn´1

n´1
ź

i“k

p1 ´ γiq}µ1Mk,n}.

This ends the proof. �

3.3. Proof of Theorem 1.

Proof of assertion i) : Uniform geometric ergodicity. Let us take k “ 0 in Proposition 6.
Then, Ppdωq-almost surely, noting h “ h0, it holds for any finite and positive measures
µ1, µ2, on X,

›

›

›

›

µ1M0,n ´
µ1phq

µ2phq
µ2M0,n

›

›

›

›

TV

ď
4

γn´1

n´1
ź

i“0

p1 ´ γiq}µ1M0,n}.

By Proposition 5, Ppdωq-almost surely,

lim
nÑ8

ˆ

1

γn´1

˙
1

n

“ 1 and
n´1
ź

i“0

p1 ´ γiq ÝÑ
nÑ8

η̃ P r0, 1q.

Thus for any η P pη̃, 1q, Ppdωq-almost surely, for n large enough, (depending on ω),

4

γn´1

n´1
ź

i“0

p1 ´ γiq ď ηn.

Thus, Ppdωq-almost surely, for any η P pη̃, 1q, for n large enough and any positive and finite
measures µ1, µ2,

›

›

›

›

µ1M0,n ´
µ1phq

µ2phq
µ2M0,n

›

›

›

›

TV

ď ηn}µ1M0,n} “ o
nÑ8

p}µ1M0,n}q.

This proves Equation (2.1). �

Proof of assertion ii). The proof relies on a classical time-reversal technique, see e.g. [Cog84;
Ore91], or [Hen97] for a version that is closer to our context. As stated in [CFS82, II.10.4,
pp.239-241], the ergodic system pΩ,A,P, θq can be extended as an invertible ergodic sys-
tem pΩ,A,P, θq, such that Ω Ă Ω, θ|Ω “ θ, and θ is a bijective, bimeasurable, measure
preserving and ergodic mapping. The definitions of Mk,n, cνn, d

ν
k,n, d

ν
n, γn can be naturally
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extended to all k ď n in Z, and one still has cνn “ cν0 ˝ θ
n
, dνn “ dν0 ˝ θ

n
, γn “ γ0 ˝ θ

n
for

n P Z. Assumption A4 implies that all the pγnqnPZ are almost surely positive and have
log-moments.

Therefore, Lemma 4 and Proposition 3 extend to indexes k ď n ď N P Z.
For nonnegative n ď N , for any positive measures µ1, µ2 on X, one has in particular

(3.10) }µ1 ¨ M´n,0 ´ µ2 ¨ M´n,0}
TV

ď 2

n´1
ź

i“0

p1 ´ γ´i´1q.

With µ2 “ µ1M´N,´n, this yields :

}µ1 ¨ M´n,0 ´ µ1 ¨ M´N,0}
TV

ď 2

n´1
ź

i“0

p1 ´ γ´i´1q.

Noticing that θ is now an ergodic automorphism of the measured space Ω, and applying
Birkhoff-Khinchin Ergodic Theorem as stated in [CFS82, Theorem 1, p.11], one gets, for
almost any ω P Ω

1

n

n´1
ÿ

i“0

logp1 ´ γ´i´1q ˝ θ
´i

ÝÑ
nÑ8

E rlogp1 ´ γ´1qs “ E rlogp1 ´ γ0qs .

Thus
˜

n´1
ź

i“0

p1 ´ γ´i´1q

¸
1

n

ÝÑ
nÑ8

exp pE rlogp1 ´ γ0qsq “ η̃ ă 1.

Therefore, almost surely, the sequence pµ1 ¨ M´n,0q
nPN0

is a Cauchy sequence in the space

M1pXq of probabilities on X, endowed with the total variation norm. It thus converges
almost surely to a random probability πµ1

on X. For any finite, positive non-zero measures
µ1, µ2, plugging πµ1

, πµ2
into (3.10), one proves that for almost any ω,

πµ1
“ πµ2

.

Thus, there exists a random probability π, such that, almost surely, for any positive measure
µ

µ ¨ M´n,0 ÝÑ
nÑ8

π in total variation distance.

By stationarity of θ,

µ ¨ M´n,0
d
“ µ ¨ M0,n,

which proves that, noting Λ the distribution of π,

µ ¨ M0,n
d

ÝÑ
nÑ8

Λ.

�

Proof of assertion iii). Let µ be a positive, finite measure on X. By assumption A4, since
γ0 ą 0, almost surely, for P-almost any ω P Ω, there exists a probability ν P M1pXq such
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that cν0d
ν
1 ą 0. By stationarity, with probability 1, there exists ν such that dν0 ą 0. The

definition of dν0 yields :
dν0 ~M0,n~ ď νpm0,nq.

Let η P pη̃, 1q. Theorem 1, i) implies that, for n large enough,
ˇ

ˇ

ˇ

ˇ

}µM0,n} ´
µphq

νphq
νpm0,nq

ˇ

ˇ

ˇ

ˇ

ď ηn}µM0,n},

which implies
1

1 ` ηn
µphq

νphq
νpm0,nq ď }µM0,n}.

This yields
dν0

1 ` ηn
µphq

νphq
~M0,n~ ď }µM0,n} ď µp1q~M0,n~.

Notice that, almost surely, 0 ă µphq
νphq , 0 ă d0pν, ωq, and µp1q ă 8. Thus, if n´1 log ~M0,n~

converges almost surely, then almost surely, for any non zero, positive measure µ, n´1 log }µM0,n}
converges to the same limit. The P´almost sure convergence

n´1 log~M0,n~ ÝÑ
nÑ8

λ :“ inf
Ně1

1

N
E rlog ~M0,N~s

is a classical consequence of Kingsman’s subbaditive ergodic Theorem and the subadditivity
property :

log~M0,n`p~ ď log ~M0,n~ ` log ~Mn,n`p~ .

Note that applying this Kingman’s Theorem requires Assumption A3 to ensure the inte-
grability of log` ~M0,n~. Thus n´1 log }µM0,n} ÝÑ

nÑ8
λ almost surely, for any positive and

finite measure µ. �

3.4. The independent case : proof of Theorem 2. Let us introduce the Markov
chain pµnqně0 with state space M1pXq, defined by µn`1 “ µn ¨ Mn “ µ0 ¨ M0,n`1. The
process ppµn,Mnqně0, is then clearly also a Markov chain with state space M1pXq ˆ K`

and transition kernel :

Qfpµ,Mq “

ż

fpµ ¨ M,NqdPpNq.

We denote Pχ̄ the law of the Markov chain ppµn,Mnqqně0 when pµ0,M0q is distributed

according to a measure χ̄ on M1pXq ˆ K`. Theorem 2 relies on the study of the invariant
measures and the ergodicity properties of the Markov chains pµnqně0 and pµn,Mnqně0.
In particular, we show that the limit distribution Λ of the Markov chain pµnq is its only
invariant distribution. This is stated in the following Proposition.

Proposition 7. Suppose pMnqně0 is an i.i.d sequence of elements of K` distributed ac-
cording to P, and satisfying the assumptions of Theorem 1. Then

i) For any initial distribution χ on M1pXq, the Markov chain pµnqně0 converges weakly
to Λ.

ii) Λ is the only invariant measure of the Markov chain pµnqně0.
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iii) Λ b P is the only invariant measure of the Markov chain ppµn,Mnqqně0.

As a consequence, these Markov chains are ergodic.

To prove Proposition 7, we need to define the convolution operation ‹ between probability
measures on M1pK`q as follows : For any Q1,Q2 P M1pK`q, Q1 ‹ Q2 is the law of N1N2,
where pN1, N2q „ Q1bQ2. We note, for any Q P M1pK`q, Q‹n the n-th convolution power
of Q. As an example, if N0, . . . , Nn´1 are i.i.d with law Q, Q‹n is simply the distribution
of N0,n “ N0 ¨ ¨ ¨Nn´1. Given a probability distribution χ on M1pXq and Q on K`, we also

note χ
¨
‹Q the law of µ ¨N , where pµ,Nq „ χbQ. These operations, previously defined in

[BL85] in a finite dimensional context, satisfy some elementary properties, summed up in
the following lemma.

Lemma 8. Let Q1,Q2,Q3 be probability measures on K` and χ be a probability measure
on M1pXq, it holds

i) pQ1 ‹ Q2q ‹ Q3 “ Q1 ‹ pQ2 ‹ Q3q,

ii) pχ
¨
‹ Q1q

¨
‹ Q2 “ χ

¨
‹ pQ1 ‹ Q2q,

iii) For each Q P M1pK`q, χ ÞÑ χ
¨
‹ Q is continuous with respect to the topology of

convergence in law on M1pM1pXqq.

Proof of Lemma 8. Consider pN1, N2, N3q „ Q1 b Q2 b Q3. It holds

N1N2N3 “ pN1N2qN3 “ N1pN2N3q,

with pN1N2qN3 „ pQ1 ‹ Q2q ‹ Q3 and N1pN2N3q „ Q1 ‹ pQ2 ‹ Q3q. This yields i).
Let us prove now point ii). Consider pµ,N1, N2q „ χ b Q1 b Q2. It holds

µ ¨ pN1N2q “ pµ ¨ N1q ¨ N2,

with µ ¨ pN1N2q „ χ
¨
‹ pQ1 ‹ Q2q and pµ ¨ N1q ¨ N2 „ pχ

¨
‹ Q1q

¨
‹ Q2. This yields ii).

Let us move to the proof of iii). Consider a sequence of probability measures pχnq on M1pXq,

converging in distribution to χ. Let us show that pχn
¨
‹ Qqně0 converges in distribution

towards χ
¨
‹ Q. Let f be a continuous, bounded function on M1pXq, it holds :
ż

fpµqdpχn
¨
‹ Qqpµq “

ż ż

fpµ ¨ NqdχnpµqdQpNq “

ż

χnpgN qdQpNq,

where, for each N P K`, the function gN : µ ÞÑ fpµ ¨ Nq is continuous and bounded. Thus

χnpgN q “

ż

fpµ ¨ Nqdχnpµq Ñ

ż

fpµ ¨ Nqdχpµq “ χpgN q.

This yields, by dominated convergence, as n Ñ 8,
ż

χnpgN qdQpNq “

ż

fpµqdpχn
¨
‹ Qqpµq ÝÑ

ż

χpgN qdQpNq “

ż ż

fpµ ¨ NqdχpµqdQpNq,

which implies iii).
�
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Proof of Proposition 7. Let f be a continuous and bounded function on M1pXq, it holds

χ
¨
‹ P‹npfq “

ż

fpµqdpχ
¨
‹ P‹nqpµq “

ż ż

fpµ ¨ M0,nqdχpµqdP‹npM0,nq.

However, for any µ P M1pXq, Theorem 1, iiq states that pδµ
¨
‹ P‹nqně0 converges weakly

towards Λ. Thus, for any µ P M1pXq, as n Ñ 8
ż

fpµ ¨ M0,nqdP‹npM0,nq “ pδµ
¨
‹ P‹nqpfq ÝÑ

nÑ8
Λpfq.

By dominated convergence, this yields

χ
¨
‹ P‹npfq “

ż ż

fpµ ¨ M0,nqdχpµqdP‹npM0,nq ÝÑ
nÑ8

Λpfq,

which proves the weak convergence

χ
¨
‹ P‹n ÝÑ

nÑ8
Λ

in the metric space M1pM1pXqq, for any probability distribution χ. This proves i).

Since, by Lemma 8, iii), the map µ ÞÑ µ
¨
‹ P is continuous, this proves that Λ is one of its

fixed points, namely :

Λ “ Λ
¨
‹ P.

On the other hand, if χ
¨
‹P “ χ, the sequence pχ

¨
‹P‹nqně0 is constant and converges to χ.

By unicity of the limit, it holds

χ “ Λ.

This proves that Λ is the only invariant measure of the Markov chain pµnq, i.e. ii).

Let pµ0,M0q „ Λ b P. Then µ1 “ µ0 ¨ M0 „ Λ
¨
‹ P, M1 „ P and M1 is independent of µ0,

M0 and thus µ1. Therefore pµ1,M1q „ Λ b P, and Λ b P is thus an invariant measure of
the Markov chain pµn,Mnqně0.

Conversely, consider now a probability measure χ̄ on M1pXq ˆ K`, suppose it is an
invariant measure of the Markov chain ppµn,Mnqqně0. The definition of the transition
kernel Q implies that µ1 “ µ0 ¨ M0, M1 „ P and M1 is independent of pµ0,M0q, and
therefore M1 is independent of µ1. However the second term pµ1,M1q of the Markov chain
is distributed according to χ̄Q “ χ̄ by invariance. Thus χ̄ is of the form χ̄ “ χ b P.

Additionally, if pµ0,M0q „ χ̄ “ χ b P, then µ1 “ µ0 ¨ M0 „ χ
¨
‹ P. But by invariance of

χ̄, µ1 „ χ, thus

χ
¨
‹ P “ χ.

By Proposition 7, this implies that χ “ Λ. Finally, this proves that Λ b P is the only
invariant measure of the Markov chain pµn,Mnqně0. By Corollary 5.12 of [Hai], since both
the processes pµnqně0 and pµn,Mnqně0 are Markov chains with a unique invariant measure,
they are both ergodic. �

One additional lemma is required before proving Theorem 2.
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Lemma 9. Let pMnqně0 be an i.i.d sequence of elements of K` with law P, satisfying the
assumptions of Theorem 1. Then, almost surely, for any measure µ P M`pXq, any n ě 2,

(3.11) γ0}µM0}~M1,n~ ď }µM0,n} ď }µM0}~M1,n~.

As a consequence, the σ ppMnqně0q-measurable events t@µ P M1pXq, lim sup
nÑ8

log }µM0,n} “ `8u,

tDµ P M1pXq, lim sup
nÑ8

log }µM0,n} “ `8u and tlim sup
nÑ8

log~M1,n~ “ `8u coincide up to

PbN-negligible events. A similar statement holds replacing lim sup by ´ lim inf in the three
events.

Proof of Lemma 9. Let µ0 P M`pXq ´ t0u. Then, almost surely, for any ν P M1pXq

µ0 ¨ M0 ě cν0ν.

Still noting µ1 “ µ0 ¨ M0, it holds thus µ1 ě cν0ν for any measure ν P M1pXq, and thus

}µ1M1,n} “ µ1M1,n1 ě cν0}νM1} “ cν0}νM1,n}.

By definition of dν1 , it holds thus

}µ1M1,n} ě cν0d
ν
1~M1,n~.

Optimizing this inequality in ν P M1pXq, we get

}µ1M1,n} ě γ0~M1,n~.

Consequently,

γ0~M1,n~ ď }µ1M1,n} ď ~M1,n~,

which yields (3.11) when multiplying by }µ0M0}. �

Let us prove now Theorem 2.

Proof of Theorem 2, i). Let us notice first that when µ is a probability measure, ρ : pµ,Mq ÞÑ log }µM}
satisfies the cocycle property

(3.12) ρpµ0,M0,nq “ log }µ0M0,n} “
n´1
ÿ

k“0

log }pµ0 ¨ M0,kqMk} “
n´1
ÿ

k“0

ρpµk,Mkq,

By Equation (3.12), it holds

1

n
log }µ0M0,n} “

1

n

n´1
ÿ

k“0

ρpµk,Mkq.

By Birkhoff’s Ergodic Theorem, since pµk,Mkq is an ergodic Markov chain, with stationary
distribution Λ b P, this quantity converges PΛbP -almost surely and in L1pPΛbPq towards
ş

ρdpΛ b Pq provided ρ is an L1 function with respect to Λ b P. Let us check now this

integrability property. Let pµ0, pMnqně0q „ Λ b PN. Then, applying (3.11) with n “ 2

yields

γ0}µ0M0}~M1~ ď }µ0M0,2} ď }µ0M0}~M1~.
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Noting µ1 “ µ0 ¨ M0, we get, since }µ0M0} ‰ 0 almost surely,

γ0~M1~ ď }µ1M1} ď ~M1~,

thus

|ρpµ1,M1q| ď | log }M1}| ` | logpγ0q|.

Note that pµ1,M1q „ ΛbP, since by definition µ1 “ µ0 ¨M0 and pµ0, pMnqnPNq „ ΛbPbN.

Thus, under A3+ and A4, it holds

E r|ρpµ1,M1q|s “

ż

|ρ|dpΛ b Pq ď E| log }M1}| ` E| logpγ0q| ă 8.

This proves that ρ is integrable with respect to ΛbP, thus it holds n´1 logp}µ0M0,n}q ÝÑ
nÑ8

ş

ρdΛbP

holds in L1pΛ b Pq, and PΛbP -almost surely. Since by Theorem 1, almost surely, for all µ,
it holds n´1 log }µM0,n} ÝÑ

nÑ8
λ, by unicity of the almost sure limit,

λ “

ż

ρdpΛ b Pq.

�

Proof of Theorem 2, ii). Note now Xn “ ρpµn´1,Mn´1q, for n ě 1. Then it holds, for
n ě 0, for any probability measure µ0

pµn`1,Xn`1q “ pµn ¨ Mn, ρpµn,Mnqq.

Thus, pµn,Xnqně0 is a Markov chain on M1pXq ˆ R such that

P rpµn`1,Xn`1q P A ˆ B|pµn,Xnqs “

ż

1Apµn ¨ Mq1B pρpµn,Mqq dPpMq.

Thus Sn “ log }µM0,n} “ X1 `¨ ¨ ¨`Xn is a Markov random walk associated with pµn,Xnq,
in the sense of [Als01]. Suppose that λ “ 0. By Theorem 1, it holds

n´1Sn “ n´1 log }µM0,n} Ñ 0,

PΛbdPbN pµ, pMnqně0q-almost surely, thus in probability with respect to PΛbPbN. Since
moreover, pµnq is an ergodic Markov chain, the assumptions of [Als01] are satisfied. If
there exists a function η such that PΛbP -almost surely, for n ě 1,

(3.13) Xn “ ηpµnq ´ ηpµn´1q,

then taking n “ 1 shows that we are in the case of Null Homology (NH). In this case, it
holds moreover

log }µ0M0,n} “ X1 ` ¨ ¨ ¨ ` Xn “ ηpµnq ´ ηpµ0q.

Thus, almost surely, noting a, b the respective infimum and supremum of the support of
ηpµq, when µ „ Λ, since the sequence pµnq is a stationary and ergodic sequence with law
Λ, it holds

lim inf
nÑ8

log }µ0M0,n} “ a ´ ηpµ0q, and lim sup
nÑ8

log }µ0M0,n} “ b ´ ηpµ0q.
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Thus the almost sure finiteness of these quantities are respectively equivalent to the finite-
ness of a and b. If Equation (3.13) does not hold, then we are in the setup of Theorem 2
or 3 of [Als01]. These two Theorems imply that the Markov Random Walk pSnq oscillates
: lim supSn “ `8 and lim inf Sn “ ´8 PΛbP´almost surely. However, by Lemma 9, ii),
this implies that PbN-almost surely, for every µ P M1pXq,

lim sup log }µM0,n} “ ´ lim inf log }µM0,n} “ `8.

This concludes the proof. �

4. Sufficient conditions under uniform positivity assumptions

In the finite dimensional case X “ t1, . . . , du, that is when studying products of d ˆ d

matrices, similar (and actually, more complete) results are obtained in [Hen97]. They rely
on the very mild assumption

A5. P

”

Ť

kPN

!

M0,k P
˝

S

)ı

“ 1,

where
˝

S refers to the set of d ˆ d matrices with positive entries. We expect that this
approach, based on Hilbert contractions, might be extended in infinite dimensional contexts.
This will require to introduce the notion of uniformly positive operators to strengthen the
notion of positive matrices, and state an infinite dimensional generalization of A5, as we
explain in Subsection 4.2.

This section aims at comparing our assumptions both with A5, and its natural general-
ization in infinite dimension.

We did not success in proving that A5 alone is enough for our assumptions to hold. How-
ever we provide mild additional assumptions that, together with A5, constitute sufficient
conditions for our assumptions (A2, A3, A4) to hold, and thus for Theorem 1 to apply.

4.1. The finite dimensional case. Let us focus in this subsection on the case where X

is finite, let us note d “ |X|. Consider a stationary and ergodic sequence pMnqnPN0
of

d ˆ d matrices with nonnegative entries. Checking whether Assumptions A1, A2, A3 are
satisfied is quite straightforward, since these three assumptions only involve the law of the
first matrix of the sequence. Let us see now how the additional Assumption A5 can help
control γ0 in order to check that Assumptions A4 holds.

Lemma 10. Consider a random, stationary sequence of dˆd matrices Mn “ pMnpx, yqqx,yPX,

with nonnegative entries, satisfying A2 and A5. Then Ppdωq-almost surely, for any prob-
ability measure ν, it holds dν0pωq ą 0.

Proof. The following decomposition holds : for any n ě k, x P X, ω P Ω

m0,npxq “ δxM0,n1 “ δxM0,kmk,n “
ÿ

zPX

M0,kpx, zqmk,npzq.

Thus for any ν P M1pXq,

νpm0,nq “ νM0,n1 “
ÿ

y,zPX

νpyqM0,kpy, zqmk,npzq.
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The fact that ν is a probability measure yields, for any 0 ď k ď n :

m0,npxq ď sup
y,zPX

ˆ

M0,kpx, zq

M0,kpy, zq

˙

ÿ

yPX

νpyqM0,kpy, zqmk,npzq ď sup
y,zPX

M0,kpx, zq

M0,kpy, zq
νpm0,nq,

with the convention
M0,kpx,zq
M0,kpy,zq “ 0 as soon as M0,kpx, zq “ 0 and

M0,kpx,zq
M0,kpy,zq “ 8 if M0,kpx, zq ‰ 0

and M0,kpy, zq=0. Thus, for any n ě k,

(4.1)
~M0,n~

νpm0,nq
“

}m0,n}8

νpm0,nq
ď sup

x,y,zPX

M0,kpx, zq

M0,kpy, zq
.

This yields

(4.2) inf
x,y,zPX

M0,kpy, zq

M0,kpx, zq
ď inf

něk

νpm0,nq

}m0,n}8
,

and therefore

sup
kPN

inf
x,y,zPX

M0,kpy, zq

M0,kpx, zq
ď lim inf

n

νpm0,nq

~M0,n~
.

By Assumption A5, Ppdωq- almost surely, there exists a random integer kω such that

M0,kωpωq P
˝

S. Since X is finite, we get, for P-almost any ω and for any probability measure
ν,

0 ă inf
x,y,zPX

M0,kωpy, zq

M0,kωpx, zq
ă sup

kPN
inf

x,y,zPX

M0,kpy, zq

M0,kpx, zq
ď lim inf

n

νpm0,nq

~M0,n~
.

Assumption A2 implies moreover that that for all n, P-almost any ω P Ω and any probability

measure ν,
νpm0,nq
~M0,n~ ą 0. Thus, one gets that Ppdωq-almost surely, for any ν P M1pXq,

dν0 “ inf
nPN

νpm0,nq

~M0,n~
ą 0.

�

This provides nice sufficient conditions for A4 to hold.

Proposition 11. Consider a random, stationary sequence of dˆd matrices Mn “ pMnpx, yqqx,yPX,
with nonnegative entries, satisfying A1, A3, A5. Assume additionally that

‚ there exists an deterministic integer K P N0 such that

(4.3) E

«

log sup
x,y,zPX

M0,Kpx, zq

M0,Kpy, zq

ff

ă 8,

‚ there exists a measurable map

ω P Ω ÞÑ νω P M1pXq

such that
˝ cνω0 pωq ą 0 for almost any ω,
˝ ´ log cνω0 pωqdPpωq ă 8,

˝
ş

rlog νωpm1,2qs´ dPpωq ă 8
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Then γ0 ą 0 almost surely, E r| log γ0|s ă 8, and thus the conclusions of Theorem 1 hold.

In other words, if the assumptions of Proposition 11 are satisfied, then A4 holds, thus
so do the conclusions of Theorem 1.

Proof. By definition of γ0, for almost any ω P Ω it holds 1 ě γ0pωq ě cνω0 pωqdνω1 pωq.
Notice that cνω0 pωq ą 0 Ppdωq-a.s. by definition of νω; on the other hand, Lemma 10 yields
dνω1 pωq “ dνω0 pθpωqq ą 0 Ppdωq-a.s. Thus γ0 ą 0 P-a.s.

Let us now prove that E| log γ0| ă 8. By the inequality

| log γ0pωq| “ ´ logpγ0pωqq ď ´ logpcνω0 pωqq ´ logpdνω1 pωqq

and hypothesis

ż

´ log cνω0 pωqdPpωq ă 8, it remains to check that

ż

´ log dνω1 pωqdPpωq ă 8.

Inequality (4.1) implies that Ppdωq-almost surely, for any k ě 1,

´ log dνω1 pωq “ log sup
nPN

~M1,n~

νωpm1,nq
ď max

˜

log sup
x,y,zPX

M1,kpx, zq

M1,kpy, zq
, max
1ďnďk´1

log
~M1,n~

νpm1,nq

¸

ď log sup
x,y,zPX

M1,k`1px, zq

M1,k`1py, zq
`

ÿ

1ďnďk´1

log
~M1,n~

νωpm1,nq
.

In particular, setting k “ K and applying condition (4.3), it holds by stationarity

E

«

log sup
x,y,zPX

M1,K`1px, zq

M1,K`1py, zq

ff

ă 8.

Consequently, it suffices to prove that

ż
„

log
~M1,n~

νωpm1,nq



dPpωq ă 8 for any n ě 1. Let us

decompose this quantity as

(4.4)

ż
„

log
~M1,n~

νωpm1,nq



dPpωq ď

ż

plog~M1,npωq~q` dPpωq
loooooooooooooooomoooooooooooooooon

Apnq

`

ż

“

plog νωpm1,nqq´‰

dPpωq
loooooooooooooooomoooooooooooooooon

Bpnq

.

‚ On the one hand, the inequality ~M1,n~ ď
n´1
ź

i“1

~Mi,i`1~ readily yields

Apnq ď
n´1
ÿ

i“1

E
“

logp~Mi,i`1~q`
‰

“ pn ´ 1qE
“

logp~M0,1~q`
‰

ă 8.

‚ On the other hand, for any x P X and Ppdωq-a.s.

m1,npxq “ δxM1,2m2,n ě c
νθpωq

1 pωqm1,2pxqνθpωqpm2,nq

by definition of c
νθpωq

1 pωq. Consequently, integrating with respect to νωpdxq, we obtain

νωpm1,nq “ νωM1,2m2,n ě c
νθpωq

1 pωqνωpm1,2qνθpωqpm2,nq Ppdωq´a.s,
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which yields, by induction

νωpm1,nq ě
n´1
ź

k“1

c
ν
θkpωq

k pωqνθk´1pωqpmk,k`1q.

Consequently, Ppdωq-a.s.,

plog νωpm1,nqq´ ď
n´1
ÿ

k“1

´ log c
ν
θkpωq

k pωq `
”

log νθk´1pωqpmk,k`1q
ı´

.

Notice that c
ν
θkpωq

k pωq “ c0pνθkpωq, θ
kpωqq for any k ě 1, therefore pc

ν
θkpωq

k pωqqkě1 is a
stationary sequence. Hence

Bpnq ď
n´1
ÿ

k“1

ż

´ log c
ν
θkpωq

k pωqdPpωq `

ż

”

log νθk´1pωqpmk,k`1q
ı´

dPpωq

“ pn ´ 1q

ˆ
ż

´ log cνω0 pωqdPpωq `

ż

rlog νωpm1,2qs´ dPpωq

˙

ă 8.

Finally, combining these estimates, we get, for any n P N0,
ż

log
~M1,n~

νωpm1,nq
dPpωq

ď pn ´ 1q

ˆ
ż

´ log cνω0 pωq ` rlog νωpm1,2qs´ dPpωq ` E
“

plog }m0,1}8q`‰

˙

ă 8.

�

4.2. Extension in infinite dimension. When X is infinite, we need to strengthen the
notion of positive matrices as follows.

Definition 12. A positive linear map M on BpXq is uniformly positive if there exists
K P R

˚
`, h P B`pXq, such that, for any f P B`pXq there exists bpfq P R`, satisfying

1

K
bpfqh ď Mpfq ď Kbpfqh.

When M is uniformly positive, we note for short M " 0.

Notice that when X is finite, a matrix of
˝

S is uniformly positive. Moreover, in Hennion’s
work, assumption A5 is used as a sufficient condition to obtain projective contraction
properties on the product Mk,n, with respect to a projective distance called the Hilbert
distance (once again, see [BK53; Bir57; Lig] for a complement on this distance). In an
infinite dimensional setting, this distance can still be defined, and the projective action
associated with a positive operator is contracting if and only if the operator is uniformly
positive (a proof of this claim is proposed in [Lig]). Uniform positivity is therefore the
appropriate infinite dimensional generalization of positivity in our context, and condition
A5 can thus naturally be replaced with the restrictive condition

A5’. P p
Ť

nPN tM0,n " 0uq “ 1.
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The present subsection aims at comparing our result with the natural extensions of
Hennion’s work to infinite dimensional settings. For this purpose, the following Lemma
extends the idea of Lemma 10 to an infinite dimensional setup, assuming A5’ instead of
A5.

Lemma 13. Consider a random stationary sequence of elements of K`, satisfying A2 and
A5’. Then Ppdωq-almost surely, for any probability measure ν, it holds dν0pωq ą 0.

Proof. For almost any ω and any k ď n, mk,n P BpXq, it holds,

m0,npxq

νpm0,nq
“

δxM0,kmk,n

νM0,kmk,n

ď sup
yPX,fPBpXq

δyM0,kf

νM0,kf
.

Taking a supremum in x P X, we get, for any k ď n,

(4.5)
~M0,n~

νpm0,nq
ď sup

yPX,fPBpXq

δyM0,kf

νM0,kf
.

By A5’, let kω be a random integer such that Ppdωq-almost surely, M0,kωpωq " 0. Then,
almost surely, there is K P R

˚
`, h P B`pXq such that for any f P B`pXq, there exists

bpfq ě 0, satisfying

(4.6) K´1bpfqh ď M0,kωf ď Kbpfqh.

From (4.6), we deduce K´1m0,kωpxq ď hpxqbp1q ď Km0,kωpxq. By A2, m0,kω is a bounded
and positive function, thus so is h. Moreover, bp1q ą 0, νpm0,kq ď Kνphqbp1q, thus
νphq ą 0. Therefore, for any x P X, any f P B`pXq, it holds Ppdωq almost surely:

(4.7)
δxM0,kωf

νM0,kωf
ď K2hpxq

νphq
ď K3~M0,kω~

bp1qνphq
ď K4 ~M0,kω~

νpm0,kωq
.

Finally, combining (4.7) with (4.5), we get for almost any ω and any probability measure ν

lim sup
n

~M0,n~

νpm0,nq
ď sup

někω

~M0,n~

νpm0,nq
ď K4 ~M0,kω~

νpm0,kωq
ă 8.

Since moreover almost surely, for all n P N0,
~M0,n~
νpm0,nq is finite, then almost surely, for any

probability measure ν,
1

dν0pωq
“ sup

nPN

~M0,n~

νpm0,nq
ă 8,

thus dν0pωq ą 0. �

To tackle the integrability of log γ0, Proposition 11 from the previous subsection can
clearly be adapted, replacing A5 by A5’ and (4.3) by

(4.8)

ż

log sup
xPX,fPBpXq

δxM0,kf

νωM0,kf
dPpωq ă 8.

This yields a counterpart of Proposition 11 in a infinite dimensional setup.
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5. Application to products of random infinite Leslie Matrices

The previous section focused on products of matrices with positive entries, and more
generally, products of uniformly positive operators. This kind of products can be efficiently
studied with methods based on projective contractions relatively to the Hilbert metric.
The main interest of our techniques, based on Doeblin contractions, is their application
to products of operators which are not uniformly positive. The goal of this section is to
illustrate how such products can be studied with our theorems. We have chosen to focus
here on a quite simple but natural example with no uniform positivity properties : the
infinite Leslie Matrices.

5.1. Introduction to Leslie matrices. In this section, we set X “ N0, thus the operators
of K` can be represented as infinite matrices. We choose to consider infinite Leslie matrices,
which have the following form : for any ω P Ω,

(5.1) Mpωq “

¨

˚

˚

˚

˚

˚

˚

˝

f0pωq s0pωq 0 0 . . .

f1pωq 0 s1pωq 0 . . .

f2pωq 0 0 s2pωq
. . .

f3pωq 0 0 0
. . .

...
...

...
...

. . .

˛

‹

‹

‹

‹

‹

‹

‚

.

where the entries pfkpωqqkPN0
, pskpωqqkPN0

are nonnegative real numbers, and supxPX sxpωq`fxpωq ă 8.
Notice that such a matrix is not uniformly positive, since there are zeros on every row and
every column but the first one. Moreover, if Q is a product of k matrices of this shape,
the px, yq-entry rQsx,y “ 0 whenever y ě x ` k ` 1. This prevents any product of such
matrices from being uniformly positive. This example is therefore a typical situation where
A5’ does not hold.

Such matrices appear naturally when studying the dynamics of a population counting
individuals according to their age. The coefficients fx (respectively sx) represent the mean
number of individuals of age 0 (respectively of age x ` 1) created by an individual of age
x, that is the mean size of the offspring of an individual of age x (respectively the survival
rate of individuals of age x). Usually, only a finite number of age classes are defined, thus
X “ J0, dK, and one considers finite versions of such matrices, called Leslie matrices, see for
example [Cas10]. However, it is natural to extend their definition to an infinite number of
age classes (X “ N0) obtaining infinite matrices with this shape. Indeed, several articles
already study age-structured populations with an unbounded set of possible ages, see e.g.
[BCG20; JK22; Kar90]. Therefore, products of random matrices shaped as in (5.1) model
the dynamics of an age structured population evolving in a randomly changing environment
which affect their reproductive behavior. This is the kind of matrices we are studying in
this section. Let us note from now on

skxpωq “ sx ˝ θkpωq and fk
x pωq “ fx ˝ θkpωq,
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so that pskx, f
k
x qxPX are the nonzero entries of the random matrix Mkpωq “ M ˝ θk. We

introduce the quantities

d1pωq “ sup
kPN0,xďyPX

fk
y pωq

fk
x pωq

ě 1,

and

d2pωq “ sup
xPX,kPN0

s0xpωq ¨ ¨ ¨ skx`kpωq

s00pωq . . . skkpωq
ě 1,

which are useful to estimate γ0.

5.2. Ergodic behavior of products of random Leslie Matrices. The following propo-
sition provides sufficient conditions for assumptions A3 and A4 to hold in the case of
products of infinite Leslie matrices.

Proposition 14. Consider a random matrix product with X “ N0 and suppose that for any
ω P Ω, Mpωq is of the form of equation (5.1), with supxPX sxpωq `fxpωq ă 8. Suppose that
A1 is satisfied, and Ppdωq-almost surely, it holds

i fxpωq ` sxpωq ą 0 for all x P X ;
ii) E

“

log` psupxPX sx ` fxq
‰

ă 8 ;

then A2 and A3 hold. Moreover, if additionally

iii) Ppdωq-almost surely, supxPX
sx
fx

ă 8 and E

”

log`psupxPX
sx
fx

q
ı

ă 8,

iv) There exists a deterministic real A ą 0 such that Ppdωq-almost surely, supxďy
f0
y

f0
x

ď A,

v) Ppdωq-almost surely, d2pωq ă 8 and E |log d2| ă 8,

then M satisfies also Assumption A4, and the conclusions of Theorem 1 hold.

In Proposition 14, we’ve reduced Assumptions A2 to A4 to a series of conditions on the
law of the coefficients of the random matrix M0, together with finiteness and integrability
conditions on d2. The hardest conditions to check are the ones involving d2, since checking
them requires to consider the joint law of all the M0,n and not only the first marginal. We
were not able to find a general sufficient condition for d2 to be finite almost surely and log d2

to be integrable. However, we provide the following quite restrictive sufficient condition.

Remark 2. Consider a random, stationary sequence of matrices of the form of equation
(5.1), and assume that there exists an integer x0 P X, such that almost surely, the sequence
psxpωqqxěx0

is non increasing. Suppose also that almost surely, for all x ď x0, sx ą 0.
Then, Ppdωq-almost surely

d2 ď

˜

sup
iďx0

sup
xďyďx0

siy

six

¸x0

ă 8.

Moreover, if E
ˇ

ˇ

ˇ
log

siy
six

ˇ

ˇ

ˇ
ă 8 for any x ď y ď x0, then E| log d2| ă 8.
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In the context of an age structured population, sx represents the frequency of individuals
of age x surviving to the next time step, and thus being replaced by individuals of age x`1.
Assuming that psxpωqqxěx0

is decreasing implies that the older individuals get, the more
they tend to die, which is a reasonable assumption. However this condition is somewhat
unsatisfying in a more general setting.

We split the proof of Proposition 14 into several lemmas that involve different groups
of assumptions. Notice first that most quantities involved in Assumptions A2 to A4 are
explicit in terms of the pfx, sxq. Indeed :

Lemma 15. Consider a product of stationary random Leslie matrices, in the form of equa-
tion (5.1). Then A2 and A3 are satisfied if and only if all the following conditions hold
simultaneously :

‚ Ppdωq-almost surely, for each x P X, fxpωq ą 0 or sxpωq ą 0

‚ E
“

log` psupxPX fx ` sxq
‰

ă 8.

Proof. This lemma is straightforward after noticing that for any x P X, ω P Ω,

m0,1px, ωq “ fxpωq ` sxpωq.

�

Moreover, in this model, the behavior of cν0pωq is quite clear.

Lemma 16. Consider a product of stationary, random Leslie matrices and assume that
A2 holds. Then Ppdωq-almost surely, for any probability measure ν ‰ δ0 P M1pXq, it holds
cν0pωq “ 0, thus Ppdωq almost surely,

γ0pωq “ cδ00 pωqdδ01 pωq.

Moreover,

cδ00 pωq “ inf
xPX

fxpωq

fxpωq ` sxpωq
“ inf

xPX

ˆ

1 `
sxpωq

fxpωq

˙´1

.

Proof. Notice that for any x P X, ω P Ω,

δxM0,1 “ fxpωqδ0 ` sxpωqδx`1.

Thus, let ν be a probability measure on X. Suppose that ν ‰ δ0. Then, there exists k ą 0

such that νpkq ą 0. Consider a real c ě 0, such that for all x P X, δxM0,1 ě m0,1pxqcν.
Then in particular

0 “ fkpωqδ0p1kq ` skpωqδk`1p1kq ě cm0,1pkqνpkq,

By A2, almost surely, m0,1pkq ą 0, which implies that c “ 0. �

Let us try now to control the random variable dδ00 .

Lemma 17. Consider a product of stationary random Leslie matrices, of the form of equa-
tion (5.1). Then,

dδ00 pωq ě
1

d1pωqd2pωq
.
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Proof. Let n P N0, x P X, ω P Ω, it holds

m0,npxq “ δxM0 ¨ ¨ ¨Mn´11 “
ÿ

i0,i1,¨¨¨inPN0

δxpi0qM0pi0, i1q ¨ ¨ ¨Mn´1pin´1, inq.

Thus
m0,npxq “

ÿ

i1,¨¨¨inPN0

M0px, i1q ¨ ¨ ¨Mn´1pin´1, inq.

Let us rearrange this sum according to the first index k ď n such that ik “ 0 :

m0,npxq “
n

ÿ

k“1

ÿ

i1,¨¨¨ik´1ą0

M0px, i1q ¨ ¨ ¨Mk´1pik´1, 0q
ÿ

ik`1,¨¨¨inPN0

Mkp0, ik`1q ¨ ¨ ¨Mn´1pin´1, inq

`
ÿ

i1,¨¨¨iną0

M0px, i1q ¨ ¨ ¨Mn´1pin´1, inq.

Notice that
ÿ

ik`1,¨¨¨inPN0

Mkp0, ik`1q ¨ ¨ ¨Mn´1pin´1, inq “ mk,np0q.

Moreover, the matrices Mk are shaped according to (5.1). Thus for any i ě 0, j ą 0, in
order for Mkpi, jq to be non zero, one must have j “ i ` 1. Thus :

m0,npxq “
n

ÿ

k“1

M0px, x`1q ¨ ¨ ¨Mk´1px`k´1, 0qmk,np0q`M0px, x`1q ¨ ¨ ¨ Mn´1px`n´1, x`nq.

Therefore

m0,npxq “
n´1
ÿ

i“0

s0xs
1
x`1 . . . s

i´1
x`i´1f

i
x`imi`1,np0q ` s0x . . . s

n´1
x`n´1.

This is true in particular for x “ 0 :

m0,np0q “
n´1
ÿ

i“0

s00s
1
1 . . . s

i´1
i´1f

i
imi`1,np0q ` s00 . . . s

n´1
n´1.

By definition of d1, d2, it holds, for any k P N0 and any x P N0,

f i
x`i ď d1f i

i ,

and
s0xs

1
x`1 . . . s

i´1
x`i´1 ď d2s00s

1
1 . . . s

i´1
i´1.

Therefore, controlling independently each term of the sum yields

m0,npxq ď d1d2
n´1
ÿ

i“0

s00s
1
1 . . . s

i´1
i´1f

i
imi`1,np0q ` d2s00 . . . s

n´1
n´1 ď d1d2m0,np0q,

thus
1

d1pωqd2pωq
ď dδ00 pωq “ inf

nPN0

m0,np0q

}m0,n}8
.

�
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Let us study separately d1pωq and d2pωq.

Lemma 18. Consider a random product of matrices of the form of equation (5.1), satisfying
A1. Then the random variable d1 is Ppdωq-almost surely finite if and only if there exists
A ą 0 such that

P

«

sup
xďy

f0
y

f0
x

ď A

ff

“ 1.

In this case d1pωq ď A, Ppdωq-almost surely.

Proof. Notice that

d1pωq “ sup
kPN0

sup
xďy

fk
y

fk
x

“ sup
kPN0

X ˝ θkpωq.

where

Xpωq “ sup
xďy

fypωq

fxpωq
“ sup

xďy

f0
y

f0
x

.

Since θ is an ergodic mapping, supkPN0
X ˝θk is Ppdωq-almost surely equal to the supremum

of the support of X. In particular supkPN0
X ˝ θk is finite almost surely if and only if the

support of X is bounded. �

Putting these lemmas together allows to prove Proposition 14.

Proof of Proposition 14. The assumptions of Proposition 14 contain the conditions men-
tioned in Lemma 15. Hence, this lemma allows to check A2 and A3. Moreover, Lemma 16
guarantees that

cδ00 pωq “ inf
xPX

ˆ

1 `
sxpωq

fxpωq

˙´1

“

ˆ

1 ` sup
xPX

sxpωq

fxpωq

˙´1

ą 0, Ppdωq ´ almost surely.

Moreover, because of Lemma 17, it holds

dδ00 pωq ě
1

d1pωqd2pωq
.

The assumptions of Lemma 18 are satisfied here, therefore d1pωq ă 8,Ppdωq´almost surely.
Moreover, we have assumed that d2pωq ă 8,Ppdωq´almost surely. Thus Ppdωq-almost

surely, dδ00 pωq ą 0, and by stationarity, dδ01 pωq ą 0 almost surely. Thus, Ppdωq-almost
surely,

γ0pωq “ sup
νPM1pXq

cν0pωqdν1pωq “ cδ00 pωqdδ01 pωq ą 0.

Moreover,

E| log γ0| ď

ż

´ log cδ00 pωqdPpωq ´

ż

log dδ01 pωqdPpωq.

On the one hand,
ż

´ log cδ00 pωqdPpωq “

ż

log

ˆ

1 ` sup
xPX

sxpωq

fxpωq

˙

dPpωq.
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Notice that for any positive real variable X, logp1 ` Xq is integrable as soon as logpXq` is
integrable. Since we’ve assumed that

ż

log

ˆ

sup
xPX

sxpωq

fxpωq

˙`

dPpωq ă 8,

then
ż

´ log cδ00 pωqdPpωq ă 8.

On the other hand,
ż

´ log dδ01 pωqdPpωq “

ż

log dδ00 pωqdPpωq ď E log d1 ` E log d2.

Since supxďy
f0
y

f0
x

ď A almost surely, then by stationarity, almost surely,

1 ď d1 “ sup
kPN0

sup
yěx

fk
y

fk
x

ď A.

Thus log d1 is bounded and integrable. We have assumed additionally that log d2 was inte-
grable. This is enough to conclude to the integrability of | log γ0|, which proves assumption
A4. �

5.3. A situation where γ0 “ 0. It was not clear to us how strong an assumption A4 is, or
whether it was hard to find a system breaking it while satisfying all the other assumptions.
We shall present here an example of an infinite Leslie matrix, such that γ0 “ 0 even if
all other assumptions are satisfied. This example is in a deterministic environment, that is
|E | “ 1, Ω “ EN0 , |Ω| “ 1. The random matrix Mpωq is therefore constant, and M0,n “ Mn.
Let us set :

(5.2) M “

¨

˚

˚

˚

˚

˚

˚

˝

cmp0q p1 ´ cqmp0q 0 0 . . .

cmp1q 0 p1 ´ cqmp1q 0 . . .

cmp2q 0 0 p1 ´ cqmp2q
. . .

cmp3q 0 0 0
. . .

...
...

...
...

. . .

˛

‹

‹

‹

‹

‹

‹

‚

.

where c P p0, 1q, and mpxq “ cmpxq ` p1 ´ cqmpxq is the mean offspring size of a type
x individual. Such a model satisfies A2 and A3, as soon as x ÞÑ mpxq is bounded and
positive, since c ą 0. The ergodicity and integrability properties are trivially satisfied
since this model is in a constant environment. Moreover, Lemma 16 applies, therefore
γ0 “ cδ00 pωqdδ01 pωq “ cdδ01 pωq. We note from now on d “ dδ01 pωq. Let us prove that we can
tune the parameters x ÞÑ mpxq and c in such a way that d “ 0.

Consider a sequence of integers pεxqxPN0
P t0, 1uN0 , such that :

‚ There are arbitrarily long subsequences of consecutive 1 in the sequence pεxq.

‚ Noting Sx “
řx´1

k“0 εk,
Sx

x
ÝÑ 0 as x Ñ 8.

‚ There exists α ă 1 such that for all x P N0,
Sx

x
ď α.
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Let a be a real number such that a ą 1. Then, we set, for any x P X,

mpxq “ 1 ` pa ´ 1qεx.

Defined as such, m is a positive and bounded function, thus Assumptions A2 andA3 are
satisfied. This yields that for any sequence pxiq,

n´1
ź

i“0

mpxiq “ a
řn´1

i“0
εxi .

Since

m0,npxq “
ÿ

x0“x,...xnPN
xi`1Ptxi`1,0u

cNpx0,...xnqp1 ´ cqn´Npx0,...xnq
n´1
ź

i“0

mpxiq ě p1 ´ cqn
n´1
ź

i“0

mpx ` iq,

where Npx0, . . . xnq “ |t1 ď i ď n|xi “ 0u|. Then

m0,npxq ě p1 ´ cqna
řx`n´1

i“x εi ,

In particular, x can be chosen such that εx “ ¨ ¨ ¨ εx`n´1 “ 1, which implies that

}m0,n}8 ě m0,npxq ě pap1 ´ cqqn.

On the other hand

m0,np0q ď 2n sup
x0“0,...xnPN0

xi`1Ptxi`1,0u

n´1
ź

i“0

mpxiq ď 2na

supx0“0,...xnPN0

xi`1Ptxi`1,0u

řn´1

i“0
εxi

.

A sequence pxiq0ďiďn of integers such that x0 “ 0 and for each i, xi`1 P txi ` 1, 0u
is entirely determined by the sequence pTkqk of the lengths of its excursions away from
zero. By convention, if there are only p excursions away from zero, we set Tp such that
T0 ` ¨ ¨ ¨ ` Tp “ n and Tp`1 “ ¨ ¨ ¨ “ Tn “ 0. The pxT0`¨¨¨`Ti´1

qiďp are the only zero terms
in the sequence px1, . . . xnq, and T0 ` ¨ ¨ ¨ ` Tn ď n ´ 1. Thus

sup
x0“0,...xnPN
xi`1Ptxi`1,0u

n´1
ÿ

i“0

εxi
ď sup

T0`...Tn“n

n
ÿ

i“0

STi
ď α

n
ÿ

i“0

Ti ď αn,

and

m0,np0q ď p2aαqn.

Hence
}m0,n}8

m0,np0q
ě

ˆ

ap1 ´ cq

2aα

˙n

“

ˆ

a1´αp1 ´ cq

2

˙n

ÝÑ
nÑ8

8,

whenever a1´αp1´cq
2

ą 1. Thus for any values of α, c P p0, 1q, if a is large enough, then

dδ00 pωq “ 0. Since |Ω| “ 1, for each n P N0, m1,n`1 “ m0,n, thus dδ00 pωq “ dδ01 pωq “ d “ 0.
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