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ERGODIC BEHAVIOR OF PRODUCTS OF RANDOM POSITIVE
OPERATORS

MAXIME LIGONNIERE

ABsTRACT. This article is devoted to the study of products of random operators of the
form Mo, = My --- M,—1, where (Mp)nen is an ergodic sequence of positive operators
on the space of signed measures on a space X. Under suitable conditions, in particular,
a Doeblin-type minoration suited for non conservative operators, we obtain asymptotic
results of the form _
uMo n ~ w(h)rnmn,

where £ is a random bounded function, (rn)n>0 is a random non negative sequence and
7, is a random probability measure on X. Moreover, f~L, (rn) and 7, do not depend on
the choice of the measure p. We prove additionally that n~'log(r,) converges almost
surely to the Lyapunov exponent A\ of the process (Mo,n)n=0 and that the sequence of
random probability measures () converges weakly towards a random probability mea-
sure. These results are analogous to previous estimates from [Hen97] in the case of d x d
matrices, that were obtained with different techniques, based on a projective contraction
in Hilbert distance. In the case where the sequence (M) is i.i.d, we additionally exhibit
an expression of the Lyapunov exponent A as an integral with respect to the weak limit
of the sequence of random probability measures (7, ) and exhibit an oscillation behavior
of r, when X\ = 0. We provide a detailed comparison of our assumptions with the ones of
[[1en97] and present some example of applications of our results, in particular in the field
of population dynamics.
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1. INTRODUCTION

1.1. General introduction. The study of products of random linear operators can be
traced back to the seminal article of Furstenberg and Kesten [FI<60], studying products of
the form

Moy =My ... My_1,

where (M,),>0 is a stationary sequence of d x d real or complex random matrices. Under
a mild irreducibility assumption, the authors exhibit a law of large numbers on the norm
of My p, involving a deterministic number called Lyapunov exponent, defined as

. 1 a1
A=l B | tog o, | = iut L flog 1],

where the norm | - | can be chosen to be any submultiplicative norm. Under additional
positivity and boundedness assumptions on the entries of the matrices (M,), [F1KX60] also
proves a law of large numbers for the entries M, (4, j) of the products : almost surely,

lim n~!log My . (i,5) = \.

n—o0

These estimates on the behavior of the entries of My, were then extended to the case of
products of invertible matrices, see e.g. [GLO1] and [BL&5]. These works rely on a careful
study of the action of invertible matrices on the projective space P(Ry ).

To strengthen the results from [F1<60] on products of matrices with non negative entries and
relax their assumptions, Hennion [Hen97] studied the action of My(R,) on the projective
space P(R?), endowed with the so called (pseudo)-Hilbert distance dy previously defined
in [BIK53] and [Bir57]. This distance is particularly well adapted to this problem, since the
contraction coefficient of the projective action of a matrix with respect to dp is explicit in
terms of its entries, in particular, any matrix with positive entries is strictly contracting.
Under the assumption that almost surely, for n large enough, My , has all positive entries,
Hennion obtains the asymptotic decomposition

Mo,n(i,j) = AR (1) L (5) + n—(>)oo<)\")’

where A, is the dominant eigenvalue of My, and L,, R, are the associated left and right
eigenvectors, with the normalizations ||R,| = 1 and (L., R,) = 1. Moreover (R,)n>0 al-
most surely converges to a random vector R, (Ly/||Lyl), converges in distribution, and
(nil log )‘")n>1 almost surely converges to the Lyapunov exponent .

Such results have important implications, in particular in the field of populations dynam-
ics. Indeed, a population composed of d types of individuals, evolving in a fluctuating
environment, without interacting which each other, can be modelled by a linear model of
the form

(11) In = xn—an—la

where x,, is a row vector of Ri encoding the mass of individuals of each type at time n and
M1 = (Mn-1(4,J))1<; j<q is @ random matrix encoding the rates at which individuals of
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each type i create individuals of each type j between times n — 1 and n. In such a time-
inhomogeneous population model, the understanding of the asymptotics of z,, amounts to
the understanding of the matrix product My .

Moreover, such products also appear in the study of multitype Galton-Watson processes
in random environment (MGWRE), which were introduced in [AK71]. They are a gener-
alization of Galton-Watson processes to the case where the distribution of the (random)
offspring of an individual depends on a notion of type and on a random environment that
changes through time. When conditioning a MGWRE on the environment sequence, one
obtains a so-called quenched population model, which satisifies (1.1) where z,, is the ex-
pectation of the population conditionally on the environmental sequence. The value of the
Lyapunov exponent A of the underlying matrix product separates three regimes of the MG-
WRE : subcritical (A < 0), critical (A = 0), supercritical (A > 0). These three regimes have
different properties, in particular, when A < 0, the MGWRE goes extinct with probability
1, when A > 0, the MGWRE survives with positive probability. This separation between
regimes was established in [AK71] and [Nor74], using results from [FI<60]. More recent
advances in the study of random matrix products - in particular Hennion’s article- were
key to the last developments of the theory of MGWRE in random environments, see e.g.
[Cam18; LPD18; GLP23].

In this paper, we study the infinite dimensional counterpart of products of random matri-
ces, having in particular in mind applications to population models with an infinite number
of types. We first consider a set X, typically infinite, and build a set K of positive linear
operators acting both on the space of signed measures M(X) on the left and the space of
measurable bounded functions B(X) on the right. Then, we let (M,,) be a stationary, ergodic
sequence of elements of Kt and define the products My ,, = My - -- M,_1. The approach of
[Hen97] can be extended to this infinite dimensional setup. Indeed, it is possible to define
the Hilbert distance dz on the projective positive cone of an infinite dimensional vector
space and to obtain a nice characterisation of the operators that are (strictly) contracting
with respect to dy. We refer the reader to [Lig] for a proof of these facts. However, as
we explain in Section 4, this characterisation leads to stronger positivity assumptions in an
infinite dimensional context than it did in the finite dimensional one. For example, such an
extension of Hennion’s approach would not be able to deal with products of infinite Leslie
matrices that we present in Section 5.

For this reason, we use a different contraction method to obtain a projective contraction.
This method aims at extending the Doeblin contraction techniques for Markov operators
to a product of non conservative operators (that is operators M such that M1 # 1 in
general). To do so, we consider the auxiliary family of Markov operators P,ivn, defined for
each k <n < N as ’

O M, m
5$P1£Ynf == k’n(f n’N)v
O M N (1)
where, for x € X, my, »(v) = 6, My 1. These Markov operators are related to the projective
action p - My, = % of Mj,,, on measures by :

M- Mk,” = IU’PI?,n = NPI'ZL,kJrl T ngl,n‘
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We provide sufficient conditions for these Markov operators to satisfy Doeblin minorations
of the form §,P(f) = cv(f), which guarantees that they are contracting in total varia-
tion. This allows to obtain a notion of projective contraction of the Mj, , on the set of
signed measures. Such auxiliary operators were already introduced and already applied to
study both homogeneous semi-groups of operators [D)N02; C'V16] and inhomogeneous ones
[BCG20]. We consider here a random sequence of operators (M,,), i.e a discrete time, ran-
dom, time-inhomogeneous semi group, and assume this sequence is stationary and ergodic.
The stationary and ergodic framework allows us to provide more explicit assumptions, and
we obtain more developed asymptotic results on (M,,). Namely, we prove that the following
almost sure approximation in total variation holds for n large enough

(1.2) HuMo,n = p(h)rnmy

v S 0" | Mo 7v

where 1 < 1, h is a random bounded function, r, is a positive random number and (7,,) is
a sequence of random probability measures on X, which are all independent of the measure
p. We prove additionally that (n~!log(r,)) converges almost surely to the Lyapunov ex-
ponent of the process M, and that the sequence () of random probabilities converges
in distribution with respect to the total variation topology towards a random probability
measure A.

Additionally, we show in Theorem 2 that when the sequence (M,,) is i.i.d, the probability
distribution A and the Lyapunov exponent A are related as follows :

A= f log |uM|dA(u)dP(M),

where P refers to the law of the operators (M, ), thus extending a result stated in [BL85]
in finite dimension. Finally, still under the assumption that (M,) is i.i.d, we show that,
when A\ = 0 it holds almost surely, for any p € M (X) — {0},

limsuplog | Mo | = —liminf|| My | = +00,
n—o0 n—ao

except in a situation knowed as Null-Homology.

These results should allow to extend many known results on MGWRE with a finite type
set to a class of MGWRE with an infinite type set X. In particular, our results imply
that when the Lyapunov exponent X is nonpositive, the quenched population size pMp 1
satisfies li{g iogf,uMO,n]l = 0 almost surely. By a classical first moment argument, this is a

sufficient condition for the almost sure extinction of the population. The survival of the
population when A > 0 is a more delicate problem and will be the object of a forecoming
article.

1.2. Framework and notations. Let (X, X) be a measurable set of arbitrary cardinality,
such that for all x € X, the singleton {z} € X. We denote by B(X) the Banach space of
bounded measurable functions on X, endowed with the supremum norm, and B (X) the
cone of nonnegative functions of B(X). The vector space of signed measures, noted M (X)
and the cone of nonnegative elements of M(X), noted M, (X) are endowed with the total
variation norm | - |py. Note that ||u|ry = p(X) for any p € M (X). Let M;(X) be the
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set of probability measures on (X, X'). For any measurable set A € X, let 14 € B(X) be the
indicator function of A. For short, we note 1 = 1x € B(X) the unit function on X. We also
note ¢, € M(X) the Dirac measure at x.

Let K be the set of maps @ of the form:

Q:X x X — RT,

such that, for any = € X, for any A € X, the map = — Q(x, A) is measurable, the map
A — Q(x,A) is a positive and finite measure on (X, X') and ||Q|] := sup,ex Q(z,X) < c0.

Such a map Q € KT naturally operates on B(X) by setting, for any f € B(X), and any
reX,

Qf(x) = fxf(y)Q(w,dy).

Note that |Qf(x)] < [floll@Q]l, thus Qf € B4 (X) as soon as f € B4 (X) and @ acts as a
bounded positive operator with norm ||Q]| on B(X). Moreover, for any positive measure
e My (X), and any Q € KT, the positive measure u@ on X is well defined by setting, for
any nonnegative function f,

Q) = Q) = jx Qf (x)uldz).

Note that u@ has indeed finite mass pQ(1) = u(Q1) < [|Q||p(1) < oo since p is assumed
to be a finite measure. This action can therefore naturally be extended to the set of signed
measures M (X), where @ acts as a bounded linear operator with norm ||Q||.

Thus, the elements of Kt operate as positive linear operators both on the sets of bounded
measurable functions and on the set of signed measures on X, with a duality relation between
these two actions. Moreover, it is also possible to define a projective action - of K onto
the projective space associated with M (X), ie the set of probability measures M (X), by
setting, for any p € M4 (X) and any M € KT such that uM # 0,

Finally, the set K* is naturally endowed with an associative, non commutative product,
defined by : for any Q1,Q2 € K*, any x € X and any A € X,

Q1Qs(x, A) = j Q1 (2 dy) Qa (. A).
Yy

This product is compatible with the left and right actions defined above, in other words,
for any Q1,Qs € K*, any j1€ M, (X), and f € B4(X),
w(Q1Q2) = (Q1)Q2 and Q1Q2(f) = Q1(Q2f),
and whenever p e M (X) and u@1Q2 # 0,
po (Q1Q2) = (k- Q1) - Q.

The operator norm || - || satisfies the submultiplicativity relation

l@1@ull < llQ:lliQ2ll-
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Remark 1. In the case of a finite or countable set X, any measure on X is atomic, an
operator Q € Kt on X corresponds to a matrixz indexed by X with nonnegative entries. The
product of operators of K corresponds to the matriz product and the respective left and
right actions of K on signed measures and bounded functions correspond to the product of
matrices respectively with the vectors of £*(X) (seen as row vectors) and of £*(X) (seen as
column vectors).

We consider a dynamical system (2, A,P,0), where (2, A4,P) is a probability set and
6 : Q — Qis a measurable transformation, which preserves the probability P, i.e Pof~! = P.
Let M : Q — K be a measurable map. We denote as Ny the set of nonnegative integers
and note, for each n € Ny,
M, = M o 0™,
Note that the sequence (My,)nen, is stationary. For each k < n, w € Q, let us define the
random product

Mpp(w) = Mi(w) -+ Mp_1(w) = (M 0 6% (w)) -+ (M 06" ' (w)) e KT,
with the convention My ,(w) = Id € K*. Notice that My gin(w) = Mo, © 0% (w). The
operators satisfy the following semi group property : for any k < n < N, any u € M(X),
any f e B(X)
(1.3) pMy N (W) f = My (W) My, N (W) f.
Moreover, for any x € X, k < n, w € (), we set
M (T, w) = oMy (W)L = |05 M 5 (W) 7V

Notice in particular that for any positive measure u,

My | = p(mp,n) = puMy N1 = pMy ymn N,

Let us point out additionally that || Mg ,(w)|| = supgex min(z,w) = [[Mgn(, w)|wo, and
that for any £ < n < N, [[Mgn|| < [|[Mgn||||Mn n|. Finally, to shorten the nota-
tions, we often omit the dependence in w, writing for example my, ,,(z) = my ,(z,w), and
|||Mk,n H = Hmk,n 0 = SUPgex mk7n($vw)'

1.3. Assumptions. We list here several hypotheses that will be used in the rest of the
article.

A1l. The dynamical system (2, A, P, 0) is ergodic.

We recall that a dynamical system is ergodic when any measurable set A € A such that

0=1(A) = A satisfies P(A) € {0, 1}.
A2. For almost all w € 2, the function x — mg1(z,w) is a positive function.

By stationarity, A2 implies that P(dw)-almost surely, the product My, ,(w) is a continu-
ous, non zero, positive linear operator. We introduce the integrability properties

A3. E [logJr Hmo,lﬂoo] = Elog™ (|| Mo

) < o0.

and
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A3+. E[|log [mo,1

o] = Elog ([ Mo]]) < o

In particular, by submultiplicativity of the norm [|-||, A1 and A3 imply that Elog™ (|| M,
for all £ < n.
In this work, we control the products (Mg p)nen using the random sequence (vg)ken

defined as

[) <o

Ye(w) = sup  cg(w)dii(w),
veMi (X)

where for any k € Ny, for any probability measure v € M (X), we set

0o My g1 1(w)(f)

cp(w) = in ,
k) zeX, feBy (X),v(£)=0 V(f)mpgr1(z)

y vMy 1 v(mp (-, w

k,n(w) = ( ( )) € [07 1]7

SUPex 0z Mg n 1 B | M ()l
and
di(w) = Tllgfl;dk,n(w)‘
Note that ¢} (w) is the largest element of [0, 1] satisfying
0o Mi o1(w)(f) = c(w)mi g1 (@, w)r(f)
for all x € X and f € B4 (X). Similarly, d}(w) is the largest element of [0, 1] satisfying
v(min) = di(w)|| M,n

| = di(w)min(2)

for all € X and n € Ng. For each k € Ny, each v € M (X), the quantities ¢,d} , ,d; are
measurable functions of w € {2 with values in [0, 1]. Moreover, ¢} = cgoﬁk, d} in = dg non,

dy =dgo 6%, and ~;, = v 0 #F. We assume
A4. For P-almost any w, vo(w) > 0, and moreover E |log(p)| < 0.

Once again, by stationarity, under A4, it holds P(dw)-almost surely, for any k& > 0,
Yk (w) > 0.

2. STATEMENT OF THE RESULTS AND STRUCTURE OF THE PAPER
2.1. Main results. Set
7j := exp (E [log(1 —70)]) € [0, 1],

and notice that A4 yields 77 < 1. Under the previous assumptions, we prove the following
Theorem:

Theorem 1. Let M : Q — Kt be a measurable map and assume that Assumptions A1,A2
and A/ hold. Then,
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i) P(dw)-almost surely, there exists a random function h € B(X) such that, for any
n € (1,1), for n large enough, for any finite measures pi, ps € M4 (X) — {0},

pa(h)
@1) I p2(h) HoMon TV

Such a function h is unique up to a multiplicative constant.
i1) There exists a probability measure A on the space M1(X), such that for any probabil-
ity measure u, the sequence of random probability measures (- Mo ,) converges in
distribution towards A, in the space My (X), endowed with the total variation norm.
i11) Assuming additionally A 8, for almost any w € Q and any finite, positive, non-zero
measure [,

1Mo, — < 0" Mo |-

1 . 1
(2.2) ~log Mol — inf +E [log | Mo,x[l] = A& [0, )

Note that the estimate (1.2) can be derived from Theorem 1 by a choice of an arbitrary
measure po, and by setting

h
p2(h)

Part of our study focuses on the independent case, that is, when the sequence of operators
(M) isi.i.d, with a law called P. This can be obtained by setting (£2,.4, P) to be the product
space Q = (KN, P = PN and M : (KN - KT, (Np)k=0 — No.

In this independent case, we can obtain additional insight over the asymptotical behavior
of the mass of the measure My .

T = M2 - MO,TLv ]~7J = y 'm = ”MQMOJL”’

Theorem 2. Consider an i.i.d sequence (M,) of elements of KT with law P, suppose
assumptions A1, A2, and A/ hold.

i) Under the additional assumption A3+, the almost sure convergence (2.2) also holds
in LYA®P), that is § | L log |uMo,| — A| dA()dPE" (Mo, - - - My—1) - 0. As a

consequence,

(2.3) A= f log | uM|dA () dP(M) = f ol M)AA @ Py, M).

ii) If X = 0, under Assumption A3, the following dichotomy holds.
Either for any p € M (X) — {0}, almost surely

(0OSC) lim i£f log Mo | = —00 and limsup log | Mo | = +o0
n— n—0o0

or there exists a function n: M;(X) — R such that d(A ® P)(u, M)-almost surely

(NH) log ||pM|| = n(p - M) = n(p).
When (NH) holds, let po ~ A. If the infimum of the support of n(po) is finite (resp
is infinite), then almost surely, for any p € M (X) — {0}, lim igolf log |uMo | € R

(resp. liminflog Mo, | = —o0). The same holds for limsup log ||uMo
n—aoo

n—aoo0



ERGODIC BEHAVIOR OF PRODUCTS OF RANDOM POSITIVE OPERATORS 9

2.2. Structure of the paper. Section 3 contains the proofs of Theorems 1 and 2. More
precisely, in Subsection 3.1, we recall how the coefficients ~, allow to control some contrac-
tion rates of the operators My,. These results are adapted from [BCG20]. In Subsection
3.2, we use the ergodic structure, in particular Assumptions A1 and A4 to obtain a geo-
metric decay of the error terms that appeared in our previous estimations. Finally, in
Subsection 3.3 we derive the three claims of Theorem 1. In Subsection 3.4, we focus on
the case where the sequence (M,,) is i.i.d. In this case, a study of the invariant measures
and the ergodicity properties of the Markov chains (p0 - Mo n)n>0 and (po - Mo n, My )n>0,
allows to prove Theorem 2.

Section 4 is dedicated to a comparison of our results with those obtained based on
Hilbert contractions. More precisely, we show how natural conditions coming from Hilbert
contractions techniques provide more tractable sufficient conditions for our Assumptions
(in particular A4), both in finite and infinite dimension.

In Section 5, we apply our results to study products of Leslie Matrices. This constitutes
an example of an interesting class of systems that cannot be studied using the Hilbert
metric. More precisely, we provide in Subsection 5.2 reasonable sufficient conditions under
which a product of Leslie matrices modelling the behavior of an age structured population
satisfies assumptions A1 to A4. However, when these conditions are not satisfied, it can
be quite difficult to check that vy > 0, even on a deterministic and constant sequence of
Leslie Matrices (M,,). To illustrate this fact, we present in Subsection 5.3 an example of
system where 9 = 0 even if all the other assumptions are satisfied.

3. PROOFS

3.1. Contraction results based on inhomogeneous Doeblin minoration. The first
step towards proving Theorem 1 is establishing

Proposition 3. Suppose A 2. Then, P(dw)-almost surely, for any k < n < N and any
finite measures 1, g € My (X) — {0}, it holds

n—1
(3'1) ”:ul ) Mk,n — M2 Mk,n”TV <2 H(l - %’),
i=k
and
(3:2) oy [PLN)  palmin)| i) T
T Omeg)  pe(mes) | p2(megn) Z

This result was already introduced in [BCG20] in a somewhat different setup. We have
chosen to state and prove it here for the sake of completeness. Its proof is based on
performing a Doeblin minoration on a well-chosen sequence of auxiliary Markov operators
(P,ivn) This Doeblin property yields (3.1), a contraction property for the projective action
of My, , on the space of measures M (X). We derive then Equation (3.2), which describes
how the growth of the mass ||uMj .| between times t = n and t = N depends on the initial
measure fi.
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Let us introduce now the operators P,i\fn upon which we perform the desired Doeblin
minoration. Under assumption A2, P(dw)-almost surely, for any k <n < N, x — my, »(x)
and x — my, n(z) are positive functions on X. For each k < n < N, an operator P (w)
can be defined P(dw)-almost surely, as follows : for each x € X, for each positive measurable
f:X— R,
5ka,n<fmn,N)

m, N(a;)
P,i\fn is a positive and conservative operator (i.e. P,i\fn]l = 1). Indeed, by Equation (1.3), for
any x € X,

S PN f =

0p My, i N

= 1.
0 M N1

5, P =
Moreover, P,ﬁvn satisfies the relation :
N N N
Pk,n = Pk,kJrl e Pn—l,n'
Note that P,ivn is a matrix when X is countable and then, for any x,y € X,

mn,N<y)
mk,N(fﬂ)

These operators satisfy a Doeblin contraction property summed up in

Pli\,[n(x’y) = Mk,n($ay)'

Lemma 4. Assume Assumption A 2 holds, then P(dw)-almost surely, all the Pgn(w) are
well defined, and it holds

i) For any v e M(X), any n < N — 1, there exists a random probability measure vy,
on X such that, for any r € X,

N v v v v
5IPn,n+1 = cndn—i-l,NV%N = cndn-i-anyN‘
i1) For any signed measures p1,p2, of same mass and any n < N — 1,
N N
lePn,nJrl - pQPn,nJrlHTV < (1 - ’Yn)le - pQHTV‘

i11) For any k <n < N and any signed measures p1, p2 of same mass,
n—1
N N
lePk,n - 102Pk,n||TV < H(l - 72) le - pQHTV :
i=k

Notice that in this lemma, our single assumption is A2. It allows the (P,ivn) to be defined
P(dw)-almost surely. In particular, A4 is not assumed, we allow 7, (w) = 0, in which case
we just obtain that PT]LYn 41 is 1-contracting.

Proof of Lemma 4. Let w € ) such that all the P,i\’fn are well defined. Let v € M;(X). By
definition of ¢/, for any x € X and any f € B4 (X), it holds,

5mMn,n+1(fmn+1,N) = Cl;zmn,nJrl(:E)V(fanrl,N)y
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thus
O My 1 (fny1,N) S v(fmns1,N)Mppg1(2)

8, PN = >
wf M, N () M, N ()

n,n

with, by definition of dy | y :

dyy 1 N N (2) = dy g N0 M g1 (Ming1,N) < V(M1 N) Mg (2).
Therefore,

P > iy TN v (),
v (anrl,N )

setting
v ( Mnp+1,N )
v (anrl,N ) ’
which is a probability measure. This concludes the proof of i).
Let us prove now 4i). This result is a classical consequence of the previous point using the
theory of Markov operators. A Markov operator P is said to be J-Doeblin (with § > 0)
when there exists a probability measure p such that §,Pf = du(f) for any x in the state
space and any f € By (X). Furthermore, such an operator is 1 — 0 contracting in total
variation : for any signed measure p of mass 0,

lpP|rv < (1 —=9)|pllTv.

This property trivially holds for 6 = 0 : any positive operator satisfies §,Pf > 0 when f
is a non negative function, and any Markov operator is 1 = (1 — 0)-contracting in total
variation. In our context, the previous point of the lemma yields that P(dw)-almost surely,
for any n < N — 1, and any v € M;(X), the Markov operator Pé\fnﬂ is ¢, d}  1-Doeblin.

Therefore, for any p1, p2 € M(X), such that p;(1) = p2(1), noting p = p; — p2, it holds

Vn,N(‘) =

prrjz\,[nJrIHTv < (1= cp(w)dy i1 (W) ol 7y -

Finally, recalling that

Yo = sup cpdyyq,
veMi (X)

and taking an infimum, we get :
HpPTJL\,[nJrIHTV < (1 - ’Yn)HpHTV

This proves i), let us move now to ). Since all the Pévn 41 are conservative opera-

tors, the image of a measure of mass 0 by P,jlvn n
N _ pN N : N

P = Prgra Pty g yields HpPk,n

duce

1 is a measure of mass 0. The equality

v < (1- ’Yn—l)HPPéYnAHTV' By induction, we de-

[y

n—

i=k

This concludes the proof. O
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Proof of Proposition 3. Let us prove first Inequality (3.1). Applying Lemma 4, i) with
n =N and p = §; — J,, we get, P(dw)-almost surely

— n—1
Hémpl?,n - 5yPI?,nHTV H 1- Vi ”(S 5yHTV < 2 H(l - /71)
i=k i=k
Hence, for any f € B(X) and z,y € X|

5chk,n(f) _ 5yMk,n(f)‘ n—1 -
(@) Mo (y) < 2| fllo E(l 7).

Let p1 and po be two positive measures. The inequality

n—1
BeMf) = i) ") < 2@ 151, [ [ =0,

yields, after integrating with respect to p;(dx) :

n—1
M) = paome) S D) < ) V1L [ 000
so that 1
M) = S <2171, [0 )
Integrating now with respect to us(dy), we obtain
n—1
|1 - My () = 2 - My (F)] < 201 £1l, [ [ =),
i=k

and finally
ne
g1 - My — p2 - Mk,n”TV <2 H(l — %)

Let us move now to the proof of Inequality (3.2). Applying Inequality (3.1) to the function
x — my, (), one gets

pa(my,n) — p2(muN)
(M) po(my,) |

2umnNuoOH — %) —2mMnNmH (1 - 7).

By definition of ¢_; and d, it holds, for any v € M;(X),
dy, [ M, x|l < v(mn,n)

and
po(mp,N) = poMp 1 My—1nmn N = €1 p2(Mg )V (M N).
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Combining these identities we obtain, P(dw)-almost surely, for any v € M;(X):

I
—

v |p(men)  pe(men)| o pe(men)
Cn—10n - <2 (1 - "y,)
pa(myn)  p2(men) p2(mien) Gy
Thus taking an infimum in v, this yields, P(dw)-almost surely,
pa(me,n) — p2(meN) pa(mien) 77
Tn-1 - 2 (1 — 72)
p(men)  p2(men) p2(Min) 5y

This ends the proof.

13

0

3.2. Asymptotic estimates under ergodicity assumptions. In this subsection, we use
the ergodicity Assumption A1, as well as Assumption A4, which provide a control on the
sequence of Doeblin coefficients (,,). Together, these assumptions allow to prove that the

right-hand side terms of (3.1) and (3.2) decay at least geometrically fastly.

Proposition 5. Assume that assumptions A1, A2 and A4 hold. Then for any k = 1,

1

k+n—1 n
(3.3) ( 1;[ (1-— ’yz)> < 1, for almost all w € Q
and
I\ E
(3.4) lim (—) =1, for almost all w € Q.
n—o0 ’y,n

Proof of Proposition 5. We recall first that by definition, for any w € Q2
(1 =) (w) = (1 =70) 0 6 (w).

Notice then that, by Assumption A 4, for almost every w € Q, v(w) € (0,1] .

log(1 —yo(w)) € [-00,0) and 7 = exp (E [log(1 — yo(w))]) € [0,1).
Thus for any k,

k+n—1 % 1 n—1 ‘
log ( [T a- %-)) == > log(1 — ;) 0 6%+,
i=0

i=k

Since @ is an ergodic map, by Birkhoff’s ergodic theorem, for any k£ = 0,

n—1

- Z log(1 — Y44) - E [log(1 — )] = log 7, P(dw) — almost surely.
1=0

This yields (3.3).

Let us move to the proof of Inequality (3.4). Notice first that since 7, < 1 for all n,

1\ 7
lim inf (—) > 1.
n—% \Tn

Thus
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Let us prove now the converse inequality. Let us define for each b > 1,

_10g<7n)
Y,(b) = —=—— >0,
0= Toury = °
and
Z I (1/3m)7 Z Lya@=n
neNp neNp

For a given value of b, the sequence (Y, (b))nen, is stationary, thus
E(N,) = Y, P[Ya(b) > n] = > P[¥(b) > n].
neNg neNp
It is a well known fact that for a nonnegative random variable Y,
| << Z (Y >n) < o0.
n=0

By Assumption A4, it holds E[Yy(b)] < © and E[Ny] < o for all b > 1. Therefore,
1
P(dw)-almost surely, N, < oo, thus (i> < b for n large enough and lim sup ( n) "<

Tn n—o0

Finally,

1
lim <i> "t o 1, P(dw) — almost surely.

n—0 ’yn

Putting the estimates from Proposition 5 together with Proposition 3, we obtain

Proposition 6. Assume A1, A2, A/ hold. Then, P(dw)-almost surely, for any k € Ny,
there exists a measurable function hy such that, for any n for any pi, pa € M4 (X),

h
w1 My, — fa k)usz,n
p2(hi)

).

(3.5) ‘ WMl = o

Furthermore, P(dw)-almost surely, such a function s unique up to a multiplicative constant.

Proof of Proposition 6. Let us assume that there exists a positive function h; satisfying
Inequality (3.5). Then, if z,y € X, setting p1 = 04, 2 = 6, and applying this inequality to
the constant function 1, we almost surely get

o] ot

(o) -

since by Proposition 5, P(dw)-almost surely, 7,1~} H:.:kl(l —7) = o (1). Thus

n—o0

lim hk($) mk,n(y) _
n—=0 hy,(y) M, ()

)
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which readily implies that
hi(x) _ ) men(@)
he(y)  n—>omin(y)
This yields the unicity of Ay up to a multiplicative constant, when it exists. Let us now
prove the existence of such a function hy.
By Inequality (3.2), with gy = 0,2 = 0y, one gets, P(dw)-almost surely, for any
kE<n<N:

-1
mg n(x M (T 2 mpa(x)
(36) M) T ) =l T =y
meN(Y)  mMen)| T et men(y) Lo
Setting
diamk,n(:nvy) = sup Tk, (‘T) - Tk, Ny (‘T) )
Ny Nozn | M (Y)  me N, (Y)

this yields, for any x,y € X,

diamy, ,,(z,y) < —— | [ (1 — 7).

Exchanging the roles of x,y, one gets :

n—

1
H 1_72

’Yn 1 ik

(3.7) min [diamy, ,,(z,y), diamy, ,,(y, )

and Proposition 5 yields, P(dw)-almost surely,
min [diamy, ,(z,y), diamy, ,(y, z)] - 0.
Hence, one of the two sequences (diamy ,(x,y)), -, and (diamyg,(y,z)), ., has zero as

an adherence value. Since both sequences are non increasing, it implies that one of them
converges to 0. Without loss of generality, suppose that

diamy, ,,(z, ) — 0.

Then, the sequence of nonnegative real numbers (Z'Z”E?) is a Cauchy sequence, it
N n

)] n=k
converges to a nonnegative limit [ (x,y). Thus Equation (3.6) y

ields, for n large enough
~1

2 men(@) g oy o Lmin(a)

TYn—1 mk,n(y) ik ! mk,n(y) ‘

mk,n(y)

mp, n(®)

Since ) 0, this implies that lx(x,y) > 0 and consequently,

Mg (Y) N
mkm(ﬂj) n—aw lk(x’y)
Note that Proposition 3 allows to prove that P(dw)-almost surely, (3.6) holds jointly for
any k < n < N and any z,y € X, thus so does (3.7). Thus P(dw)-almost surely, all the
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my n(x))

sequences of the form <mk’ o) for all x,y € X converge as n — o0.

Now, let us fix an arbitrary element zo € X, and set hi(z) = lim Tk, ”(( )) for all . The
function hy, is positive and satisfies, for any x,y € X,

mk,n(x) . hk_(‘/p)

Mo (y) n=0 hy(y)”
Plugging this limit into Equation (3.6), we obtain

men(x)  hi(x) 2 Mmpn(x) n
3.8 : — < 1—n,
(38) Men(y) ()] -1 My E( !
Consequently,
he(@) < () [ 1+ — ﬁa_ 5| Menl®) v (14 2 ﬁa— ) | Xkl o

by A2, which implies that hj is bounded. Moreover, for any positive and finite measure
w1 € M4 (X), any y € X, integrating (3.6) with respect to pi(dz), one gets

pa(muep)  pu(Py) 2 "= ~m(my)
minl) ) | = 3y LI 5
Thus »
|1 (Mg ) e (y) — e () 1 (P | < - [ 10 =) (i) (y).
T =k

Integrating with respect to any positive and finite measure ps(dy), this yields

|1 (e )2 () — pr2 (M) o (B )| H (1= i) (M) 2 (o),

’Yn 15 %
and finally,
pamen) ()| 2 pa (M)
3.9 nl < 1 — ) —ns
(3.9 ‘:u2(mk,n) p2(he) | a1 2.11( ),u2(mk,n)

Let us prove now that hy satisfies Inequality (3.5). It holds

pa (ha)
M n - T /7 N n
1M, M2(hk)ﬂ2 k,

< 1 My — p1 (M)
TV
+|

On the one hand, applying Inequality (3.1), one has

h
1 (M) iz - My, — Z;Ehgusz,n

TV

-
|1 Mig = 1 (g )itz - Myl oy < 1 (M) i - M — 2 - Mgl gy < 2 ] [ (1= 1 (m ).
i=k
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On the other hand, by Equation (3.9),

I i (ha)

Min h
pa (M) 2 - My — p1o My, i (mun) — pa(hy)
p2(hi)

po(myn)  po(hy)

< a(mien) \
TV

H 1 — ;) p (Mg ).

7n 1%
Finally,
~1
p (ha) T < 1 )
M., — 3 <2 11— mg 1+
i~ s Q( m(mea) (14—

7 1 I_I 1'_’W ”N1A4kn”

n—1 ;_
This ends the proof. O

3.3. Proof of Theorem 1.

Proof of assertion i) : Uniform geometric ergodicity. Let us take k = 0 in Proposition 6.
Then, P(dw)-almost surely, noting h = hg, it holds for any finite and positive measures

A“7ﬂ270n§&

By Proposition 5, P(dw)-almost surely,

pa(h)
Moy,
,uz(h) H2Vio,

1Mo, —

H 1= 7i) | 1 Mo, -
TV 7n 13,

1 n—1
: 1\~ _
lim <’Yn—1> =1 and H(l — %) € [0,1).

Thus for any 7 € (77,1), P(dw)-almost surely, for n large enough, (depending on w),

4 n—1
[T =) <n
Vn—lizo

Thus, P(dw)-almost surely, for any n € (7, 1), for n large enough and any positive and finite
measures i1, U2,

,ul(h)
My, — —= s My,
p1iig, m(h)uz 0,

<" liMonl = o (I Monl).
TV

This proves Equation (2.1). O

Proof of assertion ii). The proof relies on a classical time-reversal technique, see e.g. [Cog&4;
Ore91], or [Hen97] for a version that is closer to our context. As stated in [CF582 11.10.4,

pp.239-241|, the ergodic system (2, A,P,0) can be extended as an invertible ergodic sys-
tem (2, A,P,0), such that Q < Q, 0|q = 0, and 0 is a bijective, bimeasurable, measure
preserving and ergodic mapping. The deﬁmtlons of My, p, ¢, dkm, d?,vn can be naturally
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extended to all £ < n in Z, and one still has ¢, = cf o 0", dy, = dgo 9", Yn = Y0 © 8" for
n € Z. Assumption A4 implies that all the (v,)nez are almost surely positive and have
log-moments.

Therefore, Lemma 4 and Proposition 3 extend to indexes k <n < N € Z.

For nonnegative n < N, for any positive measures j1, 4o on X, one has in particular

n—1

(3.10) g1 - M_po — p2 - Mo Ty S 2 H(l = V—i-1)-
=0

With pe = 1 M_n,—y,, this yields :
n—1

7

lpa - Mo — p1 - M_nyo

Il
=}

Noticing that @ is now an ergodic automorphism of the measured space Q, and applying
Birkhoff-Khinchin Ergodic Theorem as stated in [CFS82, Theorem 1, p.11], one gets, for
almost any w € Q

n—1

1 i

~ Y log(l—7-i-1)08 ' — Eflog(l —7-1)] = E[log(L = 70)]
i=0

Thus

1
n—1 n
(H(l - ’Y—i—l)) — exp (Eflog(l —)]) =7 < 1.
i=0

Therefore, almost surely, the sequence (p1 - M_p, ) neNo is a Cauchy sequence in the space
M1 (X) of probabilities on X, endowed with the total variation norm. It thus converges
almost surely to a random probability 7,, on X. For any finite, positive non-zero measures
p1, f2, plugging 7, ,m,, into (3.10), one proves that for almost any w,

Tpy = Tpg-
Thus, there exists a random probability 7, such that, almost surely, for any positive measure

7
e M_p 0 T in total variation distance.
n—

By stationarity of 6,
d
1 an,O =W MO,m
which proves that, noting A the distribution of =,
d
o Mo = A
g

Proof of assertion iii). Let p be a positive, finite measure on X. By assumption A4, since
Yo > 0, almost surely, for P-almost any w € €2, there exists a probability v € M;(X) such
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that cgd] > 0. By stationarity, with probability 1, there exists v such that dj > 0. The
definition of dfj yields :
dg [| Mon[l < v(mo,n).

Let n € (,1). Theorem 1, i) implies that, for n large enough,

pu(h n
o] = 2 mo0| < "o
which implies
1 p(h)
n) < Mo |-
1+ nn I/(h)y<m0’ ) H:u 0, ‘
This yields
a5 p(h)
1507 (k) Mol < | nMop| < p(L)[| Mol

Notice that, almost surely, 0 < %, 0 < do(v,w), and p(1) < co. Thus, if n~log || Mo .||

converges almost surely, then almost surely, for any non zero, positive measure p, n~! log | Mo,
converges to the same limit. The P—almost sure convergence

_ . 1
n~ log | Monll — A= inf < [log || Mo,v]l]

is a classical consequence of Kingsman’s subbaditive ergodic Theorem and the subadditivity
property :

log [ Mo,n1pll < log || Mo, +1og [ My npll -

Note that applying this Kingman’s Theorem requires Assumption A3 to ensure the inte-
grability of log™ || Mo,||. Thus n~1log||pMon| — A almost surely, for any positive and
n—0oo

finite measure pu. O

3.4. The independent case : proof of Theorem 2. Let us introduce the Markov
chain (pn)n>0 with state space M;(X), defined by pn41 = pn - My = po - Mopt1. The
process ((fin, My),q, is then clearly also a Markov chain with state space M;(X) x K£F
and transition kernel :

Qf (. M) = f f(u- M, N)YAP(N).

We denote Py the law of the Markov chain ((pn, Mp)),~o When (uo, Mp) is distributed
according to a measure Y on M;(X) x K£*. Theorem 2 relies on the study of the invariant
measures and the ergodicity properties of the Markov chains (uy,)n=0 and (gn, My )n>0-
In particular, we show that the limit distribution A of the Markov chain (u,) is its only
invariant distribution. This is stated in the following Proposition.

Proposition 7. Suppose (My)n>0 is an i.i.d sequence of elements of Kt distributed ac-
cording to P, and satisfying the assumptions of Theorem 1. Then

i) For any initial distribution x on My (X), the Markov chain (pn)n>=0 converges weakly
to A.

i1) A is the only invariant measure of the Markov chain (fn)n=0-
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i) A ® P is the only invariant measure of the Markov chain ((fin, Mn)),>o-
As a consequence, these Markov chains are ergodic.

To prove Proposition 7, we need to define the convolution operation » between probability
measures on M (K1) as follows : For any Q, Qs € M1 (K1), Q1 » Qs is the law of NNy,
where (N1, Na) ~ Q1 ® Qs. We note, for any Q € M;(K1), Q*™ the n-th convolution power

of Q. As an example, if Ng,...,N,_1 are i.i.d with law Q, Q*" is simply the distribution
of No, = Np - -+ Np—1. Given a probability distribution x on M;(X) and Q on £*, we also

note x * Q the law of - N, where (i, N) ~ x ® Q. These operations, previously defined in
[BL85] in a finite dimensional context, satisfy some elementary properties, summed up in
the following lemma.

Lemma 8. Let Qq, Qo, Q3 be probability measures on KT and x be a probability measure
on M;(X), it holds

i) (Q1xQ2) » Q3 = Q1 x (Q2x Q3),
i) (x * Q1) x Qo = x * (Q1 * Qa),
iii) For each Q € My(K*), x = x * Q is continuous with respect to the topology of
convergence in law on M;(M;(X)).

Proof of Lemma 8. Consider (N1, Na, N3) ~ Q1 ® Q2 ® Qs. It holds
NiNyN3 = (N1 N2)N3 = Ni(N2Ns),

with (NlNQ)Ng ~ (Ql * Qg) * Qg and Nl(N2N3) ~ Ql * (Q2 * Qg) This yields 1)
Let us prove now point ii). Consider (u, N1, No) ~ x ® Q1 ® Qs. It holds

- (N1N2) = (p - N1) - Na,

with g2+ (N1 N2) ~ x * (Q1 * Q2) and (- N1) - N2 ~ (x * Q1) » Q2. This yields ).
Let us move to the proof of 4ii). Consider a sequence of probability measures (x,) on M (X),

converging in distribution to y. Let us show that (x, * Q)n>0 converges in distribution

towards x * Q. Let f be a continuous, bounded function on M (X), it holds :

| e = Q) = [ [ 0 Midxald @) = [ xalon)dQ(),
where, for each N € KF, the function gy : y1— f(u- N) is continuous and bounded. Thus
Xalon) = [ £l Nydal) = [ £ N)dx() = x(aw)
This yields, by dominated convergence, as n — oo,
| xataniae) = [ e+ Q) — [ xtam)a@) = | [ £ Wyax(uaow),

which implies 4ii).

0
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Proof of Proposition 7. Let f be a continuous and bounded function on M;(X), it holds
G P = [ S P = [ [ £ Mo)d(n)aP™ (o).

However, for any € M;(X), Theorem 1, ii) states that (5, * P*™),>0 converges weakly
towards A. Thus, for any u € M;(X), as n — ©

f F( Moy)dP™ (Mo ) = (8, % P™)(f) — A(f).

n—0

By dominated convergence, this yields

P = [ [ £ Mo )P (o) — AP
which proves the weak convergence

X’."P*n _ A

n—0o0
in the metric space M;(M; (X)), for any probability distribution x. This proves i).

Since, by Lemma 8, i), the map g — p* P is continuous, this proves that A is one of its
fixed points, namely :

A=AxP.
On the other hand, if y x P = x, the sequence (x * P*™),>¢ is constant and converges to .
By unicity of the limit, it holds

x = A.

This proves that A is the only invariant measure of the Markov chain (uy,), i.e. ).
Let (uo, Mg) ~ A®P. Then py = po- Mg ~ AxP, My ~ P and M; is independent of i,
My and thus p;. Therefore (pui, M) ~ A® P, and A ® P is thus an invariant measure of
the Markov chain (g, My, )n=0-

Conversely, consider now a probability measure ¥ on M;(X) x K, suppose it is an
invariant measure of the Markov chain ((gn,Mp)),o- The definition of the transition
kernel @ implies that pu; = po - My, My ~ P and M; is independent of (ug, M), and
therefore M is independent of uq. However the second term (1, M7) of the Markov chain
is distributed according to Y@ = Y by invariance. Thus y is of the form y = x ® P.

Additionally, if (ug, Mg) ~ ¥ = x ® P, then p1 = pg - My ~ x = P. But by invariance of
Xo H1 ~ X thus

X*P=x.
By Proposition 7, this implies that x = A. Finally, this proves that A ® P is the only
invariant measure of the Markov chain (g, My),,~. By Corollary 5.12 of [Hai], since both
the processes (in)n=0 and (pin, My, ), are Markov chains with a unique invariant measure,
they are both ergodic. O

One additional lemma is required before proving Theorem 2.
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Lemma 9. Let (M,),>0 be an i.i.d sequence of elements of KT with law P, satisfying the
assumptions of Theorem 1. Then, almost surely, for any measure p € My (X), any n = 2,

(3.11) YolluMol[|Mynll < luMon | < [ Mol | Mynll-
As a consequence, the o ((My)n=0)-measurable events {¥u € My (X),limsuplog |puMp | = +0},
n—ao
{Ip € M(X),limsuplog |pMo | = +o0} and {limsuplog || M || = +0} coincide up to
n—aoo n—o0

PEN _negligible events. A similar statement holds replacing limsup by — liminf in the three
events.

Proof of Lemma 9. Let py € M4 (X) — {0}. Then, almost surely, for any v € M;(X)
o - Moy = cyv.
Still noting p11 = po - Mo, it holds thus p; > cfv for any measure v € M;(X), and thus
lpa My | = pa My = e[ M| = gy M.
By definition of dY¥, it holds thus
lpa My | = cody || My

Optimizing this inequality in v € M;(X), we get

[ M| = ol Myn -
Consequently,
Yoll Myl < [l My n| < (1Ml
which yields (3.11) when multiplying by | oMol O

Let us prove now Theorem 2.

Proof of Theorem 2, i). Let us notice first that when p is a probability measure, p : (1, M) — log |uM |
satisfies the cocycle property

n—1 n—1
(3.12) po, Moy) = 1og oMo = D log (1o - Mo ) Myl = > p(p: My),
k=0 k=0

By Equation (3.12), it holds
1 n—1

1
—log oMol = — > p(ps, Mi).

k=0
By Birkhoft’s Ergodic Theorem, since (puy, My) is an ergodic Markov chain, with stationary
distribution A ® P, this quantity converges Ppgp-almost surely and in £!(Pagp) towards
S,od(A ® P) provided p is an L' function with respect to A ® P. Let us check now this
integrability property. Let (uo, (Mp),=o) ~ A ® PN. Then, applying (3.11) with n = 2
yields
Yol oMol [| M| < |10 Mo,z

< [ oMo || Ml
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Noting u1 = po - My, we get, since ||uoMpl|| # 0 almost surely,
Yol Mal| < [l Ma|| < [ Ml
thus

lp(p1, M1)| < [log || M| + |log (7o)l

Note that (1, M1) ~ A®7P, since by definition 1 = pg- Moy and (pg, (My)nen) ~ AQPEN,
Thus, under A3+ and A4, it holds

E{lp(u1, M1)[] = jlpld(AC@P) < E[log [ M| + E[log(70)] < <.

This proves that p is integrable with respect to AQ7P, thus it holds n = log (|0 Mo ) - § pdAQP

holds in £!(A ® P), and Ppgp-almost surely. Since by Theorem 1, almost surely, for all y,
it holds n~!log |uMon | — A, by unicity of the almost sure limit,

A= fpd(A@P).
O
Proof of Theorem 2, ii). Note now X, = p(pn—1, Mp—1), for n = 1. Then it holds, for

n = 0, for any probability measure pg
(1, Xn+1) = (pn - M, p(pin, M)
Thus, (tn, Xn)n=o is a Markov chain on M1 (X) x R such that

P[(tn+1, Xns1) € A X B|(pin, Xn)] = fllA(un - M)1pg (p(ptn, M)) dP(M).

Thus S, = log ||uMo .| = X1+ -+ X, is a Markov random walk associated with (5, Xp,),
in the sense of [AlsO1]. Suppose that A = 0. By Theorem 1, it holds

n 1S, =n"tlog |uMy,| — 0,

Prgaper (1, (Mp)n=0)-almost surely, thus in probability with respect to Pjgpen. Since
moreover, (f,) is an ergodic Markov chain, the assumptions of [AlsO1] are satisfied. If
there exists a function 7 such that Pygp-almost surely, for n > 1,

(3.13) Xn = n(ptn) = 1(kn-1),
then taking n = 1 shows that we are in the case of Null Homology (NH). In this case, it
holds moreover
log [luoMon| = X1 + -+ + Xy = n(pn) — n(o)-
Thus, almost surely, noting a,b the respective infimum and supremum of the support of

n(w), when p ~ A, since the sequence (u,,) is a stationary and ergodic sequence with law
A, it holds

lim inf log || 1o Mo,n|| = a —1(po), and limsuplog o Monl| = b —1(po)-
- n— 00
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Thus the almost sure finiteness of these quantities are respectively equivalent to the finite-
ness of a and b. If Equation (3.13) does not hold, then we are in the setup of Theorem 2
or 3 of [AlsO1]. These two Theorems imply that the Markov Random Walk (.S,,) oscillates
: limsup S,, = 4+ and liminf S,, = —0 Ppygp—almost surely. However, by Lemma 9, i),
this implies that P®N-almost surely, for every p e Mi(X),

lim sup log ||uMp || = — liminflog || Mo | = +00.

This concludes the proof. O

4. SUFFICIENT CONDITIONS UNDER UNIFORM POSITIVITY ASSUMPTIONS

In the finite dimensional case X = {1,...,d}, that is when studying products of d x d
matrices, similar (and actually, more complete) results are obtained in [[Hen97]. They rely
on the very mild assumption

A5 P|Upew {Mop e S}| =1,

where S refers to the set of d x d matrices with positive entries. We expect that this
approach, based on Hilbert contractions, might be extended in infinite dimensional contexts.
This will require to introduce the notion of uniformly positive operators to strengthen the
notion of positive matrices, and state an infinite dimensional generalization of A5, as we
explain in Subsection 4.2.

This section aims at comparing our assumptions both with A5, and its natural general-
ization in infinite dimension.

We did not success in proving that A5 alone is enough for our assumptions to hold. How-
ever we provide mild additional assumptions that, together with A5, constitute sufficient
conditions for our assumptions (A2, A3, A4) to hold, and thus for Theorem 1 to apply.

4.1. The finite dimensional case. Let us focus in this subsection on the case where X
is finite, let us note d = |X]|. Consider a stationary and ergodic sequence (My,)nen, of
d x d matrices with nonnegative entries. Checking whether Assumptions A1, A2, A3 are
satisfied is quite straightforward, since these three assumptions only involve the law of the
first matrix of the sequence. Let us see now how the additional Assumption A5 can help
control g in order to check that Assumptions A4 holds.

Lemma 10. Consider a random, stationary sequence of dxd matrices M, = (My(z, y))x’yex,
with nonnegative entries, satisfying A2 and A5. Then P(dw)-almost surely, for any prob-
ability measure v, it holds dfj(w) > 0.

Proof. The following decomposition holds : for any n > k,z € X, w € Q

mO,n(x) = 5xM0,n]]- = 5:(:M0,kmk,n = Z MO,k<x72)mk,n<Z)'
zeX

Thus for any v € M;(X),
v(moy) = vMy,l = Z v(y) Mok (y, 2)mpn(2).

y,z€X
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The fact that v is a probability measure yields, for any 0 < k < n :

mon(w) < sup (L) 3 0o men2) < sup T g,

y,2€X MO,k(:% Z) yex y,2€X MO,k(ya z
with the convention 22052 _ () a5 so0n as M, (x,z) = 0and Mor(r2) _ o if (x,2z) #0
Mo 1 (v,2) 053 Mo 1 (,2) OikAs
and My ;(y, 2)=0. Thus, for any n > k,
IMonll _ lImonfo Mo (x, 2)

(4.1)

< sup

V(mO,n) V(mO,n) x,y,2€X MO,k(ya Z) '

This yields
M,
(4.2) inf Mok(B:2) g Vo),
zy,zeX Mo g(x,2) ~ n=k [moplleo
and therefore o
sup 1nf 07k(y7 Z) < hm lnf V<m07n) .
keN ,y,2€X MO,k(‘Tu Z) n ’”MO,n H
By Assumption A5, P(dw)- almost surely, there exists a random integer k, such that

My, (w) € S. Since X is finite, we get, for P-almost any w and for any probability measure
V?
M, M
0 < inf Mo, (9,2) <sup inf Moy, 2) < 1jmjnfy(m707")_
x,y,2€X M()ng (l‘, Z) keN z,y,2€X MO,k (;1;, Z) n H‘MO,nm

Assumption A2 implies moreover that that for all n, P-almost any w € 2 and any probability

measure v, % > (0. Thus, one gets that P(dw)-almost surely, for any v € M (X),
. v(mon)
df = inf ———= > 0.
O neN [ Mo

This provides nice sufficient conditions for A4 to hold.

Proposition 11. Consider a random, stationary sequence of dxd matrices My, = (My(x,y)),, JeX
with nonnegative entries, satisfying A1, A3, A5. Assume additionally that

o there exists an deterministic integer K € Ny such that

M,
(4.3) E |log sup Moxe(w,2) < o,

z,y,2€X MO,K (ya Z)
e there exists a measurable map
we Ny, e Mi(X)

such that
o cg?(w) >0 for almost any w,
o —log ¢y (w)dP(w) < o0,
o {[log v (1)) dB(w) < o
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Then vy > 0 almost surely, E[|logvo|] < o0, and thus the conclusions of Theorem 1 hold.

In other words, if the assumptions of Proposition 11 are satisfied, then A4 holds, thus
so do the conclusions of Theorem 1.

Proof. By definition of ~p, for almost any w € € it holds 1 > y(w) = ¢*(w)di* (w).
Notice that ¢ (w) > 0 P(dw)-a.s. by definition of v,,; on the other hand, Lemma 10 yields
di*(w) = dg*(8(w)) > 0 P(dw)-a.s. Thus g > 0 P-a.s.

Let us now prove that E|log~g| < c0. By the inequality

[logv0(w)| = —log(vo(w)) < —log(cp* (w)) — log(d}™ (w))

and hypothesis f —log cg¥ (w)dP(w) < o0, it remains to check that f —log d{* (w)dP(w) < 0.
Inequality (4.1) implies that P(dw)-almost surely, for any k > 1

My | My (2, 2) My |
—log d/*(w) = logsup ————~ < max | log sup max log ————
! ( ) neN Vw(ml,n) z,y,2€X Ml (y,z) Isn<k—1 V<m1 n)
M gy1(z, 2)
<log sup ————= —_—
z,y,2ex M1 k+1(y, 2) 1<nz<:k 1 Vw(ml n)

In particular, setting k£ = K and applying condition (4.3), it holds by stationarity
M ri1(w, 2)
log sup ————*| < 0.
[ zy,2ex M1 x+1(y, 2)

1M1,

Consequently, it suffices to prove that f [log
Vi (ml,n)

]d]P’( ) < oo for any n > 1. Let us

decompose this quantity as

wy | [1og M—”')] 2(w) < [ (108 1M1 )) " dP) + [ [(1og 1, (m10)) 7] aB().

Vy (ml,n J .
Aln) Bln)
n—1
| < H [|M; 41| readily yields
i=1

Z [log([[|Mii41[1)"] = (n — 1)E [log(]|

)] < 0.

e On the other hand, for any = € X and P(dw)-a.s.
min(z) = 6, My oma g, > Cie(w)(w)ml,z(x)lfe(w) (ma,n)
by definition of clg(“’)( ). Consequently, integrating with respect to v, (dzx), we obtain

Vw(ml,n) = VwM1,2m2,n = Clg( )( )Vw(m1,2)7/€(w) (m2,n) P(dw)_
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which yields, by induction

n—1
Vok (o
Vo (min) = H Cke ( )(W)Vekfl(w) (Mg o+1)-
k=1

Consequently, P(dw)-a.s.,
n—1

(log vu(m1,)” < 3. —~log 6" () + [log Yy ) (i)
k=1

Notice that czek(w)(w) = co(l/gk(w),ek(w)) for any k > 1, therefore (czek(“’)(w))kzl is a
stationary sequence. Hence

n—1 y
B(n) < Z f— log ckek(w) (w)dP(w) + f [log Vgk—1(.0) (mk7k+1):| dP(w)
k=1

=(n-1) (j —log ¢ (w)dP(w) + j [log v, (m12)]~ dP(w)) < .

Finally, combining these estimates, we get, for any n € Ny,

M
flog Md]?(w)

Vw(ml,n)

<(mn—1) ( | gt (@) + llog vt 2]~ (o) + E (1o mo,loo>*]) <.
O

4.2. Extension in infinite dimension. When X is infinite, we need to strengthen the
notion of positive matrices as follows.

Definition 12. A positive linear map M on B(X) is uniformly positive if there exists
K e R%,h e B (X), such that, for any f € B4 (X) there exists b(f) € Ry, satisfying

1
b < M(f) < Kb(f)h.
When M is uniformly positive, we note for short M > 0.

Notice that when X is finite, a matrix of S is uniformly positive. Moreover, in Hennion’s
work, assumption A5 is used as a sufficient condition to obtain projective contraction
properties on the product Mj ,,, with respect to a projective distance called the Hilbert
distance (once again, see [BIX53; Bird7; Lig|] for a complement on this distance). In an
infinite dimensional setting, this distance can still be defined, and the projective action
associated with a positive operator is contracting if and only if the operator is uniformly
positive (a proof of this claim is proposed in [Lig]). Uniform positivity is therefore the
appropriate infinite dimensional generalization of positivity in our context, and condition
A5 can thus naturally be replaced with the restrictive condition

A5, P(U,eny (Mo » 0}) = 1.
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The present subsection aims at comparing our result with the natural extensions of
Hennion’s work to infinite dimensional settings. For this purpose, the following Lemma
extends the idea of Lemma 10 to an infinite dimensional setup, assuming A5’ instead of
A5.

Lemma 13. Consider a random stationary sequence of elements of K1, satisfying A2 and
A5’ Then P(dw)-almost surely, for any probability measure v, it holds dfj(w) > 0.

Proof. For almost any w and any k < n, my,, € B(X), it holds,

mon(z) _ 0xMokmpn _ 8y Mo i f
= < sup .
v(mon) vMoxmen  yex,reBex) VMoxf

Taking a supremum in z € X, we get, for any k < n,
‘HMOJL H 5yM07kf
v(mom) — yex, reBx) VMo f

(4.5)

<

By A5’, let k,, be a random integer such that P(dw)-almost surely, My (w) » 0. Then,
almost surely, there is K € R%, h € By (X) such that for any f € B;(X), there exists
b(f) = 0, satisfying

(4.6) K7'(f)h < Moy, f < Kb(f)h.

From (4.6), we deduce K 1moq, (z) < h(z)b(1) < Kmg,(z). By A2, moy,, is a bounded
and positive function, thus so is h. Moreover, b(1) > 0, v(mgx) < Kv(h)b(1), thus
v(h) > 0. Therefore, for any x € X, any f € B, (X), it holds P(dw) almost surely:

0xMoj, f _ 2 Pl@) _ pslMopall _ poa Mok |l

4.7 —== <K < .
o Mot = v = 0@um) = o)
Finally, combining (4.7) with (4.5), we get for almost any w and any probability measure v
M, M, M,
imsup I0nll o IMonll iMoo
no v(mon) sk, Y(Mon) v(mok,)

Since moreover almost surely, for all n € Ny, W is finite, then almost surely, for any

probability measure v,

_ up 1Mol _
B) ek vlmo)

thus dfj(w) > 0. O

9

To tackle the integrability of log g, Proposition 11 from the previous subsection can
clearly be adapted, replacing A5 by A5’ and (4.3) by

=M
(4.8) flog sup Sa Mok

dP(w) < 0.
veX, feB(X) Vo Mok f ()

This yields a counterpart of Proposition 11 in a infinite dimensional setup.
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5. APPLICATION TO PRODUCTS OF RANDOM INFINITE LESLIE MATRICES

The previous section focused on products of matrices with positive entries, and more
generally, products of uniformly positive operators. This kind of products can be efficiently
studied with methods based on projective contractions relatively to the Hilbert metric.
The main interest of our techniques, based on Doeblin contractions, is their application
to products of operators which are not uniformly positive. The goal of this section is to
illustrate how such products can be studied with our theorems. We have chosen to focus
here on a quite simple but natural example with no uniform positivity properties : the
infinite Leslie Matrices.

5.1. Introduction to Leslie matrices. In this section, we set X = Ny, thus the operators
of Kt can be represented as infinite matrices. We choose to consider infinite Leslie matrices,
which have the following form : for any w € €Q,

folw) so(w) 0 0

f1(w) 0 s1(w) 0
(5.1) Mw) = | folw) 0 0 s2(w)

f2w) 0 0 0

where the entries (fx(w)) ey, (8k(W)) ey, are nonnegative real numbers, and sup,ex sz (w)+ fo(w) < 0.
Notice that such a matrix is not uniformly positive, since there are zeros on every row and

every column but the first one. Moreover, if @) is a product of k matrices of this shape,

the (z,y)-entry [Q]x’y = 0 whenever ¥y > = + k + 1. This prevents any product of such

matrices from being uniformly positive. This example is therefore a typical situation where

A5’ does not hold.

Such matrices appear naturally when studying the dynamics of a population counting
individuals according to their age. The coefficients f, (respectively s,) represent the mean
number of individuals of age 0 (respectively of age x + 1) created by an individual of age
x, that is the mean size of the offspring of an individual of age x (respectively the survival
rate of individuals of age z). Usually, only a finite number of age classes are defined, thus
X = [0,d], and one considers finite versions of such matrices, called Leslie matrices, see for
example [Cas10]. However, it is natural to extend their definition to an infinite number of
age classes (X = Np) obtaining infinite matrices with this shape. Indeed, several articles
already study age-structured populations with an unbounded set of possible ages, see e.g.
[BCG20; JK22; Kar90]. Therefore, products of random matrices shaped as in (5.1) model
the dynamics of an age structured population evolving in a randomly changing environment
which affect their reproductive behavior. This is the kind of matrices we are studying in
this section. Let us note from now on

sp(w) = sz 00%(w) and f3(w) = fz 06 (w),
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so that (s¥, f¥),ex are the nonzero entries of the random matrix My(w) = M o 0%, We
introduce the quantities

[ (@)
d(w) = sup L >1,
@) keNp,z<yeX fE(w)
and
SO(w) sk (w
d”(UJ) _ sup xg ) I;rk( )
zeXkeNy So(w) ... s (w)

[

which are useful to estimate ~q.

5.2. Ergodic behavior of products of random Leslie Matrices. The following propo-
sition provides sufficient conditions for assumptions A3 and A4 to hold in the case of
products of infinite Leslie matrices.

Proposition 14. Consider a random matriz product with X = Ng and suppose that for any
w e Q, M(w) is of the form of equation (5.1), with sup,ex So(w) + fz(w) < c0. Suppose that
A1 is satisfied, and P(dw)-almost surely, it holds
i fr(w)+ sz(w) >0 forallze X ;
it) E [log® (sup,ex sz + f2)] < 0 ;
then A2 and A3 hold. Moreover, if additionally

iti) P(dw)-almost surely, sup,ex 3 < 0 and E [logJr (Supgex j}—i)] < 0,

0
) There exists a deterministic real A > 0 such that P(dw)-almost surely, sup,, %

v) P(dw)-almost surely, d"(w) < oo and E|logd"| < oo,

A
o

then M satisfies also Assumption A4, and the conclusions of Theorem 1 hold.

In Proposition 14, we’ve reduced Assumptions A2 to A4 to a series of conditions on the
law of the coefficients of the random matrix M, together with finiteness and integrability
conditions on d”. The hardest conditions to check are the ones involving d”, since checking
them requires to consider the joint law of all the My, and not only the first marginal. We
were not able to find a general sufficient condition for d” to be finite almost surely and log d”
to be integrable. However, we provide the following quite restrictive sufficient condition.

Remark 2. Consider a random, stationary sequence of matrices of the form of equation
(5.1), and assume that there exists an integer xg € X, such that almost surely, the sequence
(52(w))a=z, s mon increasing. Suppose also that almost surely, for all x < xg, sy > 0.
Then, P(dw)-almost surely

. foits)
' Sy
d"< |sup sup — < 0.

. (A
i<wo <yY<z0 Sz

si
y Yy
Moreover, if & ‘log =

< o for any x < y < xg, then E|logd"| < oo.
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In the context of an age structured population, s, represents the frequency of individuals
of age x surviving to the next time step, and thus being replaced by individuals of age x + 1.
Assuming that (s;(w))z>s, is decreasing implies that the older individuals get, the more
they tend to die, which is a reasonable assumption. However this condition is somewhat
unsatisfying in a more general setting.

We split the proof of Proposition 14 into several lemmas that involve different groups
of assumptions. Notice first that most quantities involved in Assumptions A2 to A4 are
explicit in terms of the (fy,s;). Indeed :

Lemma 15. Consider a product of stationary random Leslie matrices, in the form of equa-
tion (5.1). Then A2 and A3 are satisfied if and only if all the following conditions hold
stmultaneously :

e P(dw)-almost surely, for each x € X, fy(w) >0 or sz(w) >0
o E[log" (sup,ex fo + $2)] < 0.

Proof. This lemma is straightforward after noticing that for any x € X, w € 2,

m0,1(l‘,w) = fm(w) + Sgc(w).

Moreover, in this model, the behavior of ¢f(w) is quite clear.

Lemma 16. Consider a product of stationary, random Leslie matrices and assume that
A2 holds. Then P(dw)-almost surely, for any probability measure v # 0y € M1(X), it holds
cg(w) = 0, thus P(dw) almost surely,

70(@) = &’ (@)} ().
Moreover,

2 (w) = inf _falw) inf 1+ s2(w))
0 X fo(w) + sp(w)  zex fz(w) '
Proof. Notice that for any x € X, w € €2,
0 Mo = fr(w)do + s2(w)dpt1-

Thus, let v be a probability measure on X. Suppose that v # dy. Then, there exists & > 0
such that v(k) > 0. Consider a real ¢ > 0, such that for all z € X, §,My1 = mo,1(z)cv.
Then in particular

0= fe(w)do(L) + sk(w)dk+1(Lx) = cmo1 (kv (k),
By A2, almost surely, mq 1(k) > 0, which implies that ¢ = 0. O

Let us try now to control the random variable dgo.

Lemma 17. Consider a product of stationary random Leslie matrices, of the form of equa-

tion (5.1). Then,
1

W T
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Proof. Let n € Ng,z € X, w € Q, it holds
mon(r) = 0p Mo -+« Mp_11 = Z 6 (i0) Mo (i0,41) - - - Mp—1(in—1,%n)-
10,21, *in€Np
Thus
mO,n(ﬂj) = Z My (337 Zl) T Mnfl(infly Zn)

il,---inENo
Let us rearrange this sum according to the first index k < n such that iz =0 :

mon(@) =Y, Y, Mo(z,i) - Ma(ig-1,0) > M(0yigr1) - M1 (in1,in)
k=141,-1_1>0 ik+1,1n€ENg
+ > Mo(wyir) - My a(in1,in)-
i1, >0

Notice that
Z M (0,dp41) -+ - M1 (in—1,1n) = My (0).
ikt 1,in€No
Moreover, the matrices My, are shaped according to (5.1). Thus for any ¢ = 0,5 > 0, in
order for My(i,7) to be non zero, one must have j =i + 1. Thus :

e Z Mo(z, x+1) - - My_q(z+k—1,0)mpn (0)+Mo(z, 24+1) - - - My (z+n—1, 247).
k=1
Therefore
mo n Z Sacsgchl :c+z 1fm+2m1+1 "<O) + Sg T S:;}L*l'

This is true in particular for x=0:

s 1
mo,n (0 Z $051 -+ St 1 fimiy1n(0) + 50 sp_ ]

By definition of d’,d”, it holds, for any k € Ny and any z € Ny,
dl Z
ZB+Z

and
0.1 " i—1
SzSz+1- Serz 1 <d 8081 <81

Therefore, controlling independently each term of the sum yields

n—1
mon(z) < d'd" Z 951 s fimit1,n(0) +d"sy. .. 8771 < d'd"mo.(0),
i=0
thus )
1 5 . mo,n
— < d(w) = inf 2,
T@a@ =0 =5 Tmoale
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Let us study separately d'(w) and d”(w).

Lemma 18. Consider a random product of matrices of the form of equation (5.1), satisfying
A 1. Then the random variable d' is P(dw)-almost surely finite if and only if there exists
A > 0 such that

~
TY f:g

In this case d'(w) < A, P(dw)-almost surely.

0
Plsupf—y <A] =1

Proof. Notice that
k

d'(w) = sup supf—zjf = sup X o #*(w).
kENQ <y Jg kGNo
where

= su fy(w) = pfg.

<y fe(w) T<yY fsg

Since 6 is an ergodic mapping, supyey, X 06" is P(dw)-almost surely equal to the supremum

X(w)

of the support of X. In particular supyey, X © 6% is finite almost surely if and only if the
support of X is bounded. O

Putting these lemmas together allows to prove Proposition 14.

Proof of Proposition 14. The assumptions of Proposition 14 contain the conditions men-
tioned in Lemma 15. Hence, this lemma allows to check A2 and A3. Moreover, Lemma 16
guarantees that

cgo (w) = inf

—1 -1
£ <1 + Sx(w)> = <1 + sup sx(w)> > 0, P(dw) — almost surely.
TE

fx(w) zeX f:c(w)

Moreover, because of Lemma 17, it holds

> 1

T d(w)d'(w)’

The assumptions of Lemma 18 are satisfied here, therefore d'(w) < 00, P(dw)—almost surely.
Moreover, we have assumed that d”(w) < o0,P(dw)—almost surely. Thus P(dw)-almost

surely, dgo (w) > 0, and by stationarity, d‘fo (w) > 0 almost surely. Thus, P(dw)-almost
surely,

d (w)

Yow) = sup  ch(w)df (W) = g (w)di (w) > 0.
rveMi (X)

Moreover,
E|logo| < J— log ¢° (w)dP(w) — Jlog d3° (w)dP(w).
On the one hand,

f— log g’ (w)dP(w) = flog (1 + sup 2@

eX fm(w)> )
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Notice that for any positive real variable X, log(1 + X) is integrable as soon as log(X)™" is

integrable. Since we’ve assumed that

f log <sup 3x<w)>+ dP(w) < o0,

zeX :c(w)

then
J —log cgo (w)dP(w) < 0.
On the other hand,

f — log d%° (w)dP(w) = flog d%° (w)dP(w) < Elogd' + Elogd".

0
Since sup,.<, ;—z) < A almost surely, then by stationarity, almost surely,
k
1<d = supsup—z;€ < A
keNo y=a [3
Thus log d’ is bounded and integrable. We have assumed additionally that log d” was inte-
grable. This is enough to conclude to the integrability of |log |, which proves assumption
A4. O

5.3. A situation where 7y = 0. It was not clear to us how strong an assumption A4 is, or
whether it was hard to find a system breaking it while satisfying all the other assumptions.
We shall present here an example of an infinite Leslie matrix, such that vg = 0 even if
all other assumptions are satisfied. This example is in a deterministic environment, that is
1€l =1, = &N |Q| = 1. The random matrix M (w) is therefore constant, and My, = M™.
Let us set :

em(0) (1 —¢)m(0) 0 0

em(1) 0 (1—c¢)m(1) 0
(5.2) M = | em(2) 0 0 (1—c)m(2)

cm(3) 0 0 0

where ¢ € (0,1), and m(z) = em(z) + (1 — ¢)m(x) is the mean offspring size of a type
z individual. Such a model satisfies A2 and A3, as soon as x — m(x) is bounded and
positive, since ¢ > 0. The ergodicity and integrability properties are trivially satisfied
since this model is in a constant environment. Moreover, Lemma 16 applies, therefore
Yo = cg‘) (W)d% (w) = ed (w). We note from now on d = d5°(w). Let us prove that we can
tune the parameters x — m(z) and ¢ in such a way that d = 0.

Consider a sequence of integers (g;)zen, € {0, 1}, such that :
e There are arbitrarily long subsequences of consecutive 1 in the sequence (e;).
e Noting S, = i;(l) k) %

e There exists a < 1 such that for all x € Ng, % < a.

—> 0 as x — o0.
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Let a be a real number such that a > 1. Then, we set, for any x € X
m(z) =1+ (a—1)e,.

Defined as such, m is a positive and bounded function, thus Assumptions A2 andA3 are
satisfied. This yields that for any sequence (x;),

n—1 -

e
| | m(z;) = a=i=0 =i,
i=0

Since
n—1 n—1
Mo (z) = Z CN(:co,--.xn)(l _ C)n—N(xo7--.:cn) H m(z;) = (1 —c)" H m(z + i),
To=2,...tn€N =0 =0

zi+1€{x;+1,0}
where N(zo,...z,) = {1 < i < n|z; = 0}|. Then
mon(z) = (1 — c)”azf:filei,
In particular, x can be chosen such that e, = --- ;4,1 = 1, which implies that
Imonlo = mon(z) = (a(l — )"
On the other hand

n—1 SUP20=0,...z,ENg Z;:01 Ezy
mo,,(0) < 2" sup H m(x;) < 2"a  @i+1€{zit1,0}

z0=0,...xn,ENg i=0

ziy1€{x;+1,0}
A sequence (z;)o<i<n of integers such that xg = 0 and for each i, ;41 € {x; + 1,0}
is entirely determined by the sequence (Tj)r of the lengths of its excursions away from
zero. By convention, if there are only p excursions away from zero, we set T}, such that
To+- - +T,=nand Tpy1 =--- =T, = 0. The (7,447, )i<p are the only zero terms
in the sequence (z1,...2,), and Top + --- + T, <n — 1. Thus

n—1 n n
sup Z £y, < sup Z St, <a ) T; <an,
20=0,...zn€N ;7 To+..Th=n;_ i=0
zit+16{z;+1,0}
and
mon(0) < (2a%)".
Hence
_ n l—a(1 _ n
monle  (al=a)\" _ (a-0\"
mO,n<O) 2a% 2 n—00
whenever % > 1. Thus for any values of a,c € (0,1), if a is large enough, then

dgo(w) = 0. Since || = 1, for each n € Ny, mj 541 = Mo, thus dgo(w) —dPw)=d=0.
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