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ON THE CONTRACTION PROPERTIES OF A PSEUDO-HILBERT
PROJECTIVE METRIC

MAXIME LIGONNIERE

ABSTRACT. In this note, we define a bounded variant of the Hilbert projective metric
on an infinite dimensional space F and study the contraction properties of the projective
maps associated with positive linear operators on E. More precisely, we prove that any
positive linear operator acts projectively as a 1-Lipschitz map relatively to this metric.
We also show that for a positive linear operator, strict projective contraction is equivalent
to a property called uniform positivity.

Let X be a set of arbitrary cardinality and consider a vector space E c RX. The projective
space B associated with E is defined as the set of equivalence classes B = E/R, where R
is the equivalence relation such that for any f,ge E

fRg<3beRE, f=bg

Let IT : £ — ‘P be the canonical projection. The Hilbert metric dp, defined for example in
[BK53], is a distance on the projective image II(C) of the positive cone C' = E nR¥ — {0}.
Any linear map M on E which is positive, in the sense that M(C) < C, generates a
projective action on II(C'). We say that the projective action M : II(C') — II(C) associated
with a linear map operator M is k-contracting, with & < 1, when it is k-Lipschitz with
respect to dp. When M is k-contracting for some k& < 1, we say that it is contracting, or
strictly contracting. As proved in [Bir57], the projective action on II(C') of any positive
bounded linear operator is 1-Lipschitz with respect to dy. We say that a positive, linear,
bounded operator M on E is A-uniformly positive for some A > 1 when there exists
he E n (Ry)* such that, for any f € E, there exists b(f) = 0 satisfying

(1) AT'B(f)h < M f < Ab(f).

Birkhoff [Bir57] shows that uniformly positive operators are contracting with respect to the
Hilbert metric. This is useful to prove the existence a fixed point for the projective action
of such an operator, that is an eigenvector for its linear action. It also allows to study the
ergodicity properties of semi-groups of uniformly positive operators.

In this note, we focus on a bounded variant d of this Hilbert distance, introduced in a
finite dimensional setup in [Hen97]. As shown in [Hen97], any matrix with non negative
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coefficients is 1-Lipschitz with respect to d, and an explicit formula allows to compute
the contraction rate of a matrix in terms of its coefficients is provided. This yields a
sufficient condition for a matrix to be strictly contracting with respect to d. In this note,
we provide an elementary construction of this pseudo Hilbert distance d in any dimension,
as well as a study of some of its properties. In particular, we prove in Proposition 5 that
all linear, positive and bounded operators are 1-Lipschitz and in Proposition 7 that the
contracting operators with respect to d are exactly the uniformly positive ones. To the best
of our knowledge, it was not yet proven in the literature that uniform positivity is not only
sufficient but also necessary for an operator to be strictly contracting with respect either
to the pseudo-Hilbert or the Hilbert metric.

1. DEFINING A PSEUDO-HILBERT DISTANCE

Consider the partial order < defined by f < g © Vz e X, f(x) < g(z).
For any f,g € C, we define

R(f,g) = sup{b = 0|bf < g} € [0,50] = inf {%

m(f,g) = R(f,9)N(g, f).

Notice that the set {b > 0|bf < g} clearly is a sub-interval of R, which contains 0.
Moreover, it holds

,xeX,f(x);éO},

Lemma 1. For any f,g,he C, any a, 5 >0

i) N(f,g) <0 and {b = 0]bf < g} = [0,R(f, g)]-

i) m(f,g) =m(g, f)
i) m(af, Bg) = m(f,g),

w) m(f,g)m(g,h) < m(f,h).

v) 0<m(f g)<1.

vi) m(f,g9) =1< fRg. If m(f,g) =1, then f = N(g, f)g.

Proof. i) Since 0 ¢ C, f # 0, thus, there exists € X such that f(z) > 0. For b large
enough, bf(z) > g(x) which prevents bf < g. Since {b = 0|bf < g} is an interval,
this implies that it is bounded, i.e. X(f,g) < o0. Thus bf < g, for any b € [0,R(f,9)).
This yields R(f, g)f < g, thus

N(f,g9) e {b=0[bf <g}=[0,R(f,9)]

i1) This symmetry property is straightforward from the definition of m(f,g).
i11) This derives directly from

N(af, Bg) = EN(f,g)-

iv) Combining X(f,g)f < g, and X(g,h)g < h, we get
N(g, M)R(f, 9)f <N(g,h)g <h,
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thus R(g, h)X(f,g) € {b = 0]bf < h} = [0,8(f,h)]. This yields R(g, h)X(f,g) <
R(f,h). For a similar reason, it holds R(g, f)X(h, g) < X(h, f). Multiplying these two
inequalities yields m(f, g)m ( h) < m(f,h).

v) Notice that taking f = h in zv) yields

m(f,g)m(g, f) = m(f.9)* <m(f, f).
Since m(f, f) = 1, then m(f, g)? < 1, which implies that m(f,g) < 1
vi) From i), it is clear that if fRg then m(f,g) = m(f,f) = 1. Suppose now that

m(f,g) = 1. This implies that R(f,g) # 0,R(g, f) # 0 and R(f,g)~' = R(g, f).
Moreover, it holds

N(f,9)f <g

and

N(g, f)g < f.
Thus

Therefore, f = X(g, f)g.

O
Let f,g € II(C) be two halflines and f € f, g € § two points of those halflines, we set
r - 1 m(fv g)
d(f.g) = T 9],
U9 = T mira)

Proposition 2. d is a well defined distance on II(C). It is bounded by 1.

Proof. Assertion i) of Lemma 1 implies that m(f,g) only depends on the equivalence
classes II(f),II(g) and not on the choice of f and g inside those classes. Moreover since
m(f,g) €[0,1], and ¢ : [0,1] — [0,1],s — ? is well defined, then d is well defined. The
map d is clearly symmetric, nonnegative and bounded by 1. Since the map ¢ is strictly

decreasing, continuous, ¢(0) = 1 and ¢(1) = 0, we obtain

d(f.5) =0=m(f,9)=1< fRg= f=7.

Moreover, it can be checked that ¢(st) < ¢(s) + ¢(t), for any s,t € [0,1]. Combining
this with the fact that ¢ is decreasing and point i) of Lemma 1 yields the triangular
inequality. O

Remark 1. In many references such as [Bir57], one rather considers the Hilbert metric
di(f,g) = |logm(f,g)|. We prefer using the pseudo Hilbert metric because its boundedness
makes it more convenient.

Proposition 3. For any f # g e II(C), the following claims hold

e there exists f € f,g € g such that the intersection of the line (f,g) with the cone C
is reduced to a line segment [u,v], with u # v. Fiz now such points f,g,u,v.

e For any h € C, if h is coplanar with u and v (or equivalently with f and g), then the
line segment [u,v] intersects the vector line (0, h) in a single point of the cone.
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o For any point h # 0 coplanar with u and v, with coordinates h = hiu + hov then
heC iff hy 20 and hy = 0.

Proof. Let f e f and g € g. For any t € R, we note
hy =tf+(1—t)ge E.

Consider S = {t € R|h; € C}. S is clearly an non empty interval in R since 0,1 € S and
C' is convex. In order to prove that S is a segment of line, it is enough to show that there
exists z, 2" € X such that f(z) < g(x) and g(2') < f(2'). Indeed, if this is the case, since
ht =g+ t(f —g), then
hy(x) — —o0 and hy(z") — +o0 .
t—+00 t——00

Let us now prove that we can choose f € f and g € g such that there exists z,2' € X
satisfying f(z) < g(x) and f(2') > g(2'). Consider two points f € f,§ € g. Since f # g, in
particular f # §, thus there exists € X such that f(z) # g(x). Then in particular, f(z)
or j(x) is nonzero. Without loss of generality, suppose g(z) # 0. Then, since f # g, there
exists 2’ € X such that

)
then for any b > 0, bf(2') > 0 = §(z'), and for b > 0 small enough,

If g(«') = 0,

bf(x) < g(z), thus setting f = bf and g = § suffices. In the contrary, if §(z’) # 0, then,
fa) | fl)
g(@') = g(x)

Once again, without loss of generality, suppose that

(')

)
gy
S~—

(x

>

x)

@
—
&
\_:
@
—

Then there exists b > 0 such that
.y _
bf(ai) >1> _b;f(x)'
g(z') g(z)

Then, setting f = bf, g = g, we get f(z) < g(x) and f(2') > g(z'), thus S is bounded
and (f,g) n C is a nonempty line segment [u,v]. Moreover, f # g and f, g € [u,v], thus
u # v. Finally, let h € C, suppose that h is coplanar with f,g. Note that all points of the
vector line (0, k) have either only nonnegative coordinates or only nonpositive coordinates.
Thus f — g does not belong to this line. This proves that the lines (f,g) and (0,h) are
not parallel. Since they are coplanar, they are secant. Moreover, their intersection point
q = f+t(g— f) has either all nonnegative (in which case this point is in [u,v] < C), or all
nonpositive coordinates. If ¢ = 0 then ¢ € C, thus in ¢ € [u,v]. If t > 0, since f(z) < g(x),
then ¢ as a positive coordinate g(x). Similarly, if ¢ < 0, the coordinate g(x’) is positive.
Thus if ¢ # 0, then the coordinates of ¢ are not all nonpositive, consequently they are all
nonnegative and ¢ € C' n (f,g) = [u,v]. Let now h # 0 be a point coplanar with u and
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v. Since u,v € C, if hy,hy = 0, then h(z) = hju(z) + hov(z) = 0 for any z € X, thus
h € C. Conversely, if h € C the semi-line h intersects [u,v]. Thus there exists a point
h € h ~ [u,v]. This point k has non negative coordinates in the basis (u,v) of the plan.
Since h is positively colinear with &, then hy, hy = 0. O

Proposition 4. Let f,g e II(C). Consider a line A € E that intersects both f and g and
suppose that A n C is a line segment [u,v], with uw # v. Then any f € f and g € g are
coplanar with w and v. Moreover, noting f = fiu + fov, g = g1u + gov, it holds :

N192 = o1

@) 4f.9) = f192 + faon

with the convention 0/0 = 0.

)

Remark 2. Applying the triangular inequality in (2) yields d(f,g) <1 for any f,g. More-
over, d(f,g) = 1 iff exactly one of the quantities g f2, fige equals 0. This implies in
particular that f or g is contained in the edge of C'.

Proof. Since A = (u,v), then A is included in the vector plan spanned by u,v. The line
A intersects the vector semi-lines f, g, thus they are included in the plan spanned by u,v.
Note that the quantity

f192 = fag1

f192 + fog

is invariant by (f, g) — (af, Bg), for any positive real numbers «, 3, and by exchanging the
coordinates fi; with fo and g1 with go. Therefore, it suffices to show that this equality is
satisfied for a well chosen pair (f, g) of elements of f,g. Thus, we suppose in the sequel that
f, g are the intersection points of A with f,g. This implies that f,g € [u,v]. Without loss
of generality, we moreover assume that u, f, g, v are in this order, in the sense that f; > g1,
thus go = 1—g1 = 1 — f; = f5. It remains to prove that

f192 — fogn
f1g2 + fogn

This holds in the case where f; = g1 = 0 or in the case where fo = go = 0, with the
convention 0/0 = 0. Thus, since f; = ¢; and fu < go, it remains to study the case
f1,92 > 0. For any b > 0, the last point of Proposition 3 yields

g<bf < g—0bf =(g1 —bfi)u+ (92 —bf2)ve C < g1 =bf1 and g2 = bfo.
Since f1 = g1 and fo < go, it holds figo = fog1 and thus

_he—far 0

d(/.9) = i+ fon

with the convention f1/¢g; = o if g1 = 0. Thus, it holds

gébf(i)béé,
g2
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and

R(f.g) = 5— € (0, +0).

Similarly,
R(g, f) = 3 € (0, +0)
Finally, it holds

ﬂﬁmzl_%%g,ﬁﬁ—mh

1+%  fifetaife

2. CONTRACTION PROPERTIES OF POSITIVE LINEAR MAPPINGS

Let M be a linear mapping on F, we assume that M is positive, in the sense that
M(C) c C. Then M induces a projective action on II(C'), defined by M -II(f) = II(M f),
for any feC.

Proposition 5. Let

¢(M) = sup {d(M f,M-9),f, g€ H(C’)} <1
Then for all f,g € II(C), it holds
(3) d(M - f,M-g) < c(M)d(f,9).

Proof. Let f,g € C. Suppose M - f # M - g, otherwise, inequality 3 is obvious. Let
fef,geg,xeM-fandye M -gsuch that (f,g) n C and (z,y) n C are line segments.
Let a,b and aq,b; be the respective extreme points of (f,g) n C, (z,y) n C. Notice that
(a,b) and (aq,by) are respectively the bases of two vector planes between which M acts as
an linear isomorphism. Let us decompose, f, g, Ma and Mb as follows :

f = fia+ fab

g =gi1a+ g2b
Ma = aay + vby
Mb = Bay + dby.

Then
Mf = (fra+ faB)ar + (fry + f20)b1
Mg = (g1 + g28)ar + (9177 + g26)b1.
The line (a1,b1) intersects both M - f and M - g, and (a1,b1) n C = [a1,b1]. Moreover,
MfeM-fand Mge M -g. Thus, by Proposition 4, it holds
(fra + faB) (g1 + 920) — (f1y + f20) (g1 + g23) ‘
(fra+ foff) (917 + g20) + (f1v + f20) (g1 + g28) |

Simple calculations yields

(ad = BY)(f192 — f201)
(ad + BY)(f192 + f201)

ad — By

d(vaMg): aé—kﬂ’y

(7.9
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By Proposition 3, since the points Ma and Mb, are coplanar with f, g, the vector lines
(0, Ma) and (0, Mb) intersect the segment [a1,b;]. Thus, we can apply Proposition 4 :

ad — By
ad + By
Since d(M -II(a), M -TI(b)) < ¢(M), we can finally conclude :

d(M - f,M - g) < c(M)d(f, 7).

d(M -1I(a), M -11(b)) =

O

Corollary 6. Consider a linear map M : E — E such that M(C) < C. Then the projective
action of M on II(C) is c¢(M)-Lipschitz with respect to the distance d.

We recall that a linear positive mapping M : E — F is A-uniformly positive whenever
there exists h € C, such that for any f € C, there exists b(f) € Ry such that :

%MﬁthngMﬂh

Notice that the inequality remains valid replacing A by A’ > A. We note A*(M) = inf{A >
1|M is A — uniformly positive}. Then the following characterisation of strictly contracting
applications holds :

Proposition 7. Consider a linear map M : E — E, such that M(C) < C. Then ¢(M) < 1
if and only if M is a uniformly positive linear mapping. Moreover when ¢(M) <1, ¢(M) =
W(A*(M)) where 1« s € [1,0) — =55 = ¢(s72) € [0,1).
Proof. First, assume that M is A-uniformly positive for some A. Let f,g € C. Let
b(f),b(g) € R so that
W(f)h< M
b(g)h < M
Let f' = Mf/b(f) and ¢’ = Mg/b( ). Then

h< fg <Ah

Ab(f)h

<
g < Ab(g)h.

hence

A*jgthfMMA4f<h<A¢
Thus X(f',¢'),N(¢, ') = AL and m(f’,¢’) = A~2. Since ¢ : s € [0,1] — —S € [0,1] is
decreasing and one-to one, then 1 is increasing and one-to-one. As a consequence

d(M - f,M - g) = ¢(m(f,9)) = $(m(f',9) < $(A™) = ¥(4) < 1.
Since ¢(M) = sup {d(M - f,M -g), f,g € II(C)}, this yields ¢(M) < 1(A) < 1. Since ¢ is
continuous, this yields c¢(M) < ¢(A*(M)).
Conversely, suppose that 0 < ¢(M) < 1. We want to show that M is uniformly positive.
Since ¥ is one-to-one from [1, o0) onto [0, 1), let us set A = ¥~ (c(M)), thus c¢(M) = %
Let f,g € II(C) and choose f' € M - f, g’ € M - g, such that (f',¢') n C is a segment of
line with endpoints u,v. We assume that f" = su+ (1 — s)v and ¢ = tu + (1 — t)v with
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0 < s <t<1. Since we have assumed that ¢(M) < 1, then d(M - f, M - §) < ¢(M) < 1.
Therefore, f’ and ¢’ are distinct from u,v (ie 0 < s,t < 1) and

1w 14
dM-f.M-g) = — 29 ) o -
( f? g) 1 +m<f/7g/) C( ) 1 +A_2
Since s — % is strictly decreasing on (0,1), this yields
1
m(f',q') = yvh

Let us choose r > 0 such that RX(rf’,¢') = rR(f’,¢') = A7!, and set f" = rf,¢" = ¢
Then it holds,
A—2 < m(f/7g/) — m(f//7g//) — N(f”,g”)N(g”,f”) — A—lN(g//7 f”).

Thus R(f”, ¢"),R(g", f") = A~!, which yields f” < Ag”, and ¢” < Af”. In other words
. if ¢(M) < 1, then there exists A > 0 such that, for any f,g e II(C), there exists f” €
M- f,¢" e M- g, satisfying A~'¢" < f” < Ag”. Let us now consider an arbitrary function
g€ C, and fix h = Mg. For each f € C, there exists two positive reals «(f), 8(f) > 0 such
that f” = a(f)M f and ¢" = B(f)Mg = B(f)h satisfy

Ailg” < f// <Ag”.
This yields :

L) ()
A a(f)ngnga(f)h'
In other words, setting b(f) = %,

A7B(f)h < Mf

< .
Thus, M is A-uniformly positive, and A*(M) < A = ¢~ (c(M)), thus Y(A*(M)) < c(M).
O

3. EXAMPLES

3.1. The finite dimensional case. Let us focus in this subsection on the case of a finite
set X = {1,...,d}. Weset E =R? C = (R;)?—{0}, and consider d x d matrices with non-
negative coefficients, acting linearly on row vectors. In this case the definition of uniform
positivity is equivalent to considerations on the zero-coefficients of M :

Proposition 8. Let M = (M;j)1<i j<d be a d x d matriz with non-negative coefficients.
Then M is uniformly positive if and only if for each i,j € {1,...d} such that M;; = 0,
either the whole i—th line or the whole j—th row is zero.

Proof. Let us assume that M is uniformly positive, then there exists A > 0, and two
functions x — h(x),y — b(y) satisfying for every row vector y and line vector z

(4) A7 h(2)b(y) < 2My < Ah(z)b(y).

Thus if M; ; = e;Mej = 0, either h(e;) = 0 or b(e;) = 0. This implies respectively that the
j-th row or the i-th column of M is 0.
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Conversely, if we know that M has no zero coefficients except in whole zero line or rows,
then letting ig, jo be the respective indexes of a non-zero line and a non-zero row, then
setting h(e;) = M;j, and b(e;) = M;,;,and

0 < A = max | max Y max —2 "0 ) < oo,
i MM, T M

we prove that (4) is satisfied for any vectors x,y of the canonical basis. It can be extended

to the whole positive cone by linearity. O

This provides a natural necessary and sufficient condition for a matrix to be a strictly
contracting projective operator on the projective cone II(C).

Corollary 9. Let M be a d x d matriz with non negative coefficients. Then

i) M(C) < C if and only if there is a non zero coefficient on each row of M
i1) Suppose that M(C) < C. Then ¢(M) < 1 if and only if for each i,j such that
M;; = 0, the whole j—th column of M s 0.

Additionally, the following Proposition, stated and proved in [Hen97, Lemma 10.7] claims
that the constant ¢(M) can be explicitly computed in terms of the coefficients of M.

Proposition 10. Let M is be a d x d matriz, with non positive coefficients, and no zero-row.
Then

c(M) =sup{d(M -z, M -y),z,y € II(C)} = max {d(M -e;, M - ej),i,j € {1,...n}},

where (e;)1<q are the unit vectors of the canonical basis ofRd. As a consequence, the constant
c(M) can be explicitly expressed in terms of the coefficients of M = <Mi7j)1<ij<d as follows

— e | M Myj — My M|
1<i,5,k,l<d MkiMlj + Mijli '

(5) (M)

with the convention 0/0 = 1.

One can easily check that the necessary and sufficient condition for ¢(M) < 1 provided
in Corollary 9 is consistent with the expression of ¢(M) in (5).

3.2. The density case. Let X = [0,1] and let E be the set of continuous real functions
on X. Let us consider linear operators of the form

My (x) = jm,y)f(y)dy,

where (z,y) — K(z,y) is a continuous map from [0,1] to Ry. Under these assumptions
Mip is a bounded linear operator on E. Assume additionally that

e For each z,y e R, K(x,y) >0
e For each y € R, there exists z € R such that K(x,y) > 0.

These conditions ensure that M is a positive operator on E, satisfying Mg (C) < C.
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Proposition 11. Under these assumptions ¢(Mg) < 1 if and only if there exists g1, ga €
R%, A e R% such that
(6) A7 g1(2)g2(y) < K(2,y) < Agi(2)ga(y).

When (6) holds for some A, noting A* the infimum of the values of A satisfying (6), then
it holds

o(Mg) = ¢~ 1(A%).
By continuity and compacity, it is sufficient to have K (x,y) > 0 for all z,y in order for
equation (6) to hold. However, it is clearly not necessary, since any product of the form

K(z,y) = g1(x)g2(y)g3(x,y) with g1, g2, g3 continuous and non negative, and g3 positive
on [0, 1]? satisfies (6) and is therefore uniformly positive.

Proof. If there exists A, g1, go satisfying equation (6), then for any z € X, any f € E

Al () f 02(0) f ()dy < Micf(x) < Agi(2) jg2<y>f<y>dy,

thus M is A-uniformly positive with h = g1 and b(f) = { g2(y) f (v)dy.
Conversely, if My is A-uniformly positive, let h € R* and for each f € E, b(f) > 0 such
that

AT'B(f)h < Mf < Kb(f)h.
Let us note, for ¢ > 0 and y € X,

]l[y—a,y+a]mX .
S 1 [y—e,y+e]nX (z)dz

ey =

Then it holds, for any z,y € X, by continuity of y — K(x,y)
K(z,y) = glg(l] M (ge.y)()-
The uniform positivity assumption yields however that

A_lMK(gs,y)(x) < h(fp)b(ge,y) < AMK(ge,y)(x)-
Therefore
ATV (3, ) < h(@)limsupb(ge) < AK (z,).

e—0

Setting g1 = h and ga(y) = limsup b(ge ), we get

e—0

A g1(2)g2(y) < K(z,y) < Agi(x)g2(y).

This proves that My is A uniformly positive if and only if (6) holds for some functions
g1, g2. Proposition 7 allows to conclude the proof. O
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