
HAL Id: hal-04355638
https://hal.science/hal-04355638

Submitted on 3 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Respiratory Rate Prediction Algorithm based on Pulse
Oximeter

Nurdan Cetinkaya, Sultan Turhan, Ozgun Pinarer

To cite this version:
Nurdan Cetinkaya, Sultan Turhan, Ozgun Pinarer. Respiratory Rate Prediction Algorithm based on
Pulse Oximeter. 2021 IEEE International Conference on Big Data (Big Data), Dec 2021, Orlando,
United States. pp.4652-4658, �10.1109/BigData52589.2021.9671288�. �hal-04355638�

https://hal.science/hal-04355638
https://hal.archives-ouvertes.fr


Respiratory Rate Prediction Algorithm based on
Pulse Oximeter

Nurdan Cetinkaya
nurdancetinkya@gmail.com

Sultan Turhan
Galatasaray University

Dept. Computer Engineering
Istanbul, Turkey

sturhan@gsu.edu.tr
ORCID: 0000-0001-9763-0882

Ozgun Pinarer
Galatasaray University

Dept. Computer Engineering
Istanbul, Turkey

opinarer@gsu.edu.tr
ORCID: 0000-0002-0280-3689

Abstract—Respiratory rate (RR) is a physiological parameter
typically used to monitor patient status in clinical settings.
The goal of the Respiratory Rate Prediction Project is to use
supervised machine learning techniques to estimate a person’s
respiratory rate using real-time, continuous Photoplethysmogram
(PPG) and Electrocardiogram (ECG) and oximeter data. In addi-
tion, it is also our goal to investigate the feasibility of using such
data to improve diagnostic processes in healthcare. It consists
of a series of studies of different algorithms for respiratory
rate estimation from clinical data and is complemented by the
provision of publicly available datasets and resources.

Index Terms—Respiratory Rate, Supervised Machine Learn-
ing, Photoplethysmogram, Electrocardiyogram

I. INTRODUCTION

In 2020, the whole world faced a global epidemic caused by
severe acute respiratory syndrome coronavirus (WHO, 2021).
Although many atypical forms have been described in the
literature [1]–[3], this virus commonly causes a disease in
the form of a lower respiratory tract infection [4]. The most
worrying aspect of the disease is its high contagiousness.
Moreover, there is still no consensus on the primary contagion
mechanisms of the disease. In this disease, which is described
as ”Mask-Distance-Cleaning” as the method of protection by
the World Health Organization (WHO, 2021) and the health
ministries of many states, early diagnosis has a significant
impact on the healing process of the disease [5].

With the COVID-19 pandemic, the popularity and preva-
lence of wearable health devices has also increased. These de-
vices have made it easy and possible for individuals to measure
basic health metrics such as respiratory rate, heart rate, heart
rate variability (HRV), daily step count and sleep duration in
the home environment in order to diagnose COVID-19 and
similar diseases early [6] .

Respiratory Rate (RR) is the number of times a person
breathes in one minute. The respiratory rate varies according
to the age of the person. This number is 12–20 per minute
in a healthy adult, 16–22 in children, and 18–24 in infants.
The respiratory rate varies according to the health status of
the person. For example, as a result of an increase in fever
due to any disease, respiratory rate also increases [7]. Fever

is also commonly observed in lower respiratory tract infection
caused by COVID-19.

It is an important parameter in the evaluation of patient
status, along with basic health metrics such as respiratory rate,
heart rate, and oxygen saturation [8]. Respiratory rate can be
measured by counting manual breaths or using various devices
and physiological principles.

Although manual measurement of respiratory rate may be
inaccurate depending on the user, it is frequently used in clin-
ical settings today [9]. In addition, devices such as spirometry,
capnometry, electrocardiogram (ECG), photoplethysmography
(PPG) are also used to measure respiratory rate. Recently,
the use of electrocardiogram and photoplethysmography for
respiration has received particular attention [10]. The electro-
cardiogram measures the electrical activity of the heart using
electrodes attached to the skin. These electrodes are also used
to determine the respiratory rate. As you breathe in, the volume
of the chest increases and decreases. The flow resistance of
the thorax increases with increasing volume and decreases
during volume reduction. The fluctuations recorded during
these changes are displayed on a monitor as a respiratory
curve [11]. In this way, the respiratory rate is determined. Pho-
toplethysmography is a method used to determine pulse rate
and oxygen saturation. Respiration rate can also be extracted
from these captured PPG signals using various algorithms [12].

Recently, different approaches have been developed to better
predict respiratory rates by taking into account the unsteady
dynamics in the electrocardiogram, photoplethysmography,
and pulse oximetry [13].

The aim of this study is to decide on the best model that
makes respiratory rate estimation using data such as heart rate,
pulse rate, and oxygen saturation and to compare these data to
determine whether the respiratory rate values of individuals are
abnormal. Simultaneously, the study evaluates the feasibility
of using such data to improve early detection processes in
healthcare.

The ultimate goal of the project is to establish a smart
system that evaluates people’s heart rate, pulse rate and oxygen
saturation data, predicts respiratory rates and detects anomalies
in the results obtained. With this purpose, in order to determine
the estimation method to be used in the project within the978-1-7281-0858-219$31.00 ©2019 IEEE



scope of this study, a comparison was made between the
available data set and the prediction methods, and it was
tried to determine the most suitable method for this intelligent
decision support system.

The remainder of the paper is structured as follows: Sec-
tion II discusses the theoretical background of the research.
Section III presents the methods used and the work produced.
In Section IV the obtained results will be presented. Finally,
conclusion and discussion are given in Section V.

II. RELATED WORKS

Many studies have been carried out on respiratory rate
estimation. One of these studies was published in 2017 by
Marco A.F. It is the work of scientists Pimentel, Peter H.
Charlton, and David A. Clifton. The study proposes an alter-
native method to increase the robustness of respiratory rate
estimation with signals obtained from the Photoplethysmo-
gram. The algorithm used in the study is a model known
as autoregressive or AR model, which is observed at equal
time intervals and applied to time series data. The algorithm
includes 95 eight-minute Photoplesticismogram recordings
obtained from both children and adults in different clinical
settings. Respiratory rate estimation was made using these data
with various algorithms. Using the results obtained, the per-
formance of the model was compared with the existing ones.
The proposed method has achieved an accuracy comparable to
other studies in the literature. Considering the results obtained
in the 32-second waveform with the mean absolute errors,
it was concluded that a person breathes between 1.5 (0.3-
3.3) and 4.0 (1.8-5.5) per minute. The analysis demonstrated
the importance of using alternative datasets to evaluate the
performance and capability of the proposed methods. Future
studies will focus on using these raw data sources as a
benchmark for comparison of new respiratory rate estimation
approaches [14].

Another study is the work of Stephanie Baker and many
scientists in 2021. In this study, the use of respiratory signal
quality quantification and various neural network (NN) struc-
tures for improved respiratory rate estimation was investigated.
Respiratory modulation signals were subtracted from the Elec-
trocardiogram and Photoplethysmogram signals and a possible
respiratory rate calculation was made from each subtracted
signal. A simple and effective respiratory quality index (RQI)
scheme has been developed that determines the quality of
each respiratory signal extracted5. Next, neural networks were
developed for the estimation of respiratory rate using the
estimated respiratory rate and its corresponding quality index
as input features. It has been determined that the calculation
of respiratory quality indices for modulated respiratory rates
reduces the mean absolute error (MAE) of neural networks up
to 38.17%. When trained and tested using 60 second waveform
segments, the proposed scheme delivered 0.638 breaths per
minute. Based on these results, it was concluded that it
could easily be applied to non-invasive wearable devices for
continuous respiratory rate measurement in many healthcare
applications [15].

In 2019, a study was conducted by Maha Alafeef and
Mohammad Fraiwan on smartphone-based respiratory rate
estimation using Photoplethysmographic imaging and discrete
wavelet transform. In this study, a smartphone-based method is
proposed to accurately measure respiratory rate using video of
the skin surface recorded by the smartphone’s internal camera
in the presence of fash light. Frame averaging was used to
extract the photoplethysmographic signal of the red, green and
blue channels from this input. Then, discrete wavelet transform
was applied to the best representative photoplethysmographic
signal for respiratory signal extraction and its velocity was
estimated. 15 subjects participated in the test and evaluation.
While the maximum absolute error was 0.67 bpm, the root
mean Square error was 0.366 bpm. A comparison with other
studies in the literature revealed superior performance in terms
of accuracy, ease of use, and cost [16].

In another study conducted in 2020, respiratory rate and
sleep position estimation were studied using a wearable ac-
celerometer. In the study conducted by Doheny, Lowery,
Russell, and Ryan, a triaxial accelerometer was attached to
the chest and upper abdomen of 11 participants (9 men; age:
47.82±14.14) undergoing clinical polysomnography (PSG).
PSG flow and position data were used as benchmark data for
respiratory rate (breaths per minute, bpm) and sleep position.
Sleep position was classified using logistic regression with
features derived from filtered acceleration and orientation. The
accelerometer-derived respiratory rate was estimated for 30-
second periods using a peak detection algorithm to identify
individual breaths. Sensor derived and PSG respiration rates
were then compared. While the mean absolute error (MAE)
in respiratory rate did not differ between sensor positions
(abdominal: 1.67±0.37 beats; chest: 1.89±0.53 beats; p=0.52),
when participants were lying on their side (1, 58±0.54 bpm),
decreased MAE was observed compared to supine (2.43±0.95
bpm), p¡0.01. The position classifier distinguished between
“supine and left/right” with an ROC AUC of 0.87 and “left
and right” with an ROC AUC of 0.94. The proposed methods
can provide a low-cost solution for prolonged sleep posture
and respiratory monitoring at home [17].

A similar study was conducted in 2009 by Ki H Chon,
Shishir Dash, and Kihwan Ju to estimate respiratory rate again.
In this study, they presented a new method for estimating
respiratory rate using pulse oximetry signal. In this method, the
recently developed variable frequency complex demodulation
estimation method (VFCDM) is used to describe the frequency
modulation (FM) of the photoplethysmogram waveform. Fre-
quency modulation has a measurable periodicity that provides
an estimate of the respiratory period. The performance of the
estimation method is compared with the continuous wavelet
transform (CWT) and autoregressive (AR) model approaches.
Both the CWT and AR models have been shown to pre-
dict well respiratory rates within the normal range (12-26
breaths/min). In this analysis of 15 healthy subjects, we used
the VFCDM method to extract respiratory rates ranging from
12-36 breaths/min for accuracy, consistency (smaller interquar-
tile range of median value), and computational efficiency (less



than 0.3 s in 1 minute of data). it has been shown to provide
the best results [18].

In 2014, Yunyoung Nam et al. presented a method for
estimating respiratory rate using the camera of a smartphone,
MP3 player, and a tablet in South Korea. An attempt was made
to estimate respiratory rate from the pulse signal obtained from
a finger placed on the camera lens of iPhone 4S, IPad 2, IPod
5 and Galaxy S3 devices. Before estimating respiratory rates,
the optimal signal quality of these 4 devices was investigated
by dividing the resolution of the video camera into 12 different
pixel regions. Then, the suitability of smartphones, iPod 5
and tablet for respiratory rate estimation was investigated
using three different calculation methods. These methods
are; autoregressive (AR) model, variable frequency complex
demodulation (VFCDM) and continuous wavelet transform
(CWT) approaches. In the study, data were collected from
10 healthy subjects to evaluate the performance of the three
computational methods and pixel regions for optimum signal
quality. The VFCDM method has been observed to provide
good estimates for respiratory rates within the normal range
(12-24 breaths/minute). While both the CWT and VFCDM
methods provide reasonably good estimates for respiratory
rates greater than 26 breaths/min, accuracies have been ob-
served to decrease with increasing respiratory rates. Overall,
the VFCDM method performs best for accuracy (smaller me-
dian error), consistency (smaller interquartile range of median
value), and computational efficiency (less than 0.5 s in 1
minute of data using a MATLAB application) for extracting
respiratory rates. to 36 breaths/minute [19].

In a study conducted by Vignesh Ravichandran and a group
of friends in 2019, an end-to-end deep learning network called
RespNet was proposed to perform the task of extracting the
respiratory signal from a specific input PPG, unlike other
studies. The proposed network is trained and tested on two
different datasets using different modalities of the reference
respiratory signal recordings. In addition, the similarity and
performance of the proposed network versus two traditional
signal processing approaches for respiration signal extraction
are examined. The proposed method was tested on two inde-
pendent datasets with a Mean Square Error of 0.262 and 0.145.
The cross-correlation coefficients of the relevant data sets were
found to be 0.933 and 0.931. Reported errors and similarity
were found to be better than traditional approaches [20].

III. OUR APPROACH

With the emerging technologies, remote monitoring of
individual’s health data becomes possible. Thanks to smart
watches, smartphone applications or special sensors, it is
possible to monitor both the daily data of healthy people and
patients’ vital signs. Mobile health (m-health) is a rapidly
expanding field in the digital health sector that provides
healthcare support, delivery and intervention through mobile
technologies such as smartphones, tablets and wearable de-
vices [24]. Neither patients who are monitored at home nor
healthy individuals who want to record their daily health data
are willing to carry sensors on them for long periods of time.

The pulse oximeter is a simple medical device that is easily
worn on the finger of the individual and has the ability to
collect the desired data in a very short time [21].

During the ongoing coronavirus disease (COVID-19) pan-
demic, patients who are diagnosed with COVID-19 but not
sick enough to warrant admission has been proposed to
use pulse oximetry at home in order to monitor and spot
deterioration [22]–[24].

A. Dataset

In order to choose the correct prediction method for Respi-
ration Rate estimation, study is first carried out on the sample
data set. The sample dataset used in the study was taken from
PhysioNet, a web-based open source site designed to support
new research in healthcare and studies of complex physio-
logical and clinical data [25]. The dataset named “BIDMC
PPG and Respiration” [14] includes data from a large group
of patients admitted to medical and surgical intensive care
units, randomly selected from a total of 53 adults, 32 females
and 21 males, aged between 19 and 90+ years. In the dataset

1) Physiological signals data such as PPG, impedance
respiratory signal and electrocardiogram (ECG)

2) Data on physiological parameters such as heart rate
(HR), respiratory rate (RR) and blood oxygen saturation
level (SpO2)

3) Age and gender data
are available. Heart rate, respiratory rate and blood oxygen

saturation level parameters of this data set were used in the
study.

B. Data Pre-Processing

The data preprocessing step was carried out before using the
data within the regression models in order to compare them.
In this context, fixed variables (age, gender) and respiratory
rate (breaths per minute), heart rate (beats per minute derived
from ECG), pulse rate (beats per minute derived from PPG)
and blood oxygen saturation level of 53 patients are combined
on a single source. This process was carried out on Jupiter
Notebook with Python language. The general view of the data
before the data preprocessing step is as in Figure 1.

There are 8 attributes in the data set. These are time
(seconds), heart rate, pulse rate, respiratory rate, blood-oxygen
saturation level, age, gender and key information of the patient,
respectively. As to types of data, the time is numeric, the
gender is categorical, and the other columns contain float
values.

In data preprocessing, it is pivotal to identify and correctly
handle the missing values in order to have accurate and
adequate conclusions and inferences from the data. There are
25492 records in total in the data set. It has been observed
that a certain number of data is missing for each attribute
in these records. Figure 2 shows the number of missing data
per attribute. Based on the total number of records available,
the proportion of records with missing data is approximately
0.78%. Although this rate is too small to cause a serious
error, we decided to keep them in order to ensure that the



Fig. 1. Overview of the Dataset

performance evaluation of the methods will produce accurate
results. Instead of deleting these records, the available data
are filled with the average values of the attributes containing
numerical values. For categorical attributes such as gender, the
”LabelEncoder” module in the Phyton- Scikit Learn Library,
which helps to label character labels with numbers, was used.
The data of male, female and patients who did not want to
specify gender were first converted to 0, 1, 2, and then the
missing data were filled by calculating the mode values in
these attributes.

Fig. 2. Incomplete records counts for each attribute in the data set

The descriptive statistics results of the data set obtained after
the completion of the missing data are displayed in Figure 3.

Fig. 3. Descriptive Statistics results of completed data set

C. Applied Method

To determine the appropriate technique, seven methods are
used to evaluate the dataset. These methods are:

1) Ordinary Least Squares: Ordinary least squares, or linear
least squares, estimates the parameters in a regression
model by minimizing the sum of the squared residuals.
This method draws a line through the data points that
minimizes the sum of the squared differences between
the observed values and the corresponding fitted val-
ues [26].

2) Lasso Regression: It is a regression analysis method
that performs both variable selection and regularization
in order to enhance the prediction accuracy and inter-
pretability of the resulting statistical model [27].

3) Elastic Net Regression: The elastic net is a regulariza-
tion procedure for linear regression that also performs
variable selection [28].

4) Ridge Regression: Ridge regression is a model tuning
method that is used to analyse any data that suffers
from multicollinearity. This method performs L2 reg-
ularization. When the issue of multicollinearity occurs,
least-squares are unbiased, and variances are large, this
results in predicted values to be far away from the actual
values [28].

5) Bayesian Ridge Regression: It allows a natural mecha-
nism to survive on scant data or poorly distributed data
by formulating linear regression using probability dis-
tributors instead of point estimates. Output or response
’y’ is assumed to be from a probability distribution
rather than being estimated as a single value [28].

6) K-neighbors Regression: One of the most useful types
of Bayesian regression is Bayesian Ridge regression,
which estimates a probabilistic model of the regression
problem [29].

7) Random Forest Regression: Random Forest Regression
is a supervised learning algorithm that uses ensem-
ble learning method for regression. Ensemble learning
method is a technique that combines predictions from
multiple machine learning algorithms to make a more
accurate prediction than a single model [30].

Errors in each case are calculated and then tabulated. The
model with the best performance is then chosen.

D. Comparison of the Methods

After the pre-processing of the data set, the above-
mentioned models were defined and the comparison process
was started. One of the main libraries used in this section is
the library known as sklearn or scikit-learn, which has many
algorithms for regression, clustering and classification [31].
The available data set is primarily partitioned into test and train
datasets. Seventy percent of the available data is train data and
thirty percent is test data (Figure 4). Then, with the help of the
Sklearn library, the regression models mentioned above were
tested on these data sets and the successes in estimation were
compared.



Fig. 4. Dividing the data set into train and test data sets.

In order to calculate the success of each model separately,
a function is generated with Python (Figure 5). This function
assesses the performance of each regression model. After
executing this function with the relevant data set, for each
model mean absolute error, R2 score, root mean square error
and training-test time information are obtained. model is far
ahead of other models with an R2 score of 0.98 and Mean
Square Error (RMSE) and Average Absolute Errors of around
0.1.

Fig. 5. Python Code for assessing the model performance

IV. RESULTS

In this study, seven different regression models were tested
on the same data set. When the performance results of the
models were compared, it was observed that the two models
gave better results than the others.

The performances of the models Ordinary Least Squares,
Lasso Regression, Elastic Net Regression, Ridge Regression,
Bayesian Ridge, K-neighbors Regression, Random Forest Re-
gression are evaluated with the criteria; mean absolute error,
R2 score, root mean square error, and training and testing
times. While the R2 score of the OLS model was 0.10, the
Mean Square Error (RMSE) and Mean Absolute Error (MAE)
values were 8.99 and 2.31, respectively. The estimation suc-
cesses of Elastic Net Regression, Ridge Regression, Bayesian
Ridge Regression models are also very close to these values.
(In the range of RMSE: 8-10, around MAE: 2, R2: around
0.1) Compared to these results, it has been seen that the RFF
model is far ahead of other models with an R2 score of 0.98
and Mean Square Error (RMSE) and Average Absolute Errors
of around 0.1. All the results are given in Figure 6 and the
success criteria curves are represented in Figure 7.

Fig. 6. Performance Results of Regression models

Fig. 7. Regression models’ success criteria (blue: RMSE, red: MAE, orange:
R2 score)

It was concluded that KNN Regression and Random Forest
Regression model are the best 2 model for estimating respira-



tory rate. Among these two models, the model that made the
best estimation is Random Forest Regression. Figure 8 shows
the comparison of the estimated values calculated with the
Random Forest Regression model with the actual values. As
can be seen, the results are very close to each other.

Fig. 8. Comparison of predicted values calculated with Random Forest
Regression model with actual real data

V. CONCLUSION AND FUTURE WORKS

The COVID-19 epidemic that we are experiencing has once
again demonstrated the importance of mobile and remote
health services. Especially thanks to the widespread use of
wearable technological devices and smart phone applications,
it has become much easier to provide such services. Respira-
tory rate measurement has an important place in the observa-
tion of both patient and healthy individuals. As a result of the
comparison performed in the study, it was revealed that the
model that gave the best result in estimating respiratory rate
was Random Forest. It is clear that Random Forest Regression
performs the best on dataset, with a low MSE and high R2
score, closely followed by KNN Regression.

Having established the validity of the Random Forest regres-
sion modelling approach, we plan to establish an end-to-end
connected and intelligent decision support system which is
able to monitor patient remotely in order to observe patients’
vital signs nearly real time on streaming data and will enable
to intervene by predicting a possible deterioration situation.
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