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On the construction of conditional probability densities

in the Brownian and compound Poisson filtrations*

Pavel V. Gapeev� Monique Jeanblanc�

Abstract

In this paper, we construct supermartingales valued in [0, 1] as solutions of an appro-

priate stochastic differential equation on a given reference filtration generated by either a

Brownian motion or a compound Poisson process. Then, by means of the results contained

in [19], it is possible to construct an associated random time on some extended probability

space admitting such a given supermartingale as conditional survival process and we shall

check that this construction (with a particular choice of supermartingale) implies that

Jacod’s equivalence hypothesis, that is, the existence of a family of strictly positive condi-

tional probability densities for the random times with respect to the reference filtration, is

satisfied. We use the components of the multiplicative decomposition of the constructed

supermartingales to provide explicit expressions for the conditional probability densities

of the random times on the Brownian and compound Poisson filtrations.

1 Introduction

In the models of quickest change-point (disorder) detection, one usually starts with the proba-

bility space enhanced with a random time and another source of randomness such as a Brownian

motion or a compound Poisson process. The quickest detection problems seek to determine

stopping times at which the alarms should be sounded to indicate changes in the probabilistic

characteristics of continuously observable stochastic processes. These detection times of alarms
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are sought to be as close as possible to the unknown and unobservable random times of change

in either the drift rate of the observable Brownian motion or the intensity and the jump dis-

tribution of the observable compound Poisson process. In order to solve the problems, the

appropriate stochastic differential equations are derived for the (supermartingale) survival con-

ditional probability processes of the random times or the equivalent (submartingale) posterior

probability process on the given Brownian or compound Poisson reference filtrations. These

processes play the role of sufficient statistics in the appropriate quickest detection problems

with rewards containing a linear combination of the false alarm probabilities and the expected

linear delay penalties. More precisely, the optimal detection times in these problems represent

the first hitting times by either the survival conditional probability or the posterior probability

processes of certain boundaries which are found as solutions of the associated free-boundary

problems for ordinary or partial (integro-)differential (see, e.g. Shiryaev [30] and the references

therein).

In this paper, we proceed in a more natural opposite direction and present a construction

of supermartingales valued in the interval [0, 1] as solutions of certain stochastic differential

equations on the given Brownian or compound Poisson reference filtrations. Then, we apply the

results of Jeanblanc and Song [19] to construct the associated random times on the appropriate

extended probability spaces. These properties lead to the satisfaction of Jacod’s equivalence

hypothesis, that is, to the existence of strictly positive conditional densities for the random

times with respect to the reference filtrations. Such assumptions are usually satisfied in the

classical models of credit risk theory in which the random default times have given strictly

positive conditional densities with respect to the reference filtrations reflecting the information

observable from the associated models of financial markets (see, e.g. Aksamit and Jeanblanc [2]

for further discussions on Jacod’s hypothesis and credit risk models). We provide a multiplica-

tive decomposition for the constructed supermartingale and use the resulting components to

derive the families of the conditional probability densities of the random times on the Brownian

and compound Poisson filtrations.

The paper is organised as follows. We present a general framework for the model in Sec-

tion 2. Then, we construct the appropriate supermartingales in the case of a reference filtration

generated by a Brownian in Section 3, and in the case of a reference filtration generated by a

compound Poisson process in Section 4.

2 The framework

We give a model for constructions of supermartingales valued in [0, 1] with respect to a reference

filtration.

For this purpose, we work on a filtered probability space (Ω,G,F,P), where F is a given (ref-

erence) filtration. We call an F-conditional density any family of strictly positive F-martingales

(p(u) = (pt(u))t≥0;∀u ≥ 0), parameterised by u ∈ [0,∞), such that p is O(F) ⊗ B([0,∞))-
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measurable and ∫ ∞

0

pt(u) du = 1, ∀t ≥ 0 . (2.1)

Actually, there are very few explicit examples of such densities in the literature (see, e.g.

[2, Chapter 4], [7] and [20]). In this paper, we will show how to construct such families

(p(u);∀u ≥ 0) in two cases: when F is a Brownian filtration, and when F is a compound

Poisson filtration. In both cases, we start with a nonnegative bounded F-adapted process

λ = (λt)t≥0 satisfying ∫ t

0

λs ds < ∞, ∀t ≥ 0 ,

∫ ∞

0

λs ds = ∞, (P-a.s.) , (2.2)

and we construct a supermartingale G = (Gt)t≥0 valued in (0, 1] such that G0 = 1 and the

process (Gt exp(
∫ t

0
λsds))t≥0 is a (strictly) positive F-local martingale (see, e.g. [11]). In this

case, using the work of [19], on the extended measurable space (Ω× [0,∞),G ⊗B([0,∞))), one

can construct a positive random variable τ (in fact, τ(ω′, ω′′) = ω′′ ) and a probability measure

Q such that

Q(τ > t | Ft) = Gt, and Q
∣∣
Ft

= P
∣∣
Ft
, ∀t ≥ 0 .

In particular, if W is an (F,P)-standard Brownian motion, it is also an (F,Q)-standard Brow-

nian motion. We recall that Jacod’s equivalence hypothesis holds, if there exists a family of

F-conditional densities (p(u);∀u ≥ 0) such that

Q(τ > u | Ft) =

∫ ∞

u

pt(v) dv, ∀t ≥ 0, ∀u ≥ 0 .

The family of processes (p(u);∀u ≥ 0) is then called the conditional density.

Remark 2.1 We refer the reader to the seminal papers of Jacod [17], Grorud and Pontier [16],

and Amendinger [3], and to the book [2] for more details on Jacod’s hypothesis. Note that

the knowledge of the conditional density allows to give the decomposition of any martingale in

the reference filtration as a semimartingale in the initial (and progressive) enlargement with τ

(see, e.g. [2], [21], [8], [4] and [12]-[13]).

3 The case of a Brownian filtration

In this section, we consider the case in which F is the filtration generated by a standard

Brownian motion W . We use the notation of the framework described in Section 2.

3.1 Supermartingales valued in [0, 1]

Proposition 3.1 Let us consider the stochastic differential equation

dGt = −λtGt dt−Gt(1−Gt) ρt dWt, G0 ∈ (0, 1] , (3.1)
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where λ is a nonnegative F-adapted process such that the condition of (2.2) holds and ρ an

F-adapted process satisfying ∫ t

0

ρ2s ds < ∞, (P-a.s.), ∀t ≥ 0 . (3.2)

Then, the equation in (3.1) admits a (pathwise) unique (continuous) solution G = (Gt)t≥0

which is valued in [0, 1].

Proof: Let us set T1 = inf{t > 0 |Gt = 1} and T0 = inf{t > 0 |Gt = 0} . Obviously, the

equality Gt = 0 holds, ∀t ≥ T0 , and we also have Gt < 1 on {0 < t < T1} . Then, applying Itô’s
formula (see, e.g. [27, Chapter VI, Theorem 1.2]) to the change of variables Φt = (1−Gt)/Gt ,

∀t ≥ 0, we obtain that the stochastic differential equation of (3.1) is equivalent to the one

dΦt =

(
λt (1 + Φt) +

Φ2
t

1 + Φt

ρ2t

)
dt+ Φt ρt dWt, Φ0 ∈ [0,∞) . (3.3)

Assuming that the solution Φ to the equation in (3.3) exists, it is non-negative. Moreover,

since the coefficients of the stochastic differential equation in (3.3) are Lipschitz continuous on

[0,∞) and of a linear growth, it follows from the result of [24, Chapter IV, Theorem 4.8] that

the equation in (3.3) admits a pathwise unique (strong) solution process Φ = (Φt)t≥0 , which

does not explode at any t ≥ 0. In this case, because the process G starts at some G0 ∈ (0, 1],

we may conclude from the structure of the coefficients of the equation in (3.3) for the process

Φ = (1−G)/G that T0 = ∞ (P-a.s.).
Moreover, by means of the comparison results for pathwise solutions of stochastic differential

equations in [25, Theorem 3.2] and [9, Theorem 1], we see that the inequality

Φ0 exp

(∫ t

0

ρs dWs −
1

2

∫ t

0

ρ2s ds

)
≤ Φt, ∀t ≥ 0 , (3.4)

holds. Hence, due to the assumption in (3.2), we see from (3.4) that the process Φ does not

touch 0 after the time 0, when being started at Φ0 ≥ 0. This fact implies that the process

G = 1/(1 + Φ) does not touch 1 after the time 0, so that T1 = ∞ (P-a.s.). □

Remark 3.2 Note that the equation in (3.1) has the same structure as the appropriate stochas-

tic differential equations for the posterior probability processes Π = (Πt)t≥0 of the occurrence

of the random change-point (disorder) time defined by Πt = 1 − Gt , ∀t ≥ 0, in the quickest

change-point detection problems for Wiener and more general diffusion processes studied in [28,

Chapter IV, Section 4] (see also [29, Chapter IV, Section 4], and [26, Chapter VI, Section 22],

as well as [14]-[15]). It is shown in the sources mentioned above that the optimal stopping times

of alarms in the quickest detection problems are given by the first times at which the processes

Π hit boundaries which are determined as solutions to the associated free-boundary problems
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for ordinary or partial differential operators. In the case of observable Wiener processes, the

optimal hitting boundaries for the processes Π are constant on the allowed infinite observation

intervals, but they are time-dependent when the allowed observation time intervals are finite.

In the case of observable more general diffusion processes, the optimal hitting boundaries for

the processes Π depend on the running values of the observation processes.

Remark 3.3 This study is easily extended to the case in which F is still a Brownian filtration,

but the process G = (Gt)t≥0 satisfies the more general that in (3.1) stochastic differential

equation

dGt = −Gt dΛt −Gt(1−Gt) ρt dWt, G0 ∈ (0, 1] , (3.5)

where Λ = (Λt)t≥0 is a positive continuous increasing process started at Λ0 = 0. This is partic-

ularly the case when τ is honest, since, in that case, the dynamics of the process G involves a

local time (see, e.g. [2, Proposition 5.19]). However, an honest time satisfies Jacod’s hypothesis

if and only if it takes countably many values [1, Lemma 4.11]. Therefore, if all supermartingales

of the form (3.1) lead to Jacod’s hypothesis, this is not the case for supermartingales being the

solutions of the stochastic differential equation in (3.5).

We also give another construction of the supermartingale G . Namely, if Y is a positive

continuous supermartingale with the Doob-Meyer decomposition Y = MY − AY , where MY

is a continuous (uniformly integrable) martingale, so that the process G := Y ∧ 1 is a super-

martingale valued in (0, 1]. Then, an application of Tanaka’s formula for semi-martingales [22,

Formula 4.1.15], by virtue of x ∧ y = x− (x− y)+ , leads to

dGt = 11{Yt≤1} dYt −
1

2
dL1

t (Y ), G0 ∈ (0, 1] .

Note that any positive supermartingale admits a multiplicative decomposition Yt = Nte
−Λt ,

∀t ≥ 0. Hence, there exists an F-adapted process ϑ = (ϑt)t≥0 satisfying the integrability

condition ∫ t

0

ϑ2
s ds < ∞, (P-a.s.), ∀t ≥ 0 ,

and such that

dYt = −Yt dΛt − Yt ϑt dWt, Y0 ∈ (0,∞) .

Therefore, we see that

dGt = −Gt

(
11{Yt≤1} dΛt +

1

2
dℓt

)
− 11{Yt≤1}Gt(1−Gt) ρt dWt, G0 ∈ (0, 1] ,

where we have

dℓt =
1

Gt

dL1
t (Y ) and ρt =

ϑt

1−Gt

, ∀t ≥ 0 .

continuous and ρ is square integrable.
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3.2 The multiplicative decomposition for the process G

As we recalled in Section 2 above, the process G = (Gt)t≥0 defined in (3.1) when started at

G0 = 1 admits a multiplicative decomposition Gt = e−ΛtNt , ∀t ≥ 0, where N = (Nt)t≥0

started at N0 = 1 is a continuous local martingale and

Λt =

∫ t

0

λs ds, ∀t ≥ 0 . (3.6)

In this case, the equality Nt = Gte
Λt holds, ∀t ≥ 0, and, according to Itô’s formula, the process

N follows the stochastic differential equation

dNt = −eΛt Gt(1−Gt) ρt dWt = −Nt (1−Gt) ρt dWt, N0 = 1 , (3.7)

and the explicit expression

Nt = exp

(
−

∫ t

0

(1−Gs) ρs dWs −
1

2

∫ t

0

(1−Gs)
2 ρ2s ds

)
, ∀t ≥ 0 . (3.8)

For further use, we define the processes L = (Lt)t≥0 and K = (Kt)t≥0 by the explicit expressions

Lt = exp

(
−

∫ t

0

ρs dWs −
1

2

∫ t

0

ρ2s ds+

∫ t

0

Gs ρ
2
s ds

)
, ∀t ≥ 0 , (3.9)

and

Kt = exp

(∫ t

0

Gs ρs dWs −
1

2

∫ t

0

G2
s ρ

2
s ds

)
, ∀t ≥ 0 , (3.10)

which admit the stochastic differential equation

dLt = −Lt ρt (dWt −Gt ρt dt), L0 = 1 , (3.11)

and

dKt = KtGt ρt dWt, K0 = 1 . (3.12)

By virtue of the integration-by-parts formula, it is straightforward to see from (3.8) and (3.9)-

(3.10) that the equality KtLt = Nt holds, ∀t ≥ 0.

3.3 Strictly positive martingales Mu decreasing w.r.t. u

From [19], we deduce that any solution Ψu = (Ψu
t )t≥u of the problem{

dΨu
t = −Ψu

t (e
−Λt/(1−Gt))dNt, ∀u ≤ t < ∞ ,

Ψu
u = x ,

(3.13)

for any x ∈ [0, 1] and u ≥ 0 fixed, is a martingale, increasing with respect to u ∈ [0,∞) and

is valued in [0, 1]. Here, the components in the equation of (3.13) are given by (3.6) and (3.7).
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For x = 1−Gu fixed, one can construct on an extended probability space (see above), a random

time τ and a probability measure Q such that Q and P coincide on the filtration F = (Ft)t≥0

and Q(τ > u | Ft) = Ψu
t , ∀t ≥ 0, ∀u ≥ 0 fixed (see [19, Section 3] and [23]). Note that

dΨu
t = Ψu

t Gt ρt dWt, ∀t ≥ u , (3.14)

so that, for any u ≥ 0 fixed, we have

Ψu
t = Ψu

u exp

(∫ t

u

Gs ρs dWs −
1

2

∫ t

u

G2
s ρ

2
s dWs

)
, ∀t ≥ u , (3.15)

or

Ψu
t = Ψu

u

Kt

Ku

= Kt
1−Gu

Ku

, ∀t ≥ u . (3.16)

Then, by integration-by-parts formula, after some easy computations, we get

d

(
1−Gu

Ku

)
=

λu

Ku

Gu du , (3.17)

and

Ψu
t = Kt

∫ u

0

λs

Ks

Gs ds, ∀t ≥ u . (3.18)

It follows that Ψu is differentiable w.r.t. u and, for any t ≥ 0 fixed, we have

d

du
Ψu

t = Kt
λu

Ku

Gu = Kt
λu

Ku

e−Λu Ku Lu = Kt λu e
−Λu Lu, ∀t ≥ u . (3.19)

Setting Mu
t = 1−Ψu

t , ∀t ≥ u , ∀u ≥ 0 fixed, we find{
dMu

t = (1−Mu
t )(e

−Λt/(1−Gt))dNt, ∀u ≤ t < ∞
Mu

u = Gu ,
(3.20)

where the process G = (Gt)t≥0 is given by (3.5) and the process N = (Nt)t≥0 admits the

stochastic differential of (3.7). Then, we can show that the following assertion holds.

Proposition 3.4 For any u ≥ 0 fixed, the following expression holds

Mu
t = Nt e

−Λt +Kt

(∫ t

u

Ns

Ks

λs e
−Λs ds

)
, ∀t ≥ u , (3.21)

where the components are given by the formulas in (3.6) and (3.8)-(3.10).

Proof: For any u ≥ 0 fixed, after some algebraic computations, we get that the expressions

dMu
t = Gt(1−Gt) ρt dWt − (Mu

t −Nt e
−Λt)Gt ρt dWt

= −Gt (−1 +Gt +Mu
t −Gt) ρt dWt

= (1−Mu
t )

e−Λt

1−Gt

dNt, ∀t ≥ u , (3.22)
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hold. □

For any 0 ≤ t < u , in order to preserve the martingale property of Mu , we define Mu
t =

E[Mu
u | Ft] = E[Gu | Ft] = E[Nue

−Λu | Ft] . Furthermore, if λ is deterministic and N a true

martingale, we have

Mu
t = Nt e

−Λu ,∀t < u . (3.23)

3.4 The set of conditional probability density processes p(u)

Let us note that, by virtue of (3.19), the family of the conditional probability density processes

(p(u) = (pt(u))t≥0;∀u ≥ 0) with respect to Lebesgue measure is defined by

pt(u) = Kt λu e
−Λu Lu, ∀t ≥ u . (3.24)

We also deduce that

1−Mu
t = Ψu

t = Kt

∫ u

0

λs e
−Λs Ls ds =

∫ u

0

pt(s) ds, ∀t ≥ u , (3.25)

and, for any u ≥ 0 fixed, using the martingale property of p(u), we get

pt(u) = E[Ku λu e
−Λu Lu | Ft] = E[λu Gu | Ft], ∀t ≤ u . (3.26)

Finally, we check that the property in (2.1) holds. For this, we note that the equalities∫ ∞

0

pt(s) ds =

∫ t

0

Kt λs e
−Λs Ls ds+

∫ ∞

t

E[Ks λs e
−Λs Ls | Ft] ds

= Ψt
t +

∫ ∞

t

E[Ns λs e
−Λs | Ft] ds = Ψt

t + E
[ ∫ ∞

t

λs Gs ds

∣∣∣∣Ft

]
, ∀t ≥ 0 , (3.27)

hold and, from the stochastic differential equation satisfied by G in (3.1), we get∫ ∞

t

λs Gs ds = −Gt −
∫ ∞

t

Gs(1−Gs) ρs dWs, ∀t ≥ 0 . (3.28)

If λ is a deterministic function, the process p(u) admits the stochastic differential

dtpt(u) = λue
−Λu

(
11{u<t}Gt Kt Lu − 11{u≥t} (1−Gt)Kt Lt

)
ρt dWt

= pt(u)
(
11{u<t}Gt − 11{u≥t} (1−Gt)

)
ρt dWt, p0(u) = 1 , (3.29)

so that the representation

pt(u) = λue
−Λu exp

(∫ t

0

φs(u) dWs −
1

2

∫ t

0

φ2
s(u) ds

)
, ∀t ≥ 0 , ∀u ≥ 0 , (3.30)

holds with

φt(u) =
(
11{u<t}Gt − 11{u≥t} (1−Gt)

)
ρt =

(
11{u<t} − (1−Gt)

)
ρt, ∀t ≥ 0 , ∀u ≥ 0 . (3.31)
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4 The case of a compound Poisson filtration

In this section, we consider the case in which F is the filtration generated by a compound

Poisson process. We use the notation of the framework described in Sections 2 and 3.

4.1 The conditional probability process

Suppose that there exists a compound Poisson process X = (Xt)t≥0 (or a pure jump Lévy

process) with a finite intensity Lévy measure ν(dx) which is a positive σ -finite measure on

B(R) satisfying the conditions

ν({0}) = 0,

∫ (
x2 ∧ 1

)
ν(dx) < ∞ and

∫
|x| ν(dx) < ∞ . (4.1)

Assume that the process X generates the reference filtration F = (Ft)t≥0 which is complete

under the probability measure P . Note that, in the compound Poisson case with ν(R) < ∞ ,

the process X admits the representation Xt =
∑N ′

t
i=1 Ξi , where N ′ = (N ′

t)t≥0 is a Poisson

process of intensity κ > 0 and (Ξi)i∈N is a sequence of independent identically distributed

random variables with the distribution ν(dx)/κ , where N ′ and (Ξi)i∈N are independent under

P . We denote by µ the jump measure of the process X defined by

µ
(
(0, t]× A

)
=

∑
0<s≤t

11{∆Xs∈A} , ∀t ≥ 0 , (4.2)

for any Borel set A ∈ B(R), where we set ∆Xt = Xt −Xt− , ∀t ≥ 0 (see, e.g. [18, Chapter II,

Section 4]).

Proposition 4.1 Let us consider the stochastic differential equation

dGt = −λtGt− dt−
∫
R

Gt−(1−Gt−)(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν(dx)

)
, G0 ∈ (0, 1] , (4.3)

where λ is a nonnegative F-adapted process such that the conditions of (2.2) hold, and Υ(x)

is a continuous function such that the inequality Υ(x) > 1 holds, ∀x ∈ R, as well as the

conditions ∫
R

(√
Υ(x)− 1

)2

ν(dx) < ∞ and

∫
R
|x|Υ(x) ν(dx) < ∞ (4.4)

are satisfied. (The first condition in (4.4) is used for the equivalent change of probability measure

(see, e.g. [18, Chapter III, Theorem 5.34].) Then, the equation in (4.3) admits a (pathwise)

unique (piecewise-continuous) solution G = (Gt)t≥0 which is valued in [0, 1].

Proof: Let us define T1 = inf{t > 0 |Gt ≥ 1} and T0 = inf{t > 0 |Gt ≤ 0} with the fact, G

being a supermartingale the equality Gt ≤ 0 holds, ∀t ≥ T0 , as well as Gt < 1 on {0 < t < T1} .
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It is shown by means of Itô’s formula (see, e.g. [18, Chapter I, Theorem 4.57]) that the process

Φ = (Φt)t≥0 defined by Φt = (1−Gt)/Gt , ∀t ≥ 0, admits the stochastic differential

dΦt = λt (1 + Φt−) dt (4.5)

+ Φt−

∫
R

(
Υ(x)− 1

)(
µ(dt, dx)− 1 + Φt−

1 + Φt−Υ(x)
dt ν(dx)

)
, Φ0 ∈ [0,∞).

Due to the condition Υ > 1, the solution Φ to the equation in (4.5) is non-negative. Since the

coefficients of this stochastic differential equation in (4.5) are Lipschitz continuous on [0,∞)

and of a linear growth, it follows from the result of [18, Chapter III, Theorem 2.32] that the

equation in (4.5) admits a pathwise unique (strong) solution process Φ = (Φt)t≥0 which does

not explode at any t ≥ 0. In this case, because the process G starts at some G0 ∈ (0, 1],

we may conclude from the structure of the coefficients of the equation in (4.5) for the process

Φ = (1−G)/G that T0 = ∞ (P-a.s.).
Let us now denote by (Sn)n∈N the sequence of jumps of the Poisson process N ′ and put

S0 = 0. Then, we see that, between any two jumps of N ′ , the process Φ follows the equation

dΦt

dt
= λt (1 + Φt−)−

∫
R

Φt−(1 + Φt−)(Υ(x)− 1)

1 + Φt−Υ(x)
ν(dx), ∀t ∈ (Sn−1, Sn] , (4.6)

such that t ∈ [0, T0 ∧ T1] , while, at any jump times of N ′ , we have

ΦSn =
(
Υ(∆XSn)− 1

)
ΦSn− , ∀n ∈ N . (4.7)

Hence, due to the assumptions that Υ(x) > 1 holds, ∀x ∈ R , as well as the conditions in (4.4)

are satisfied, we see from (4.6) and (4.7) that the process Φ does not touch 0 after the time 0,

when being started at Φ0 ≥ 0, so that T1 = ∞ (P-a.s.). □

Remark 4.2 Note that the equation in (4.3) has the same structure as the appropriate stochas-

tic differential equations for the posterior probability process Π = (Πt)t≥0 of the occurrence

of the random change-point (disorder) time defined by Πt = 1 − Gt , ∀t ≥ 0, in the quickest

change-point detection problems for a compound Poisson process studied in [10], [6], and [5]. It

is shown in the sources mentioned above that the optimal stopping times of alarms in the quick-

est detection problem are given by the first times at which the processes Π hit boundaries which

are determined as solutions to the associated free-boundary problems for integro-differential op-

erators. In the case of observable compound Poisson processes, the optimal hitting boundaries

for the processes Π are constant on the allowed infinite observation time intervals.

4.2 The multiplicative decomposition for the process G

In this setting, the process G = (Gt)t≥0 defined in (4.3) when started at G0 = 1 also admits a

multiplicative decomposition Gt = e−ΛtNt , ∀t ≥ 0, where N = (Nt)t≥0 started at N0 = 1 is
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a piecewise-continuous local martingale and Λ = (Λt)t≥0 , given by (3.6) is continuous, hence

it is predictable. In this case, the equality Nt = Gte
Λt holds, ∀t ≥ 0, and, according to

Itô’s formula, similar to the formulas in (3.7)-(3.8) above, the process N admits the stochastic

differentials

dNt = −eΛt Gt−(1−Gt−)

∫
R

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν(dx)

)
= −Nt− (1−Gt−)

∫
R

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν(dx)

)
, N0 = 1 , (4.8)

and the explicit expression

Nt = exp

(
−

∫ t

0

∫
R
ln
(
1 + (1−Gt−)(Υ(x)− 1)

)
µ(ds, dx) (4.9)

+

∫ t

0

∫
R

(1−Gs−)(Υ(x)− 1)

1 + (1−Gs−)(Υ(x)− 1)
ds ν(dx)

)
, ∀t ≥ 0 .

Similar to the formulas in (3.9)-(3.12) above, we define the processes L = (Lt)t≥0 and K =

(Kt)t≥0 by the explicit expressions

Lt = exp

(
−

∫ t

0

∫
R
ln
(
Υ(x)

)
µ(ds, dx) (4.10)

+

∫ t

0

∫
R

Υ(x)− 1

1 + (1−Gs−)(Υ(x)− 1)
ds ν(dx)

)
, ∀t ≥ 0 ,

and

Kt = exp

(∫ t

0

∫
R
ln

(
Υ(x)

1 + (1−Gs−)(Υ(x)− 1)

)
µ(ds, dx) (4.11)

−
∫ t

0

∫
R

Gs−(Υ(x)− 1)

1 + (1−Gs−)(Υ(x)− 1)
ds ν(dx)

)
, ∀t ≥ 0 ,

which admit the stochastic differentials

dLt = Lt−

∫
R

(
1

Υ(x)
− 1

)(
µ(dt, dx)− Υ(x)

1 + (1−Gt−)(Υ(x)− 1)
dt ν(dx)

)
, L0 = 1 , (4.12)

and

dKt = Kt−

∫
R

Gt−(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν(dx)

)
, K0 = 1 . (4.13)

By virtue of the integration-by-parts formula, it is straightforward to see from (4.9) and (4.10)-

(4.11) that the equality KtLt = Nt holds, ∀t ≥ 0.
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4.3 Strictly positive martingales Mu decreasing w.r.t. u

In this setting, from [19], we also deduce that any solution Ψu = (Ψu
t )t≥u of the problem{

dΨu
t = −Ψu

t−(e
−Λt/(1−Gt−))dNt, ∀u ≤ t < ∞ ,

Ψu
u = x ,

(4.14)

for any x ∈ [0, 1] and u ≥ 0 fixed, is a martingale, increasing with respect to u ∈ [0,∞) and

is valued in [0, 1]. Here, the components in the equation of (3.13) are given by (3.6) and (4.8).

For x = 1−Gu fixed, one can construct on an extended probability space (see above), a random

time τ and a probability measure Q such that Q and P coincide on the filtration F = (Ft)t≥0

and Q(τ > u | Ft) = Ψu
t , ∀t ≥ 0, ∀u ≥ 0 fixed (see [19, Section 3] and [23]). Note that

dΨu
t = Ψu

t−

∫
R

Gt−(Υ(x)− 1)

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν(dx)

)
, ∀t ≥ u , (4.15)

so that, for any u ≥ 0 fixed, we have

Ψu
t = Ψu

u exp

(∫ t

u

∫
R
ln

(
Υ(x)

1 + (1−Gs−)(Υ(x)− 1)

)
µ(ds, dx) (4.16)

−
∫ t

u

∫
R

Gs−(Υ(x)− 1)

1 + (1−Gs−)(Υ(x)− 1)
ds ν(dx)

)
, ∀t ≥ u ,

and thus, the expressions in (3.16)-(3.19) hold with K = (Kt)t≥0 and L = (Lt)t≥0 given by

(4.10) and (4.11). Similarly, setting Mu
t = 1−Ψu

t , ∀t ≥ u , ∀u ≥ 0 fixed, we find{
dMu

t = (1−Mu
t−)(e

−Λt/(1−Gt−))dNt, ∀u ≤ t < ∞
Mu

u = Gu ,
(4.17)

where the process G = (Gt)t≥0 is given by (4.3) and the process N = (Nt)t≥0 admits the

stochastic differential of (4.8). Then, we can show that the following assertion holds, which is

proved by means of arguments similar to the ones used in Proposition 3.4 above.

Proposition 4.3 For any u ≥ 0 fixed, the same expression as in (3.21) holds, where the

components are given by the formulas in (3.6) and (4.9)-(4.11).

4.4 The set of conditional probability density processes p(u)

Let us finally recall the family of the conditional probability density processes (p(u) =

(pt(u))t≥0; ∀u ≥ 0) which are also defined as in (3.24). It is shown by means of standard

arguments that the expressions of (3.25)-(3.27) hold in this setting, while the expression in

(3.28) takes the form∫ ∞

t

λsGs− ds = −Gt−
∫ ∞

t

∫
R

Gs−(1−Gs−)(Υ(x)− 1)

1 + (1−Gs−)(Υ(x)− 1)

(
µ(ds, dx)−ds ν(dx)

)
, ∀t ≥ 0 . (4.18)
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We also note that if λ is a deterministic function, the process p(u) admits the stochastic

differential

dpt(u) = λue
−Λu

(
11{u<t}Gt−Kt−Lu − 11{u≥t} (1−Gt−)Kt−Lt−

)
×

∫
R

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν(dx)

)
= pt−(u)

(
11{u<t}Gt− − 11{u≥t} (1−Gt−)

)
(4.19)

×
∫
R

Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

(
µ(dt, dx)− dt ν(dx)

)
, p0(u) = 1 ,

so that the representation

pt(u) = λue
−Λu (4.20)

× exp

(∫ t

0

∫
R
ln
(
1 + ξs−(u, x)

)
µ(ds, dx)−

∫ t

0

∫
R
ξs−(u, x) ds ν(dx)

)
, ∀t ≥ 0 , ∀u ≥ 0 ,

holds with

ξt−(u, x) =
(
11{u<t}Gt− − 11{u≥t} (1−Gt−)

) Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)

=
(
11{u<t} − (1−Gt−)

) Υ(x)− 1

1 + (1−Gt−)(Υ(x)− 1)
, ∀t ≥ 0 , ∀u ≥ 0 . (4.21)
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