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Abstract

This work proposes a redesign method for nonlinear observers to reduce the effect of a particular class of output
disturbances. Specifically, it is considered a disturbance composed by a term generated from a known system and an
unstructured term. The proposed approach does not require modifying the original observer and is based on adding
a simple filter that includes an internal model of the disturbance generator. Sufficient conditions for stability of the
proposed filter-observer architecture are given. Moreover, the approach is validated through numerical simulations.

1. Introduction

Many control and monitoring problems require an es-
timate of the state variables from the available measure-
ments. In such scenarios, it is common to design and im-
plement an observer [1]. One of the major limiting factors
of the performances of an observer is the presence of sen-
sor noise [2], which yields a well-known trade-off between
convergence rate and noise attenuation.

The effect of noise can be attenuated through a suitable
tuning of the observer parameters as, for instance, in the
Kalman filter approach [3], or by combining a minimiza-
tion of theH∞/L2 input-output gain and the bounded real
lemma [4]. Alternatively, one can couple the observer with
a system that filters-out some spectral components of the
output error signal. An example of this methodology is
the Proportional-Integral observer [5–7], which combines
the output-estimation error with its integral, see also the
extensions [8, 9] to more general low-pass filters. Recently,
[10] proposed the use of nonlinear dynamic dead-zones or
dynamic saturations.

The mentioned approaches only achieve a reduction of
the effect of output disturbances. A stronger result can be
obtained if there is a known generating model of the output
disturbance [11]. In such case, the generating model can
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be included in the observer in order to exactly cancel the
disturbance. In the presence of a generating model, here
referred to as the exosystem, it is common to consider an
extended system composed by the original system and the
exosystem, and to design an observer that jointly estimates
the states of the original system and exosystem [11]. How-
ever, this approach is not easily extendable to nonlinear
systems, where the existence of an observer for the origi-
nal system does not guarantee that of an observer for the
extended system. With this in mind, the objective of this
work is to interconnect an existing observer with a sys-
tem that perfectly cancels the output disturbance without
requiring any redesign of the original observer.

There exists a large literature on design methodolo-
gies to compensate disturbances with a known generat-
ing model affecting the measured output. Some remark-
able examples are [12–14], where adaptive controllers are
proposed to solve a stabilization problem in the presence
of harmonic disturbances. Alternatively, [15] presents an
adaptive observer to estimate the output disturbance of
a linear system. Nonetheless, to the best of the authors’
knowledge, this work considers a different problem that
has not been previously studied in the literature. That
is, the case where a (possibly nonlinear) observer is al-
ready given and the objective is to compensate a particu-
lar disturbance without modifying the observer structure
or gain tuning. Such an extra constraint is motivated by
possible applications that go beyond the mere scope of
observers design, such as distributed multi-agent systems
[16] or cyber-security problems [17], in which completely
redesigning the given feedback controller could be critical
or not allowed due to practical constraints.

More precisely, this work proposes an alternative route
to embed the exosystem in the observer with a modular
approach. First, we assume that an observer for the sys-
tem in nominal conditions, i.e. in the absence of the mea-
surement disturbance, is known. Second, the observer is
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connected in cascade with a filter that includes the gener-
ating model of the disturbances. The design of the filter
follows from an internal model based philosophy [18] in or-
der to exactly cancel the output disturbance. We consider
nonlinear plants and observers [1] satisfying an incremen-
tal passivity assumption [19]. Additionally, this work re-
lies on the property of incremental input-to-state stability
(δISS) [20]. A definition of these properties is given at the
end of this section.

Notation: |x| denotes the Euclidean norm; Ik denotes
the identity matrix of dimension k; sups∈[0,t] |u(s)| denotes
the supremum norm of u(s) in the interval [0, t]; rank(A)
and σ(A) denote the rank and the spectrum of matrix
A, respectively. By blckdiag(·) we denote block-diagonal
concatenations. R denotes the set of real numbers, R≥0 :=
[0,∞) C denotes the of complex numbers, C− := {s ∈ C :
ℜ(s) ≤ 0} C+ := {s ∈ C : ℜ(s) ≥ 0}, and ⋆ denotes
the off-diagonal elements of a symmetric matrix. For the
definition and properties of class K and KL functions, we
refer to [21].

Consider a system of the form

ẋ = f(x, d), (1)

where x ∈ Rnx is the state, d ∈ D ⊂ Rnu is a known
measurable and locally essentially bounded signal taking
values in a compact set D, and f is locally Lipschitz in its
first argument. We have the following definition [20].

Definition 1 (Incremental input-to-state stability). Sys-
tem (1) is δISS with respect to the input d if there exist
β ∈ KL and ρ ∈ K such that, for every two solutions x
and x′ to (1) subject to inputs d and d′, the following holds
for all t ≥ 0

|x(t)−x′(t)| ≤ β(|x(0)−x′(0)|, t)+ sup
s∈[0,t)

ρ
(
|d(s)−d′(s)|

)
.

Consider now the system

ẋ = f(x) +Bu

y = Cx,
(2)

where x ∈ Rnx is the state, y ∈ Rny is the measured out-
put, and u ∈ U ⊂ Rnu is a bounded input. The function
f is sufficiently smooth in its argument. We have the fol-
lowing definition [19].

Definition 2 (Incremental passivity). System (2) is in-
crementally passive from u to y if there exists a C1 stor-
age function S(x, x′) such that for every pair of inputs
u, u′ ∈ U and any pair (x, x′) of solutions of (2) corre-
sponding to these inputs, with corresponding outputs y, y′,
the following is satisfied

Ṡ ≤ (y − y′)⊤(u− u′).

For systems of the form (2), there exists a sufficient
condition to verify incremental passivity in the form of

a matrix inequality [19, Lemma 3]. Specifically, if the fol-
lowing holds for some symmetric positive definite matrix
P ∈ Rnx×nx and for all x ∈ Rnx

P
∂f

∂x
(x) +

∂f

∂x
(x)⊤P ⪯ 0

PB = C⊤,

then, the system is incrementally passive from u to y with
a storage function S = (x− x′)⊤P (x− x′).

2. Problem Formulation

2.1. Framework

This work considers the multi-output nonlinear system

ẋ = f(x, u)

y = Cx+ d,
(3)

where x ∈ Rnx is the state, u ∈ Rnu is a known control
input, y ∈ Rny is the measured output, d ∈ Rny is an
unknown output disturbance, and f is a locally Lipschitz
function in its first argument. A standing assumption in
this work is that the states of the system and the distur-
bances are bounded.

Assumption 1. The disturbance d and the control input
u are Lebesgue measurable and bounded. In particular,
d(t) ∈ D and u(t) ∈ U for all t ≥ 0, for some compact sets
D ⊂ Rny and U ⊂ Rnu .

Assumption 2. There exists a compact set X0 ⊂ Rnx

that is forward invariant for system (3) for every input u
satisfying Assumption 1.

In this work, we restrict ourselves to initial conditions
of the system (3) in X0 ⊂ Rnx .

To ease certain parts of the presentation, some condi-
tions will be particularized to the case of linear systems.
In such a context, system (3) takes the form

ẋ = Ax+Bu

y = Cx+ d,
(4)

for some matrices A,B,C of suitable dimension.
We suppose that we are given an observer of the form

˙̂x = f(x̂, u) + κ(x̂, y − Cx̂), (5)

in which x̂ ∈ Rnx is the estimation of the state, and κ
denotes the output injection term, satisfying κ(x̂, 0) = 0
for all x̂ ∈ Rnx . Under Assumptions 1 and 2, we assume
that the observer ensures global exponential stability of
the error variable x̂ − x, uniformly in u, and satisfies an
input-to-state stability property with respect to the output
disturbance d, namely the following holds

|x(t)− x̂(t)| ≤ ke−λt|x(0)− x̂(0)|+ sup
s∈[0,t]

ρ(|d(s)|)
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for all t ≥ 0, for every pair of initial conditions
(x(0), x̂(0)) ∈ X0 × Rnx , for some class K function ρ,
and for some constants k, λ > 0. Typical examples of ob-
servers that fit such a framework are the high-gain observer
[22, 23], observers derived from LMIs or circle-criterion ap-
proaches [24, 25] and observers derived from a dissipativity
condition [26]. See also [1, Section 4] for more references.

We assume that the plant’s dynamics and the observer
dynamics are expressed in the same set of coordinates.
However, this is not always the case, as often the observer
dynamics lives in a space of larger dimension. If this is
the case, one can suppose that the plant’s dynamics are
expressed in the same coordinates of the observer and then
develop the following result in such a coordinates. See,
e.g., [1, Section 8].

We suppose that the output disturbance d is modeled as
the sum of a signal composed by a finite sum of sinusoids
and a term v representing unstructured bounded noise,
namely

dj(t) =

Nd∑
i=1

dj,i sin(ωit+ φj,i) + vj(t), j = 1, . . . , ny,

where dj and vj denote the j-th components of d and v,
respectively. The disturbance can be therefore assumed to
be generated by an exosystem of the form

ẇ = Φw, d = Γ⊤w + v. (6)

where w ∈ Rnw is the exosystem state, the matrix Φ is
such that σ(Φ) = {±jωi : i = 1, . . . , Nd}, and the pair
(Φ,Γ⊤) is observable. Since the particular representation
of Φ,Γ does not play any role for the forthcoming results,
without loss of generality we can assume that Φ and Γ
have the following form

Φ = blkdiag(ϕ, . . . , ϕ︸ ︷︷ ︸
ny times

), Γ = blkdiag(γ, . . . , γ︸ ︷︷ ︸
ny times

), (7)

with ϕ, γ such that

ϕ = blkdiag(ϕ1, . . . , ϕNd
), ϕi =

[
0 ωi

−ωi 0

]
,

γ =
[
g⊤ . . . g⊤

]⊤
, g =

[
0 1

]
.

Note that if one considers ωi = 0, then, the corresponding
block dimension is 1, and in this case ϕi = 0, g = 1.
The objective of this article is to augment the observer

(5) with a disturbance compensator to guarantee that the
state estimation error converges asymptotically to a bound
that only depends on the unstructured term of the noise,
namely, for some class K function ρ, we have

lim sup
t→∞

|x(t)− x̂(t)| ≤ sup
s∈[0,∞)

ρ(|v(s)|). (8)

As anticipated in the introduction, a direct method to
solve this problem would be to consider an extended sys-

tem that includes the disturbance dynamics

ẋ = f(x, u)

ẇ = Φw

y = Cx+ Γ⊤w + v,

(9)

and design an observer for the resulting system (9). Al-
though this is a perfectly valid approach for linear sys-
tems, it cannot be easily extended to the nonlinear case.
First, the existence of an observer for the original system
(3) does not guarantee, in general, the existence of an ob-
server for the extended dynamics (9). Indeed, nonlinear
observer design commonly relies on structural assumptions
that may be lost in the extended dynamics (9). There-
fore, even if it is possible to implement a certain nonlinear
observer technique in the original system, it is not guar-
anteed that the same technique can be implemented for
the extended system. Second, this approach does not take
particular advantage of the previous existence of an ob-
server. To overcome these limitations, this work proposes
a solution following a modular perspective. Specifically,
we follow a strategy based on an internal model approach
[18]. The main idea is to connect in cascade the already
designed observer with a filter that includes an internal
model of the disturbance generator. Similar filters can be
found in previous literature of control and signal process-
ing. Some remarkable examples are the “notch filter” [27]
or the “washout filter” in the context of pre-processing
output regulation [28]. Nonetheless, to the best of our
knowledge, these results have not been implemented in
the observer case. It should be remarked that this work
follows a modular philosophy. That is, we assume that
the already designed observer (5), and in particular the
structure of its gain κ cannot be modified.

2.2. Filter design

The proposed filter is designed as

η̇ = Ψη + Γ(y − Cx̂)

z = (y − Cx̂)− Γ⊤η
(10)

where η(t) ∈ Rnη is the state of the filter, partitioned as
η = (η1, . . . , ηny

), with ηi(t) ∈ R2Nd , z(t) ∈ Rny is the
filter’s output and the matrix Ψ is selected as

Ψ = Φ− ΓΓ⊤ = blkdiag(ϕ− γγ⊤, . . . , ϕ− γγ⊤︸ ︷︷ ︸
ny times

). (11)

The proposed internal model filter can be understood as
a “bank” of identical filters, each one acting on a different
output component. Specifically, consider the decomposi-
tion y = (y1, y2, . . . , yny ), where yi ∈ R for i = 1, . . . , ny.
Then, (10) reads as

η̇i = (ϕ− γγ⊤)ηi + γ(yi − ŷi)

zi = (yi − ŷi)− γ⊤ηi,
∀i = 1, . . . , ny,
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where ŷi is the estimation of the ith component of the
output produced by the observer (5).

Note that, by construction, the matrix Ψ is Hurwitz.
The latter is a direct consequence of the fact that ϕ is skew-
symmetric and (Φ,Γ) is controllable. To interconnect the
filter (10) and the observer (5), we substitute in the output
injection term of the observer (5) the error signal ỹ with
the filtered output z. This gives the modified observer

˙̂x = f(x̂, u) + κ(x̂, z). (12)

To better understand the motivation of the internal model
filter (10), notice that such a filter is a relative degree zero
linear system that has the zeros placed at the eigenvalues
of Φ. Intuitively, the presence of a zero in the filter im-
plies that the signal z cannot have any spectral component
at such a frequency. Therefore, as the zeros of the filter
are placed at the eigenvalues of Φ, the modelled part of
the output disturbance d does not have any effect on the
steady-state estimation. Hence, the desired disturbance
rejection problem is solved if the overall observer (10),(12)
still possesses good convergence properties. This result is
formalized in the next sections.

3. Asymptotic Analysis

The overall filtered observer (10), (12) reads

˙̂x = f(x̂, u) + κ(x̂, Cx− Cx̂− Γ⊤η + d)

η̇ = Ψη + Γ(Cx− Cx̂+ d).
(13)

The objective of this section is to prove that, under an ad-
ditional assumption given below, the observer (13) rejects
the disturbance generated by the exosystem (6).

Assumption 3. Under Assumptions 1 and 2, system (13)
is δISS with respect to the disturbance d, uniformly in u
and x. Namely, there exist β ∈ KL and ρ ∈ K such that,
for every input u and every two inputs d and d′ satisfy-
ing Assumption 1, every solution x to (3) originating in
X0 and corresponding to u, and every two solutions (x̂, η)
and (x̂′, η′) of (13) corresponding to (u, x, d) and (u, x, d′),
respectively, the following holds

|(x̂(t), η(t))− (x̂′(t), η′(t))| ≤
β(|(x̂(0), η(0))− (x̂′(0), η′(0))|, t)

+ sup
s∈[0,t)

ρ
(
|d(s)− d′(s)|

)
(14)

for all t ≥ 0.

Assumption 3 is a strong incremental stability condition
requiring that the gains of the filter (10) have been selected
so as to strengthen the ISS properties of the original ob-
server (5) to a stricter δISS property (see Definition 1) with
respect to the disturbance d. While Assumption 3 may
not be satisfied for all filter-observer interconnections [20],

Section 4 provides sufficient and constructive conditions to
design a filter such that Assumption 3 holds.

We now present the main result of the article, showing
that the solutions to the filtered observer (13) satisfy the
asymptotic bound property (8).

Theorem 1. Consider system (3) and the filtered ob-
server (13) subject to the input d satisfying (6). Suppose
that Assumptions 1-3 hold. Then, every solution of (3),
(6), (13) with x originating in X0 satisfies (8), in which ρ
is the same function for which Assumption 3 holds.

Proof. System (3), (6), (13) reads as

ẇ = Φw

ẋ = f(x, u)

˙̂x = f(x̂, u) + κ(x̂, Cx− Cx̂− Γ⊤η + Γ⊤w + v)

η̇ = Ψη + Γ(Cx− Cx̂+ Γ⊤w + v).

(15)

Pick arbitrarily a solution pair ((w, x, x̂, η), v) to (15), and
consider the signals

x̂ss(·) := x(·), ηss(·) := w(·). (16)

Simple computations show that ((w, x, x̂ss, ηss), 0)
(namely, obtained for the same (w, x) and with v = 0) is
a solution pair of (15) as well. Indeed for such a choice
one obtains κ(t, x̂ss, 0) = 0 in the x̂ss-dynamics, that is
˙̂xss = f(x̂ss, u), while the ηss-dynamics reads η̇ss = Φηss,
due to the definition of Ψ in (11). In other words, (16)
is a solution to (15) for v = 0. As a consequence, direct
application of the inequality (14) in which x̂′ = x̂ss = x,
η′ = ηss = w, d = Γ⊤w + v and d′ = Γ⊤w yields

|(x̂(t), η(t))− (x(t), w(t))| ≤
β(|(x̂(0), η(0))− (x(0), w(0))|, t) + sup

s∈[0,t)

ρ
(
|v(s)|

)
,

from which (8) directly follows.

To better understand the ideas underlying the proposed
design, we now particularize the result to the linear case.
In particular, we consider a linear system of the form (4).
In this case, the observer (5) reads

˙̂x = Ax̂+Bu(t) + L(y − Cx̂) (17)

where L ∈ Rnx×ny is designed so that (A−LC) is Hurwitz.
In this linear context, the closed-loop system (13) reads

˙̂x = Ax̂+Bu(t) + L(y − Cx̂+ d)− LΓ⊤η

η̇ = Ψη + Γ(y − Cx̂+ d).
(18)

Note that due to linearity, a δISS property is equivalent
to asymptotic stability. Thus, in this context, the result
of Theorem 2 reads as follows.
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Corollary 1. Consider the linear system (4) and the fil-
tered observer (18), and suppose that the following matrix

Acl =

[
A− LC LΓ⊤

ΓC Ψ

]
is Hurwitz. Then, every solution of (3), (6), (18) satis-
fies (8).

The proof is omitted for reasons of space. Note that for
linear systems we do not need the boundedness conditions
in Assumptions 1 and 2.

4. Sufficient passivity-based stability conditions

The previous asymptotic analysis is based on the as-
sumption that the filter-observer architecture satisfies the
δISS property of Assumption 3. The aim of this section
is to develop constructive conditions for filter design such
that the bound in Assumption 3 is satisfied.

Note that it is not easy to study the interconnection
(10), (12) and standard small-gain arguments would in
general fail to work, because the H∞ gain of the filter (10)
can not be tuned, and it is equal to 1. For instance, in the
context of linear systems the small-gain condition would
require the matrix A in (4) to be Hurwitz1. As a con-
sequence, we rely in this section on passivity arguments.
To do so, it is convenient to include an additional set of
assumptions. It should be remarked that the next assump-
tions are sufficient to obtain a constructive methodology,
but are not necessary for the filter-observer stability.

4.1. Sufficient conditions

In the first assumption we provide sufficient condition
for the observer (12) to be incremental passivity from z to
ŷ as presented in Definition 2.

Assumption 4. There exists a pair of symmetric positive
definite matrices P, P̄ ∈ Rn×n such that for some q̄, ℓ > 0,
system (3) satisfies

P
∂f

∂x
(x, u) +

∂f

∂x
(x, u)⊤P ⪯ 0, (19)

P̄
∂f

∂x
(x, u) +

∂f

∂x
(x, u)⊤P̄ − ℓC⊤C ⪯ −q̄P̄ , (20)

for all x ∈ Rnx , and all u ∈ U .

Inequality (19) implies that the plant dynamics (3) is in-
crementally dissipative according to the notion introduced
in [19]. Additionally, (19) is a sufficient condition to satisfy
the boundedness requirement in Assumption 2, as shown
in the next subsection.

1Note that, in this case, the overall goal could be simply solved
by taking L = 0 as output injection gain so that to obtain an expo-
nentially stable observer not affected by any output disturbance.

Remark 1. In the linear case, a necessary and sufficient
condition for (19) is that σ(A) ⊂ C−.

Now consider that the output injection gain κ is selected
as

κ(x̂, y − Cx̂) = ℓP−1C⊤(y − Cx̂). (21)

Then, combining (21) with inequality (19), we can show
that the dynamics in (12) are incrementally passive (see
Definition 2) from the input z to the output y with the
constant metric P . In order to ease the presentation, we
assume ℓ = 1 in the rest of the section.

In parallel, the inequality (20) is a differential detectabil-
ity condition (with constant metric) as developed for in-
stance in [29, 30], see also [1, Section 4]. Inequality (20)
combined with a LaSalle-type argument (or [31]) is suffi-
cient to show that observer (5), with the output injection
gain κ selected as in (21), is a convergent observer.

We stress that Assumption 4 provides a sufficient con-
dition to develop the next stability analysis, but it is not
necessary as shown by a counterexample in Section 5.

Assumption 5. The extended system

ξ̇ = F (ξ, u) =

[
f(x, u)
Φη

]
, ξ =

[
x
η

]
(22)

ζ = Hξ =
[
C Γ⊤] ξ,

with state ξ and output ζ, is differentially detectable,
namely there exists a symmetric positive definite matrix
Q = Q⊤ > 0 and µ, q > 0 such that

Q
∂F

∂ξ
(ξ, u) +

∂F

∂ξ
(ξ, u)⊤Q− 2µH⊤H ⪯ −qI (23)

for all ξ ∈ Rnx+nη and all u ∈ U .

Assumption 5 imposes a minimal observability condition
on the extended dynamics (9). Clearly, such a condition is
necessary to distinguish between the state trajectories and
the output disturbances; the objective of the system (10)
is to filter the effect of the disturbance d without losing
useful information from y needed to recover the estimate
of the full state x. We stress that the knowledge of the
matrix Q is needed only for analysis purposes but not for
design.

To better understand the implications of Assumption 5,
it is convenient to particularize it in the linear case sce-
nario, i.e., for systems of the form (4). Indeed, in the
linear case, Assumption 5 implies that the unstable modes
of A and Φ are observable from y. Precisely, based on the
results in [32] and standard Hautus (PBH) test, and the
fact that the pair (Φ,Γ⊤) is observable, it can be deduced
that the extended system (22) system is detectable if

rank

A− sI 0
0 Φ− sI
C Γ⊤

 = nx + nη, ∀s ∈ C+. (24)

Note that equation (24) reduces to the following disjoint
spectrum condition σ(A) ∩ σ(Φ) = ∅, which is similar to
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the non-resonance condition of other internal model based
designs [18].

As a last remark, it is worth noticing that different no-
tions of non-resonance condition (although very similar
from a conceptual point of view and completely equivalent
in the linear case) have been proposed in [28, Assumption
5], [33, Proposition 3] or [34].

4.2. Checking Assumptions 4 and 5

Notice that Assumptions 4 and 5 require solving a set of
matrix inequalities that depend on the state x and input
u. That is, they require solving an infinite set of LMIs.
Nonetheless, we can obtain a finite set of LMIs through
convex relaxation, see e.g. [35]. Specifically, let A :=
{A1, . . . , AN} be a family of matrices in Rnx such that
∂f
∂x (x, u) ∈ ConvexHull(A) for all (x, u). Then, at each

(x, u) we have that
∂f

∂x
(x, u) =

∑N
i=1 ϱi(x, u)Ai, for some

ϱi(x, u) such that
∑N

i=1 ϱi(x, u) = 1 for all (x, u). With
this in mind, inequality (19) reads as

N∑
i=1

ϱi(x, u)
(
PAi +A⊤

i P
)
⪯ 0.

Consequently, any symmetric positive definite matrix P
that is a solution of

PAi +A⊤
i P ⪯ 0, i = 1, . . . , N

is also a solution of (19). Then, (20) and Assumption 5
can be analyzed similarly.

4.3. Stability Analysis

The main result of this section is formalized as follows.

Theorem 2. Let Assumptions 1, 4 and 5 hold, and the
observer feedback term being (21). Then, Assumptions 2
and 3 are satisfied.

Proof. First, recall the following identity

g(1)− g(0) =

∫ 1

0

∂g

∂s
(s)ds

valid for any C1 function g : R → R. Hence, by denoting
g(s) := f(x̂+ (s− 1)x̃, u), where x̃ := x− x̂, we get

f(x̂, u)−f(x̂−x̃, u) =
(∫ 1

0

∂f

∂x
(x̂+(s−1)x̃, u)ds

)
x̃ (25)

for all x̂, x̃ ∈ Rnx and u ∈ Rnu . Similar derivations will be
used all throughout the proof. We start by showing that
Assumption 2 holds. To this end, consider the Lyapunov
function V = x⊤Px with P given by (19). Differentiating
along solutions and using (25) we obtain

V̇ = 2x⊤Pf(x, u) = 2x⊤P

(∫ 1

0

∂f

∂x
(sx, u)ds

)
x

≤ x⊤
[ ∫ 1

0

(
P
∂f

∂x
(sx, u) +

∂f

∂x
(sx, u)⊤P

)
ds

]
x ≤ 0 ,

where the last inequality comes from (19). We conclude
that the set X0 = {x⊤Px ≤ c}, c = supx∈X0

|x⊤Px| is
forward invariant.

Next, consider any two solution pairs (x̂, η) and (x̂′, η′)
to system (13) with the output injection gain (21), denote

e :=

[
x̃
η̃

]
=

[
x̂− x̂′

η − η′

]
, δ := d− d′,

and define ξ̂ =

[
x̂
η

]
. The e-dynamics evolves according to

˙̃x = ψ(x̂, x̃, u)− LCx̃− LΓ⊤η̃ + Lδ

˙̃η = (Φ− ΓΓ⊤)η̃ − ΓCx̃+ Γδ
(26)

with L = P−1C⊤ and ψ(x̂, x̃, u) := f(x̂, u) − f(x̂ − x̃, u),
or, in compact notation,

ė = Θ(ξ̂, e, u)−KHe+Kδ (27)

with

H :=
[
C Γ⊤] , K :=

[
L
Γ

]
,

Θ(ξ̂, e, u) := F (ξ̂, u)− F (ξ̂ − e, u), F (ξ, u) :=

[
f(x, u)
Φη

]
.

Consider the Lyapunov function

V =
1

2
x̃⊤Px̃+

1

2
η̃⊤η̃. (28)

The derivative of the first term Vx = 1
2 x̃

⊤Px̃ along the
solutions to (26) gives

V̇x = x̃⊤P
(
ψ(x̂, x̃, u)− LCx̃− LΓ⊤η̃ + Lδ

)
.

Using Assumption 4, we have the following property

x̃⊤Pψ(x̂, x̃, u) ≤ 0. (29)

Indeed,

2x̃⊤P [f(x̂, u)− f(x̂− x̃, u)]

= 2x̃⊤P

(∫ 1

0

∂f

∂x
(x̂+ (s− 1)x̃, u)ds

)
x̃

= x̃⊤
[∫ 1

0

(
P
∂f

∂x
((x̃′, s), u) +

∂f⊤

∂x
((x̃′, s), u)P

)
ds

]
x̃,

where in the second step we used the identity (25) and
in the third step we used the compact notation (x̃′, s) for
x̃′ = x̂+(s−1)x̃. Thus, (29) follows from (19). Then, since
in view of (21), PL = C⊤, the derivative of Vx satisfies

V̇x ≤ −x̃⊤C⊤(Cx̃+ Γ⊤η̃ − δ). (30)

Next, we compute the derivative of the second term Vη =
1
2 η̃

⊤η̃. Recalling the skew-symmetric properties of the ma-
trix Φ, we have

V̇η = η̃⊤[(Φη̃ − ΓΓ⊤)η̃ − ΓCx̃+ Γδ]

= −η̃⊤Γ(Γ⊤η̃ + Cx̃− δ). (31)
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Combining inequalities (30) and (31), we finally obtain

V̇ = V̇x + V̇η ≤ −(η̃⊤Γ + x̃⊤C⊤)(Γ⊤η̃ + Cx̃− δ)

≤ −|He|2 + |He| |δ| . (32)

The next steps consists on “strictifying” the Lyapunov
function V in order to derive the incremental input-to-
state stability condition. To derive a strict Lyapunov func-
tion, we follow the observer-based approach proposed in
[31]. Specifically, consider the Lyapunov function U(e) =
e⊤Qe together with Assumption 5 and (23). Then, the
derivative of U(e) along the solutions of (27) gives

U̇ = 2e⊤Q(Θ(ξ̂, e, u)−KHe+Kδ)

= 2e⊤Q(Θ(ξ̂, e, u)− µQ−1He)

+ 2e⊤Q(µQ−1He−KHe+Kδ).

Recalling the definition of Θ, the first term becomes

2e⊤Q
[
F (ξ̂, u)− F (ξ̂ − e, u)− µQ−1He

]
= 2e⊤

(∫ 1

0

Q
∂F

∂ξ
(ξ̂ + (s− 1)e, u)dse

)
− 2µe⊤H⊤He

= e⊤
∫ 1

0

(
Q
∂F

∂ξ
((ξ̂′, s), u) +

∂F

∂ξ
((ξ̂′, s), u)⊤Q

− 2µH⊤H

)
ds e,

where in the second step we used similar derivations as
those in (25), and in the third step we used the compact

notation (ξ̂′, s) for ξ̂′ = ξ̂ + (s − 1)e. As a consequence,
using (23) we obtain

2e⊤Q(Θ(ξ̂, e, u)− µQ−1He) ≤ −q|e|2

for all (ξ̂, e). Moreover, using the Young’s inequality, the
derivative of U is estimated as

U̇ ≤ −q|e|2 + 2|He|(µ+ |QK|)|e|+ 2|e||QK| |δ|. (33)

Finally, let ν > 0 be a positive parameter to be fixed and
define the Lyapunov function W = νV + U . Combining
(32) with (33), the derivative of W is computed as

Ẇ ≤−
[
|e| |He|

] [q −µ− |QK|
⋆ ν

] [
|e|
|He|

]
+ |e|

(
ν|H|+ 2|QK|

)
|δ|

Hence, selecting ν such that qν > (µ+ |QK|)2, the previ-
ous shows the existence of ε, ρv > 0 such that

Ẇ ≤ −ε|e|2 + ρv|δ|2.

Hence, W is a (uniform in the trajectories of the plant
x) global exponential incremental ISS Lyapunov function
[20], concluding the proof of the theorem.

5. Numerical Simulations

5.1. Linear case

Consider a linear system of the form (4) with

A =

 0 1.5 0
−1.5 0 0
1 0 −1

 , C =

[
1 0 0
0 1 1

]
, B =

00
0


where the measured output is corrupted with an additive
disturbance generated by the exosystem (6) with ω1 = 0,
ω2 = 1 and ω3 = 2π. Assume that the states of the system
are estimated through a linear observer of the form (17)

with the gain L =
[
0.994 0.093

0 0.704
0.094 1.534

]
. In the simulations we

considered the following set of initial conditions: x(0) =
(1, 1, 1), x̂(0) = 0 and w(0) = (1, 0.2, 0, 0.2, 0) and v is
taken as a bounded realization of white noise of variance
0.01 in both outputs.
Naturally, the presence of the output disturbance pre-

vents the convergence of the state-estimation error x̃ to
zero. This fact can be seen in Fig. 1. The objective is
to robustify the observer in front of the presented out-
put disturbance. Note that the pair (A,C) is detectable,
i.e., (20) is satisfied. Moreover, the matrix A is negative
semidefinite. As a consequence, there exists a matrix P
such that (19) holds. Moreover, the unstable modes of A
are observable and are located at λ = ±1.5j, which are
disjointed from the unstable modes of Φ, that are located
at {±6.28j,±1j, 0}, thus, Assumption 5 is also satisfied.
Therefore, according to Theorem 1 and Theorem 2, if

the output-estimation error ỹ is filtered through an in-
ternal model filter (10), the state-estimation error con-
verges asymptotically to zero. Fig. 1 presents the state-
estimation error of an observer filtered with the internal
model filter (10). The filter completely rejects the modeled
part of the output disturbance.

5.2. Nonlinear case

Consider the ball-and-beam system studied in [36]

ẋ = f(x, u) :=


x2

x1x
2
4 − g sinx3

Jb/(MR2) + 1
x4

−x1x2x4 + gx2 cosx3
x21 + J /M + Jb/M

+


0
0
0
1

u

y = Cx+ d :=

[
1 0 0 0
0 0 1 0

]
x+ d

(34)

where x = (x1, . . . , x4) ∈ R4 is the state vector, y =
(y1, y2) ∈ R2 is the measured output, d is an output dis-
turbance, and the input u ∈ R is designed as

u =
2x1x2x4 + gx1 cosx3
x21 + J /M + Jb/M

+
24(Jb/R2 +M)x1

Mg

+
50(Jb/R

2 +M)x2
Mg

− 35x3 − 10x4 + sin t.
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Figure 1: Evolution of the state-estimation error without (blue) and
with (red) internal model filter.

The parameters of the model are taken from [37]: J =
0.02, M = 0.05, Jb = 2 × 10−6, R = 0.01, g = 9.81. Ac-
cording to [36], the considered model satisfies (19) with

P =

[ 3.61 2.18 −4.28 −0.292
2.18 3.11 −6.99 −0.45
−4.28 −6.99 25.50 1.47
−0.29 −0.44 1.47 0.3972

]
for |x1| ≤ 3, x2 ∈ R,

|x3| ≤ 0.65 and x4 ≤ 0.19. The system also satisfies
(20) with the same matrix P for all ℓ > 0. Therefore,
an observer of the form (5) can be implemented with a
feedback term as in (21). Now, assume that the out-
put additive disturbance d is generated by the exosys-
tem (6) with ωk = 20

√
k for k = 1, 2, 3, initial condition

w(0) = (5, 0, 5, 0, 5, 0), and v is a bounded realization of a
white noise of variance 0.0005 and 0.00001 in the outputs
y1 and y2, respectively. Notice that the ball and beam sys-
tem and the considered disturbance model evolve in two
different time-scales. Therefore, the detectability condi-
tion in Assumption 5 is satisfied.

Due to the presence of the output disturbance d the ob-
server does not converge to the true value. This fact can be
seen in Figure 2. The objective is to redesign the proposed
observer to obtain the bound in (8). Since the system sat-
isfies Assumptions 4-5, according to Theorems 1-2 adding
an internal model filter to the observer as in (12) obtains
the desired bound. Indeed, the evolution of the estimation
error of the filter-observer architecture in (12) is depicted
in Figure 2. As it can be seen, the estimation error con-
verges to a bound of lower magnitude. That is, the filter
rejects the periodic disturbance and ensures the bound in
(8), which validates the result.

5.3. Non-passive example

The objective of this example is to show that the pas-
sivity condition in Assumption 4 is only a sufficient (but
not necessary) condition to ensure the δISS bound in As-
sumption 3. Precisely, consider the system in [38]

ẋ = Ax+Gϑ(Hx), y = Cx+ d

where x = (x1, x2, x3) ∈ R3, y ∈ R, A =
[
0 1 0
0 1 0
0 1 −1

]
,

C = [ 1 0 0 ], G =
[

0 0
−1 0
0 −1

]
, H = [ 0 1 0

0 0 1 ] and ϑ(x) =

Figure 2: Evolution of the state-estimation error without (blue) and
with (red) internal model filter.

Figure 3: Evolution of the state-estimation error without (blue, red,
yellow) and with (purple, green, ciano) internal model filter.

[
1/3x3

2+x2x
2
3

1/3x3
3+x3x

2
2

]
. The authors in [38] propose the observer

˙̂x = Ax̂+ L(y − Cx̂) +Gϑ
(
Hx̂+K(Cx̂− y)

)
. (35)

The observer gains are L =
[

3.2
11.72
3.16

]
, K = [ 1.920.61 ]. The

objective is to robustify the observer in front of a distur-
bance of the form (6), with ω1 = 10π and ω2 = 20π,
w1(0) = w3(0) = 1 and v = 0. In the presence of such dis-
turbance, the observer estimation not only converges to an
oscillatory trajectory, but presents a significant bias with
respect to the true value, see Fig. 3. This behaviour is a
consequence of introducing the noise through the nonlinear
feedback term (35). Moreover, even though the approach
proposed in [38] can be implemented for the original sys-
tem, it leads to infeasible linear matrix inequalities for the
extended system of the form (9).

Notice that the system does not satisfy the incremental
dissipativity assumption in Assumption 4, as some states
drift to infinity. Nonetheless, in the considered numeri-
cal simulation, the filter-observer architecture satisfies the
stability condition in Assumption 3. Thus, according to
Theorem 1, the internal model filter exactly rejects the
modeled part of the disturbance, as depicted in Fig. 3.

6. Conclusion

This work proposes an observer redesign method to re-
duce the effect of output disturbances of the form (6). The
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main idea is to connect in cascade the already designed ob-
server with a filter that includes an internal model of the
modeled part of the disturbance. It has been established
that, if the filter-observer architecture satisfies a particular
stability condition, then the state estimation error is ISS
with respect to the unstructured term of the disturbance
and the structured terms are exactly eliminated. More-
over, this work shows that, for any incremental dissipative
system that satisfies a particular differential detectability
property, it is possible to design a filter that guarantees
stability of the overall observer. Numerical simulations
confirm that the incremental dissipativity property is a
sufficient but not necessary condition for stability.

Future works will focus on relaxing this dissipativity
condition and using Riemannian metrics (see, e.g., [39]
and [1, Section 4]). Additionally, future works will explore
the practical application of the proposal in multi-agent
distributed problems [16] and masking protocols [17]
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