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Abstract—Gait analysis is important for evaluating neuro-
logical disorders such as stroke and Parkinson’s disease. Tra-
ditionally, healthcare professionals had to rely on subjective
assessments (i.e., human-based) of gait which were time con-
suming and not very reproducible. However, with the advent
of IoT and indeed more objective (e.g., measurement-based)
assessment methods, gait analysis can now be performed more
accurately and effectively. It is worth noting, however, that there
are still limitations to these objective methods, especially the lack
of privacy-preserving continuous data collection. To overcome
this limitation, we present in this paper a privacy-by-design
monitoring application for post-stroke patients to evaluate their
gait before, during, and after a rehabilitation program. Gait mea-
surements are collected by a mobile application that continuously
captures spatiotemporal parameters in the background using
the built-in smartphone accelerometer. Statistical techniques are
then applied to extract general indicators about the performed
activity, as well as some more specific gait metrics in real-time
such as regularity, symmetry and walking speed. These metrics
are calculated based on the detected steps while patients are
performing an activity. Additionally, a deep learning approach
based on an auto-encoder is implemented to detect abnormal
activities in the gait of patients. These analyses provides both
valuable insights and statistical information about the activities
performed by the patient, and a useful tool for practitioners
to monitor the progression of neurological disorders and detect
anomalies. We conducted experiments using this application in
real conditions to monitor post-stroke patients in collaboration
with a hospital, demonstrating its ability to compute valuable
metrics and detect abnormal events patient’s gait.

Index Terms—IoT, machine learning, privacy-by-design, mo-
bile application, auto-encoder, anomaly detection, gait analysis,
post-stroke rehabilitation

I. INTRODUCTION

As the population ages, the prevalence of health issues
like stroke is increasing [1], [2]. This trend has resulted in
a growing demand for continuous monitoring and follow-up
of patients. However, existing services face significant chal-
lenges. They require substantial human resources, materials,
and time, Furthermore, achieving personalized monitoring for
individual patients is often difficult, if not impossible. Lastly,
long-term monitoring is costly for the healthcare system. A
viable solution is to automate and personalize the patient
follow-up process by providing relevant metrics and indicators
to both practitioner and patients while ensuring data privacy.
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Recent works have explored the utilization of built-in smart-
phone sensors for identifying walking, step counting steps and
gait analysing using various methods [3] based either on time
domain [4] frequency domain [5]. Patient monitoring applica-
tions, with a focus on gait analysis, offer a valuable solution for
evaluating neurological disorders. They empower practitioners
to track the evolution of gait parameters before, during, and
after rehabilitation programs. This capacity enables them to
assess the effectiveness of interventions and make informed
decisions regarding program development. However, concerns
related to the intrusive nature of such monitoring and the
potential breach of private life have limited the adoption of
such solutions [6].

In this paper, we present a privacy-by-design monitoring
application for post-stroke patients to evaluate their gait before,
during, and after a rehabilitation programs, along with the
ability to detect gait anomalies. To achieve this, the mobile
application continuously captures spatiotemporal parameters
in the background using the built-in smartphone accelerom-
eter. We employ both signal processing and deep learning
approaches to extract general and specific indicators related to
gait and the performed activity, as well as to detect abnormal
activities in the gait of patients.

To address privacy concerns, we ensure that raw data is
processed exclusively on the user’s device, with only specific
gait indicators relevant to practitioners being transmitted to
the application server. This minimisation scheme prevents the
collection and centralisation of raw data, significantly reducing
the risk of data breaches. Moreover, by sharing only a limited
set of metrics and indicators, we substantially reduce the
potential for inference attacks compared to using raw data [7],
[8]. Our solution comprises a mobile application that collects
information, calculates indicators, and presents metrics to
patient through a customizable dashboard. Additionally, this
mobile application securely transmits certain indicators to an
application server, facilitating personalized patient monitoring
by practitioners.

Furthermore, we conducted real-world experiments to mon-
itor post-stroke patients in collaboration with an hospital. Our
findings demonstrate that this mobile application can compute
valuable gait metrics for both patients and practitioners, while



minimizing battery consumption.

The paper is organized as follows: we begin by reviewing
literature in patient monitoring in Section II before providing
an overview of our post-stroke monitoring application in
Section III. We then present our results regarding the appli-
cation’s performance in step, activity and anomaly detection,
gait metrics and battery consumption in Section IV before
concluding in Section V.

II. BACKGROUND

There are various existing applications designed for patient
monitoring, each employing different methodologies.

Zijlstra et al. [9] used peaks detection to extract gait events
from trunk accelerations. They identified local maxima and
minima in the vertical acceleration signal to determine heel
strikes and toe-offs. Additionally, they implemented a time
normalization algorithm to create a standardized gait cycle,
facilitating the calculation of spatio-temporal gait parameters.

In contrast, Benson et al. [10] proposed a threshold-based
approach for detecting initial contact and toe-off events from
acceleration signals. They also compared accelerometer-based
gait event detection algorithms with force plate-based gold
standard methods.

Ellis et al. [11] validated the accuracy of gait analysis using
a smartphone-based mobile application for Parkinson’s disease
patients and healthy elderly individuals. This application in-
cluded Rhythmic Auditory Cueing, a technique used in gait
rehabilitation where patients synchronize their steps to an
external auditory cue.

Furthermore, some studies focused on developing com-
prehensive gait analysis platforms. Gurchiek [12] presents a
general approach encompassing activity identification, event
detection and analysis, using machine learning to identify
activity. Similarly, Gard et al. [13] have designed a versatile
application that goes beyond conventional gait analysis. This
application is capable of detecting conditions like intermittent
claudication and gait asymmetry by computing parameters
such as duty cycle and the ratio between odd and even peaks
of autocorrelation from the vertical accelerometer signal.

In the field of wearable sensors and IoT-based monitoring
applications, there are examples such as MSCopilot', designed
for monitoring multiple sclerosis. It allows practitioners to
assess patient progression at home and between appointments,
facilitating data sharing with healthcare providers. However, it
is essential to highlight that as patient data collection becomes
more prevalent, privacy and security concerns come to the
forefront. The collection of sensitive motion data, even for
legitimate healthcare purposes, can potentially raise privacy
concerns, including the risk of unauthorized access and misuse
of personal information. Therefore, addressing these privacy
and security issues becomes paramount in the development
and adoption of patient monitoring solutions.

To automatically detect gait anomalies, Gerazov et al. [14]
proposed a signal processing-based approach that identifies

Uhttps://www.mscopilot.com/

repeated and unusual patterns in time series. Specifically, this
approach calculated distances between segments in time series
locally and identifies significant patterns, enabling adaptation
to each patient’s gait.

Conversely, our solution relies on a deep learning approach,
utilizing an auto-encoder to learn an individual’s gait and
its evolution over time, thereby facilitating the detection of
abnormal activities.

III. POST-STROKE MONITORING APP

Our application has been meticulously designed to meet
the requirements of a real-world medico-social use case with
ARRPAC?. ARRPAC is a medico-social center part of the
Hospices Civils de Lyon (HCL) that provides support for
individuals dealing with with post-stroke disorders. ARRPAC’s
mission is to address the medical and social needs of their
patients. Our application, in this context, serves as a tool to
enhance the personalization and efficacy of the support they
offer. Through our partnering with ARRPAC, our objective is
to demonstrate the potential of our solution in enhancing the
delivery of medico-social services.

However, it is imperative to acknowledge that while there
is a wealth of insights regarding the requirements of such
a solution, we are confronted with several significant chal-
lenges. One of the primary challenges entails the necessity for
continuous patient monitoring, which requires ongoing data
processing. Consequently, we must develop sensor-probing
strategies to minimize battery consumption. Another challenge
is preserving patient privacy, as the acceptance and adoption
of these technologies hinge on patients being assured of the
preservation of their privacy.

Furthermore, a flexible presentation dashboard is required
for both practitioners and patients. This dashboard should
be user-friendly, facilitating the clear and comprehensible
visualization of important information.

In the subsequent sections, we provide an overview of our
post-stroke monitoring application. We begin by describing
the application’s architecture in section III-A. We then explain
data collection in section III-B, followed by a description of
the metrics and the dashboard in sections III-D and III-F,
respectively. Finally, we provide more detailed information
on gait parameter extraction and algorithm validation in
section III-C, and present the implementation specifics in
section III-G.

A. Architecture

The architecture of our privacy-preserving framework com-
prises three main elements, as illustrated in Figure 1: a client
application running on the user’s smartphone, the application
server, and the hospital practitioner. In order to minimize the
exposition of sensitive information, raw data remains exclu-
sively on the smartphone and is not transmitted to the server.
Instead, this data is processed locally on the smartphone, and
only specific metrics and gait indicators are forwarded to the
application server.

Zhttps://gcsms-arrpac.fr/



This minimisation approach significantly reduces the po-
tential for inference attacks that could be conducted by adver-
saries on stored data [7], [8] (i.e., from few metrics compared
to raw data). In addition, patient metrics can be encrypted
before being uploaded and stored in the server’s database.

Subsequently, the practitioner can request access to the
application server (and decrypt the stored information, if en-
crypted) to monitor patients through a dashboard implemented
as a website. This dashboard provides a clear and comprehen-
sible representation of the patient results and progression.

Smartphone
of user

Clinician / practitioner
Family members

<—>-o

(@ - =
Upload periodically &) ——
tect t =
= protected indicators o [\%))
- server

-Data Collection
-Storing raw data
-Signal / Data Processing

-Store metrics & indicators U ENER PEHENS CER

Fig. 1: Global application architecture

B. Data Collection

Data collection is a continuous process that runs in the back-
ground with a lightweight approach to minimize its impact on
battery consumption. To achieve that, the application initially
collects data at a low sampling frequency until the detection
of an activity triggers an increase in the sampling frequency.

In order to detect activity, the application continuously
samples the total acceleration of the subject along three axes of
the accelerometer. This is done at regular intervals and involves
computing the total intensity of motion using the magnitude
formula, |A| = /2% 4+ y? 4 22. The calculated magnitude
provides a single value that represents the overall intensity of
motion at each measurement interval.

Our approach involves comparing this measured magnitude
to a statistical threshold. Specifically, we calculate the average
magnitude over a set number of previous measurements (e.g.,
over the last minute) and then compute the standard deviation
(std) of these measurements. By doing so, we obtain an
estimate of the typical variation in the measured magnitude.
To identify periods of movement, we consider the magnitude
of the current measurement and compare it to the average
magnitude. If the current magnitude exceeds the average by
a certain number of standard deviations, it is classified as
a period of movement. Conversely, if it falls below this
threshold, it is considered a period of relative inactivity.

After detecting movement, the application increases the
sampling frequency and applies pattern recognition techniques
to enhance the accuracy of identifying walking activity. In our
approach, we have also established an additional criterion,
a minimum duration threshold. This threshold specifies the
minimum length of time a patterned signal must persist to be
classified as walking activity. It helps to distinguish genuine
walking from momentary fluctuations.
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Fig. 2: Accelerometer magnitude |A| and the corresponding
ACF signal

C. Steps Detection

Given that human gait constitutes a periodic motion, we
derive metrics using the autocorrelation function (also noted
ACF) of the series representing the total intensity of motion.
The autocorrelation quantifies the correlation between a value
at time ¢; and t;4, within the same signal. It is noteworthy
that the autocorrelation values exhibit peaks or local maxima
with each full step. Equation 1 illustrates a normalized and
unbiased autocorrelation function:

N—Fk

(i — p)(Tiqpn — ), (1)
=1

1
ACF(k) = N =1 (oD
where, k represents the time shift, x; denotes the gait
data at time ¢, p is the mean of the gait data, N along
with o2 denote the length and variance of the gait data,
respectively. The ACF(k) value denotes the similarity between
the gait data at time ¢ and the gait data at time ¢ + k, based
on the time shift k. To normalize the values between the
range [—1;1], we divide by o2. To prevent attenuation of the
autocorrelation signal, we divide by (N — k) instead of N,
ensuring that the numerator’s number of terms always matches
the denominator’s (N — k). Figure 2 illustrates the intensity of
motion and its corresponding autocorrelation function where
peaks correspond to steps.

To automatically identify peaks (i.e., the steps), we detect
the maximum value of the ACF signal centered in a time
window, named peak detection interval A. This interval A
is manually established during a calibration step when first
launching the application. Compared to using mathematical
zero-derivative-based methods or the second derivative sign-
changing technique, the adopted approach discards meaning-
less peaks in case of the presence of noise in the ACF signal.

D. Metrics

We provide two distinct categories of metrics within our
application. The first category pertains to physical indicators



intended for patients and their families. These metrics encom-
pass the monitoring of daily activities, including the count
of steps and the classification of activity types as static or
dynamic 3.

The second category focuses on measurements used to
quantify different aspects of human gait, tailored for hos-
pital practitioners engaged in gait analysis. These metrics
encompass cadence, regularity, symmetry and step speed. To
compute these metrics, we employ an autocorrelation function
(as explained in section III-C), which allows us to extract many
essential gait parameters.

As illustrated in Figure 2, the initial peak of the autocor-
relation signal P, represents the correlation between adjacent
steps, while the second peak P, corresponds to the correlation
between two consecutive strides. Leveraging this information,
we deduce that the ratio between two consecutive peaks (e.g.,
Py /P,) and two non-consecutive peaks represent symmetry
and regularity, respectively.

While the time required to complete a full step is symbol-
ized by the distance between two consecutive peaks on the
x-axis, we can then calculate the speed of a step (s) defined
by s = ﬁ by taking approximations of step length (1)

based on the age of the user .

E. Anomaly detection

The detection of abnormal gait activities in patients is im-
portant, as these can often serve as early indicators of a deteri-
oration in their condition. Promptly reporting this information
to practitioners is crucial for providing better care. Anomalies
in gait can manifest in various forms: 1) gait variability (stroke
can result in motor control loss and reduced coordination), 2)
altered gait timing (delays or early occurrences in different
phases of the gait cycle) and 3) postural instability (struggle
to maintain balance while walking).

Our approach hinges on the utilization of an auto-encoder.
An auto-encoder is a type of artificial neural network em-
ployed for unsupervised learning. It comprises an encoder
and a decoder. The encoder compresses input data into a
lower-dimensional representation known as the latent space.
Conversely, the decoder reconstructs the original data from
the latent space. The primary objective of an auto-encoder is
to minimize the disparity between the input and the output,
compelling the model to acquire a concise representation of
the data.

We train an auto-encoder locally on the smartphone to
learn the patient’s normal gait. Subsequently, we leverage this
model to identify anomalies. Specifically, the trained model
excels at accurately reconstructing signals associated with
normal walking but struggles to correctly reconstruct abnormal
data or data containing anomalies. Therefore, we employ the
reconstruction error, equivalent to the training loss of the
model, as an indicator for anomaly detection.

3We omit to specify these indicators for space reason.
4Low Pace: young adults (60-70 cm), older adults (50-60 cm), and Medium
Pace: young adults (70-80 cm), older adults (60-70 cm).

To effectively identify anomalies, we introduce a threshold
on the loss. This threshold is derived from the range of
scores assigned by our model and is calculated as follows
(Equation 2):

threshold = p(loss) 4+ 2 x o(loss), 2

where p is the mean function and o the standard deviation.

The threshold is established following the training step. The
data is cut in time segments and a segment is identified as
abnormal if the loss is greater than the threshold.
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Fig. 3: Patient’s customizable dashboard

F. Dashboards

We have developed dashboards to present metrics to both
patients (through the smartphone application) and practitioners
(through a web interface).

The patient dashboard (Figure 3) is highly customizable,
with an extensive library of metrics and daily activity indica-
tors to choose from. Patients can select the specific indicators
they wish and arrange them in their preferred order.

Conversely, the second dashboard (Figure 4), designed for
practitioners, is dedicated to gait-related metrics. It provides
in depth analysis of walk dynamics, regularity, and sym-
metry. This user-friendly dashboard affords significant level
of flexibility, allowing practitioners to visualize results over
various time frames, such as the last month or week. By
providing practitioners with these gait-related metrics and their
longitudinal trends, our application aims to enhance diagnosis
accuracy and treatment effectiveness.
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G. Implementation Details

The mobile application was developed in the Android Studio
(Java) environment for devices running on Android 5.0 or
higher. We utilized the Android Sensor Manager to access
the device’s sensors and the Room Database to store data
locally. For the back-end implementation, we used the Flask
framework in Python and the PostgreSQL relational database
to store results on a remote secure server. We utilized a Toolkit
and Object Relational Mapper called SQLAlchemy to access
the database from our Flask API. Finally, we used React.js,
a free JavaScript library developed by Facebook, to create
reusable UI components for our web application dashboard,
enabling the development of complex and interactive applica-
tions.

IV. EXPERIMENTS

We have implemented and evaluated our monitoring so-
lution. This section reports the main results on activity and
step detection (Section IV-A), gaits metrics (Section IV-B),
anomaly detection (Section IV-C), and battery consumption
(Section IV-D).

A. Activity and Step Detection

In this section, we evaluate the capacity of our application
to detect a dynamic activity and to detect a step. Firstly,
we examined the process of differentiating between static
and dynamic activity types using the publicly available Mo-
tionSense’® dataset [15]. This dataset contains accelerometer
data from smartphones (as well as other information like
gender, height, etc) for 24 data subjects who performed 6
activities (such as walking, standing, etc.) in 15 trials. We
classified these activities into two distinct groups: static and
dynamic, and proceeded to test our activity detection method.

Shttps://github.com/mmalekzadeh/motion-sense
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Fig. 5: Distribution of standard deviation (std) of magnitude
|A| of the accelerometer signal

To accomplish this, we computed the standard deviation (std)
of the magnitude of our data |A |, and the resulting distribution
is illustrated in Figure 5.

Table I then reports the precision (i.e., an accuracy as-
sessment) and the recall (i.e., a completeness assessment)
of the two detection tasks conducted on the signals. The
first task involves identifying instances of dynamic activity,
which is achieved through the utilization of a threshold on
the standard deviation as described in Section III-B. The
second task focuses on detecting individual steps, as outlined
in Section III-C. For each task, we conducted experiments
using various combinations of parameter values to gauge the
sensitivity of our method to these parameters and pinpoint the
most effective settings.

It is worth noting that we processed windows consisting of
150 samples, with a frequency rate of 50 H z, corresponding to
3-seconds intervals. In the first task, we examined two distinct
standard deviation (std) threshold values, with the goal of
optimizing the precision and the recall of the prediction. In
the second task, we established a peak detection interval (A)
manually. The criterion for recognizing walking activity was
the detection of at least three peaks within a given window of
data.

Results indicate that a smaller std threshold for discrim-
inating the nature of the activity and detect the dynamic
activity leads to an ideal precision but exhibits a poor recall.
Opting for a higher std threshold results in a very signifi-
cant improvement of recall but slightly reduces the precision
leading to wrongly classified data as dynamic activity. This
miss-classification also incurs a greater computational cost and
increased battery consumption, as the sampling frequency is
increased to better analyse the signals for dynamic activities.
Nevertheless, results report that the calibration of our thresh-
olds yield to correctly detect both dynamic activities and the
steps.

To better assess and validate the accuracy of our step
detection, we employed a damped cosine function denoted as
y(t) to roughly simulate the autocorrelation function (ACF)



TABLE I: Effect of algorithm parameter variations on accuracy and precision in dynamic/static and step detection

Detection task Thresholds TP FP TN FN Precision | Recall
Dynamic std = 0.38 1198 0 4357 | 3995 1.0 0.230
activity std = 0.1 5176 | 50 | 4307 17 0.990 0.996
Steps A = 0.6, std=0.38 | 1159 0 0 39 1.0 0.967

A = 0.6, std =0.1 | 5007 4 46 169 0.999 0.967

(a) Original ACF signal

(b) Noisy ACF signals

Fig. 6: Peaks detection in ACF signals

of the magnitude of the motion, which is defined as follows
(Equation 3):

y(t) = Ae”* cos(2m ft + ¢), 3)

with manually defined parameters and a specified number of
samples representing time. The variable y(¢) depends on time
t and is determined by the amplitude A, a decay constant «,
the frequency f, and the phase angle ¢ of the cosine wave.

Figure 6(a) depicts the associated autocorrelation function
(ACF). As shown on the figure, adding a decay constant makes
it possible to evaluate thresholding in peak detection (i.e., the
last oscillation of the signal is not detected as a peak).

To assess that we detect all the peaks of the signal, we
calculate the constancy of the decay rate « on each pair of con-
secutive peaks detected, denoted P, and Py, (Equation 4).
We then validate that all peaks are correctly detected as these
estimates correspond to the true value of a.

a(t) = In(Py/Pry1)/(tkr1 — tk) 4

After adding random noise N to our original ACF signal,
drawn from a Gaussian probability distribution with mean
1 and standard deviation o (Figure 6(b)), we calculated the
Signal-to-Noise Ratio (SN R) in decibels (dB) for each peak
A as follows (Equation 5):

A

SNR = 10log;s(—). )
o

It is worth noting that, for this specific example, we kept

the noise parameters fixed at o = 0.1 and p = 0, as specified

in [16], which experimentally evaluated instrumental noise

on sensors. Additionally, we utilized the parameters from the

. . . . . . _ 1 _ 1
original damped cosine function, including o = 155, [ = 355>

A =1, ¢ =0, and incorporated 150 samples representing the
z-axis. With these settings, we generated a noisy, patterned
signal that served as a test for the validity of our algorithm.

Table II provides both the SNR in dB and the distance
(d) between the noisy and original ACF signals on the peaks
(Ps.8). The ACF signal, which includes 7 peaks (counting
from the second one), spans 150 samples, representing approx-
imately 6,000 milliseconds of walking with a sampling rate of
25 Hz (equivalent to 1 sample every 40 milliseconds). The
d,, column indicates the height difference between the peaks,
while the d, column represents the time difference between
the peaks in seconds. Upon analyzing the data presented in
Table II, we show that the variation between the detected
peaks in the original signal and the noisy signal falls within
an acceptable range. Figure 6(b) visually demonstrates that the
difference between the peaks detected in the original and the
noisy ACF signal remains acceptable.

B. Gait metrics

We conducted a real-life data collection experiment in
which we simulated pathological walking using a splint. We
instructed the participant to hold the smartphone naturally
in their hand while walking in a straight line, both with
and without the splint, at two different paces - a slow pace
and a normal pace. Figure 7 and 8 depict the differences
in regularity and symmetry between normal and pathological
walking, while Figure 9 illustrates the speed we calculated
for the same subject, with approximate step lengths between
0.65 - 0.75 meter based on age and pace. The results clearly
demonstrate that our current pipeline effectively computes
precise metrics for both typical and pathological gait patterns.
This capability allows us to observe the evolution of regularity,
symmetry, and walking speed during a recovery process.

C. Anomaly detection

In this section, we assess our application’s capability to
detect abnormal activities by setting a threshold on the loss of
an auto-encoder trained to learn the patient’s gait. Given the
limited availability of anomaly data, we aim to evaluate our
ability to distinguish between walking and running activities
based on the loss metric.

Figure 10 illustrates the distribution of the auto-encoder loss
for walking and running activities, using data from the Motion-
Sense dataset. The results reveal distinct loss distributions for
these two activities, allowing them to be clearly distinguished
by the auto-encoder.

In order to test our anomaly detection in more realistic
conditions, we collected gait data from four individuals with



TABLE II: Peak detection: SNR of the noisy ACF and distances between noisy and original ACF signals for peaks (P, )

P Ps Py Ps Ps P Ps
SNR (dB) | 9281 | 870 | 7.99 7.10 6.20 594 | 5.88
dy(height) | 0.129 | 0.027 | 0.042 | 0.144 | 0.099 | 0.164 | 0.098
dz(seconds) | 0.04 | 0.04 | 0.04 0.0 0.0 0.04 | 0.04
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Fig. 7: Comparison of gait regularity between natural and
pathological gait.
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Fig. 8: Comparison of gait symmetry between natural and
pathological gait.

and without the use of an ankle brace. We then cut the data into
segments and identified the segments detected as an anomaly.
The table III reports the ratio of segments detected as an
anomaly on our normal (i.e., without splint) and abnormal (i.e.,
with splint) data. We considered two auto-encoder models,
model A corresponds to a model trained on walking data from
the MotionSense dataset, and model B which corresponds to
model A re-trained with our normal data. Finally, we also com-
pared the use of our threshold (denoted T2 from Equation 2)
with another threshold T1 defined as T'1 = pu(loss) +o(loss).

First, results show that training the auto-encoder model
on user data gives a higher anomaly detection rate than a
model trained on data from a public dataset (approximately
40% more segments detected). Second, our threshold perfectly
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-
o
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Low Normal

Walking Paces

Fig. 9: Difference in walking speed between natural and
pathological gait with different paces.

No of examples

0.06
Test loss

Fig. 10: Distribution of the loss of the auto-encoder for
walking and running activities (MotionSense dataset)

discriminates normal gait segments (i.e. 0% of segments
detected) compared to T1 which falsely identifies more than
20% of abnormal segments.

D. Battery consumption

In this section, we assess the effect of the monitoring
application on battery consumption.

Figure 11 illustrates the battery percentage evolution of a
smartphone under two conditions: without monitoring (our
baseline) and with a monitoring application that utilizes two
different sampling frequencies (i.e., low and high frequencies)

managed by SensorEventListener .

6SensorEventListener is a component of the Android Sensor framework,
allowing Android applications to receive sensor events from various sensors
on the device.



TABLE III: Detection of anomalies in normal and abnormal
gait with different thresholds and models

Thresholds | Normal Gait | Abnormal Gait
T1 21.4% 61.5%
Model A ™ 0% 30.7%
T1 21.42% 92.30%
Model B ™ 0% 9.23%

100
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90
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88 Low Frequency
—— High Frequency

o 20 40 60 80 100
Time (min)
Fig. 11: Impact of active data collection on battery consump-
tion

The results indicate that the application’s impact on battery
consumption is relatively modest. After approximately two
hours of monitoring, using a low-frequency sampling rate
results in only a 1% increase in battery usage compared to the
baseline, while using a high-frequency sampling rate leads to
a 5% increase. It is important to note that the high-frequency
consumption observed here represents an upper bound, as this
frequency (and associated processing) was enforced during the
experiment. In typical usage, a high sampling frequency is
employed only when an activity is detected (as described in
Section III-B).

V. CONCLUSION AND FUTURE WORK

The use of IoT-based objective methods has led to signifi-
cant advancements in assessing neurological disorders. How-
ever, the field faces notable challenges related to privacy and
computational limitations. In response, this paper introduces
a novel solution — a privacy-focused monitoring application
designed for post-stroke patients. This app utilizes smartphone
accelerometers to gather spatiotemporal data and generate
real-time gait metrics, offering valuable insights into patient
monitoring and gait analysis. This has the potential to enhance
the quality of care for stroke recovery patients.

The future directions include integrating more gait analysis
metrics and parameters deemed important by experts to pro-
vide a comprehensive view of a patient’s condition, enabling
more precise diagnoses and tailored treatments. Additionally,
the study hints at exploring federated learning, a decentralized
approach to data analysis, to enhance activity type detection
while safeguarding privacy.
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