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LOGARITHMIC DERIVATIONS OF ADJOINT DISCRIMINANTS

VLADIMIRO BENEDETTI, DANIELE FAENZI, AND SIMONE MARCHESI

Abstract. We exhibit a relationship between projective duality and the sheaf of logarithmic vector fields

along a reduced divisor D of projective space, in that the push-forward of the ideal sheaf of the conormal

variety in the point-hyperplane incidence, twisted by the tautological ample line bundle is isomorphic to
logarithmic differentials along D.

Then we focus on the adjoint discriminant D of a simple Lie group with Lie algebra g over an algebraically

closed field k of characteristic zero and study the logarithmic module DerU(−log(D)) over U = k[g]. When
g is simply laced, we show that this module has two direct summands: the G-invariant part, which is free

with generators in degrees equal to the exponents of G, and the G-variant part, which is of projective

dimension one, presented by the Jacobian matrix of the basic invariants of G and isomorphic to the image
of the map ad : g⊗U(−1) → g⊗U given by the Lie bracket.

When g is not simply laced, we give a length-one equivariant graded free resolution of DerU(−log(D))

in terms of the exponents of G and of the quasi-minuscule representation of G.

Introduction

Given a reduced hypersurface D of the ℓ-dimensional projective space P, the sheaf of logarithmic deriva-
tions TP⟨D⟩ is the dual of Deligne’s sheaf of 1-forms on P with logarithmic poles along D. This sheaf
was first studied by Saito in connection with discriminants of simple singularities and later on it has
found rather diverse applications, for instance in the theory of arrangements and free divisors (start-
ing from [Ter80a, Ter80b, Ter81], for an overview see [OT92, Dim17]), unfolding of singularities (see
[BEGvB09, Dam98]) and locally trivial deformations (see [Ser06]).

One of the main questions about the sheaf of logarithmic derivations and its associated graded module
of global sections DerU(−log(D)) is to know its minimal graded free resolution over the polynomial ring
U = k[P] = k[x0, . . . , xℓ], where k is an algebraically closed field of characteristic zero. Ideally, one would
like to compute the graded Betti numbers of this module, but, as it turns out, information on the projective
dimension or on the number and minimal degree of minimal generators is in general quite hard to acquire.
Even freeness of this module is the object of an important open question by Terao (see [Ter81]) to the effect
that, when D is a hyperplane arrangement, this depends only on the isomorphism class of the intersection
lattice of the hyperplanes. Freeness holds for some important classes of arrangements connected with
Weyl groups of simple Lie algebras, see for instance [Yos04]. However, in spite of recent developments
(see [DiP23]), even for these arrangements our knowledge of Betti numbers beyond the free range is only
conjectural, [AFV16, Conjecture 1].

From a different perspective, a very powerful tool to compute graded free resolutions is provided by the
so-called geometric method, that amounts to studying special resolutions of singularities arising from Kempf
collapsing as introduced in [Kem76], see [Las78] for example for applications to determinantal varieties. We
refer to [Wey03] for a complete presentation of this method and of its many applications. This has been
studied with particular emphasis in the framework of projective duality in [GKZ08]. However, to our
knowledge this methond has not been applied so far to logarithmic derivations.

The first main result of the present paper outlines a simple and deep connection between logarithmic
derivations and projective duality, which in turn affords applications of the geometric method to the com-
putation of Betti numbers of modules of logarithmic derivations.

2020 Mathematics Subject Classification. 14B05; 14M17.
Key words and phrases. Logarithmic derivations. Discriminants. Adjoint orbits. Sheaves of logarithmic differentials.
D.F. and V.B. partially supported by FanoHK ANR-20-CE40-0023, SupToPhAG/EIPHI ANR-17-EURE-0002, Région
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To explain this connection, we think of D as sitting in the dual space P̌ of hyperplanes of P and consider
the projective dual X of D. The conormal variety WX of X, namely the blow-up of D along its Jacobian
scheme, sits in the point-hyperplane incidence I ⊂ P× P̌. Let ρ̃ : I → P̌ be the projection.

Theorem 1. Let h be the hyperplane class of X, pulled back to I. Then:

TP̌⟨D⟩(−1) ≃ ρ̃∗
(
IWX/I(h)

)
.

This provides a wide generalisation of the approach developed in [FV14, FMV13], where the sheaf of
logarithmic derivations of a hyperplane arrangement was computed as Fourier-Mukai transform of IZ(1),
via the point-hyperplane incidence correspondence I, where Z is the set of points in the dual space P̌
corresponding to the arrangement and IZ is the ideal sheaf of Z in P̌. This result was in some sense at the
origin of the study of unexpected curves, carried on by many authors starting with [CHMN18].

However, our main application is to the minimal resolution of logarithmic derivations modules of adjoint
discriminants. Let G be a simple affine algebraic group over k and set g for the Lie algebra of G. We
let n be the rank of g and e1 ≤ · · · ≤ en be the exponents of g. Let U = k[g∨], fix some coordinates
(x0, . . . , xℓ) for k[g

∨] and write DerU = U∂x0
⊕ · · · ⊕U∂xℓ

. The fundamental divisor we study here is the
adjoint discriminant ∆, i.e. the discriminant for the adjoint action of G on g and set D = V(∆). Our
main interest is for the module of logarithmic derivations DerU(−log(D)) of D. Let us first state our main
result for G of type A, D, E, i.e. g is simply laced. Let us introduce two main ingredients. The first one
is the natural morphism: ad : g ⊗ U(−1) → g ⊗ U given by the dual of the Lie bracket on the degree-1
parts (g ⊗ U(−1))1 = g → g ⊗ g = (g ⊗ U)1 and extended by U-linearity (here we identify g and g∨

via the Killing form). The U-modules ker(ad) and A = Im(ad) are G-equivariant; it will turn out that
ker(ad) ≃

⊕n
i=1 U(−ei − 1).

The second ingredient is the braid arrangement of type G given by intersecting ∆ with a Cartan sub-
algebra h ⊂ g. The Weyl group W of G acts on h by reflections about the hyperplanes Hα, where α
ranges in the set Φ+ of positive roots in the root system Φ of g. A fundamental fact is that ∆|h = δ, with√
δ = (−1)|Φ

+|Πα∈Φ+δα, where δα is a linear equation of the hyperplane Hα. The remarkable formula of
Kostant, Macdonald, Shapiro and Steinberg (KMSS), referring to work of Shapiro and [Kos59, Mac72, Ste59],
asserts that the braid arrangement is free with generators sitting in degrees equal to the exponents. This
is related to the topology of the complement in Cn of the arrangement, which is a K(π, 1) space of the
corresponding Artin-Tits group of type G, see [FN62] and [Bes15] for complex reflection groups. Terao
showed in [Ter81] that the Poincaré polynomial of the complement of a free central affine arrangement with
generators of degree (d1, . . . , dn) equals Π

n
i=1(1+tdi), recovering a formula of Orlik and Solomon, [OS80] and

extended the KMSS to unitary reflection groups, see [Ter80c]. A free basis of DerS(−log(δ)) is given by the
Saito matrix, which can be explicitly described as follows (see e.g. [Yos14, Sai04]). Writing f1, . . . , fn ∈ S
for a free basis of SW with deg(fi) = ei for i = 1, . . . , n, one has

DerS(−log(δ)) ≃ µ1S⊕ · · · ⊕ µnS, µi = ∇(fi).

Now, going back to the full Lie algebra g, the W -invariants f1, . . . , fn lift to G-invariants F1, . . . , Fn ∈ U
via the Chevalley restriction theorem UG ≃ SW . We get a new Saito-type matrix

ν :

n⊕
i=1

U(−ei) −→ g⊗U, νi = ∇(Fi), ν = (ν1, . . . , νn).

Our result connects all these objects into the following statement.

Theorem 2. Let G be a simple algebraic k-group, g its lie algebra. Assume g is of simply connected type,
let e1, . . . , en be the exponents of g and let D be the adjoint discriminant. Then:

DerU(−log(D)) ≃
n⊕

i=1

U(−ei)⊕A,

where the module A is the image of ad : g⊗U(−1) → g⊗U and fits into:

0 →
n⊕

i=1

U(−ei − 1)
ν−→ g⊗U(−1) → A → 0.
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In particular, the module DerU(−log(D)) is of projective dimension one, with a summand presented by
a rectangular Saito matrix corresponding to the image of the Lie bracket, and a free summand with the
same exponents as the corresponding Weyl arrangement.

Next, let us discuss non-simply laced Dynkin diagrams. In this case, the connection with the KMSS
formula is a bit different, as the adjoint discriminant captures long positive roots, rather than all of Φ+,
though the discussion might be related to ideal arrangements as in [ABC+16]. Anyway, we give a minimal
graded free equivariant resolution of derivation module even in this case and again this module turns out to
have projective dimension one. Let us denote by s the number of long simple roots of g. The new ingredient
is the quasi-minuscule representation ĝ of g, namely, the irreducible representation whose highest weight is
the highest short root (as opposed to the adjoint representation, whose highest weight is the highest long
root). If G is of type Cn, set j = 1. If G is the group G2 set j = 2, if G is the group F4, set j = 3 and if G
is of type Bn, set j = n. Then our last main result is the following.

Theorem 3. Assume G is simple, not of simply laced type. Then the module DerU(−log(D)) admits a
G-equivariant graded free resolution:

0−→

⊕s
i=1 U(−ei − 1)

⊕
ĝ⊗U(−j − 1)

−→

⊕s
i=1 U(−ei)⊕ g⊗U(−1)

⊕
ĝ⊗U(−j)

−→DerU(−log(D))−→0.

The strategy of the proof of Theorems 2 and 3 goes as follows. We rely Theorem 1 and use the geometric
technique mentioned above to ρ̃∗(IWX/I(h)) via the pushforward of a Koszul complex on X × P̌. This
translates into computing the cohomology of twisted exterior powers of the affine tangent sheaf of X. Here,
we use the geometry of adjoint varieties and notably the contact structure to identify the affine tangent
bundle to the affine cotangent bundle on X, up to a modification of twists. The computation of the
cohomology of these bundles turns out to be affordable, on a case-by-case basis, through a quite technical
use of the Bott-Borel-Weil Theorem and branching rules for classical groups. However, rather surprisingly,
the final result can be stated in a uniform and concise way for all groups, see Theorem 4.18. Of course, a
unified proof would be highly desirable but this seems out of reach for the time being. As a final step, for
simply laced types, we connect our discussion to the theory of free arrangements to prove that the resolution
is minimal and that it induces the decomposition stated in Theorem 2.

The paper is organised as follows. In §1 we develop our study of logarithmic tangent sheaves via push-
forward from the normal variety and prove Theorem 1. In §2 we start working out resolutions of the
Jacobian ideal and of the logarithmic tangent sheaf, obtained using the Cayley method and push-forward in
the spirit of [GKZ08]. We mention a few results here about normalisation of dual varieties notably of Fano
varieties, see Proposition 2.2, and relating the geometric method to the Jacobian ideal, see Theorem 2.3.
In §3 we review some of the relevant geometry of adjoint varieties and their contact structure and provide
a minimal graded free resolution of the normalisation of adjoint discriminants, see Theorem 3.3. In §4,
we compute a resolution of the module of logarithmic derivations of adjoint discriminants in Theorem 4.18
both for the simply laced and the non simply laced situation. We also derive part of the results of [FM22]
about symmetric determinants in terms of adjoint orbits in case Cn. Then, in §5 we use Terao’s results
on hyperplane arrangements, we explicitly construct the module of G-invariant logarithmic derivations and
finally we deduce Theorem 2.

We would like to thank D. Fratila and M. Yoshinaga for fruitful discussions.

1. Jacobian ideal and logarithmic differential via pushforward

The main goal of this section is to relate, after recalling the necessary definitions, the notion of logarithmic
tangent sheaf with the incidence construction that allows to define the notion of dual variety.

1.1. Background and notation. We work over an algebraically closed field k of characteristic zero. Let
us denote by P = Pℓ the ℓ-dimensional projective space parametrising hyperplanes in kℓ+1 and by P̌ = P̌ℓ

the dual projective space parametrising hyperplanes of P.
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1.1.1. Logarithmic derivations. Let U = k[x0, . . . , xℓ] be the coordinate ring of P̌ℓ. We define the module
of U-derivations as the free U-module of rank ℓ+ 1:

DerU =

{
ℓ∑

i=0

θi∂i | θi ∈ U

}
, with: ∂i =

∂

∂xi
, for i ∈ {0, . . . , ℓ}.

Definition 1.1. Let F ∈ U be a non-zero square-free homogeneous polynomial of degree d. Then we set:

DerU(−log(F )) = {θ ∈ DerU | θ(F ) ∈ (F )}, DerU(−log(F ))0 = {θ ∈ DerU | θ(F ) = 0}.
The U-module of logarithmic derivations DerU(−logF ) and its submodule DerU(−log(F ))0 are Z-graded,
respectively of rank ℓ+ 1 and ℓ.

The Euler derivation ϵ = x0∂0 + · · ·+ xℓ∂ℓ provides a splitting:

DerU(−log(F )) = DerU(−logF )0 ⊕Uϵ.

This holds since k has characteristic zero and more generally when working with a field k such that char(k)
does not divide d. If D = V(F ) ⊂ P̌ℓ is the vanishing locus of F , we will write DerU(−log(D)) =
DerU(−log(F )) and DerU(−log(D))0 = DerU(−log(F ))0.

1.1.2. Logarithmic tangent sheaves. For this part we refer to [Ser06, §3.4.4]. Useful properties of the log-
arithmic tangent sheaf can be found for instance in [Dol07]. Let Y be a reduced projective k-scheme and
write TY for the tangent sheaf of Y . Assume now that Y lies in P = Pℓ with normal sheaf NY/P and consider
the composition:

∇ : TP → TP|Y → NY/P.

Definition 1.2. The sheaf of logarithmic differentials TP⟨Y ⟩ or logarithmic tangent sheaf is the kernel of
∇ and the equisingular normal sheaf N′

Y/P is the image of ∇, so we have an exact sequence:

(1) 0 → TP⟨Y ⟩ → TP → N′
Y/P → 0.

The equisingular normal sheaf N′
Y/P is supported on Y and its rank along an irreducible component of Y

is equal to the codimension of such component.

If Y is a reduced hypersurface D ⊂ P̌ defined by a single homogeneous equation F ∈ U of degree d, then:

ND/P̌ ≃ OD(d), N′
D/P̌ ≃ JD(d),

where JD is the restricted Jacobian ideal sheaf, defined as the restriction to D of the Jacobian ideal sheaf
J generated by the partial derivatives of F , namely:

J(d) = Im(∇(F )) = Im
(
(∂0F, . . . , ∂ℓF ) : O

ℓ+1
P̌ (1) → OP̌(d)

)
.

Rewriting (1), we get the fundamental exact sequence:

(2) 0 → TP̌⟨D⟩ → TP̌ → JD(d) → 0,

This allows to consider TP̌⟨D⟩ as the sheaf of Jacobian syzygies of F , namely the kernel of ∇(F ), in view
of the next exact diagram. Note that commutativity of the top right square follows from the Euler relation,
valid in characteristic 0, or more generally when char(k) does not divide d.

(3) OP̌(−1)� _

��

·d // OP̌(−1)� _
·F
��

0 // TP̌⟨D⟩(−1) // Oℓ+1
P̌

∇F //

����

J(d− 1) //

����

0

0 // TP̌⟨D⟩(−1) // TP̌(−1) // JD(d− 1) // 0

In characteristic zero, or more generally when char(k) does not divide d, we have the fundamental
relationships involving the sheafified module of logarithmic derivations and the graded module of logarithmic
differentials, valid for a reduced hypersurface D ⊂ P̌:

DerU(−logD)0 ≃
⊕
t∈Z

H0(TP̌⟨D⟩(t− 1)), DerU(−logD)0̃ ≃ TP̌⟨D⟩(−1).
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1.1.3. The affine logarithmic tangent sheaf. Let Y be a reduced closed subscheme of P and consider the
induced hyperplane bundle c1(OY (1)). The first Chern class of OY (1) provides a non-zero element of
H1(Y,ΩY ) and in turn a non-splitting extension

0 → ΩY → Ω̂Y → OY → 0,

where the middle sheaf Ω̂Y defined by the sequence is called the affine cotangent sheaf of Y . Its dual is the

affine cotangent sheaf T̂Y of Y , fitting into:

(4) 0 → OY → T̂Y → TY → 0.

Note that the definition of T̂Y depends on the inclusion Y ⊂ P and that the affine tangent space of the

projective space is T̂P = V ⊗ OP(1) ∼= OP(1)
ℓ+1. Moreover, we have an exact sequence

0 → T̂Y → T̂P|Y → NY/P,

whose image is again the equisingular normal sheaf N′
Y/P.

Definition 1.3. The affine sheaf of logarithmic differentials T̂P⟨Y ⟩ of Y is the kernel of the natural com-
position:

T̂P → T̂P|Y → NY/P.

We have exact sequences:

0 → T̂P⟨Y ⟩ → T̂P → N′
Y/P → 0,(5)

0 → OP → T̂P⟨Y ⟩ → TP⟨Y ⟩ → 0.

When Y = D is a hypersurface of P̌, (5) reads as it follows:

(6) 0 → T̂P⟨D⟩ → T̂P̌ → JD(d) → 0.

We will recover this sequence via pushforward in Corollary 1.6.
We will now recall the following classical result.

Lemma 1.4. The affine sheaf of logarithmic differentials of a hypersurface D splits as T̂P⟨D⟩ ≃ TP⟨D⟩⊕OP.

Proof. Diagram (3) implies that, applying the functor Hom(−,OP) to its lower horizontal sequence (corre-
sponding to the sequence in (6)), the induced map

Ext1 (JD(d),OP) → Ext1 (TP,OP) ≃ k

is surjective. This implies that the following map between extension groups vanishes:

(7) Ext1 (TP,OP) → Ext1 (TP⟨D⟩,OP) .

Notice that the extension in (5) is defined between the logarithmic derivations and the Euler one, which
implies the following commutative diagram

OP� _

��

OP� _

��
0 // T̂P⟨D⟩

����

// T̂P

����

// JD(d)

≃
��

// 0

0 // TP⟨D⟩ // TP // JD(d) // 0

This allows us to conclude that the extension class considered in (5) belongs to the image of (7) and,
henceforth, it is the zero class. This proves the statement. □

The latter splitting explains the two natural, but at first sight in contrast, ways of defining the loga-
rithmic tangent sheaf, i.e., as a quotient of the affine logarithmic tangent sheaf or as the sheafification of

DerU(−logD)0̃, by definition included in DerU(−logD) ,̃ whose sheafification gives in turn T̂P⟨D⟩.
Finally, notice that if char(k) does divide d, we have that the Euler derivation belongs to DerU(−logD)0̃,
inducing a different diagram with respect to Diagram 3 from which we cannot have the described splitting.
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In any case, TP⟨D⟩ can always be defined as the sheafification of the quotient of DerU(−logD) by the Euler
derivation, but this no longer identifies with DerU(−logD)0.

1.1.4. Projective duality. Consider a reduced closed subscheme X of P = Pℓ and write Xsm for its smooth
locus. Set TX,x for the tangent space of X at x ∈ X. Then we define the normal variety WX as the Zariski

closure in P× P̌ of:

W◦
X =

{
(x,H) ∈ Xsm × P̌ |H ⊃ TX,x

}
.

In particular, if X is smooth, it is possible to define WX as P(NX/P(−1)).
Observe that WX is a reduced closed subscheme of the point-hyperplane incidence variety I:

WX ⊂ I =
{
(x,H) ∈ P× P̌ | x ∈ H

}
.

Denote by h and ȟ, respectively, the hyperplane classes of P and P̌. Denote by π̂ and ρ̂ the canonical
projections of the product P× P̌ in each of its factors. Their restriction to X× P̌ will be denoted respectively
by π and ρ and, furthermore, we will denote by π and ρ their respective restrictions on WX . By abuse of
notation, we will denote also by h and ȟ their respective pullbacks on P× P̌, as well as their restrictions to
the subvarieties described above.

The image X̌ := ρ(WX) is known as the dual variety of X. The biduality theorem asserts that X itself
is the dual of X̌. The crux of the biduality theorem is the fact that WX = WX̌ as subvarieties of P × P̌.
We refer to [GKZ08]. Finally, we will denote by π̃ and ρ̃ the two projections from I, respectively to P and
P̌, given once more as the restriction from P × P̌. We will denote by the same notation the corresponding
affine projections. For instance, if P̌ = P(V ∨) then the projections from X ×V to X and V will be denoted
again respectively by π and ρ.

1.2. Logarithmic differentials as direct image sheaves. We are now in the position to state and prove
Theorem 1, the main result of this section.

Theorem 1.5. Let X ⊂ P be a reduced closed subscheme such that all the irreducible components of D = X̌
are hypersurfaces of P̌. Then the logarithmic tangent sheaf TP̌⟨D⟩ of D satisfies

TP̌⟨D⟩(−1) ≃ ρ̃∗
(
IWX/I(h)

)
,

where IWX/I is ideal sheaf of WX seen as a subscheme of the flag variety I.

Proof. By [Nob75, Theorem 1], we know that WX can be seen as the blowing up of D, which is to say that,
locally, it is a monoidal transformation with center the Jacobian ideal defining the singular locus of D. We
have therefore a canonical inclusion of the restriction of the Jacobian ideal

(8) JD(d− 1) ↪→ ρ∗(OWX
(h)) ≃ ρ∗(π

∗(OX(1))),

being, as before, d = deg(D) and OWX
(h) the canonical sheaf induced by the blowing up construction.

Finally, the isomorphism OWX
(h) ≃ π∗(OX(1)) can be obtained considering the following chain of inclusions

(9) WX ⊂ P(JD(d− 1)) ⊂ P(TP̌(−1)) = I.

The second inclusion is given by the surjection TP̌(−1) → JD(d−1) given by the derivatives of the polynomial
F defining D (see (2)). The invertible sheaf is given by OI(h) = OI ⊗OP×P̌(h). Consider the following short
exact sequence

0 −→ IWX/I(h) −→ OI(h) −→ OWX
(h) −→ 0.

Taking its pushforward by ρ̃, we get the bottom row of the following commutative diagram

(10) 0 // TP̌⟨D⟩(−1)

��

// TP̌(−1)

≃
��

// JD(d− 1)� _

��

// 0

0 // ρ̃∗(IWX/I(h)) // ρ̃∗(OI(h)) // ρ∗(π∗(OX(1))) .

Indeed, the middle vertical map is an isomorphism as a direct consequence of the definition of OWX
(h) ≃

π∗(OX(1)). Furthermore, notice that the commutativity of the previous diagram (in particular of the right
square) follows naturally from the description of the normal variety as a subvariety of the flag I, passing
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through the projectivization of the Jacobian ideal, as depicted in (9). Finally, from the snake lemma applied
to the previous diagram, we find the desired isomorphism

TP̌⟨D⟩(−1) = ρ̃∗
(
IWX/I(h)

)
.

□

Let us now state and comment some direct consequences of the previous theorem. The first result will
relate the logarithmic sheaf with the ideal sheaf of WX seen this time as a subvariety of the product X × P̌.
The described relation will be fundamental in Section 2.

Corollary 1.6. Let X as in Theorem 1.5 and, moreover, assume it to be non degenerate and linearly
normal. Then we have the following short exact sequence

0 −→ OP̌(−1) −→ ρ∗(IWX/(X×P̌)(h)) −→ TP̌⟨D⟩(−1) −→ 0.

Proof. Consider the following commutative diagram

0

��

0

��

0

��
0 // K //

��

π̂∗IX(1)⊗ ρ̂∗OP̌
//

��

IWX/I(h) //

��

0

0 // OP×P̌(−ȟ) //

��

OP×P̌(h)
//

��

OI(h) //

��

0

0 // IWX/(X×P̌)(h)
//

��

OX×P̌(h)

��

// OWX
(h)

��

// 0

0 0 0

Being X non degenerate and linearly normal implies that H0(IX(1)) = H1(IX(1)) = 0, therefore ρ̂∗(K) = 0
and R1ρ̂∗(K) ≃ ρ̃∗(IWX/I(h)). Combining it with the pushforward by ρ̂ of the left vertical sequence in the
previous diagram concludes the proof. □

The next result describes more in detail the case where X is 0-dimensional. In particular, we recover a
result due to Faenzi and Vallès (see [FV14]).

Corollary 1.7. Let X be as in Theorem 1.5. Then if dimX = 0, we have that

TP̌⟨D⟩(−1) ≃ ρ̃∗π̃
∗IX(1).

Proof. This result follows directly from the fact that, being dimX = 0, we have WX = (X × P̌) ∩ I and
therefore π̃∗IX(1) ≃ IWX/I(h). □

Remark 1.8. At the level of the Jacobian ideal sheaf, we have ρ∗(π
∗(OX(1))) ≃ JD(d − 1) if and only if

R1ρ̃∗(IWX/I(h)) = 0. Indeed, this is tantamount to surjectiveness of ρ̃∗(OI(h)) → ρ∗π
∗OX(1) and thus to

the vanishing of the higher direct image sheaf by Diagram (10).

The remaining of this section will be devoted to the discussion on the previous vanishing of the higher
direct image. To do so, let us first recall the notions that will be necessary to apply the Theorem of formal
functions (for more details, see [Har77, III.11]).
Considering a morphism of schemes f : X → S and a point s ∈ S, we would like to describe the fiber
product

Xk = X ×S Spec
(
OS,s/m

k
s

)
.

Taking an affine covering, which allows to restrict our description to such case, denote by ϕ : A → B the
associate ring map and by q the prime ideal of A corresponding to the point s. Therefore Xk will be given
by the spectrum of

B ⊗A Aq/q
nAq ≃ B ⊗A (A/qnA)q ≃ (B/ϕ(q)nB)ϕ(q) .

Moreover if s is a closed point, which means q to be maximal, we do not need to localize.
Applied to our case, consider the projection ρ̃ : I → P̌ and a point of the dual projective space y ∈ P̌. We
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will denote both by Hy the correspondent hyperplane in P and also the fiber ρ̃−1(y), seen as a subscheme
of the incidence variety. Using the introduced notation on the thickened fibers, we have that I1 is simply
the fiber Hy.
Furthermore, the previous considerations on the local description imply the following short exact sequence

0 → IkHy
→ OI → OIk → 0,

which means that the thickened fiber Ik is defined by the k-th power of the ideal defining Hy as a subvariety
of I. This implies the subsequent short exact sequence

(11) 0 →
Ik−1
Hy

IkHy

→ OIk → OIk−1
→ 0.

Being the ideal of Hy, in the coordinate ring of the incidence variety, defined by a regular sequence, we
know by [Har77, II-8.21A(e)] that

Ik−1
Hy

/IkHy
≃ Sk−1

(
IHy

/I2Hy

)
,

where Sk−1 denotes the (k−1)-st symmetric power. Finally, notice thatHy is a smooth complete intersection

of n elements in the linear system |ȟ|. This implies that IHy
/I2Hy

gives the conormal bundle associated to

Hy and, specifically,

IHy

I2Hy

≃ (OI(ȟ)
n)Hy

≃ On
Hy
.

Substituting in (11), we obtain that having the vanishing

H1
(
Hy, (IWX/I(h))Hy

)
= 0

implies all the subsequent ones, on the thickened fibers,

H1
(
Ik, (IWX/I(h))Ik

)
= 0.

We are therefore in the position to state the following result.

Lemma 1.9. If H1
(
Hy, (IWX/I(h))Hy

)
= 0 holds for every point y ∈ P̌, then we have the isomorphism

ρ∗(π
∗(OX(1))) ≃ JD(d− 1).

Proof. By the Theorem of formal functions, all the vanishings induced by H1
(
Hy, (IWX/I(h))Hy

)
= 0 imply

that R1ρ̃∗(IWX/I(1, 0)) = 0. By Diagram 10, this is equivalent to the required isomorphism. □

From a first glance, the cohomological vanishing of the previous lemma seems very restrictive. That is the
reason why we will now study the example of plain curves. Nevertheless, such a restrictiveness highlights
the choice of considering adjoint varieties, for which we will prove the isomorphism always to be true.

Example 1.10. Consider a plane curve X ∈ |OP2(d)| in the projective plane. Let us fix a point y ∈ P̌2 and
denote, as before, the corresponding line in P2 by Hy.
First of all, let us consider the restriction to Hy of the short exact sequence defining WX ⊂ I, that gives us

0 // Tor1(OWX
(h),OHy

) //
(
IWX/I(h)

)
|Hy

//

((

OHy
(1) // OWX∩Hy

(1) // 0

IWX∩Hy
(1)

88

''
0

55

0

We can now divide our studying in the following cases:

• Hy is an irreducible component of WX , which implies that the line π̃(Hy) is also an irreducible
component of X.

• Hy is not an irreducible component of WX , and neither its projection on X is a component of X.



LOGARITHMIC DERIVATIONS OF ADJOINT DISCRIMINANTS 9

In the latter case, the support of Tor1(OWX
,OHy ) is at most 0-dimensional, which implies the vanishing of its

first and second cohomology group. Therefore, h0
(
OWX∩Hy

(1)
)
≥ 3 is equivalent to H1

((
IWX/I(h)

)
|Hy

)
̸=

0. Observing that h0
(
OWX∩Hy (1)

)
is the number of points of X tangent along Hy, we get that for any curve

X with (at least) a tritangent line, we cannot hope for the cohomological vanishings required in Lemma 1.9.
Regarding the first case, consider the following short exact sequence, obtained from the inclusions Hy ⊂

WX ⊂ I,
0 −→ IWX/I −→ IHy/I −→ IHy/WX

−→ 0.

Notice that IHy/WX
is supported on the components of WX different from Hy (denote WX = Hy ∪ L),

therefore the restriction
(
IHy/WX

)
|Hy

will be given by the 0-dimensional scheme Z defined by the intersection

L ∩Hy. In particular, if length(Z) > 4, then H1
((

IWX/I(h)
)
|Hy

)
̸= 0.

2. The geometric method and the Jacobian ideal

Here we describe our use of the geometric method, in the terminology of [Wey03], to compute resolutions of
sheaves of logarithmic differentials. This approach has been used extensively in [GKZ08] in the framework of
projective duality, where the authors use the so-called Cayley method in order to obtain a complex resolving
the discriminant, called the discriminant complex. It was already pointed out in [Tev01] that the geometric
method could be used to obtain such discriminant complex, but it seems that no application to logarithmic
sheaves has been proposed so far. Describing such an application is the main goal of this section.

2.1. The geometric method and normalisation. Let X ⊂ P = P(V ) be a smooth connected projective
variety of dimension m with V a vector space of dimension ℓ+ 1.

2.1.1. The affine setting. Write the affine conormal bundle sequence in the smooth case:

0 → N∨
X/P(1) → V ⊗ OX → Ω̂X(1) → 0.

The total space N∨
X/P(1) = Tot(N∨

X/P(1)) is a subvariety of the trivial bundle Tot(V ⊗ OX) ≃ X × V , of

codimension equal to m + 1, defined in the fibres of the projection ρ : X × V → V by the equations in

Ω̂X(1) ≃
(
T̂X(−1)

)∨
. Then, there exists an exact Koszul complex of the form:

0 → ∧m+1π∗(T̂X(−1)) → ∧mπ∗(T̂X(−1)) → · · · → π∗(T̂X(−1)) → OX×V → ON∨
X/P(1)

→ 0,

where π : X×V → X is the obvious projection. Recall that we write π : N∨
X/P(1) → X and ρ : N∨

X/P(1) → V

as the restrictions of π and ρ to N∨
X/P(1).

Then the affine cone D̂ ⊂ V over the dual variety D = X∨ is the image of ρ. Now let E be a vector
bundle on X. Then the coherent sheaf ρ∗(π

∗(E)) on V is supported on D̂. By computing the pushforward
ρ∗ of the Koszul complex above, Weyman’s theorem provides a complex

FE
• : · · · → FE

−1 → FE
0 → FE

1 → · · ·

whose terms, for u ∈ Z, are of the form:

FE
u :=

⊕
l−p=u

H l(X,∧p(T̂X(−1))⊗ E)⊗ OV (−p).

Here, OV (−p) is the trivial line bundle on the affine space V for all p ∈ Z, however the notation keeps track
of the grading in the sense that for all p, p′ ∈ Z, the maps OV (−p) → OV (−p′) appearing in the above
complex are zero or homogeneous of degree p− p′, which by convention means that they vanish if p < p′.

Remark 2.1. If G is an algebraic group acting on X and both E and OX(1) are G-linearised, then G acts
linearly on P(V ) and on P(V ∨). In this setup, the complex FE

• will be G-equivariant.
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2.1.2. The projective setting. Working out the previous construction in the projective setting, one considers
maps π : P(NX/P(−1)) → X and ρ : P(NX/P(−1)) → P(V ∨) and a projective version of Weyman’s complex,
for which we use the same notation, which is given by:

FE
u :=

⊕
l−p=u

H l(X,∧p(T̂X(−1))⊗ E)⊗ OP(V ∨)(−p).

Proposition 2.2. Let X ⊂ P be a smooth projective variety whose dual D is a hypersurface.

i) If H l(X,∧pTX(−p)) = 0 for l − p > 0, then FOX
>0 = 0 and we have an exact complex:

0 → FOX
• → ρ∗π

∗(OX) → 0.

Also, ρ∗π
∗(OX) is the normalization of D̂.

ii) If moreover H l(X,∧lTX(−l)) = 0 for l > 0 then D̂ is normal with rational singularities.

Furthermore, if X is Fano, namely ω∨
X is ample, then the vanishing required for i) holds.

Proof. This is a direct application of the geometric method. Notice that the morphism ρ : N∨
X/P(1) → D̂ is

birational. Indeed, D̂ ⊂ V is the affine cone over D ⊂ P̌ = P(V ∨), which is a hypersurface, and thus ρ is an

isomorphism over the smooth locus of D̂ by the biduality theorem. Then, to obtain the statements about
FOX

• and the singularities of D̂, just apply Theorem [Wey03, Theorem 5.1.3].
About the last assertion, assume that X is Fano and note that, for all p ≥ 0, we have:

(12) ∧pTX(−p) ≃ Ωm−p
X (p)⊗K∨

X .

Since we are in characteristic zero and since OX(p)⊗K∨
X is ample, Kodaira vanishing gives:

H l(Ωm−p
X ⊗ OX(p)⊗K∨

X) = 0, for l > p,

which, in view of (12), is precisely i). □

2.2. Resolution of the Jacobian ideal. Let us come to our main application of the geometric method,
namely the resolution of the Jacobian ideal.

Theorem 2.3. Let X ⊂ P be a smooth projective connected variety whose dual D ⊂ P̌ is a degree d
hypersurface.

i) If H l(X,∧pTX(1− p)) = 0 for l − p > 0 then F
OX(1)
>0 = 0 and we have an exact complex:

0 → F
OX(1)
• → ρ∗(π

∗(OX(1))) → 0.

ii) If moreover H l(X,∧lTX(1− l)) = 0 for l > 0 and H0(X,OX(1)) = V then

JD(d− 1) ≃ ρ∗(π
∗(OX(1))).

Proof. From the exact sequence (4), for any integer p with 0 ≤ p ≤ m+ 1, we get a short exact sequence

(13) 0 → ∧p−1TX → ∧pT̂X → ∧pTX → 0.

Then, the vanishing appearing in i) implies that H l(X,∧pT̂X(1− p)) = 0 for l − p > 0. As in the proof

of the previous proposition, the morphism ρ : N∨
X/P(1) → D̂ is birational. By applying Theorem [Wey03,

Theorem 5.1.2] we deduce that F
OX(1)
u = 0 for u > 0 and the first statement above.

The hypothesis in the second statement implies moreover that

F
OX(1)
0 = ρ̃∗(OI(h)) = V ⊗ OP̌ ≃ T̂P̌(−1).

By construction, the morphism F
OX(1)
0 ≃ T̂P̌(−1) → ρ∗(π

∗(OX(1))) factorises through the surjective mor-

phism T̂P̌(−1) → JD(d − 1) (the commutativity argument is the same as the one in the proof of Theorem

1.5) and the inclusion JD(d− 1) → ρ∗(π
∗(OX(1))). The fact that F

OX(1)
0 → ρ∗(π

∗(OX(1))) is surjective is a
consequence of the first statement above; this implies that the inclusion JD(d− 1) → ρ∗(π

∗(OX(1))) is also
surjective, and thus an isomorphism. □

Corollary 2.4. Let us suppose that the hypothesis and the vanishings in both statements of Theorem 2.3
hold. Then there exists a locally free resolution

0 → · · · → F
OX(1)
−2 → F

OX(1)
−1 → T̂P̌(−log(D)) → 0.
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Proof. Combine Theorem 2.3 with Equation (6). □

In the following sections we will apply this result to the special case of hypersurfaces which are dual
varieties of adjoint varieties.

3. Adjoint varieties, adjoint discriminants and their normalisation

The goal of this section is to compute a resolution of the structure sheaf of the normalisation of adjoint
discriminants via the method developed in the previous section. This is mainly a warm-up for the next
section, where we will compute a resolution of the Jacobian ideal of adjoint discriminants. We start by
recalling some basic features of adjoint varieties.

Let G be a simple Lie group over k, V := g its Lie algebra and X the G-adjoint variety, i.e. the minimal
G-orbit in P(g). We will identify g and g∨ via the Killing form, thus thus identifying canonically V with
V ∨. Moreover we will denote by ĝ the quasi-minuscule representation (i.e. the representation whose highest
weight is the highest short root). The dual variety D = X∨ ⊂ P(g) is a hypersurface, called the adjoint
discriminant of G. It is the zero locus of a polynomial ∆ of degree equal to the number of long roots of G.

3.1. Geometry of adjoint varieties. Here we review some of the properties of adjoint varieties that will
be useful to us. An adjoint variety X for a simple algebraic group G is a G-homogeneous projective manifold
and thus can be seen as a quotient G/P for a certain parabolic subgroup P ⊂ G. Such parabolic subgroup
is associated to a subset IP of the simple roots (α1, . . . , αn); if IP = {αi1 , . . . , αis} we write P = Pi1,...,is .
The subset IP has a very explicit and elementary description.

We will use the fundamental equivalence between representations of P and G-homogeneous vector bundles
on X. According to it, irreducible homogeneous bundles on X are in bijection with P -dominant weights,
i.e. combinations ϖ =

∑
i niϖi with ni ∈ Z for i ∈ IP and ni ≥ 0 for i ̸∈ IP , where ϖ1, . . . , ϖn are the

fundamental weights with respect to the simple roots α1, . . . , αn of G, which we will index according to
Bourbaki’s convention. If E is a G-homogeneous vector bundle, then the associated representation of the
parabolic group P , restricted to the semisimple part of P , gives rise to a homogeneous bundle which is a
direct sum of irreducible bundles. We call this the semisemplification of E and we denote it by ss(E). We
denote by Eϖ the irreducible bundle corresponding to the weight ϖ. If ϖ is G-dominant, we denote by Vϖ
the G-representation of highest weight ϖ.

Bott-Borel-Weil Theorem : Let us denote by W the Weyl group of G, and by ρ =
∑

i αi the half
sum of all positive roots. Let w ∈ W be the unique element such that w(ϖ + ρ) is G-dominant, i.e.
w(ϖ + ρ) =

∑
imiϖi with mi ≥ 0, and let us denote by l(w) the length of w. Bott-Borel-Weil Theorem

([Bot57]) asserts the following two statements. On the one hand, if there exists j such that mj = 0 then

Hu(X,Eϖ) = 0 for all u. On the other hand, if mi > 0 for all i then H l(w)(X,Eϖ) ∼= Vw(ϖ+ρ)−ρ as
G-representations and Hu(X,Eϖ) = 0 for all u ̸= l(w).

3.1.1. Contact structure. A key feature of adjoint varieties is that they are contact manifolds (see [Bea98]
and [BM19]). This means that there exists an exact sequence

(14) 0 → F → TX
θ→ L → 0,

where L is the line bundle defining the embeddingX ⊂ P(V ) and F is a vector bundle of rank f = dim(X)−1
on X, equipped with a skew-symmetric self-duality induced by the differential of θ ∈ H0(X,ΩX ⊗ L) (by
abuse of notation, we will denote this duality by dθ):

dθ : F
∼−→ F∨ ⊗ L, t(dθ) = −dθ.

In particular, m = dim(X) = f + 1 is odd, and we write m = 2e+ 1.

Lemma 3.1. The morphism dθ ∧ (•) : ∧p−2F∨ → ∧pF∨ ⊗ L is an embedding for p ≤ e+ 1.

Proof. This follows directly from the non-degeneracy of dθ as an element in H0(X,∧2F∨ ⊗ L). □

From the contact structure we get the following exact sequence:

(15) 0 → ∧p−1F∨ → Ωp
X ⊗ L → ∧pF∨ ⊗ L → 0,
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In all types except An, F is a homogeneous irreducible bundle, thus the semisemplification of Ω̂p
X ⊗L is

given by

ss(Ω̂p
X ⊗ L) = ∧p−2F∨ ⊕ ∧p−1F∨ ⊕ ∧p−1F∨ ⊗ L⊕ ∧pF∨ ⊗ L.

In type An the terms of the above decomposition are not irreducible (as we will soon see). Let us give a
brief introduction to adjoint varieties of classical groups.

3.1.2. Type An. The point-hyperplane incidence variety. We have G ≃ SLn and g is the algebra of traceless
matrices sln+1. The adjoint variety X is P(TPn), and IP = {α1, αn} so P = P1,n. The variety X is

identified with the point-hyperplane incidence variety, namely a smooth hyperplane section of Pn × P̌n and
its Picard group is generated by two line bundles OX(1, 0) ≃ Eϖ1 and OX(0, 1) ≃ Eϖn obtained by pull-back
from the two projections onto Pn and P̌n. The line bundle L of (14) is L ≃ OX(1, 1). Finally we have
ss(F) = E−ϖ1+ϖ2+ϖn ⊕ Eϖ1+ϖn−1−ϖn .

3.1.3. Type Bn and Dn. The orthogonal Grassmannian of lines in odd and even dimension. Let us consider
the group SO(m) acting on a vector space k and preserving a symmetric form on km. In case Bn we have
m = 2n + 1, and in case Dn we have m = 2n. The adjoint variety X is the orthogonal Grassmannian of
planes OG(2,m) parametrizing isotropic (with respect to the symmetric form) subspaces k2 ⊂ km. The
variety X is a subvariety of the Grassmannian G(2,m), and the line bundle L is the restriction of the
Plücker line bundle on G(2,m); it gives the embedding X ⊂ P(som) = P(∧2km). Let us denote by U the
rank two tautological bundle on OG(2,m) which is the restriction of the tautological bundle on G(2,m),
and by U⊥/U the rank m−4 bundle whose fiber is given by the orthogonal space to the fiber of U quotiented
by the fiber of U itself. Then F = U∨ ⊗ U⊥/U, and in term of weights F = Eϖ1−ϖ2+ϖ3

. In type Bn the
quasi-minuscule representation is simply given by ĝ = k2n+1 = Vϖ1

.

3.1.4. Type Cn. The Veronese embedding. Fix a non-degenerate skew-symmetric 2-form ω on k2n and
consider the group G = Sp(2n) of linear automorphisms of k2n preserving ω. In an appropriate basis, we
may identify S2k2n ≃ sp2n, the adjoint representation of Sp(2n). We have a decomposition of irreducible
Sp(2n)-representations ∧2k2n = k⊕∧⟨2⟩k2n where ∧⟨2⟩k2n ≃ Vϖ2

≃ ĝ is the quasi-minuscule representation.
The adjoint variety is X = v2(P(k2n)), the second Veronese embedding of the projective space. In this

case, the line bundle appearing in (14) is L = OP2n−1(2) and the dual of (14) reads

0 → OP2n−1(−2) → ΩP2n−1 → F∨ → 0,

so F∨ ⊗ OP2n−1(1) is a null-correlation bundle.

We postpone the description of the exceptional cases and their adjoint varieties to Section 4.4. We just
notice that the Betti numbers of these varieties can be found in [CP11], while the exponents of simple Lie
groups can be found in [Bou02]. We end this section with a useful lemma.

Lemma 3.2. Let X be an adjoint variety. Then we have an isomorphism T̂X ⊗ L∨ ∼= Ω̂X .

Proof. First notice that L is the restriction of OP(1) to X. By the Bott-Borel-Weil Theorem and a case
by case analysis we deduce that Hu(X,L∨) = 0 for any u and any adjoint variety. The dual of the exact
sequence defining the contact structure, i.e,

0 → L∨ → ΩX → F∨ → 0

yields then, for all u,

Hu(X,F ⊗ L∨) = Hu(X,F∨) = Hu(X,ΩX).

Both the previous short exact sequence defining the contact structure and the one which defines the affine
tangent bundle

0 → L∨ → T̂X ⊗ L∨ → TX ⊗ L∨ → 0

are induced by the element in H1(X,F∨) = H1(X,ΩX) corresponding to the hyperplane class. Then the

inclusion F∨ ∼= F⊗L∨ → TX ⊗L∨ induces an inclusion ΩX → T̂X ⊗L∨. We get the following commutative
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diagram:

L∨
� _

��

L∨
� _

��
0 // ΩX

//

����

T̂X ⊗ L∨ //

����

OX
// 0

0 // F∨ // TX ⊗ L∨ // OX
// 0

The two bottom lines are induced thus once again by the same element in H1(X,F∨) = H1(X,ΩX), and
since the lower line is essentially the contact structure, which is induced by the hyperplane class, the upper
line is also induced by the hyperplane class, and it is then the exact sequence defining the affine cotangent

bundle. We obtain T̂X ⊗ L∨ ∼= Ω̂X . □

3.2. The normalisation of adjoint discriminants. Let D be the dual hypersurface variety of an adjoint
variety X. Let us also denote by Dn → D its normalization. Recall that m = dim(X) is odd, thus
m = 2e + 1. Recall that R := k[g]G is a polynomial algebra generated by n polynomials F1, . . . , Fn of
degrees d1, . . . , dn, where n is the rank of G. The exponents e1, . . . , en of G can be defined as ei := di − 1
for i = 1, . . . , n. Recall that s denotes the number of long simple roots; moreover we order the exponents
so that ei ≤ ei+1 for i = 1, . . . , n− 1. Our goal for this section is to prove the following result.

Theorem 3.3. A sheafified minimal graded free resolution of ODn
is :

0 →
s⊕

i=1

OP̌(−m+ ei − 2) →
s⊕

i=1

OP̌(−ei + 1) → ODn
→ 0.

We start with the following lemma, which for classical groups is just [Wey03, Exercises 9.3, 9.2, 9.3, 9.4].

Lemma 3.4. Let X be an adjoint variety and set m = dim(X). There exists a G-equivariant resolution

0 →
m⊕

p=0

Hp(Ωp
X)⊗ OP̌(−p− 1) →

m⊕
p=0

Hp(Ωp
X)⊗ OP̌(−p) → ODn

→ 0.

Proof. We apply Theorem 2.3 to get a resolution of the normalization Dn of D. The terms of the resolution

are given by FOX
u for all u ≤ 0, and these are computed from the cohomology of ∧p(T̂X ⊗ L∨). This

computation yields the statement by using Lemma 3.2 and the dual of (13). □

Proof of Theorem 3.3. For all i ≥ 0, consider the map given by multiplication by the hyperplane class:

Hi−1(Ωi−1
X ) → Hi(Ωi

X),

and denote by Ki−1 and Ci, respectively, the kernel and cokernel of such map. The non-trivial extension

0 → ΩX → Ω̂X → OX → 0

induces a map in cohomology H0(OX) → H1(Ω1
X) whose image is the hyperplane class corresponding to

the embedding X ⊂ P(V ). Thus, taking duals in (13) we find, for any p ≥ 0, an exact sequence

(16) 0 → Ωp
X → Ω̂p

X → Ωp−1
X → 0,

whose induced map in cohomology Hp−1(Ωp−1
X ) → Hp(Ωp

X) are just given by the multiplication by
the hyperplane class. By the Lefschetz’ Hyperplane Theorem, we deduce that for all p ∈ Z, the maps
Hp−1(Ωp−1

X )⊗ OP̌(−p) → Hp(Ωp
X)⊗ OP̌(−p) appearing in FOX

• have maximal rank.
Therefore we obtain the following minimal resolution:

0 →
m⊕

q=e+1

Kq ⊗ OP̌(−q − 1) →
e⊕

q=0

Cq ⊗ OP̌(−q) → ODn
→ 0.

The result then follows by noticing, through an explicit comparison of Betti numbers for adjoint varieties
and exponents for each simple Lie group, that Ci (and Km−i) is a direct sum of ui trivial G-representations,
where ui is the cardinality of {j | deg(fj) = i+ 2}. □

Corollary 3.5. The adjoint discriminant D is normal if and only if G is of type Cn or G2.
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Proof. The adjoint varieties in type Cn and G2 are the only two adjoint varieties whose rational cohomology
is completely generated by the hyperplane class. This is reflected in the fact that for the corresponding Lie
groups s = 1; by Theorem 3.3 and Theorem 2.2 we deduce that the duals of these two adjoint varieties are
the only ones which are normal. □

4. Jacobian ideals of adjoint discriminants

In this section we want to compute a locally free resolution of the Jacobian ideal and the tangent
logarithmic sheaf of the dual varieties D of adjoint varieties X ⊂ P(g). In order to do so, we will use the
method described in §2 to compute a sheafified minimal graded free resolution of ρ∗(π

∗L). Then we will
identify ρ∗(π

∗L) with the Jacobian ideal sheaf of D. The final goal of this section is to find a G-equivariant
locally free resolution of the module of logarithmic differentials. For simply laced groups, that represents the
first step to prove Theorem 2. For the non-simply laced case, the resolution we obtain is the one appearing
in Theorem 3.

In our setting, one may work indifferently with graded modules of finite type on U = k[g∨] or coherent
sheaves on P(g). We use the customary identification of g and g∨ via the Killing form, hence, to ease the
notation, most of the times we will just use g.

The following result ensures that we can apply Weyman’s method in order to compute a locally free
resolution of ρ∗(π

∗(L⊗i)), for any i > 0 and for any adjoint variety X:

Proposition 4.1. Let X be an adjoint variety and let i > 0 be a positive integer. Then Weyman’s complex

FL⊗i

• is a sheafified graded free resolution of ρ∗(π
∗(L⊗i)).

Proof. By Theorem [Wey03, Theorem 5.1.2], we need to check that FL⊗i

u = 0 for any u > 0. By definition
of this complex and using Lemma 3.2, we get

FL⊗i

u ≃
⊕

l−p=u

H l(X,∧pΩ̂X ⊗ L⊗i)⊗ OP(g)(−p).

For any p ≥ 0 and i ∈ Z, we tensor (16) by L⊗i to obtain an exact sequence

0 → Ωp
X ⊗ L⊗i → Ω̂p

X ⊗ L⊗i → Ωp−1
X ⊗ L⊗i → 0.

Now, by [Bri09, Theorem 3.18] we have that H l(X,Ωp
X ⊗L⊗i) = 0 as soon as i > 0 and l > p. From the

above sequence we deduce FL⊗i

u = 0 for u > 0. The result follows. □

Now we turn to the computation of Weyman’s complex FL
• . We need to perform a certain number of

computations on a case-by-case basis, although the final result admits a uniform formulation.

4.1. Type Cn: Warming up. In this case X = v2(P2n−1) ⊂ P(S2k2n) = P is the second Veronese
embedding of the projective space and L = OP2n−1(2). Recall that ŝp2n = Vϖ2

.

Proposition 4.2. Let X = v2(P2n−1) be the adjoint variety of type Cn and D = X∨ the adjoint discrim-
inant. We have an isomorphism ρ∗(π

∗(L)) ≃ JD(d − 1) and an equivariant sheafified minimal graded free
resolution:

0 → ∧2k2n ⊗ OP(sp2n)
(−2) → (k2n ⊗ k2n)⊗ OP(sp2n)

(−1) → S2k2n ⊗ OP(sp2n)
→ JD(d− 1) → 0.

Equivalently, we have an equivariant graded free resolution:

0 → (k⊕ ŝp2n)⊗U(−2) → (k⊕ ŝp2n ⊕ sp2n)⊗U(−1) → DerU(−log(D)) → 0.

Proof. Let us denote by Q the quotient tautological bundle of X, namely Q = TP2n−1 ⊗ OP2n−1(−1). Then,
for all p ≥ 0 we have a short exact sequence

0 → ∧pQ∨(2− p) → Ω̂p
X ⊗ L → ∧p−1Q∨(3− p) → 0.

The only non-vanishing cohomology groups of ∧pQ∨(2− p) are given by H0(P2n−1,O(2)) ∼= S2k2n ∼= V ,

and H0(P2n−1,Q∨(1)) ∼= ∧2k2n. Thus the only non-vanishing cohomology groups of Ω̂p
X ⊗ L are:

H0(P2n−1,L) ∼= S2k2n, H0(P2n−1, Ω̂1
X ⊗ L) ∼= k2n ⊗ k2n, H0(P2n−1, Ω̂2

X ⊗ L) ∼= ∧2k2n.

The result now follows by noticing that S2k2n ⊗ OP(sp2n)
∼= T̂P(sp2n)

(−1). □
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Notice that the previous result was already obtained differently in [FM22] as the resolution of the tangent
logarithmic sheaf of the discriminant of quadratic forms.

4.2. Type An. In this case X is the flag variety F (1, n, n+1) parametrizing flags k ⊂ kn inside a fixed n+1
dimensional vector space. It can also be seen as the projectivized of the cotangent bundle of the projective
space Pn. The group G is in this case SL(n+ 1) and the Weyl group is the group of permutations of n+ 1
elements. The bundle L is the ample line bundle OX(1, 1) defining the embedding X ⊂ P(sln+1), which
we also denote by OX(1) to ease the notation. Following [Küc95], the weight associated to an irreducible
homogeneous bundle over X is given by a sequence of integers

λ := [λ1;λ2, . . . , λn;λn+1] =
∑
i

(λi − λi+1)ϖi

such that λ2 ≥ · · · ≥ λn. For instance OX(1, 0) is associated with the weight [1; 0, . . . , 0; 0] = [1; 0n−1; 0],
while OX(1, 1) is associated with [1; 0 . . . , 0;−1]. Notice that in this notation λ and λ + c := [λ1 + c;λ2 +
c, . . . , λn + c;λn+1 + c] for any c ∈ Z, are associated to the same irreducible homogeneous bundle.

Remark 4.3 (Bott-Borel-Weil Theorem for SL(n + 1)). The bundle Eλ is globally generated if λ1 ≥ λ2
and λn ≥ λn+1; in this case by Bott-Borel-Weil Theorem the space of sections H0(X,Eλ) is isomorphic to
the SL(n+1)-representation given by the plethysm Sλk

n+1. More generally, let ρ := [n+1, n, . . . , 2, 1] and
consider the two following situations: either the integers in λ+ ρ are all pairwise distinct, either there are
two repeated integers. In the latter case, for all i ≥ 0 we have Hi(X,Eλ) = 0 by Bott-Borel-Weil theorem.
In the former case, denote by w the permutation of n+1 elements such that w(λ+ρ) is a strictly decreasing
sequence of integers. Then, again by Bott-Borel-Weil theorem, for all i ̸= l(w) we have Hi(X,Eλ) = 0,
where l(w) is the length of the permutation w (i.e. the minimal number of simple permutations needed to
obtain w); moreover H l(w)(X,Eλ) = Sw(λ+ρ)−ρk

n+1.

Notation 4.4. We will fix a n + 1 dimensional vector space A ∼= kn+1. We will denote by U1, Un the
tautological bundles of rank 1, n on the flag variety F (1, n,A) parametrizing flags in the vector space A.

Notice that T̂∨
X ⊗L ∼= Ω̂∨

X = (sl(A)⊗OX/N
∨
X/P)

∨. Then by the geometric method the spectral sequence

Hj(X,∧iΩ̂X ⊗ L) defines a locally free resolution {⊕iF
L
j−i(−i)}j−i of ρ∗π

∗L as soon as FL
k = 0 for k > 0.

We will compute such a resolution by computing the cohomology of the graded pieces of Ω̂X ; by doing so,
we will obtain a resolution which a priori is not minimal, but still resolves ρ∗π

∗L. The semisemplification

of T̂X ⊗ L∨ ∼= Ω̂X is given by

ss(Ω̂X) = OX ⊕ U1 ⊗ (A/Un)
∨ ⊕ U1 ⊗ (Un/U1)

∨ ⊕ (Un/U1)⊗ (A/Un)
∨.

In the notation of weights, one can write:

ss(Ω̂X) = [0; 0, . . . , 0; 0] + [−1; 0, . . . , 0; 1] + [−1; 1, 0, . . . , 0; 0] + [0; 0, . . . , 0,−1; 1].

The first two terms are line bundles, so they represent the easiest part to deal with. The last two terms
have rank n− 1 and, since we need to compute the cohomology of ∧iΩ̂X , we give the formula to compute
the exterior power of their sum:

∧i(ss(Ω̂X)) = ∧i([−1; 1, 0, . . . , 0; 0] + [0; 0, . . . , 0,−1; 1])⊕
⊕ ∧i−1([−1; 1, 0, . . . , 0; 0] + [0; 0, . . . , 0,−1; 1])⊗ OX⊕
⊕ ∧i−1([−1; 1, 0, . . . , 0; 0] + [0; 0, . . . , 0,−1; 1])⊗ U1 ⊗ (A/Un)

∨⊕
⊕ ∧i−2([−1; 1, 0, . . . , 0; 0] + [0; 0, . . . , 0,−1; 1])⊗ OX ⊗ U1 ⊗ (A/Un)

∨.

In this decomposition the first factor is equal to ∧iF∨, the second factor is equal to ∧i−1F∨, the third factor
is equal to ∧i−1F∨ ⊗ L∨ and the fourth factor is equal to ∧i−2F∨ ⊗ L∨. By tensoring by L we obtain the
semisemplification of ∧iΩ̂X ⊗ L.

Lemma 4.5. In the weight notation we have: for 0 ≤ i ≤ 2n− 2,

∧iF∨ ⊗ L =
⊕

p,q≤n−1,p+q=i,
max(0,q−p)≤j≤min(q,n−p−1)

[−q + 1; 1j , 0n−p+q−2j−1, (−1)p−q+j ; p− 1]
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and for 1 ≤ i ≤ 2n− 1,

∧i−1F∨ =
⊕

p,q≤n−1,p+q=i−1,
max(0,q−p)≤j≤min(q,n−p−1)

[−q; 1j , 0n−p+q−2j−1, (−1)p−q+j ; p].

Proof. In order to obtain the above formulas one needs to combine the formula for computing the exterior
power of a direct sum of vector spaces ∧i(U⊕W ) =

⊕
p+q=i ∧pU⊗∧qW, and the Littlewood-Richardson rule

for tensoring two representations Aµ ⊗ Aη =
⊕

λ c
λ
µηAλ (where Aµ, Aη and Aλ are SL(A)-representations

of highest weight respectively µ, η and λ, and cλµη are the so-called Littlewood-Richardson coefficients, see
for instance [Ful97]). One obtains

∧i([−1; 1, 0, . . . , 0; 0] + [0; 0, . . . , 0,−1; 1]) =
⊕

p,q≤n−1,p+q=i,
max(0,q−p)≤j≤min(q,n−p−1)

[−q; 1j , 0n−p+q−2j−1, (−1)p−q+j ; p],

and the result follows. □

Proposition 4.6. All cohomology groups of ∧iF∨ and ∧iF∨ ⊗ L vanish except for the following ones:

• Hi(X,∧iF∨) ∼= Hi(Ωi
X) for i ≤ e, where the isomorphism is induced by the surjection Ωi

X → ∧iF∨;

• Hi−2(X,∧iF∨ ⊗ L) ∼= Hi−2(Ωi−2
X ) for 2 ≤ i ≤ e − 1, and H0(X,∧0F∨ ⊗ L) ∼= sln+1; moreover

the terms Hi−2(Ωi−2
X ) are the images of the cohomology maps induced by the embeddings dθ ∧ (•) :

∧i−2F∨ → ∧iF∨ ⊗ L.

Proof. Let us compute the cohomology of the bundles by using their weight decomposition.

∧i−1F∨: Let us consider one factor in ∧i−1F∨ equal to [−q; 1j , 0n−p+q−2j−1, (−1)p−q+j ; p]. It has cohomology
if and only if no integer in the sequence

[−q; 1j , 0n−p+q−2j−1, (−1)p−q+j ; p] + [n+ 1;n, . . . , 2; 1]

repeats more than once. Let us look for integers p, q, i, j for which the cohomology does not vanish.
Either q = j or q = n − p + q (if q ≥ n − p + q − 1 then in fact q ≥ n + 1, which is impossible).
Similarly either p = p − q + j or p = n − j. But q = n − p + q is impossible because p ≤ n − 1,
which also excludes p = n − j. Thus we remain with the only possibility q = j (which implies
p = p− q+ j); for these terms the cohomology is concentrated in degree j + p− q+ j = i− 1. Thus
we obtain Hi−1(∧i−1F∨) = ki if and only if 1 ≤ i ≤ n since q ≤ n − p − 1 and q runs from 0 to
i− 1.

∧iF∨ ⊗ L: Let us consider one factor in ∧iF∨ ⊗ L equal to [−q + 1; 1j , 0n−p+q−2j−1, (−1)p−q+j ; p− 1]. It has
cohomology if and only if no integer in the sequence

[−q + 1; 1j , 0n−p+q−2j−1, (−1)p−q+j ; p− 1] + [n+ 1;n, . . . , 2; 1]

repeats more than once. Let us look for integers p, q, i, j for which the cohomology does not vanish.
One possibility is of course given by p = q = i = j = 0, which gives H0(L) = sl(A). If q ̸= 0 either
q = j + 1 or q ≥ n − p + q + 1. The latter is impossible since p ≤ n − 1. Similarly if p ̸= 0 either
p = p− q+ j+1 or p ≥ n− j+1. The latter is impossible since j ≤ n−p−1. Thus we remain with
the only possibility q = j + 1 (which implies p = p− q + j + 1); for these terms the cohomology is
concentrated in degree j + p− q+ j = i− 2. Thus we obtain Hi−2(∧iF∨ ⊗L) = ki−1 if and only if
2 ≤ i ≤ n since q ≥ 1, p ≥ 1, q − 1 = j ≤ n− p− 1 and q runs from 1 to i− 1.

By Serre duality Hi(X,∧iF∨ ⊗L∨)∨ ∼= Hf+1−i(X,∧iF⊗L⊗KX) ∼= Hf+1−i(X,∧f−iF∨). Since ss(Ωi
X) =

∧i−1F∨ ⊗L∨ ⊕∧iF∨ and ∧i−1F∨ ⊗L∨ is acyclic for i ≤ e we deduce that the cohomology groups of ∧iF∨

for i ≤ e are induced by the surjection Ωi
X → ∧iF∨.

In order to show that the terms Hi−2(Ωi−2
X ) in the cohomology of ∧iF∨ ⊗ L are induced by dθ ∧ (•)

notice that, by the explicit computations above, for each irreducible bundle in ss(∧i−2F∨), this bundle
appears only once in ss(∧iF∨ ⊗ L); moreover its cohomology (when it does not vanish) appears both in
Hi−2(X,∧i−2F∨) and Hi−2(X,∧iF∨ ⊗ L). The claim follows. □
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4.3. Type Bn and Dn: orthogonal Grassmannians of planes. The notation that follows can be found
in [Ben18]. Let us consider the group SO(m), which is of type Bn when m = 2n+ 1 and of type Dn when
m = 2n. From now on, to uniformize notation we will define h = 1/2 (respectively h = 0) in type Bn (resp.
Dn), so that m = 2(n + h). The adjoint variety X is the orthogonal Grassmannian of planes OG(2,m)
parametrizing isotropic subspaces k2 ⊂ km inside a fixed m dimensional vector space endowed with a
symmetric 2-form. The bundle L is the ample line bundle defining the embedding X ⊂ P(som) = P(∧2km),
and we will also denote L by OX(1) to ease notation. Following [Ben18], the weight associated to an
irreducible homogeneous bundle over X is given by a sequence made only of integers or half-integers

λ := [λ1, λ2;λ3, . . . , λn]

such that λ1 ≥ λ2, λ3 ≥ · · · ≥ λn and: λn ≥ 0 in type Bn and λn−1 + λn ≥ 0 in type Dn. In terms
of fundamental weights λ =

∑
i≤n−1(λi − λi−1)ϖi + 2λnϖn in type Bn and λ =

∑
i≤n−1(λi − λi−1)ϖi +

(λn−1 + λn)ϖn in type Dn.

Remark 4.7 (Bott-Borel-Weil Theorem for SO(m)). The bundle Eλ is globally generated if λ2 ≥ λ3; in this
case by Bott-Borel-Weil Theorem the space of sections H0(X,Eλ) is isomorphic to the SO(m)-representation
Vλ with highest weight λ. More generally, let ρ := [n− 1 + h, n− 2 + h, . . . , 1 + h, h] and consider the two
following situations: either the integers (or half-integers) in λ + ρ union −λ − ρ are all pairwise distinct
except for 0 which can appear twice; or there are two non-zero integers which are the same. In the latter
case, for all i ≥ 0 we have Hi(X,Eλ) = 0 by Bott-Borel-Weil theorem. In the former case, consider the Weyl
group W of SO(m) which is a semidirect product of the permutations of n elements of λ and Z2, where Z2

is generated by the reflection τ and τ acts by exchanging λn into −λn (respectively exchanging λn−1 into
−λn and λn into −λn−1) in type Bn (resp. Dn). Denote by w ∈ W the element such that w(λ + ρ) is a
strictly decreasing sequence of integers (or half integers) with λn ≥ h in type Bn and λn−1 + λn ≥ 1 in
type Dn. Then, again by Bott-Borel-Weil theorem, for all i ̸= l(w) we have Hi(X,Eλ) = 0, where l(w) is
the length of the element w (i.e. the minimal number of simple reflections needed to obtain w); moreover
H l(w)(X,Eλ) = Vw(λ+ρ)−ρ.

Notation 4.8. We will denote by U, U⊥/U the tautological bundles of rank 2, m − 4 on OG(2,m). Here
U⊥/U is a subbundle of the quotient tautological bundle whose vectors are orthogonal to elements in U. In
the weight notation U = [0,−1; 0, . . . , 0], L = det(U∨) = [1, 1; 0, . . . , 0] and U⊥/U = [0, 0; 1, 0, . . . , 0]. Notice
that U⊥/U is auto-dual.

The cotangent bundle is given by the extension 0 → OX(−1) → ΩX → U⊗ (U⊥/U) → 0, from which we
see that F∨ = U⊗(U⊥/U) = [0,−1; 1, 0, . . . , 0]. We want to compute the cohomology of ∧pF∨ and ∧pF∨⊗L,
but in order to do so we need to be able to express these bundles as direct sums of SO(m)-homogeneous
irreducible bundles. As before, let us denote by S• the plethysm with weight •. If λ = (λ1 ≥ · · · ≥ λn) is
a partition, we will denote by λ′ the conjugate partition of λ, i.e. the partition whose Young diagram is
obtained by a reflection along the main diagonal of the Young diagram of λ.

Lemma 4.9. We have the following decomposition for 0 ≤ p ≤ 2m− 8:

∧pF∨ =
⊕

0≤i≤j,i+j=p

Sj,iU⊗ S2i,1j−iU⊥/U.

Proof. This is a direct application of the Littlewood-Richardson formula for the exterior power of a tensor
product which, if λ′ is the conjugate partition of λ and |λ| =

∑
i λi, reads as follows

∧p(U ⊗W ) =
⊕
|λ|=p

SλU ⊗ Sλ′W.

□

It is easy to see that Sj,iU = [−i,−j; 0, . . . , 0] and, in order to do our computation, we thus need to express
S2i,1j−iU⊥/U in terms of weights. Let us come back to U⊥/U. This is an irreducible bundle, and as such
it corresponds to a certain irreducible representation of the Levi factor of the parabolic subgroup P2 ⊂ G
defining X = G/P2; this Levi factor is isomorphic to SL(3) × SO(m − 4). Moreover, the representation
is trivial as a SL(3)-representation, and it is the standard SO(m − 4)-representation corresponding to the
weight [1, 0, . . . , 0] (notice that in this case there are n− 2 entries in the sequence).
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As a consequence we want to understand the decomposition in direct sums of irreducible SO(m − 4)-
representations of the plethysm S2i,1j−i [1, 0, . . . , 0]. We will do this in two steps. Firstly we will use
branching rules from GL(m− 4) to O(m− 4) to decompose S2i,1j−i [1, 0, . . . , 0] in O(m− 4)-representations,
then we will use branching rules from O(m− 4) to SO(m− 4) to obtain the decomposition in SO(m− 4)-
representations. We will follow [JK21] for notations and results. Finally, we will put everything together
and we will compute the cohomology of both ∧pF∨ and ∧pF∨ ⊗ L.

We will denote representations with respect to O(m−4) (respectively SO(m−4), GL(m−4)) with highest
weight λO (resp. λSO, λGL) by V O

λ (resp. V SO
λ , V GL

λ ). Having already discussed the parametrization
of weights for GL(m − 4) and SO(m − 4); let us explicit the corresponding one for O(m − 4)-weights:
O(m − 4)-representations are in 1 : 1-correspondence with decreasing sequences of non-negative integers
λ = [λ1, . . . , λm−4] such that λ′1 + λ′2 ≤ n− 2.

Lemma 4.10. We have the following decomposition:

S2i,1j−i [1, 0, . . . , 0]GL =
⊕

0≤δ≤i,p−δ≤m−4

[2i−δ, 1j−i, 0m−j+δ−4]O,

where 0 ≤ i ≤ j, i+ j = p, 0 ≤ p ≤ 2m− 8.

Proof. This is just an application of the branching rule in [JK21, Theorem 4.10], so we will adopt the same
notations. It will be sufficient to explain how to recover the statement of this lemma from the cited theorem,
and in order to do so we will go back and forth from [JK21] to unravel this branching result.

Indeed, the results in the aforementioned paper allow to compute the Littlewood-Richardson type coef-
ficients cληµ appearing in the decomposition:

Sλ[1, 0, . . . , 0]
GL =

⊕
µ∈PO

(
∑

η∈P(2)

cληµ)V
O
µ .

Here we have denoted by PO the set of partitions corresponding to weights of O(m−4) (i.e. µ′
1+µ

′
2 ≤ m−4)

and by P(2) the set of even partitions (or decreasing sequences), i.e. ηu ∈ 2Z for any u. From now on
λ = [2i, 1j−i] as in the statement. Let us denote by LRλ

ηµ the set of Littlewood-Richardson tableaux of shape

λ/η with content µ. Then cληµ is the cardinality of the subset LR
λ′

η′µ′ ⊂ LRλ′

η′µ′ defined in [JK21, Section

4.1], where the “prime” of a partition indicates the conjugate partition; so for instance λ′ = [i, j, 0, . . . , 0].

Let LRλ′

η′µ′ ̸= ∅, then η′ ⊂ λ′ implies that η′ = [δ, δ, 0, . . . , 0] where 0 ≤ δ ≤ i, and µ′ = [j − δ, i− δ, 0, . . . , 0]

(from these we can recover η and µ since the “prime” operation is an involution). Of course, we need to
impose that µ′

1 + µ′
2 = j + i− 2δ ≤ m− 4, but we will see that this condition is unnecessary. If we denote

by cλ
′

η′µ′ the cardinality of LRλ′

η′µ′ , by the (classical) Littlewood-Richardson rule cλ
′

η′µ′ = 1 if and only if

η′ = [δ, δ, 0, . . . , 0], 0 ≤ δ ≤ i and µ′ = [j − δ, i− δ, 0, . . . , 0], and cλ
′

η′µ′ = 0 otherwise.

The statement of the lemma will follow if we are able to show that LR
λ′

η′µ′ = LRλ′

η′µ′ ̸= ∅ if and only

if p − δ ≤ m − 4. In the notation of [JK21], let ηrev := [0, . . . , 0, 2, . . . , 2] be the reversed sequence of

the sequence η. Let us suppose that S ∈ LRλ′

η′µ′ ̸= ∅, then S is a Young tableaux made of two rows of
respectively j− δ blocks and i− δ blocks; the numbers in the first row are all equal to one and the numbers
in the second row are all equal to two. Thus, always in the notation of the same paper, a = j− δ, b = i− δ,
(s1, . . . , sa) = (1, . . . , 1) and (t1, . . . , tb) = (2, . . . , 2). Then one defines r := m− 4− j+ δ if m− 4 < 2j− 2δ
or r := j − δ if m− 4 ≥ 2j − 2δ, and m1, . . . ,mj−δ as follows:

mι := max{k | ηrevk ∈ Xι, η
rev
k = 0},

where Xι is defined as:

Xι =

{
{ηrevι , . . . , ηrev2ι−1} \ {ηrevmι+1

, . . . , ηrevmp
} if 1 ≤ ι ≤ r,

{ηrevι , . . . , ηrevn−p+ι} \ {ηrevmι+1
, . . . , ηrevmp

} if r < ι ≤ p.

With such definition, one obtains: mj−δ = m− 4− δ, mj−δ−1 = m− 4− δ− 1, . . . , m1 = m− 4− j+1. Set
fu to be the u-th smallest integer in {u+1, u+2, . . . ,m−4}\{mu+1, . . . ,mj−δ}. Then by [JK21, Theorem
4.10]

S ∈ LR
λ′

η′µ′ ⇔ 2 = tu > ηrevfu for u = 1, . . . , b = i− δ.
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Since ηrevk = 0 for k ≤ m − 4 − δ and ηrevk = 2 for k ≥ m − 3 − δ, and since the sequence m1 − 1,m2 −
2, . . . ,mj−δ − j + δ is constant, the above condition is equivalent to

fi−δ < m− 4− δ + 1 ⇔ 2i− 2δ + j − i < m− 4− δ + 1 ⇔ p− δ ≤ m− 4.

□

Lemma 4.11. We have the following decomposition:

S2i,1j−i [1, 0, . . . , 0]GL =
⊕

0≤δ≤i,p−δ≤m−4

(R⊕ S ⊕ T ⊕ U),

where 0 ≤ i ≤ j, i+ j = p, 0 ≤ p ≤ 2m− 8 and:

• R =
⊕

j−δ<n+h−2[2
i−δ, 1j−i, 0n−j+δ−2]SO;

• S =
⊕

j−δ>n+h−2[2
i−δ, 1m−4−j−i+2δ, 0j−δ−n+2]SO;

• T =
⊕

j−δ=n+h−2,i<j([2
i−δ, 1, . . . , 1, 1]SO ⊕ [2i−δ, 1, . . . , 1,−1]SO);

• U =
⊕

j−δ=n+h−2,i=j([2, . . . , 2, 2]
SO ⊕ [2, . . . , 2,−2]SO);

Remark 4.12. The terms T and U only appear when h = 0, i.e. in type Dn.

Proof. This is a direct application of the branching rules from O(m − 4) to SO(m − 4) (see [HTW05]).
Indeed, these branching rules imply that, if µ = [2i−δ, 1j−i, 0m−j+δ−4]O ∈ PO with p− δ ≤ m− 4 then:

if 2j − 2δ < m− 4 then V O
µ

∼= V SO
µ ;

if 2j − 2δ > m− 4 then V O
µ

∼= V SO
ν , where ν = [2i−δ, 1m−4−p+2δ, 0p−i−δ−n+2]SO;

if 2j − 2δ = m− 4 (which happens only when m is even) and i < j then V O
µ

∼= V SO
ν ⊕ V SO

ν′ , where

ν = [2i−δ, 1, . . . , 1]SO, and ν′ = [2i−δ, 1, . . . , 1,−1]SO;
if 2j − 2δ = m− 4 (which happens only when m is even) and i = j then V O

µ
∼= V SO

ν ⊕ V SO
ν′ , where

ν = [2, . . . , 2]SO and ν′ = [2, . . . , 2,−2]SO.

□

We are now ready to compute the cohomology of ∧pF∨ and ∧pF∨ ⊗ L by applying Bott-Borel-Weil
Theorem. Recall that in type Bn the non-vanishing cohomology of Ωp

X for p ≤ m−4 is given by Hp(Ωp
X) ∼=

k⌊p/2⌋+1; moreover som = V
SO(m)
ϖ2 = [1, 1, 0, . . . , 0]SO(m) and the quasi-minuscule representation is given by

the standard representation V
SO(m)
ϖ1 = [1, 0, . . . , 0]SO(m).

Proposition 4.13. Let X be the adjoint variety of type Bn, m = 2n + 1, h = 1/2, e = m − 4. All
cohomology groups of ∧pF∨ and ∧pF∨ ⊗ L for 0 ≤ p ≤ 2m− 8 vanish except for the following ones:

• Hp(X,∧pF∨) ∼= Hp(Ωp
X) for p ≤ e, where the isomorphism is induced by the surjection Ωp

X → ∧pF∨;

• Hp−2(X,∧pF∨⊗L) ∼= Hp−2(Ωp−2
X ) for 2 ≤ p ≤ e−1, H0(X,∧0F∨⊗L) ∼= som and Hn−1(X,∧nF∨⊗

L) ∼= V
SO(m)
ϖ1 ; moreover the terms Hp−2(Ωp−2

X ) are the images of the cohomology maps induced by
the embeddings dθ ∧ (•) : ∧p−2F∨ → ∧pF∨ ⊗ L.

Proof. Let us denote by µ := [2i−δ, 1j−i, 0n−j+δ−2]SO, and by ν := [2i−δ, 1m−4−p+2δ, 0p−i−δ−n+2]SO. Let
moreover p be an integer satisfying 0 ≤ p ≤ 2m− 8. Putting together the above lemmas we have

∧pF∨ =
⊕

0≤δ≤i≤j≤m−4
i+j=p

p−δ≤m−4

 ⊕
2j−2δ<m−4

[−i,−j;µ]⊕
⊕

2j−2δ>m−4

[−i,−j; ν]

 ,

∧pF∨ ⊗ L =
⊕

0≤δ≤i≤j≤m−4
i+j=p

p−δ≤m−4

 ⊕
2j−2δ<m−4

[−i+ 1,−j + 1;µ]⊕
⊕

2j−2δ>m−4

[−i+ 1,−j + 1; ν]

 .

∧pF∨ Let us begin with the terms of the form [−i,−j;µ]. Let us compute [−i,−j;µ] + ρ =

= [n− i−h, n− j−h− 1;n−h, . . . , n− i+ δ+h, n− i+ δ−h− 1, . . . , n− j+ δ−h, n− j+ δ− 2−h, . . . , h].
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In order to have non-vanishing cohomology, either n−i−h = n−i+δ−h or n−i−h ≤ n−j+δ−1−h.
In the latter case we get n − j − h − 1 ≤ −n + i − δ + h, which implies p − δ ≥ m − 2, which is
a contradiction. In the former case we get δ = 0 and n − j − h − 1 = n − j + δ − h − 1. Thus
we get that for δ = 0 we have cohomology isomorphic to k at degree i − δ + j − δ = i + j = p for
p ≤ m− 4 = e. A similar computation gives that [−i,−j; ν] has only cohomology isomorphic to k
at degree p for δ = 0 and p ≤ e. Putting together both contributions, ∧pF∨ has only cohomology
in degree p. To compute the dimension of this cohomology, notice that we have a one dimensional
contribution for any couple (i, j) such that i+ j = p, i ≤ j. A straightforward computation shows
that this dimension is thus ⌊p/2⌋+ 1, as expected.

∧pF∨ ⊗ L Let us begin with the terms of the form [−i+1,−j+1;µ]. Let us compute [−i+1,−j+1;µ] + ρ =

= [n− i+ h, n− j − h;n− h, . . . , n− i+ δ+ h, n− i+ δ− h− 1, . . . , n− j + δ− h, n− j + δ− 2− h, . . . , h].

In order to have non-vanishing cohomology, either i = 0 or n− i+ h = n− i+ δ − h or n− i+ h ≤
n− j + δ − 1− h. In the last case we get n− j − h ≤ −n+ i− δ + h, which implies p− δ ≥ m− 3,
which is a contradiction. In the first case we get δ = 0 and there are two possibilities: either j = 0,
p = 0, the cohomology is in degree 0 and it is isomorphic to som; either j = p = n, the cohomology

is in degree n − 1 and it is isomorphic to V
SO(m)
ϖ1 . In the middle case we get δ = 1, i ≥ 1 and we

have cohomology isomorphic to k at degree i − δ + j − δ = i + j − 2 = p − 2 for p ≤ e − 1. A
similar computation gives that [−i + 1,−j + 1; ν] has only cohomology isomorphic to k at degree
p− 2 for δ = 1 and p ≤ e− 1. Putting together both contributions, ∧pF∨ ⊗L has only cohomology

in degree 0 (when p = 0), n− 1 (when p = n) or p. Apart from the terms som and V
SO(m)
ϖ1 , notice

that we have a one dimensional contribution for any couple (i, j) such that i+ j = p, 1 ≤ i ≤ j. A
straightforward computation shows that this dimension is thus ⌊p/2⌋, as expected.

The argument about the cohomology groups induced by Ωi
X → ∧iF∨ → 0 and dθ ∧ (•) are the same as in

the proof of Proposition 4.6. □

Let us now compute the cohomology of ∧pF∨ and ∧pF∨ ⊗ L by applying Bott-Borel-Weil Theorem in
type Dn. Recall that in type Dn the non-vanishing cohomology of Ωp

X for p ≤ e = m − 4 is given by

Hp(Ωp
X) ∼= k⌊p/2⌋+1+δp≥n−2 ; moreover som = V

SO(m)
ϖ2 = [1, 1, 0, . . . , 0]SO(m).

Proposition 4.14. Let X be the adjoint variety of type Dn, m = 2n, h = 0, e = m − 4. All cohomology
groups of ∧pF∨ and ∧pF∨ ⊗ L for 0 ≤ p ≤ 2m− 8 vanish except for the following ones:

• Hp(X,∧pF∨) ∼= Hp(Ωp
X) for p ≤ e, where the isomorphism is induced by Ωp

X ↠ ∧pF∨;

• Hp−2(X,∧pF∨ ⊗ L) ∼= Hp−2(Ωp−2
X ) for 2 ≤ i ≤ e− 1, and H0(X,∧0F∨ ⊗ L) ∼= som; moreover the

terms Hp−2(Ωp−2
X ) are the images of the cohomology maps induced dθ ∧ (•) : ∧p−2F∨ ↪→ ∧pF∨ ⊗L.

Proof. Let us denote by µ := [2i−δ, 1j−i, 0n−j+δ−2]SO, by ν := [2i−δ, 1m−4−p+2δ, 0p−i−δ−n+2]SO, by α± :=
[2i−δ, 1, . . . , 1,±1]SO and by β± := [2, . . . , 2,±2]SO. Let moreover 0 ≤ p ≤ 2m − 8. Putting together the
above lemmas we have

∧p F∨ =
⊕

0≤δ≤i≤j≤m−4
i+j=p

p−δ≤m−4

 ⊕
2j−2δ<m−4

[−i,−j;µ]⊕
⊕

2j−2δ>m−4

[−i,−j; ν]⊕

⊕
⊕

2j−2δ=m−4,i<j

([−i,−j;α+]⊕ [−i,−j;α−])⊕
⊕

2j−2δ=m−4,i=j

([−i,−j;β+]⊕ [−i,−j;β−])

 ,

and ∧pF∨ ⊗ L has a similar expression. The cohomology of the terms [−i,−j;µ] and [−i,−j; ν] for ∧pF∨

and [−i + 1,−j + 1;µ] and [−i + 1,−j + 1; ν] for ∧pF∨ ⊗ L are dealt with exactly in the same way as in

the proof of Proposition 4.13 by choosing h = 0; the only difference will be that the term V
SO(m)
ϖ1 does not

appear in this case. So, in order not to repeat tedious computations, in the following we deal only with the
cohomology of the remaining terms.

∧pF∨ proceeding as in the proof of Proposition 4.13 one shows that [−i,−j;α+] and [−i,−j;α−] have
cohomology isomorphic to k only for δ = 0 in degree p. Similarly, one shows that [−i,−j;β+]
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and [−i,−j;β−] have cohomology isomorphic to k only for δ = 0 in degree p. Since δ = 0, these
contributions only appear for j = n−2 and p ≥ n−2. Putting them together with the contributions
coming from the terms [−i,−j;µ] and [−i,−j; ν] one obtains that the dimension of the cohomology
of ∧pF∨ in degree p is equal to: ⌊p/2⌋+ 1 if p < n− 2 and ⌊p/2⌋+ 2 if p ≥ n− 2, as expected.

∧pF∨ ⊗ L The cohomology of this bundle does not present any novelty with respect to the above computations
and the computations in Proposition 4.13, so we leave the verification of the statement of this
proposition to the reader.

The argument about the cohomology groups induced by Ωi
X → ∧iF∨ → 0 and dθ ∧ (•) are the same as

in the proof of Proposition 4.6. □

4.4. Exceptional types. There are only five simple exceptional Lie groups: G2, F4, E6, E7, E8. For each
of these cases - except G2, which can be done by hand - we have written a Python script using [vLCL92] in
order to compute the relevant cohomology groups through the combinatorics of Bott-Borel-Weil Theorem.

4.4.1. Type G2. In this case X ⊂ P(g2) ∼= P(Vϖ1
) is a Fano fivefold of index 3. It is isomorphic to the

quotient G/P1 with G = G2. We have L = Eϖ1
, F = E−ϖ1+3ϖ2

and F∨ = Eα1
= E−2ϖ1+3ϖ2

. The
quasi-minuscule representation is ĝ2 = Vϖ2

.

4.4.2. Type F4. In this case X ⊂ P(f4) ∼= P(Vϖ1
) is a Fano 15-fold of index 8. It is isomorphic to the

quotient G/P1 with G = F4. We have L = Eϖ1
, F = E−ϖ1+ϖ2

and F∨ = Eα1
= E−2ϖ1+ϖ2

. Recall that the

quasi-minuscule representation in this case is f̂4 = Vϖ4 .

Proposition 4.15. Let X be the adjoint variety of type G2 or F4. All cohomology groups of ∧iF∨ and
∧iF∨ ⊗ L vanish except for the following ones:

• Hi(X,∧iF∨) ∼= Hi(Ωi
X) for i ≤ e, where the isomorphism is induced by the surjection Ωi

X → ∧iF∨;

• Hi−2(X,∧iF∨⊗L) ∼= Hi−2(Ωi−2
X ) for 2 ≤ i ≤ e−1, H0(X,∧0F∨⊗L) ∼= g and H1(X,∧2F∨⊗L) ∼= ĝ;

moreover the terms Hi−2(Ωi−2
X ) are the images of the cohomology maps induced by the embeddings

dθ ∧ (•) : ∧i−2F∨ → ∧iF∨ ⊗ L.

4.4.3. Type E6. In this case X ⊂ P(e6) ∼= P(Vϖ2) has dimension 21 and index 11. It is isomorphic to the
quotient G/P2 with G = E6. The following bundles can be interpreted as homogeneous bundles as follows:
L = Eϖ2

, F = E−ϖ2+ϖ4
and F∨ = Eα2

= E−2ϖ2+ϖ4
.

4.4.4. Type E7. In this case X ⊂ P(e7) ∼= P(Vϖ1
) has dimension 33 and Fano index 17. We haveX ≃ E7/P1,

L = Eϖ1
, F = E−ϖ1+ϖ3

and F∨ = Eα1
= E−2ϖ1+ϖ3

.

4.4.5. Type E8. The E8-adjoint variety X ⊂ P(e8) ∼= P(Vϖ8
) has dimension 57 and Fano index 29. We have

quotient X ≃ E8/P8, L = Eϖ8
, F = E−ϖ8+ϖ7

and F∨ = Eα8
= E−2ϖ8+ϖ7

.

Proposition 4.16. Let X be the adjoint variety of type E6, E7, E8. All cohomology groups of ∧iF∨ and
∧iF∨ ⊗ L vanish except for the following ones:

• Hi(X,∧iF∨) ∼= Hi(Ωi
X) for i ≤ e, where the isomorphism is induced by the surjection Ωi

X → ∧iF∨;

• Hi−2(X,∧iF∨⊗L) ∼= Hi−2(Ωi−2
X ) for 2 ≤ i ≤ e−1, and H0(X,∧0F∨⊗L) ∼= g; moreover the terms

Hi−2(Ωi−2
X ) are the images of the cohomology maps induced by the embeddings dθ ∧ (•) : ∧i−2F∨ →

∧iF∨ ⊗ L.

Proof of Propositions 4.15, 4.16. We used a Python script in order to compute the cohomology groups of the
relevant homogeneous bundles through the Bott-Borel-Weil Theorem. The argument about the cohomology
groups induced by Ωi

X → ∧iF∨ → 0 and dθ ∧ (•) are the same as in the proof of Proposition 4.6. □

4.5. Free resolution of the Jacobian ideal of adjoint discriminant. From the exact sequence (15),
we can compute the cohomology of Ωi

X ⊗ L from the cohomology of ∧i−1F∨ and ∧iF∨ ⊗ L. Recall that
by Ki−1 and Ci we denote respectively the kernel and cokernel of the multiplication by the hyperplane
class Hi−1(Ωi−1

X ) → Hi(Ωi
X). Recall moreover that Hi−1(X,∧i−1F∨) ∼= Hi−1(Ωi−1

X ) and that the factor

Hi−2(Ωi−2
X ) inside Hi−2(X,∧iF∨ ⊗L) is induced by the contact form dθ (Propositions 4.6, 4.13, 4.14, 4.15,

4.16). We can restrict the connecting homomorphism Hi−2(X,∧iF∨ ⊗ L) → Hi−1(X,∧i−1F∨) induced by
the exact sequence (15) to obtain a morphism

ηi : H
i−2(Ωi−2

X ) → Hi−1(Ωi−1
X ).
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Lemma 4.17. The morphism ηi is, modulo non-zero scalar, the multiplication by the hyperplane class
[c1(L)]. In particular it has maximal rank.

Proof. The statement about the rank is a consequence of Lefschetz’ Hyperplane Theorem. Moreover, since
the maps ηi for each i are induced by the map η2 by definition of dθ ∧ (•), it is sufficient to prove the
statement for η2. In this case the exact sequence (15) is just a twist of

0 → L∨ → ΩX → F∨ → 0.

This extension is non-trivial and induced by the element in H1(X,F ⊗ L∨) ∼= H1(X,F∨) ∼= H1(ΩX)
corresponding to L (see for instance [BM19]). Thus the image of η2 is c1[L] and as a consequence ηi is the
multiplication by the hyperplane class. □

We are now ready to obtain a uniform formula for a locally free resolution of the Jacobian ideal of
discriminants of adjoint varieties. Let G be a simple Lie group of rank n and let ϵ = 0 (respectively ϵ = 1)
if G is not-simply laced (resp. G is simply laced). Let g be the Lie algebra of G and let ĝ be the quasi-
minuscule representation (in the simply laced case ĝ ∼= g). Let j = 0 if G is simply laced, j = 1 if G = Cn,
j = 2 if G = G2, j = 3 if G = F4 and j = n if G = Bn. Let X be the adjoint variety of G. Recall that
(e1 ≤ · · · ≤ en) are the exponents of g and s is the number of long simple roots of g.

Theorem 4.18. There exists a G-equivariant locally free resolution:

0 →

⊕s
i=1 O(−ei − 1)

⊕
δ0,ϵĝ⊗ O(−j − 1)

→

⊕s
i=1 O(−ei)

⊕
δ0,ϵĝ⊗ O(−j)⊕ g⊗ O(−1)

→ g⊗ O → JD(d− 1) → 0

We believe j to have a Lie-theoretical meaning, but at the moment this is not clear to us.

Proof. The result is a consequence of Theorem 2.3. In order to apply it, we use the cohomology computations
in Propositions 4.6, 4.13, 4.14, 4.15, 4.16. Then by Lemma 4.17 one obtains

0 →

⊕
p≤e C

p ⊗ O(−p− 2)

⊕
δ0,ϵĝ⊗ O(−j − 1)

→

⊕
p≤e C

p ⊗ O(−p− 1)

⊕
δ0,ϵĝ⊗ O(−j)⊕ g⊗ O(−1)

→ g⊗ O → ρ∗π
∗L → 0.

The result follows by noticing, as in the proof of Theorem 3.3, that Ci is a direct sum of ui trivial G-
representations, where ui is the cardinality of {j | deg(fj) = i+ 2}. □

Let us end this section by focusing on the G-equivariant morphism. g⊗O(−1) → g⊗O. By taking global
sections this morphism is given by a trivial G-factor of g⊗ g⊗ g (if needed, use the Killing form to identify
g ∼= g∨). The following result should come with no surprise.

Proposition 4.19. The morphism g⊗O(−1) → g⊗O appearing in the resolution of Theorem 2.3 is given
by the Lie bracket in g.

Proof. Following the proof of Theorem 2.3, the term g ⊗ O comes from the term H0(L) resolution and

the term g ⊗ O(−1) comes from the term H0(Ω̂X ⊗ L) in Weyman’s resolution. Thus, the morphism
η : g ⊗ O(−1) → g ⊗ O is the pushforward through the second projection from X × g of the morphism

Ω̂X ⊗ L(−1) → L in the Koszul complex of Weyman’s resolution (here we are denoting by (−1) the

trivial twist on the affine space g). By Lemma 3.2 we can identify Ω̂X ⊗ L ∼= T̂X , so we obtain η′ :

T̂X(−1) → Ω̂X ⊗L(−1) → L. Notice that the isomorphism Ω̂X ⊗L ∼= T̂X is given by the contact structure

(see the proof of Lemma 3.2). Indeed, if θ′ : T̂X → L is the map induced by the contact structure

θ : TX → L then dθ′ : ∧2T̂X → L, and the map dθ′ induces the isomorphism T̂X
∼= Ω̂X ⊗ L. Thus we get

dθ′ ∈ H0(T̂X⊗L) ⊂ H0(T̂P⊗L) ⊂ ∧2g⊗g, where in the last equality we have used the Killing isomorphism.
Since the contact structure is defined from the Kostant-Kirillov form (see [Bea98]), dθ′ ∈ ∧2g⊗ g is the Lie
bracket (modulo scalar).

Finally notice that H0(T̂X) is an extension of a trivial factor with g, where the latter comes from

H0(TX) ∼= g. Since the map Ω̂X ⊗ L → L in the Koszul complex is just the contraction (after X × g is

identified with the total space of Ω̂P⊗L), we obtain that the restriction η of H0(η′) : H0(T̂X)(−1) → H0(L)

to g(−1) ⊂ H0(T̂X) is the Lie bracket. □
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5. Logarithmic derivations for simply laced adjoint discriminants

The main goal of this section is to prove Theorem 2. The idea is to interpret the results of the previous
section in terms of derivations, inspired on the treatment of invariant derivations of [OT92]. We use the
notation of the introduction, so G a simple Lie group with a Lie algebra g of simply laced type. Choosing a
maximal torus T ⊂ G we get a Weyl group W := NG(T )/ZG(T ), acting linearly on the Lie algebra h of T .
We write U := k[g∨], S := k[h∨] and recall that Chevalley’s restriction theorem gives R := UG ∼= SW , i.e.,
in terms of GIT, we have g//G ≃ h/W ≃ kn and h is a slice for the action of G on g. Put n = dim(h).

5.1. G-variant and G-invariant logarithmic derivations. Let DerU(−log(D)) be the U-module of
logarithmic derivations of the discriminant locus V(∆) = D, where X ⊂ P(g) is the G-adjoint variety. Let
us use the following notation:

DerU(∆) := DerU(−log(D)) = {η ∈ DerU | η(∆) ∈ (∆) ⊂ U}.
Let us write δ := ∆|h. Since g is of simply laced type, δ is the squared equation of the Weyl arrangement

associated to W . We define DerWS as the W -invariant S-derivations and DerGU as the G-invariant U-

derivations. Since R = UG, for any η ∈ DerGU, we have η(R) ⊂ R, so that η defines an element πG(η) ∈
DerR. Similarly, since R = SW , any η ∈ DerWS , defines an element πW (η) ∈ DerR. The maps πG : DerGU →
DerR and πW : DerWS → DerR are morphisms of R-modules. We call DerU /DerGU the module of G-variant
derivations.

Next, we follow [Ter81] and, as in the introduction, we write
√
δ = Πα∈Φ+δα, so:

DerR(δ) := {η ∈ DerR | η(δ) ∈ (δ) ⊂ R} ∼= DerR(
√
δ).

Since we are in characteristic zero and since Frac(S) is finite algebraic over Frac(R), for any η ∈ DerR ⊂
DerFrac(R), there exists a unique derivation ηS ∈ DerWFrac(S) such that ηS|R = η. Set:

Der0R := {η ∈ DerFrac(R) | ηS(S) ⊂ S} = {η ∈ DerFrac(R) | ηS ∈ DerS ⊂ DerFrac(S)}.

Theorem 5.1 ([Ter81]). The morphism πW : DerWS → Der0R is an isomorphism of R-modules. Moreover

Der0R
∼= DerR(δ) is a free R-module. Finally DerS(δ) ∼= S⊗R DerWS is a free S-module.

Let g = h ⊕
⊕

α gα be a Cartan decomposition of g. Let x1, . . . , xℓ+1 be a Killing-orthonormal basis
of g∨ such that x1, . . . , xn is a basis of h∨ and for any n + 1 ≤ i ≤ ℓ + 1, there exists a root α such that
xi ∈ gα ⊕ g−α (here we are identifying g and g∨ via the Killing form). Notice that S = U/(xi)

ℓ+1
i=n+1. We

will denote by I := (xi)
ℓ+1
i=n+1 the ideal defining S. Any homogeneous element η ∈ DerU of degree d can be

written as

η =

ℓ+1∑
i=1

ηi
∂

∂xi
, with ηi := η(xi) ∈ Ud.

Let us also denote by (gi,j)1≤i,j≤ℓ+1 the matrix associated to the linear action of g ∈ G on g∨ in the basis

x1, . . . , xℓ+1, i.e. g(xi) =
∑ℓ+1

j=1 gi,jxj . We will need the following lemma.

Lemma 5.2. Let η ∈ DerGU be a G-invariant derivation. Then for any g ∈ G, g(ηi) =
∑ℓ+1

j=1 gi,jηj.

Proof. The action of g ∈ G on DerU is given by:

(g · η)(f) := g · (η(g−1 · f)).
Since

g ·
(

∂

∂xi
(g−1) · xj)

)
= g ·

(
∂

∂xi

(
ℓ+1∑
k=1

g−1
j,kxk

))
= g−1

j,i ,

we deduce that g · ∂
∂xi

=
∑ℓ+1

j=1 g
−1
j,i

∂
∂xj

. Let now η ∈ DerU be G-invariant, which means that g · η = η for

any g ∈ G. This means that for any g ∈ G,∑
1≤i,j≤ℓ+1

g(ηi)g
−1
j,i

∂

∂xj
=

ℓ+1∑
j=1

ηj
∂

∂xj
,

hence the claim. □
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Lemma 5.3. Let η ∈ DerGU be a G-invariant derivation.

• If i ≤ n then ∂f
∂xi

|h =
∂f |h
∂xi

for any f ∈ U;

• if i ≥ n+ 1 then ηi|h = 0.

Proof. The first equality is due to the fact that restricting to h amounts to working modulo I. For the
second equality, let us fix a root α such that yi := xi + xi′ ∈ gα and y′i := xi − xi′ ∈ g−α, where i, i

′ satisfy
xi, xi′ ∈ gα⊕g−α. Moreover let t ∈ T be any point in a maximal torus T ⊂ G stabilizing h. Then, since the
basis {{xj}j≤n, {yi}i≥n+1} is compatible with the Cartan decomposition defined by T , T acts diagonally
on g∨ in this basis. More precisely t · yi = exp(α(t))yi. Since the action of G on ηi is the same as the action
of G on xi we also get that t · (ηi ± ηi′) = exp(α(t))(ηi ± ηi′). Since T acts as the identity on h we deduce
that t · (ηi|h) = ηi|h. Since T acts diagonally we also deduce that t · ((ηi ± ηi′)|h) = (t · (ηi ± ηi′))|h. By
choosing t ∈ T such that α(t) ̸= 0 we deduce that (ηi ± ηi′)|h = 0, i.e. that ηi|h = 0 for any i ≥ n+ 1. □

Recall that (F1, . . . , Fn) is a basis of homogeneous G-invariant polynomials in U, i.e. R ∼= k[F1, . . . , Fn].
Write f1, . . . , fn for their restrictions to S. For i = 1, . . . , n, let us define µi ∈ DerS and νi ∈ DerU by

µi :=

n∑
j=1

∂fi
∂xj

∂

∂xj
, νi :=

ℓ+1∑
j=1

∂Fi

∂xj

∂

∂xj
.

Lemma 5.4. The derivations νi for i = 1, . . . , n are G-invariant.

Proof. Let us compute g · νi. We obtain

(g · νi)(xk) =
∑
j

g

(
∂Fi

∂xj

)
g

(
∂(g−1 · xk)

∂xj

)
=
∑
j

g

(
∂Fi

∂xj

)
g−1
k,j .

By the G-invariance of Fi we also deduce that

g

(
∂Fi

∂xj

)
=

(
g · ∂

∂xj

)
(g(Fi)) =

(∑
h

gj,h
∂

∂xh

)
(Fi) =

∑
h

gj,h
∂Fi

∂xh
.

Putting the two expressions together gives

(g · νi)(xk) =
∑
j,h

g−1
k,jgj,h

∂Fi

∂xh
=
∑
h

δk,h
∂Fi

∂xh
=
∂Fi

∂xk
= νi(xk).

We have thus shown that g · νi = νi for any g ∈ G. □

The same proof shows that µi ∈ DerWS . Actually µ1, . . . , µn is an R-basis of DerWS (see [Yos14]).

Proposition 5.5. There exists a morphism of R-modules π : DerGU → DerWS making the following diagram
commutative:

DerGU

π

��

πG

∼=
// DerR(∆)

∼=
��

DerWS
∼=

πW

// DerR(δ)

.

Proof. Let us explicitly define π. Let η ∈ DerGU be a G-invariant derivation such that η =
∑

i ηi
∂

∂xi
. For

any polynomial f ∈ k[g∨], we can define π(η)(f |h) := η(f)|h. This is well defined because if f |h = 0 then
f ∈ I and, by the above lemmas,

η(f)|h =
∑
i

ηi|h
∂f

∂xi
|h =

∑
i≤n

ηi|h
∂f

∂xi
|h =

∑
i≤n

ηi
∂f |h
∂xi

= 0.

Even though a priori π is defined as a morphism π : DerGU → DerS, its image is W -invariant. Chevalley’s
Theorem tells us that there exists an isomorphism between DerR(∆) and DerR(δ) given by restriction, so,

modulo this isomorphism, πW ◦ π = πG. As a consequence we deduce DerGU ⊂ DerU(∆).

Having this set up, need to show that π is an isomorphism to conclude. Let us begin with the injectivity.
Let θ ∈ DerWS and η, η′ ∈ DerGU such that π(η) = π(η′) = θ and denote their difference by ξ := η−η′ ∈ DerGU.



LOGARITHMIC DERIVATIONS OF ADJOINT DISCRIMINANTS 25

By linearity π(ξ) = 0. Composing with πW we deduce that, for any f ∈ R, ξ(f)|h = 0. Since ξ(f) ∈ R, by
Chevalley’s Theorem we have that ξ(f) = 0 for any f ∈ R.

Now, let h′ be any Cartan subalgebra of g. For such subalgebra, we can proceed as before: find a

basis x′1, . . . , x
′
ℓ+1, write ξ =

∑
i ξ

′
i

∂
∂x′

i
, construct π′ : DerGU → DerW

′

S′ given by restriction. However,

since for any f ∈ R, ξ(f)|h′ = 0|h′ = 0, we have that πW ′ ◦ π′(ξ) = 0. π′(ξ) is the unique extension of

πW ′ ◦ π′(ξ) ∈ DerR(δ) to DerW
′

S′ (the extension is unique because Frac(S) is a finite extension of Frac(R)
and we are in characteristic zero). Clearly 0 extends 0, so π′(ξ) = 0.

To resume, we have shown that, for any Cartan subalgebra h′ ⊂ g and for any f ∈ U, we have ξ(f)|h′ = 0.
Since Cartan subalgebras cover a dense subset of g, the equality above implies that ξ(f) = 0 for any f ∈ U,
i.e. that ξ = 0. Thus π is injective.

For the surjectivity take a basis of DerWS given by µ1, . . . , µn. By construction π(νi) = µi, and we

have already shown that νi ∈ DerGU for i = 1, . . . , n. Thus the R-morphism π is surjective and thus an
isomorphism. □

Proposition 5.6. The morphism πG is an isomorphism of R-modules and there is a G-equivariant inclusion
DerU(∆)G := DerGU ⊗RU ⊂ DerU(∆), where DerU(∆)G is a free U-module of rank n.

Proof. The morphism πG is an isomorphism between DerGU and DerR(∆) by the lemma above. Since

DerGU
∼= Der0R

∼= DerR(∆) as R-modules and DerR(∆) is a free R-module of rank n we deduce that

DerGU ⊗RU is a free U-module of rank equal to n. □

5.2. Minimality of the resolution for simply laced types. In the following we use the identification
of the sheafification of the U-module DerU(−log(D)) with the kernel of the differential surjective morphism
g⊗ O → JD(d− 1) defining the Jacobian ideal.

Theorem 5.7. Let G be a simply laced group. Then the resolution in Theorem 4.18 is minimal.

Proof. In the simply laced types the above resolution takes the following form:

0 →
⊕

1≤i≤n

U(−ei − 1) →
⊕

1≤i≤n

U(−ei)⊕ g⊗U(−1) → DerU(−log(D)) → 0.

This resolution is G-equivariant for the natural action of G on g and for the trivial action of G on
U(j) for all j’s and dim(

⊕
1≤i≤n U(−ei)) = rank(G) = n. Thus the G-invariant U-module DerU(∆)G is

generated by the image of
⊕

1≤i≤n U(−ei) inside DerU(−log(D)). Moreover since DerU(∆)G is free of rank

n, the restriction morphism
⊕

1≤i≤n U(−ei) → DerU(−log(D)) is injective and induces an isomorphism⊕
1≤i≤n U(−ei) → DerU(∆)G. As a consequence in the resolution there cannot be a non-zero constant

morphism U(−j) → U(−j). This shows that the resolution is minimal. □

The module of G-variant logarithmic derivations of ∆ is DerU(−log(D))1 := DerU(∆)/DerU(∆)G. From
the proof of Theorem 5.7, we get the following result.

Corollary 5.8. Assume G is of simply laced type. A free resolution of the G-variant logarithmic derivation
U-module DerU(−log(D))1 of ∆ is:

0 →
n⊕

i=1

U(−ei − 1) → g⊗U(−1) → DerU(−log(D))1 → 0.

Remark 5.9. We believe that the result can be generalised to the non-simply laced case, and even further
to the case of complex reflection groups and graded Lie algebras.

5.3. The adjoint image module. The restriction to g⊗O(−1) of the middle map in Theorem 4.18 induces
a morphism

ad : g⊗U(−1) → g⊗U.

We want to understand what the kernel of this morphism is.

Lemma 5.10. In the simply laced case, for 1 ≤ i ≤ n, the derivation νi ∈ g⊗U(−1) lies in ker(ad).
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Proof. By Lemma 4.19, the restriction of the middle map in Theorem 4.18 to g⊗O(−1) is the Lie bracket of g,
i.e. the differential at the identity of the adjoint action of G on g. The induced morphism g⊗U(−1) → g⊗U
is thus the differential of the action of G on g⊗U, which can be identified with DerU. On a point ν ∈ DerU,
the action ψν : G → DerU is given by g 7→ g · ν. Since νi is a G-invariant derivation for 1 ≤ i ≤ n, we get
that g · νi = νi for all g ∈ G; thus the differential of ψνi

, along any tangent direction at the identity of G,
vanishes. This shows that νi is in the kernel of ad. □

We conclude this section by proving Theorem 2. ForG of simply laced type, we show that the module
of G-variant logarithmic derivations DerU(−log(D))1 is a direct summand of the module of logarithmic
derivations and that furthermore it coincides with the adjoint image module A = Im(ad).

Theorem 5.11. Let G be a simply laced group. Then DerU(−log(D))1 ≃ A and

DerU(−log(D)) ≃ A⊕DerU(∆)G.

Proof. The resolution obtained in Theorem 5.7 induces the following commutative diagram, constructed
starting from the central vertical exact sequences

0 // kerad� _

��

// g⊗U(−1)� _

��

ad // g⊗U // coker(ad) //

����

0

0 //⊕n
i=1 U(−ei − 1)

β����

(α,β) //⊕n
i=1 U(−ei)⊕ g⊗U(−1)

����

φ // g⊗U // JD(d− 1) // 0

⊕n
i=1 U(−ei)

≃ //⊕n
i=1 U(−ei)

where φ denotes the composition of the surjection
n⊕

i=1

U(−ei)⊕ g⊗U(−1) −→ DerU(−log(D))

with the natural injection DerU(−log(D)) ↪→ g ⊗ U. Applying the snake lemma to the previous diagram
induces the following exact sequence

0 → ker(ad) →
n⊕

i=1

U(−ei − 1)
β→

n⊕
i=1

U(−ei) → coker(ad) → JD(d− 1) → 0.

Furthermore, in light of Lemma 5.10 and the first injection of the previous sequence, we have ker(ad) ≃⊕n
i=1 U(−ei − 1) and hence β = 0. This implies that

DerU(−log(D)) = Im(φ) ≃ A⊕
n⊕

i=1

U(−ei) ≃ DerU(−log(D))1 ⊕DerU(∆)G.

□
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