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PI control for the cascade channels modeled by general Saint-Venant equations

The Input-to-State Stability of the non-horizontal cascade channels with different arbitrary cross section, slope and friction modeled by Saint-Venant equations is addressed in this paper. The control input and measured output are both on the collocated boundary. The PI control is proposed to study both the exponential stability and the output regulation of the closed-loop systems with the aid of Lyapunov approach. An explicit quadratic Lyapunov function as a weighted function of a small perturbation of the non-uniform steady-states of different channels is constructed. We show that by a suitable choice of the boundary feedback controls, the local exponential stability and the Input-to-State Stability of the nonlinear Saint-Venant equations for the H 2 norm are guaranteed, then validated with numerical simulations. Meanwhile, the output regulation and the rejection of constant disturbances are realized as well.

Introduction

Open channel is the most common type of channel found in natural and human society. It could be rivers, irrigation channels, artificial canals, etc. These channels are often organized in networks, either for natural reasons (rivers connected to each other) or practical ones (irrigation channels are designed to irrigate large areas). Therefore, it is of great practical significance to study the movement law of water flow in network channel models.

The Saint-Venant equations are a class of quasilinear hyperbolic partial differential equations that enables to describe the law of gradual unsteady flow in open channels and other shallow-water with free surfaces. The equations consist of the continuity equation based on the conservation law of mass and the motion equation based on the balance law of momentum [START_REF] De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit[END_REF]. Therefore, the Saint-Venant equations constitute a 2 × 2 one-dimensional hyperbolic system. For a long time, the stability of the systems of one-dimensional balance laws has been analyzed widely in the literature. To our knowledge, starting with conservation laws, the first important result of the asymptotic stability of nonlinear 2 × 2 homogeneous systems was given by Greenberg along the channels, and can even obey to different models for the same channel. Usually, the static control law may be subject to steady-states regulation errors in case of disturbances or model inaccuracies. In this work, we use PI control combined with Lyapunov approach to study the robust stability of N cascade channels network. The main difficulty, apart from the source terms and the appearance of the additional disturbances, lies in the complex boundary conditions coupling different channels. On one hand, the equations in one channel coupled together through the boundary, on the other hand, different channels coupled together through the junction points. We show that the existence of a L 2 basic quadratic Lyapunov function for an undisturbed linear hyperbolic system with PI control implies the ISS in the H 2 norm of the associated nonlinear system with disturbances both inside the dynamics and at the boundaries.

Another contribution in this work is that we use less controls to realize the robust stability. Noticing that the system is a 2N quasilinear hyperbolic system, but only has N controls. In general, it is not obvious at all that a system can be stabilized using fewer boundary controls than equations. Indeed, when one boundary condition is fixed, there exist examples where one cannot stabilize the system using static feedback controls at the other boundaries, see [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF]Proposition 5.12], or [START_REF] Gugat | On the limits of stabilizability for networks of strings[END_REF] for a concrete example.

The structure of the paper is as follows. In section 2, we state the problem and give the main result, Theorem 2.1. In section 3, a Lyapunov function for the linearized system is constructed and the exponential stability in the L 2 norm of the linearized system is obtained. In section 4, we show a general result that the exponential stability of the undisturbed linearized system implies the exponential ISS of the nonlinear hyperbolic system with disturbances (Theorem 4.1) and prove Theorem 2.1.

Description of the cascade channels modeled by Saint-Venant equations and main results

In this section, we shall illustrate the establishment of boundary control strategy for the dynamics described by Saint-Venant equations with disturbances. Here, we consider a cascade case, which is composed of N (N ≥ 2) non-horizontal reaches with different lengths with arbitrary cross section, slope and friction respectively. For each reach, the Saint-Venant equations are defined on [0, +∞) × [0, L i ] respectively as (see [START_REF] Hayat | Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm[END_REF])

∂ t A i + ∂ x (A i V i ) = 0, ∂ t V i + V i ∂ x V i + g∂ 1 G i (A i , x)∂ x A i + g∂ 2 G i (A i , x) + g(S f,i (A i , V i , x) -S b,i (x)) = 0, (1) 
where i ∈ {1, ..., N }. For the ith channel, A i = A i (t, x) is the wet cross section,

H i = G i (A i , x) is the height of the water, V i = V i (t, x)
is the horizontal water velocity, S f,i is the friction and S b,i is the slope. To be physically acceptable, the wet section has to increase with the height of the water and reciprocally. This is mathematically translated by

∂ 1 G i (A i , x) > 0 for any x ∈ [0, L i ] and i ∈ {1, ..., N }. On the other hand, ∂ 2 G i (A i , x
) represents what would be the variation of the height of the water with respect to the location x if the wet section remained constant and this term depends on the section profile so we do not assume any sign for it. Also, the friction term has to be increasing with the velocity and decreasing with the wet section (see [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF]). ∂ 2 S f,i > 0 and ∂ 1 S f,i < 0. At the boundaries, the conditions are the following

A 1 (t, 0)V 1 (t, 0) =Q 0 , A j+1 (t, 0)V j+1 (t, 0) =A j (t, L j )V j (t, L j ), A i (t, L i )V i (t, L i ) =k p,i (A * i (L i ) -A i (t, L i )) + k I,i Z i (t), Żi (t) =A * i (L i ) -A i (t, L i ), (2) 
where j ∈ {1, ..., N -1}, i ∈ {1, ..., N }, Q 0 is a constant influx, A * i (x) are steadystates defined by ( 6)- [START_REF] Bastin | Input-to-state stability in sup norms for hyperbolic systems with boundary disturbances[END_REF], k p,i and k I,i are parameters to be regulated. Let us now assume that there are external disturbances that occur both at the boundaries and inside the dynamics of the system. The disturbances inside the dynamics could be a consequence of rain, unknown external forces, imprecision of the model, while the disturbances at the boundaries could result for instance from an actuation error, an imprecision in the measurements, or an unsteady upstream flow. The system (1)-( 2) becomes

∂ t A i + ∂ x (A i V i ) = d (1) 1,i (t, x), ∂ t V i + V i ∂ x V i + g∂ 1 G i (A i , x)∂ x A i + g∂ 2 G i (A i , x) + g(S f,i (A i , V i , x) -S b,i (x)) = d (2) 1,i (t, x), (3) 
where (d

(1) 1,i , d (2) 
1,i ) i∈{1,••• ,N } are the disturbances in the dynamics with boundary conditions

A 1 (t, 0)V 1 (t, 0) =Q 0 + d 2,0 (t), A j+1 (t, 0)V j+1 (t, 0) =A j (t, L j )V j (t, L j ), A i (t, L i )V i (t, L i ) =k p,i (A * i (L i ) -A i (t, L i )) + k I,i Z i (t) + d 2,i (t), Żi (t) =A * i (L i ) -A i (t, L i ), (4) 
where d 2,0 and (d 2,i ) i∈{1,••• ,N } are the boundary disturbances. The steady-states

(A * i (x), V * i (x), Z * i ) in the absence of the disturbances satisfy (A * i V * i ) x = 0, V * i V * ix + g∂ 1 G i (A * i , x)A * ix + g∂ 2 G i (A * i , x) + g(S f,i (A * i , V * i , x) -S b,i (x)) = 0, Z * i = Q 0 k I,i . 
(5

)
This system is well-posed as long as g∂ [START_REF] Hayat | Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm[END_REF]) and in this case, the steady-states (A * i , V * i ) satisfy

1 G i (A * i , x)A * i -V * 2 i = 0 (see
(A * i ) x = -gA * i (∂ 2 G i (A * i , x) + S f,i (A * i , V * i , x) -S b,i (x)) g∂ 1 G i (A * i , x)A * i -V * 2 i , (6) 
(V * i ) x = gV * i (∂ 2 G i (A * i , x) + S f,i (A * i , V * i , x) -S b,i (x)) g∂ 1 G i (A * i , x)A * i -V * 2 i . (7) 
In this paper, we consider the physical steady-states: A * i (x) > 0 and V * i (x) > 0 for all x ∈ [0, L i ]. We know that the solutions (A * i (x), V * i (x)) of ( 6)-( 7) exist for all x ∈ [0, L i ] as long as g∂ 1 G i (A * i , x)A * i -V * 2 i = 0 and in particular when the regimes are in the subcritical case, i.e. the following condition holds

g∂ 1 G i (A * i , x)A * i (x) -V * 2 i (x) > 0. ( 8 
)
The supercritical case where g∂

1 G i (A * i , x)A * i (x) -V * 2 i (x)
< 0 is less interesting from a control point of view since the wave propagation speeds have the same sign and therefore the system can always be stabilized by boundary controls (see [START_REF] Hayat | On boundary stability of inhomogeneous 2 × 2 1-D hyperbolic systems for the C 1 norm[END_REF]).

As the N channels only coupled at the boundary, using a scaling, we can transfer the system (3)-( 4) to a new system in which the length of each channel is unit. Indeed, let us introduce for the ith channel the new variable y := x/L i and denote by A i (t, y) := A i (t, L i y) and V i (t, y) := V i (t, L i y) the new unknowns. Without ambiguity, we still denote by x the space variable, then we obtain the new disturbed system

∂ t A i + 1 L i ∂ x ( A i V i ) = d (1) 1,i (t, L i x) := d (1)
1,i (t, x),

∂ t V i + 1 L i V i ∂ x V i + 1 L i g∂ 1 G i ( A i , L i x)∂ x A i + g∂ 2 G i ( A i , L i x) + g(S f,i ( A i , V i , L i x) -S b,i (L i x)) = d (2) 1,i (t, L i x) := d (2) 1,i (t, x), (9) 
defined on [0, +∞) × [0, 1]. Noticing that if we denote by ( A * i , V * i ) the steady-states of the above new system, then

A * i (x) = A * i (L i x) and V * i (x) = V * i (L i x) with (A * i , V * i )
the steady-states of (1). Thus, the boundary conditions (4) become

A 1 (t, 0) V 1 (t, 0) =Q 0 + d 2,0 (t), A j+1 (t, 0) V j+1 (t, 0) = A j (t, 1) V j (t, 1), A i (t, 1) V i (t, 1) =k p,i ( A * i (1) -A i (t, 1)) + k I,i Z i (t) + d 2,i (t), Żi (t) = A * i (1) -A i (t, 1), (10) 
for the new unknowns A i and V i . Thus, we have transformed the disturbed system (3)-( 4) to the new system ( 9)- [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF]. In the following, we will focus on the ISS property on the new system and we have the main result as following

Theorem 2.1. Assume that for i ∈ {1, • • • , N } k p,i < 0 and k I,i < 0, or k p,i > g∂ 1 G i ( A * i (1), L i ) A * i (1)-V * 2 i (1) V * i (1)
and k I,i > 0, then the nonlinear system (9)-( 10) is locally (exponentially) Input-to-State Stable. More precisely, there exist γ > 0, δ > 0 and C > 0 such that for any T > 0,

any c = (c i ) i∈{0,1,...,N } ∈ R N +1 , any ( A 0 i , V 0 i , Z 0 i ) ∈ C 0 ([0, T ]; H 2 ((0, 1); R 2 )) × R and any disturbances d 1 = ( d (1) 1,i , d (2) 2,i ) i∈{1,••• ,N } ∈ C 0 ([0, T ]; H 2 ((0, 1); R 2N )) and d 2 = (d 2,0 , (d 2,i ) i∈{1,••• ,N } ) ∈ H 2 ((0, T ); R N +1
) satisfying the first-order compatibility conditions 1 associated to [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] with

( A 0 i -A * i , V 0 i -V * i ) H 2 (0,1) + |Z 0 i -Z * i + c i k I,i | < δ ( 11 
)
for i ∈ {1, • • • , N } and d 1 (t, x) C 0 ([0,T ];H 2 (0,1)) + d 2 (t) -c H 2 (0,T ) < δ,
there exists a unique solution

( A i , V i , Z i ) i∈{1,...N } ∈ C 0 ([0, T ]; H 2 ((0, 1); R 2 )) × C 1 ([0, T ]; R) to (9)-(10) with initial condition ( A 0 i , V 0 i , Z 0 i ) i∈{1,.
..,N } and we have the following ISS estimate

N i=1 ( A i (t, •)-A * i , V i (t, •)-V * i ) H 2 (0,1) +|Z i (t) -(Z * i - c i k I,i )| ≤Ce -γt N i=1 ( A 0 i -A * i , V 0 i -V * i ) H 2 (0,1) +|Z 0 i -(Z * i - c i k I,i )| + C 2 k=0 e -γ(t-τ ) (d 2 -c) (k) (τ ) L 2 (0,t) + C k 1 +k 2 ≤2 k 2 ≤1 e -γ(t-τ ) ∂ k1 t ∂ k2 x d 1 (τ, x) L 2 ((0,t)×(0,1)) (12) 
for any t ∈ [0, +∞).

Remark 2.1 (Constant disturbances).

Here c can be chosen arbitrarily which means that, thanks to the PI control, the system is robust to any constant disturbances. Hence the result applies when the boundary disturbances d 2 are not necessarily small but only close to a constant disturbance. This explains that the ISS estimate (12) involves the norm of d 2 -c instead of the norm of d 2 . In particular, when there are no internal disturbances but only constant boundary disturbances (i.e. d 1 ≡ 0 and d 2 ≡ c for some c ∈ R N +1 ), the system is exponentially stable. This special case is also studied in [START_REF] Zhang | Local proportional-integral boundary feedback stabilization for quasilinear hyperbolic systems of balance laws[END_REF] for small constant disturbances.

A Lyapunov function for the linearized cascade system

We start by looking at the exponential stability of the linearized system associated with the undisturbed system ( 9)- [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF]. To this aim, we define the perturbation functions a i , v i and z i with respect to the steady-states (

A * i (x), V * i (x), Z * i ) as a i (t, x) = A i (t, x) -A * i (x), v i (t, x) = V i (t, x) -V * i (x), z i (t) = Z i (t) -Z * i . ( 13 
)
1 For an explanation of the concept of the compatibility conditions, see [4, Section 4.5.2]
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The linearization of the system (9) and the dynamics of the integral terms Z i around the steady-states is

a it + 1 L i V * i a ix + 1 L i A * i v ix + 1 L i V * ix a i + 1 L i A * ix v i = 0, v it + 1 L i v i V * ix + 1 L i V * i v ix + 1 L i g∂ 1 G i ( A * i , L i x)a ix + 1 L i g∂ 2 11 G i ( A * i , L i x) A * ix a i + g∂ 2 21 G i ( A * i , L i x)a i +g∂ 1 S f,i ( A * i , V * i , L i x)a i +g∂ 2 S f,i ( A * i , V * i , L i x)v i = 0, żi = -a i (t, 1). ( 14 
)
The linearized boundary conditions become

V * 1 (0)a 1 (t, 0) + A * 1 (0)v 1 (t, 0) = 0, (15) 
V * j+1 (0)a j+1 (t, 0) + A * j+1 (0)v j+1 (t, 0) = V * j (1)a j (t, 1) + A * j (1)v j (t, 1), (16) 
V * i (1)a i (t, 1) + A * i (1)v i (t, 1) = -k p,i a i (t, 1) + k I,i z i (t). (17) 
We consider the linearized system ( 14), ( 15)-( 17) under an initial condition

a i (0, x) = a 0 i (x), v i (0, x) = v 0 i (x), z i (0) = z 0 i (18) such that (a 0 i (x), v 0 i (x)) ∈ L 2 ((0, 1); R 2 ), z 0 i ∈ R. (19) 
The Cauchy problem ( 14), ( 15)-( 18) is well-posed (see [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF]).

We give the following definition of the exponential stability in the L 2 norm.

Definition 1. The system (14), ( 15)-( 18) is exponentially stable for the L 2 norm if there exist ν > 0 and C > 0 such that for every

(a 0 i , v 0 i , z 0 i ) ∈ L 2 ((0, 1); R 2 ) × R (i ∈ {1, . . . , N }), the solution to the Cauchy problem (14), (15)-(18) satisfies N i=1 ||(a i (t, •), v i (t, •))|| L 2 (0,1) + |z i (t)| ≤ Ce -νt N i=1 ||(a 0 i , v 0 i )|| L 2 (0,1) + |z 0 i | , ∀t ∈ [0, ∞).
In this section, we show the following result Theorem 3.1. If the control parameters satisfy k p,i < 0 and k I,i < 0, or

k p,i > g∂ 1 G i ( A * i (1), L i ) A * i (1)-V * 2 i (1) V * i (1)
and k I,i > 0, [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF] then the system (14), ( 15)-( 18) is exponentially stable in the L 2 norm.

Proof. Observe that the linear system ( 14), ( 15)-( 17) can be rewritten in Riemann coordinates, let

R 1i R 2i =     L i g∂1Gi( A * i ,Lix) A * i L i -L i g∂1Gi( A * i ,Lix) A * i L i     a i v i . ( 21 
)
Then the system ( 14) is transformed into

∂ t R 1i + λ 1i ∂ x R 1i + γ 1i R 1i + δ 1i R 2i = 0, ∂ t R 2i -λ 2i ∂ x R 2i + γ 2i R 1i + δ 2i R 2i = 0, żi = R 2i (t, 1)-R 1i (t, 1) 2L i A * i (1) g∂ 1 G i ( A * i (1), L i ) , (22) 
where λ 1i , λ 2i , γ 1i , γ 2i , δ 1i and δ 2i are all space-dependent and defined by the following

λ 1i = 1 L i V * i + g∂ 1 G i ( A * i , L i x) A * i > 0, λ 2i = 1 L i g∂ 1 G i ( A * i , L i x) A * i -V * i > 0 (23) 
and using the abbreviation

G i for G i ( A * i , L i x) γ 1i = 1 4 2g∂ 2 S f,i +2g(∂ 2 21 G i +∂ 1 S f,i ) A * i g∂ 1 G i +3λ 2i A * ix A * i -λ 1i L i ∂ 2 12 G i ∂ 1 G i +λ 2i ∂ 2 11 G i A * ix ∂ 1 G i , γ 2i = 1 4 2g∂ 2 S f,i +2g(∂ 2 21 G i +∂ 1 S f,i ) A * i g∂ 1 G i -λ 1i A * ix A * i -λ 2i L i ∂ 2 12 G i ∂ 1 G i +λ 1i ∂ 2 11 G i A * ix ∂ 1 G i , δ 1i = 1 4 2g∂ 2 S f,i -2g(∂ 2 21 G i +∂ 1 S f,i ) A * i g∂ 1 G i +λ 2i A * ix A * i +λ 1i L i ∂ 2 12 G i ∂ 1 G i -λ 2i ∂ 2 11 G i A * ix ∂ 1 G i , δ 2i = 1 4 2g∂ 2 S f,i -2g(∂ 2 21 G i +∂ 1 S f,i ) A * i g∂ 1 G i -3λ 1i A * ix A * i +λ 2i L i ∂ 2 12 G i ∂ 1 G i -λ 1i ∂ 2 11 G i A * ix ∂ 1 G i .
The boundary conditions ( 15)-( 17) can be expressed as

R 11 (t, 0)λ 11 (0) + R 21 (t, 0)λ 21 (0) = 0, (24) 
A * j+1 (0) g∂ 1 G j+1 ( A * j+1 (0), 0) R 1,j+1 (t, 0)λ 1,j+1 (0) + R 2,j+1 (t, 0)λ 2,j+1 (0) = A * j (1) g∂ 1 G j ( A * j (1), L i ) R 1j (t, 1)λ 1j (1)+R 2j (t, 1)λ 2j (1) , (25) 
R 1i (t, 1)(λ 1i (1)+ 1 L i k p,i )+R 2i (t, 1)(λ 2i (1)- 1 L i k p,i ) = 2k I,i z i (t) g∂ 1 G i ( A * i (1), L i ) A * i (1) 
.

For each channel, we rely on the construction of a Lyapunov function and since we study the cascade channels, we have to combine the Lyapunov functions by adding proper weights for each channel. Different from [START_REF] Bastin | On Lyapunov stability of linearised Saint-Venant equations for a sloping channel[END_REF] or [START_REF] De Halleux | Boundary feedback control in networks of open channels[END_REF], as the extra integral terms need to be processed, we shall consider the items of z i . Inspired by [START_REF] Hayat | PI controllers for the general saint-venant equations[END_REF][START_REF] Hayat | Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm[END_REF], we consider the Lyapunov function candidate as the following

V = N i=1 α i 1 0 f 1i (x)e 2 x 0 γ 1i (s) λ 1i (s) ds R 2 1i (t, x) +f 2i (x)e -2 x 0 δ 2i (s) λ 2i (s) ds R 2 2i (t, x) dx+ N i=1 θ i L i z 2 i (t), (27) 
where α i > 0 and θ i > 0 are constants to be chosen and f 1i , f 2i are given by

f 1i = 1 λ 1i η i, , f 2i = η i,ε λ 2i , (28) 
where η i,ε is the solution to

       η i,ε = δ 1i ϕ i λ 1i + γ 2i λ 2i ϕ i η 2 i,ε + ε η i,ε (0) = λ 2i (0) λ 1i (0) + ε, (29) 
with ϕ i defined by

ϕ i (x) = exp x 0 γ 1i (s) λ 1i (s) + δ 2i (s) λ 2i (s) ds . (30) 
An important fact (showed in [START_REF] Hayat | Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm[END_REF]) is that there exists ε 1 > 0 such that for any ε ∈ [0, ε 1 ), η i,ε exists on [0, 1] and in particular, when ε = 0

η i,0 = λ 2i λ 1i ϕ i . (31) 
By [START_REF] Hayat | On boundary stability of inhomogeneous 2 × 2 1-D hyperbolic systems for the C 1 norm[END_REF], it is not difficult to check that there exist constant β > 0 such that

1 β N i=1 ||(a i (t, •), v i (t, •))|| 2 L 2 (0,1) + z 2 i (t) ≤ V (t) ≤ β N i=1 ||(a i (t, •), v i (t, •))|| 2 L 2 (0,1) + z 2 i (t) (32) 
for any t ∈ [0, +∞). By introducing the compact notations

Y i = R 1i R 2i (33) 
and

D i (x) = f 1i e 2 x 0 γ 1i (s) λ 1i (s) ds 0 0 f 2i e -2 x 0 δ 2i (s) λ 2i (s) ds , (34) 
the equations for (R 1i , R 2i ) in ( 22) can be rewritten as

∂ t Y i + A i (x)∂ x Y i + B i (x)Y i = 0, (35) 
where

A i (x) = λ 1i 0 0 -λ 2i , B i (x) = γ 1i δ 1i γ 2i δ 2i (36) 
and the simplified form of ( 27) can be written as

V = N i=1 α i 1 0 Y T i D i (x)Y i dx + N i=1 θ i L i z 2 i . (37) 
The time derivative of V along the C 1 trajectories of ( 35) is

V = - N i=1 α i 1 0 (A i (x)Y ix + B i (x)Y i ) T D i (x)Y i dx - N i=1 α i 1 0 Y T i D i (x)(A i (x)Y ix + B i (x)Y i )dx + N i=1 θ i z i (t)(R 2i (t, 1)-R 1i (t, 1)) A * i (1) g∂ 1 G i (A * i (1), L i ) . ( 38 
)
According to [START_REF] Litrico | Modeling and control of hydrosystems[END_REF] and ( 36), we observe that

M i (x) := A i (x) T D i (x) = D i (x)A i (x) = λ 1i f 1i e 2 x 0 γ 1i (s) λ 1i (s) ds 0 0 -λ 2i f 2i e -2 x 0 δ 2i (s) λ 2i (s) ds
.

Therefore, using the symmetric matrices M i (x) and [START_REF] Sontag | Smooth stabilization implies coprime factorization[END_REF], we obtain

V =- N i=1 α i 1 0 (Y T i M i (x)Y i ) x dx+ N i=1 α i 1 0 Y T i N i (x)Y i dx + N i=1 θ i z i (R 2i (t, 1) -R 1i (t, 1)) A * i (1) g∂ 1 G i (A * i (1), L i )
,

where N i (x) = B i (x) T D i (x) + D i (x)B i (x) -M i (x). ( 39 
)
Under constraints [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF], we need to select appropriate α i and θ i in order to guarantee that V is negative definite along the C 1 solutions of the system ( 22), ( 24)-( 26), i.e., the following conditions hold:

(a) The boundary part is nonpositive, namely

- N i=1 α i [Y T i M i (x)Y i ] 1 0 + N i=1 θ i z i (R 2i (t, 1)-R 1i (t, 1)) A * i (1) g∂ 1 G i (A * i (1), L i ) ≤ 0 (40) 
for every Y i (t, 0) ∈ R 2N and Y i (t, 1) ∈ R 2N ;

(b) The matrices N i (x) are positive definite for every x ∈ [0, 1].

Indeed, noticing that once conditions (a) and (b) hold, one can find a sufficiently small positive real number µ such that

dV dt ≤ -µV (41) 
along the C 1 solutions of the system. Since the C 1 solutions are dense in the set of L 2 solutions, inequality ( 41) is also satisfied in the sense of distributions for the L 2 solutions (see [4, Section 2.1.3] for more details). Consequently, V is an exponentially decaying Lyapunov function and this, together with [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF], completes the proof of Theorem 3.1.

We first analyze condition (b). From (39), we get

N i (x) = N i1 N i2 N i3 N i4 , (42) 
where

N i1 = -(λ 1i f 1i ) e 2 x 0 γ 1i (s) λ 1i (s) ds , N i2 = N i3 = γ 2i f 2i e -2 x 0 δ 2i (s) λ 2i (s) ds +δ 1i f 1i e 2 x 0 γ 1i (s) λ 1i (s) ds , N i4 = (λ 2i f 2i ) e -2 x 0 δ 2i (s) λ 2i (s) ds .
From the definitions of f 1i and f 2i in [START_REF] Karafyllis | Input-to-state stability for PDEs[END_REF], the diagonal elements of N i (x) are positive. Moreover, we obtain

det[N i (x)] = e 2 x 0 γ 1i (s) λ 1i (s) - δ 2i (s) λ 2i (s) ds -(λ 1i f 1i ) (λ 2i f 2i ) -( γ 2i f 2i ϕ i + δ 1i f 1i ϕ i ) 2 > 0
for any ε ∈ (0, ε 1 ). Thus the matrices N i (x) are positive definite for all x ∈ [0, 1] when ε is sufficient small. We now analyze condition (a). We first express the boundary conditions ( 24)-( 26) as follows. From [START_REF] Hayat | PI controllers for the general saint-venant equations[END_REF],

R 11 (t, 0) = - R 21 (t, 0)λ 21 (0) λ 11 (0) . (43) 
From ( 26),

R 2i (t, 1) = k p,i + L i λ 1i (1) k p,i -L i λ 2i (1) s1i R 1i (t, 1) + 2 g∂ 1 G i (A * i (1), L i ) A * i (1) 
k I,i L i λ 2i (1) -k p,i s2i z i (t).
From [START_REF] Hayat | A quadratic Lyapunov function for Saint-Venant equations with arbitrary friction and space-varying slope[END_REF], one has

R 1,j+1 (t, 0) =c j λ 1j (1)R 1j (t, 1) + λ 2j (1)R 2j (t, 1) - λ 2,j+1 (0) λ 1,j+1 (0) R 2,j+1 (t, 0). ( 44 
)
Here and hereafter, for simplicity, we denote the coefficient

c j := 1 λ 1,j+1 (0) A * j (1) g∂ 1 G j (A * j (1),L j ) g∂ 1 G j+1 (A * j+1 (0),0) A * j+1 (0) 
. Thus, the boundary part in V given in condition (a) can be rewritten as

- N i=1 α i [Y T i M i (x)Y i ] 1 0 + N i=1 θ i z i (t)(R 2i (t, 1) -R 1i (t, 1)) A * i (1) g∂ 1 G i (A * i (1), L i ) = -α 1 R 2 21 (t, 0) λ 21 (0)f 21 (0)-λ 11 (0)f 11 (0) λ 21 (0) λ 11 (0) 2 -R 1N (t, 1) z N (t) α β β θ R 1N (t, 1) z N (t) - N -1 j=1 R 1j (t, 1) z j (t) R 2,j+1 (t, 0)   ᾱ β γ β θ η γ η ζ     R 1j (t, 1) z j (t) R 2,j+1 (t, 0)   (45) with α :=α N e 2 1 0 γ 1N (s) λ 1N (s) ds λ 1N (1)f 1N (1)-s 2 1N λ 2N (1)f 2N (1) ϕ 2 N (1) 
,

β := -α N e 2 1 0 γ 1N (s) λ 1N (s) ds s 1N s 2N λ 2N (1)f 2N (1) ϕ 2 N (1) - θ N 2 (s 1N -1) A * N (1) g∂ 1 G N (A * N (1), L N ) , θ := -α N e 2 1 0 γ 1N (s) λ 1N (s) ds s 2 2N λ 2N (1)f 2N (1) ϕ 2 N (1) -θ N s 2N A * N (1) g∂ 1 G N (A * N (1), L N )
and ᾱ :=α j e

2 1 0 γ 1j (s) λ 1j (s) ds λ 1j (1)f 1j (1)-s 2 1j λ 2j (1)f 2j (1) ϕ 2 j (1) -α j+1 λ 1,j+1 (0)f 1,j+1 (0)c 2 j (λ 1j (1)+λ 2j (1)s 1j ) 2 , (46) β 
:= -α j e 2 1 0 γ 1j (s) λ 1j (s) ds s 1j s 2j λ 2j (1)f 2j (1) ϕ 2 j (1) - θ j 2 (s 1j -1) A * j (1) g∂ 1 G j (A * j (1), L j ) -α j+1 λ 1,j+1 (0)f 1,j+1 (0)c 2 j (λ 1j (1) + λ 2j (1)s 1j )λ 2j (1)s 2j , θ := -α j e 2 1 0 γ 1j (s) λ 1j (s) ds s 2 2j λ 2j (1)f 2j (1) ϕ 2 j (1) -α j+1 λ 1,j+1 (0)f 1,j+1 (0)c 2 j λ 2 2j (1)s 2 2j -θ j s 2j A * j (1) g∂ 1 G j (A * j (1), L j ) , γ :=α j+1 λ 2,j+1 (0)f 1,j+1 (0)c j (λ 1j (1)+λ 2j (1)s 1j ), η :=α j+1 λ 2,j+1 (0)f 1,j+1 (0)c j λ 2j (1)s 2j , ζ :=α j+1 -λ 1,j+1 (0)f 1,j+1 (0)( λ 2,j+1 (0) λ 1,j+1 (0) ) 2 + λ 2,j+1 (0)f 2,j+1 (0) .
We analyze the sign of (45) from line to line. Firstly, from the definitions of f 1i and f 2i in (28) together with η i,ε solution to [START_REF] Christopher | Input-to-state stability, integral input-to-state stability, and L 2 -gain properties: qualitative equivalences and interconnected systems[END_REF], one gets that the first line in (45) is negative. Under condition (20), one has

s 2 1i < λ 1i (1) λ 2i (1) 2 , i = 1, • • • , N (47) 
then α > 0 follows immediately. We then calculate αθ -β 2 and obtain αθ -

β 2 = α 2 N F N (θ N /α N ), (48) 
where

F i (x) = - x 2 4 (s 1i -1) 2 A * i (1) g∂ 1 G i (A * i (1), L i ) -xs 2i λ 1i (1)f 1i (1)e 2 1 0 γ 1i (s) λ 1i (s) ds A * i (1) g∂ 1 G i (A * i (1), L i ) +xs 1i s 2i e 2 1 0 γ 1i (s) λ 1i (s) ds A * i (1) g∂ 1 G i (A * i (1), L i ) λ 2i (1)f 2i (1) ϕ 2 i (1) -s 2 2i λ 1i (1)f 1i (1)e 4 1 0 γ 1i (s) λ 1i (s) ds λ 2i (1)f 2i (1) ϕ 2 i (1) for any i ∈ {1, ..., N }.
Note that F i is a quadratic form whose discriminant is

∆ = s 2 2i A * i (1)e 4 1 0 γ 1i (s) λ 1i (s) ds g∂ 1 G i (A * i (1), L i ) λ 2i (1)f 2i (1) ϕ 2 i (1) -λ 1i (1)f 1i (1) • s 2 1i λ 2i (1)f 2i (1) ϕ 2 i (1) -λ 1i (1)f 1i (1) . (49) 
From the definitions of f 1i , f 2i and η i,ε in ( 28)-( 29) and noticing the property (31) and 0 < λ 2i < λ 1i , we have

λ 2i (1)f 2i (1) ϕ 2 i (1) -λ 1i (1)f 1i (1) = η 2 i,ε (1) -ϕ 2 i (1) ϕ 2 i (1)η i,ε (1) 
< 0. ( 50 
)
Moreover, under condition (47), one obtains also that

s 2 1i λ 2i (1)f 2i (1) ϕ 2 i (1) -λ 1i (1)f 1i (1) < 0, (51) 
which, together with (49) and (50) gives ∆ > 0. The axis of the symmetry of the quadratic form is

2s 2i e 2 1 0 γ 1i (s) λ 1i (s) ds (s 1i -1) 2 g∂ 1 G i (A * i (1), L i ) A * i (1) • s 1i λ 2i (1)f 2i (1) ϕ 2 i (1) -λ 1i (1)f 1i (1) . (52) 
Under condition [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF], we can obtain

s 2i < 0, s 1i < λ 1i (1) λ 2i (1) < λ 1i (1) λ 2i (1) 2 , ( 53 
)
which proves that the term in (52) is positive. Overall, we have proved that under condition [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF], there exists θ i /α i > 0 such that F i (θ i /α i ) > 0 for any i ∈ {1, ..., N } and in particular from (48), one obtains αθ -β 2 > 0.

Next, we analyze the last line in (45). This line is related to the connection between the previous reach j ∈ {1, • • • , N -1} and the next reach j + 1 at the junctions. Therefore, in order to lighten the notations, in the following λ i,j+1 stands for λ i,j+1 (0) and λ i,j for λ i,j (1), for i = 1, 2. We consider the leading principal minors of the 3 × 3 matrix, namely (i) ᾱ;

(ii) ᾱθ -β2 ;

(iii) ᾱθ ζ + 2 β ηγ -γ2 θ -η2 ᾱ -β2 ζ.
Noticing the expression of ᾱ in (46), analyzing similarly to (51), one can easily check that under condition [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF], ᾱ > 0 when α j+1 /α j is sufficiently small.

After some direct but tedious calculations, we get

ᾱθ -β2 = α 2 j F j (θ j /α j ) + α j+1 α j F j (θ j /α j ) , (54) 
where F j is an affine function of θ j /α j and independent of (α i ) i∈{1,...,N } . Since there exists θ j /α j > 0 such that F j (θ j /α j ) > 0, one obtains immediately that, for a given j and under condition [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF], there exist θ j /α j > 0 and sufficiently small α j+1 /α j > 0 such that ᾱθ -β2 > 0.

For the third leading principal minor given by (iii), we decompose it as

ᾱθ ζ + 2 β ηγ -γ2 θ -η2 ᾱ -β2 ζ = ζ(ᾱ θ -β2 ) + γ( β η -γ θ) + η( βγ -η ᾱ) =α j+1 λ 2,j+1 f 2,j+1 -λ 1,j+1 f 1,j+1 λ 2,j+1 λ 1,j+1 2 (ᾱ θ-β2 ) +λ 2,j+1 f 1,j+1 c j (λ 1j +λ 2j s 1j )( β η-γ θ) + λ 2j s 2j ( βγ -η ᾱ) . ( 55 
)
After direct computations, we obtain that

(λ 1j + λ 2j s 1j )( β η -γ θ) + λ 2j s 2j ( βγ -η ᾱ) = λ 2,j+1 f 1,j+1 c j α 2 j α j+1 α j s 2j θ j α j A * j (1) g∂ 1 G j (A * j (1),L j ) (λ 1j +λ 2j s 1j )(λ 1j +λ 2j )-e 2 1 0 γ 1j (s) λ 1j (s) ds λ 1j λ 2j s 2j (λ 2j f 1j - λ 1j f 2j ϕ 2 j
) .

Substituting the above equation into (55), we obtain

1 α j+1 ᾱθ ζ + 2 β ηγ -γ2 θ -η2 ᾱ -β2 ζ =α 2 j λ 2,j+1 f 2,j+1 -λ 1,j+1 f 1,j+1 λ 2,j+1 λ 1,j+1 2 • F j (θ j /α j ) + α j+1 α j F j (θ j /α j ) , (56) 
where F j (x) is an affine function of θ j /α j and independent of (α i ) i∈{1,••• ,N } . From the definitions of f 1i , f 2i , η i,ε and ϕ i in ( 28)-( 30), one obtains

λ 2,j+1 f 2,j+1 -λ 1,j+1 f 1,j+1 λ 2,j+1 λ 1,j+1 2 > 0.
is positive definite, where

W 1 := Q + (1)Λ + (1) 0 0 -Q -(0)Λ -(0) -K T 1 Q + (0)Λ + (0) 0 0 -Q -(1)Λ -(1) K 1 W 2 :=K T 1 -Q + (0)Λ + (0) 0 0 Q -(1)Λ -(1) K 2 -KT 1 Θ T W 3 :=K T 2 -Q + (0)Λ + (0) 0 0 Q -(1)Λ -(1) K 1 -Θ K1 W 4 :=K T 2 -Q + (0)Λ + (0) 0 0 Q -(1)Λ -(1) K 2 -2Θ K2 with K 1 = ∂ 1 H(0, 0), K 2 = ∂ 2 H(0, 0), K1 = ∂ 1 H(0, 0), K2 = ∂ 2 H(0, 0).
Then the system (57) is locally exponentially ISS around u ≡ 0 for the H 2 norm, i.e. there exist γ > 0, δ > 0, C > 0 such that for any T > 0, any (u 0 , Z 0 ) ∈ H 2 ((0, 1); R n )×R n , and any disturbances

d 1 ∈ C 0 ([0, T ]; H 2 ((0, 1); R n )), d 2 ∈ H 2 ((0, T ); R n ) satisfying
the first order compatibility conditions associated to (57) with

u 0 H 2 (0,1) + |Z 0 | < δ; and d 1 (t, x) C 0 ([0,T ];H 2 (0,1)) + d 2 (t) H 2 (0,T ) < δ, (59) 
the system (57) with initial condition (u 0 , Z 0 ) has a unique solution

(u, Z) ∈ C 0 ([0, T ]; H 2 ((0, 1); R n )) × C 1 ([0, T ]; R n ) satisfying u(t, •) H 2 (0,1) + |Z(t)| ≤Ce -γt u 0 H 2 (0,1) + |Z 0 | + C 2 k=0 e -γ(t-τ ) d (k) 2 (τ ) L 2 (0,t) + C k 1 +k 2 ≤2 k 2 ≤1 e -γ(t-τ ) ∂ k1 t ∂ k2 x d 1 (τ, x) L 2 ((0,t)×(0,1))
for any t ∈ [0, +∞).

Remark 4.1. Just as in Theorem 2.1, d 2 can be taken close to a constant disturbance vector c rather than close to 0 as long as z → H(0, Z) is invertible. Indeed, in this case, one can apply this result with d2 = d 2 -c and

H(u, Z) = H(u, Z + Z eq ) + c
where Z eq is defined by H(0, Z eq ) = -c. To simplify the computations, we consider the case where c = 0. Remark 4.2. Concerning the conservativeness of the conditions in Theorem 4.1, so far as we know, it is only sufficient condition to guarantee the existence of quadratic Lyapunov function for general n × n system in the H 2 norm (see [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF]). But for cascade Saint-Venant equations, when there is no slope or friction, the conditions in Theorem 4.1 are necessary and sufficient to have exponential stability, see [4, Section 2.2].

Remark 4.3. With a special choice of Q(x), conditions in Theorem 4.1 become LMI conditions in [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF]. The way we construct the weighted functions for our Lyapunov function is to find explicitly the matrix function Q(x) and the constraints (20) on the tuning parameters k p,i and k I,i are correspondingly requirements for Q(0) and Q(1) (see [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF]Proposition 2.1] for the LMI condition). However, so far as we know, the LMI condition is theoretical and one can only find the conditions numerically as shown in [START_REF] Lamare | An optimisation approach for stability analysis and controller synthesis of linear hyperbolic systems[END_REF][START_REF] Prieur | Boundary feedback control of linear hyperbolic systems: application to the Saint-Venant-Exner equations[END_REF]. And the advantage of our work is that we manage to construct explicitly the weighted functions that results in the explicit conditions [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF] for the tuning parameters for the cascade Saint-Venant equations.

Proof of Theorem 4.1. The well-posedness is guaranteed by [START_REF] Wang | Exact controllability for nonautonomous first order quasilinear hyperbolic systems[END_REF], we focus on the ISS estimate. The proof is inspired from the proof of Theorems 6.6 and 6.10 in [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF], adapted in order to deal with the integral terms and the ISS. We consider the augmented system with state (u, ∂ t u, ∂ 2 t u) where the dynamics of ∂ t u and ∂ 2 t u can be obtained by taking partial time derivatives of the system and the boundary conditions in (57). Let us set the following modified Lyapunov function candidate V (u, Z):

V (u, Z) = V 1 (u, Z) + k1+k2≤1 ∂ k1 t ∂ k2 x d 1 (t, •) 2 L 2 (0,1) , (60) 
where

V 1 (u, Z) = 2 i=0 V 0 (E(u, x)∂ i t u) + 2 i=0 Θ d i Z dt i 2 and V 0 : L 2 ((0, 1); R n ) → R is defined by V 0 (u) = 1 0 u T Q(x)u dx (61) 
for any u ∈ L 2 ((0, 1); R n ). Here the C 2 class function matrix E(u, x) diagonalizes A(u, x) at least in a neighborhood of u = 0, i.e., E(u, x)A(u, x) = D(u, x)E(u, x) with D(u, x) a diagonal matrix whose diagonal entries are the eigenvalues

λ i (i = 1, • • • , n) of the matrix A(u, x).
Moreover, E(0, x) = I d for any x ∈ [0, 1] (see [START_REF] Bastin | Stability and Boundary Stabilisation of 1-D Hyperbolic Systems[END_REF]Chapter 6] for the existence of E(u, x) and more details). Finally, Θ and Q are the matrices given in Theorem 4.1. Differentiating V 0 (E(u, x)u) with respect to the time t along the H 3 trajectories of (57), and noticing the properties of the matrix function E(u, x), one obtains

dV 0 (E(u, x)u) dt = 1 0 2u T E(u, x) T Q[E(u, x)u] t dx = - 1 0 [u T E(u, x) T QDE(u, x)u] x dx + 1 0 u T [E(u, x) T QDE(u, x)] x u dx -2 1 0 u T E(u, x) T QE(u, x)B(u, x) dx -2 1 0 u T E(u, x) T QE(u, x)d 1 (t, x) dx +2 1 0 u T E(u, x) T Q[E(u, x)] t u dx. (62) 
with

W 01 = W 1 , W 02 = W 2 + KT 1 Θ T , W 03 = W 3 + Θ K1 , W 04 = W 4 + 2ΘK 2 ,
and W 1 , W 2 , W 3 , W 4 are given in Theorem 4.1.

Overall, combining (63) and (64), we get

dV 0 (E(u, x)u) dt ≤ -   u + (1) u -(0) Z   T W 0   u + (1) u -(0) Z   + 1 0 u T E(u, x) T (QΛ) -QM-M T Q E(u, x)u dx + O( u C 1 u 2 L 2 )+C(1 + O( u C 0 )) u L 2 d 1 L 2 + O((|u(1)| + |u(0)| + |Z|) 2 ( u C 0 + |Z|)) + d T 2 -Q + (0)Λ + (0) 0 0 Q -(1)Λ - (1) 
• d 2 +2(1+O( u C 0+|Z |)) K 1 u + (1) u -(0) +K 2 Z . (65) 
Similarly, taking the time derivative of V 0 (E(u, x)∂ t u) and V 0 (E(u, x)∂ 2 t u) along the augmented system solutions of (57), one obtains

dV 0 (E(u, x)∂ t u) dt ≤ -   ∂ t u + (1) ∂ t u -(0) Ż   T W 0   ∂ t u + (1) ∂ t u -(0) Ż   + 1 0 ∂ t u T E(u, x) T (QΛ) -QM -M T Q E(u, x)∂ t u dx +O( u C 1 ∂ t u 2 L 2 )+C(1+O( u C 0 )) ∂ t u L2 ∂ t d 1 L 2 + O((|∂ t u(1)|+|∂ t u(0)|+| Ż|) 2 ( u C 0 +|Z|)) + ḋT 2 -Q + (0)Λ + (0) 0 0 Q -(1)Λ -(1) • ḋ2 +2(1+ O ( u C 0 +|Z|)) K 1 ∂ t u + (1) ∂ t u -(0) +K 2 Ż ( 66 
)
and

dV 0 (E(u, x)∂ 2 t u) dt ≤ -   ∂ 2 t u + (1) ∂ 2 t u -(0) Z   T W 0   ∂ 2 t u + (1) ∂ 2 t u -(0) Z   + 1 0 ∂ 2 t u T E(u, x) T (QΛ) -QM-M T Q E(u, x)∂ 2 t udx +O( u C 1 ( u C 1 + ∂ 2 tx u L 2 ) ∂ 2 t u L 2 + ∂ 2 t u 2 L 2 )) + C(1 + O( u C 0 )) ∂ 2 t u L2 ∂ 2 t d 1 L 2 + O (|∂ 2 t u(1)| + |∂ 2 t u(0)| + | Z| +|∂ t u(1)|+|∂ t u(0)|+| Ż|) 2 ( u C 1 +|Z|+| Ż|) + dT 2 -Q + (0)Λ + (0) 0 0 Q -(1)Λ - (1) 
• d2 +2(1+O ( u C 0 +|Z|)) K 1 ∂ 2 t u + (1) ∂ 2 t u -(0) +K 2 Z +| d2 |O(( u C 1 +|∂ t u(1)|+|∂ t u(0)|+|Z|+| Ż|) 2 ). (67) 
Next, using the equation for Z in (57), we get

d dt 2 i=0 Θ d i Z dt i 2 =2 2 i=0 d i Z dt i T Θ d i+1 Z dt i+1 =2 2 i=0 d i Z T dt i Θ K1 ∂ i t u + (1) ∂ i t u -(0) + K2 d i Z dt i +O( 2 i=0 (|∂ i t u(1)|+|∂ i t u(0)|+ d i Z dt i ) 2 ( u C 0 +|Z|)). (68) 
Combining ( 65)-( 68) and noticing that -(QΛ) + QM + M T Q is positive definite, there exists γ > 0 such that

dV 1 (u, Z) dt ≤- 2 i=0   ∂ i t u + (1) ∂ i t u -(0) d i Z dt i   T W   ∂ i t u + (1) ∂ i t u -(0) d i Z dt i   -γ 2 i=0 V 0 (E(u, x)∂ i t u) +O ( u C 1+ |Z|+| Ż|) 2 i=0 |∂ i t u(1)|+|∂ i t u(0)|+ d i Z dt i 2 + O( u C 1 2 i=0 ∂ i t u 2 L 2 ) + C(1 + O( u C 1 )) 2 i=0 ∂ i t u L2 2 i=0 ∂ i t d 1 L 2 + O( u C 1 ( u C 1 + ∂ 2 tx u L 2 ) ∂ 2 t u L 2 ) + 2 i=0 d i d T 2 dt i -Q + (0)Λ + (0) 0 0 Q -(1)Λ - (1) 
• d i d 2 dt i +2(1+O( u C 0+|Z |)) K 1 ∂ i t u + (1) ∂ i t u -(0) +K 2 d i Z dt i +| d2 |O(( u C 1 +|∂ t u(1)|+|∂ t u(0)|+|Z|+| Ż|) 2 ),
where W is the matrix defined in Theorem 4.1. Since W is positive definite, then using Young's inequality on the crossed term involving d 1 , there exists constant ν > 0 such that

dV 1 (u, Z) dt ≤-ν 2 i=0 (∂ i t u T + (1), ∂ i t u T -(0), d i Z T dt i ) 2 - 2γ 3 
2 i=0 V 0 (E(u, x)∂ i t u) +C(1+ O( u C 1 +|Z|+| Ż|)) 2 k=0 |d (k) 2 | 2 + 2 k=0 ∂ k t d 1 2 L 2 +O( u C 1 2 i=0 ∂ i t u 2 L 2 ) + O( u C 1 ( u C 1 + ∂ 2 tx u L 2 ) ∂ 2 t u L 2 ) +O ( u C 1 +|Z|+| Ż|) 2 i=0 |∂ i t u(1)|+|∂ i t u(0)|+ d i Z dt i 2 + C| d2 | (|∂ t u(1)| + |∂ t u(0)|) 2 . ( 69 
)
Note that, from (57)

(|∂ t u(1)| + |∂ t u(0)|) ≤ C( u C 1 + d 1 C 0 ). (70) 
Hence, using Young's inequality again

| d2 | (|∂ t u(1)| + |∂ t u(0)|) 2 ≤C| ḋ2 | 2 ( u C 1 + d 1 C 0 ) + (|∂ t u(1)| + |∂ t u(0)|) 2 ( u C 1 + d 1 C 0 ) . (71) 
Note also that, from (57),

u tx L 2 ≤ C( u H 2 + ∂ x d 1 L 2 )(1 + O( u C 0 )). (72) 
Besides, from (57), one has

| Ż| ≤ C (|Z| + u C 0 ) . (73) 
Using Young's inequality on the crossed term involving d 1 and then Sobolev inequality that u C 1 ≤ C u H 2 , there exist δ > 0 and η > 0 such that if u H 2 + |Z| ≤ η and (59) holds, then

dV 1 (u, Z) dt ≤- ν 2 2 i=0 (∂ i t u + (1), ∂ i t u -(0), d i Z dt i ) 2 - γ 2 2 i=0 V 0 (E(u, x)∂ i t u) +C 2 k=0 |d (k) 2 | 2 +C( ∂ x d 1 2 L 2 + 2 k=0 ∂ k t d 1 2 L 2 ) ≤- 1 2 min( ν max i (Θ i ) , γ)V 1 (u, Z)+C 2 k=0 |d (k) 2 | 2 +C ∂ 2 t d 1 2 L 2 + k1+k2≤1 ∂ k1 t ∂ k2 x d 1 2 L 2 . ( 74 
)
On the other hand, using Cauchy-Schwarz inequality, one has

d dt k1+k2≤1 ∂ k1 t ∂ k2 x d 1 2 L 2 ≤ 2 k 1 +k 2 ≤2 k 2 ≤1 ∂ k1 t ∂ k2 x d 1 2 L 2 ,
which, together with (74) and the definition of V (u, Z) gives

dV dt ≤-µV +C 2 k=0 |d (k) 2 | 2 +C k 1 +k 2 ≤2 k 2 ≤1 ∂ k1 t ∂ k2 x d 1 2 L 2 , (75) 
where µ = 1/2 min(ν/ max i (Θ i ), γ). Using Gronwall's inequality, the equivalence of V and the square of u We now show that Theorem 2.1 is an application of Theorem 4.1.

H 2 + |Z| + k1+k2≤1 ∂ k1 t ∂ k2 x d 1 L 2 , one obtains u H 2 (0,1) + |Z| ≤Ce -µ 2 t u 0 H 2 (0,1) +|Z 0 |+ k1+k2≤1 ∂ k1 t ∂ k2 x d 1 (0, •) L 2 (0,1) +C 2 k=0 e -µ 2 (t-τ ) d (k) 2 (τ ) L 2 (0,t) +C k 1 +k 2 ≤2 k 2 ≤1 e -µ 2 (t-τ ) ∂ k1 t ∂ k2 x d 1 (τ, x) L 2 ((0,t)×(0,1)) . (76) 
Proof of Theorem 2.1. This is a direct consequence of Theorem 4.1. Indeed, first observe that we can assume without loss of generality that c = 0. Then for the original nonlinear system, we define

a i = A i -A * i , v i = V i -V * i , z i = Z i -Z *
i as previously in ( 13) and use the same change of variables as in [START_REF] Hayat | On boundary stability of inhomogeneous 2 × 2 1-D hyperbolic systems for the C 1 norm[END_REF]. After that, we change the order of the unknowns such that A(0, x) = {λ 11 , λ 12 , • • • , λ 1N , -λ 21 , -λ 22 , • • • , -λ 2N }. Then, the system (9)-( 10) is rewritten in the form of (57). Choosing Q

(x) = diag{g 11 , • • • , g 1N , g 21 , • • • , g 2N }, where for each i ∈ {1, • • • , N }, g 1i = α i f 1i e 2 x 0 γ 1i (s)
λ 1i (s) ds , g 2i = α i f 2i e -2 x 0 δ 2i (s) λ 2i (s) ds with f 1i and f 2i defined in [START_REF] Karafyllis | Input-to-state stability for PDEs[END_REF] and Θ = diag{θ 1 L 1 , • • • , θ N L N } with θ i and α i chosen by the way proposed in the proof of Theorem 3.1, the result follows directly.

Numerical Simulations

In this section, we make numerical simulations for the cascade nonlinear network of three channels with different lengths. In 12) for each channel. We consider the case where the cross-section of the river channel is a rectangular shape with a width of 1m, then A i (t, x) = H i (t, x), ∂ 1 G i (A i , x) = 1 (i = 1, 2, 3). The specific data is as follows:

• The lengths of channels are L 1 = 400m, L 2 = 500m, L 3 = 600m and H * 1 (0) = 1.5m, H * 2 (0) = 1.6m, H * 3 (0) = 2m respectively, the constant discharge Q 0 = 1m 3 /s and the acceleration of gravity is 9.81m/s 2 . These values are typically reasonable values for navigable river [START_REF] Bastin | On boundary feedback stabilization of non-uniform linear 2× 2 hyperbolic systems over a bounded interval[END_REF].

• We consider the steep slope, S f,i = k f,i V 2 i Hi , S b,i = 1.5 k f,i V * 2 i (0) H * i (0) , the selection of the friction coefficients is k f,1 = 0.01, k f,2 = 0.02, k f,3 = 0.03. 

1,i = 0.0001(sin(t) + sin(x)), the boundary disturbances d 2,0 = 0.001 sin(t), d 2,i = 0.001 sin(t) for i = 1, 2, 3. We can remark that even if the theorem only gives a local result, it looks like in practice the basin of attraction is significant. Indeed, adding perturbations with an amplitude up to 15% of the nominal steady-state still seem to fall in the stability area. Moreover, as could be expected, the controller takes reasonable values from a physical perspective.

Conclusion

In this paper, we have addressed the boundary Input-to-State Stability of a network of channels in cascade, using Proportional-Integral controllers. For each channel, the control input and measured output are on the downstream boundary and the channels are coupling through the boundaries. We give exponential stability and ISS conditions using a quadratic Lyapunov function. Interestingly, this control works even without having direct information on the cross-section, the slope, friction model, or even the steady-state, except at the boundaries. This is very useful from an application point of view. Besides, the system is robust to constant boundary disturbances, as could be excepted with a PI control. As a side result we show (see Theorem 4.1) that for any 1D quasilinear hyperbolic system with a PI control, if the linearized system admits a basic quadratic Lyapunov function for the L 2 norm, then the nonlinear system admits a basic quadratic Lyapunov function for the H 2 norm and is (locally) exponentially ISS with respect to internal and boundary disturbances. This goes beyond the framework considered in the paper and could be applied to many other systems especially for the general density-velocity systems, see [START_REF] Hayat | Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm[END_REF].

Fig 1 and

 1 Fig 2, the curves of different colors represent the corresponding values of different channels. Fig 1 represents the height at the output of each channel, and Fig 2 represents the main result (

•

  The tuning parameters are k p,1 = -10, k I,1 = -10, k p,2 = 100, k I,2 = 1, k p,3 = -0.5, k I,3 = -0.9. The initial perturbations are chosen to be sinusoidal with an amplitude of 0.15 m in height and the disturbances in the dynamics d (1) 1,i = 0.0001(sin(t) + sin(x)), d

Figure 1 :

 1 Figure 1: Output measurements H i (t, L i ) with the PI control

Figure 2 :

 2 Figure2: Convergence of H i (t, •) -H * i , V i (t, •) -V * i H 2 (0,Li) + |Z i (t) -Z * i |.

  Using Sobolev inequality again, (76) gives the exponential ISS with fading memory in Theorem 4.1 for the H 2 norm for any trajectory with H 3 initial condition satisfying the corresponding assumptions of Theorem 4.1. Finally, since this estimate only involves the H 2 norm of u, the result also holds for the H 2 trajectories by the density argument (see for instance[START_REF] Bastin | Exponential boundary feedback stabilization of a shock steady state for the inviscid Burgers equation[END_REF] Lemma 4.2] for a similar argument). Compared to the undisturbed case, V 1 (u, Z) is not anymore equivalent to the square of the H 2 ((0, 1); R n ) × R n norm of (u, Z). Therefore, we add the term k1+k2≤1 ∂ k1 t ∂ k2 x d 1 (t, •) 2 L 2 (0,1) so that the Lyapunov function candidate V (u, Z) defined in (60) becomes equivalent to the square of u(t, •) H 2 (0,1) + |Z(t)| + (t, •) L 2 (0,1) which allows us to derive the ISS estimate.Remark 4.5. One can note that for the Saint-Venant equations, the existence of Q and Θ such that the matrices -(QΛ) + QM + M T Q and W are positive definite is exactly the condition of Theorem 3.1 for the linearized system around the null steadystate to have a basic quadratic Lyapunov function for the L 2 norm.

	Remark 4.4. k1+k2≤1 ∂ k1 t ∂ k2 x d 1
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Since for a given j and under condition [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF], there exists θ j /α j > 0 such that F j (θ j /α j ) > 0, we can then choose α j+1 sufficiently small given α j such that F j (θ j /α j ) + (α j+1 /α j ) F j (θ j /α j ) is positive, which gives that the third leading principal minor (iii) is positive. Thus, we get that the third line of (45) is negative.

Overall, with the Lyapunov function candidate defined in [START_REF] Hu | Control of homodirectional and general heterodirectional linear coupled hyperbolic PDEs[END_REF], we managed to select appropriate α i and θ i under constraints [START_REF] Gugat | Boundary stabilization of quasilinear hyperbolic systems of balance laws: Exponential decay for small source terms[END_REF] such that condition (a) holds.

The proof of Theorem 3.1 is completed.

Remark 3.1. Noticing that one of the key points in the proof relies on the construction of the weighted function (28) that depends on the existence of the solution to ODE [START_REF] Christopher | Input-to-state stability, integral input-to-state stability, and L 2 -gain properties: qualitative equivalences and interconnected systems[END_REF]. We have shown in [START_REF] Hayat | Exponential stability of density-velocity systems with boundary conditions and source term for the H 2 norm[END_REF] that for a class of general density-velocity equations, such condition is satisfied. Thus, the proof can be applied also to the general density-velocity equations.

4 Exponential stability of the steady-states and output regulation of the nonlinear system

In fact, the result of Section 3 also holds for the original nonlinear system provided that we use the H 2 norm instead of the L 2 norm. In this section, we give a more general result in an abstract framework: if the linearized hyperbolic system has a basic quadratic Lyapunov function for the L 2 norm, then the nonlinear system admits a basic quadratic Lyapunov function for the H 2 norm and the disturbed system is in addition exponentially ISS in the H 2 norm. Then we show that Theorem 2.1 follows directly. Let a general quasilinear hyperbolic system with disturbances be of the form

where

H and H : R n × R n → R n are of class C 2 and such that H(0, 0) = 0 and H(0, 0) = 0.

Theorem 4.1. Assume that there exists a diagonal and positive definite

is positive definite, where M = ∂ 1 B(0, x). Assume in addition that there exists a positive diagonal matrix

Integrating by parts and using Cauchy-Schwarz inequality, noticing the properties of the matrix function E(u, x), (62) becomes

Here and hereafter, we omit the variable t when there is no ambiguity and we denote by C various constants independent of u, Z, d 1 and d 2 . The notation O(s) means that there exist > 0 and C > 0 such that

Using the boundary conditions of (57), we have

where