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Abstract

The Input-to-State Stability of the non-horizontal cascade channels with
different arbitrary cross section, slope and friction modeled by Saint-Venant
equations is addressed in this paper. The control input and measured output
are both on the collocated boundary. The PI control is proposed to study both
the exponential stability and the output regulation of the closed-loop systems
with the aid of Lyapunov approach. An explicit quadratic Lyapunov function
as a weighted function of a small perturbation of the non-uniform steady-states
of different channels is constructed. We show that by a suitable choice of the
boundary feedback controls, the local exponential stability and the Input-to-
State Stability of the nonlinear Saint-Venant equations for the H2 norm are
guaranteed, then validated with numerical simulations. Meanwhile, the output
regulation and the rejection of constant disturbances are realized as well.

1 Introduction

Open channel is the most common type of channel found in natural and human society.
It could be rivers, irrigation channels, artificial canals, etc. These channels are often
organized in networks, either for natural reasons (rivers connected to each other) or
practical ones (irrigation channels are designed to irrigate large areas). Therefore, it
is of great practical significance to study the movement law of water flow in network
channel models.

The Saint-Venant equations are a class of quasilinear hyperbolic partial differential
equations that enables to describe the law of gradual unsteady flow in open channels
and other shallow-water with free surfaces. The equations consist of the continuity
equation based on the conservation law of mass and the motion equation based on
the balance law of momentum [14]. Therefore, the Saint-Venant equations constitute
a 2 × 2 one-dimensional hyperbolic system. For a long time, the stability of the
systems of one-dimensional balance laws has been analyzed widely in the literature.
To our knowledge, starting with conservation laws, the first important result of the
asymptotic stability of nonlinear 2× 2 homogeneous systems was given by Greenberg
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†A. H. is with CERMICS, École des Ponts ParisTech, Champs sur Marne, 77455 Marne la Vallée,
France (e-mail: amaury.hayat@enpc.fr).

‡Y. H. is with Tongji University, 200092, Shanghai, China (e-mail:1910739@tongji.edu.cn).
§P. S. is with Tongji University, 200092, Shanghai, China (e-mail: peipeishang@hotmail.com).

1



and Li in [18] by using the characteristic method. Later on, Qin in [37] extended
this method to the n × n case. However, when the system is highly nonlinear and
has source terms, this method is complicated. Another approach was used by Coron
et al. in [9] to solve the regulation of irrigation canals without friction or slope.
They used a Lyapunov approach where the selection of the Lyapunov function came
from the entropy principle. Later on, the same authors introduced a strict Lyapunov
function for the boundary control of hyperbolic systems of conservation laws that can
be diagonalized with Riemann invariants [10]. They solved the stabilization of the
steady-states of linear and nonlinear systems without source terms.

When source terms appear, there are relatively fewer results, and these results are
usually obtained under various assumptions on the coefficients or the source terms.
Among which, the stability was proved using the method of characteristics in [16,
35] and a Lyapunov approach in [20] under the assumption that the source term is
sufficiently small. In [6], Bastin et al. addressed the issue of the exponential stability
when the friction and the slope compensates each other. By ignoring the slope, Bastin
and Coron obtained the exponential stability in the H2 norm with nonuniform steady-
states in [5]. Recently, [25] improved the method and extended it to more general case
of arbitrary friction and space-varying slope. In [21], the exponential stability in the
C1 norm with general source term was obtained. The case of a general density-velocity
system was treated in [26]. In the literature, the backstepping method introduced by
Krstic et al. in [31] is a powerful tool to study the stabilization of linear hyperbolic
systems with source terms, see [12, 27, 30]. In [15], the authors applied this method
to deal with the linearized Saint-Venant-Exner equations, a slightly different system.
However, this gives rise to more complicated controls and requires a better knowledge
of the dynamics inside the channel.

In the real applications, there maybe various potential disturbances, either in the
dynamics or in the control applications. The Input-to-State Stability (ISS) is the
well-known robust stability property that first applied to the analysis and control of
dynamical systems [29,38]. Concerning the ISS applied to the hyperbolic system, the
case in the L2 norm was studied in [17, 42] using a Lyapunov approach and in [28]
using a small-gain analysis. The semilinear system with Lipschitz source term was
treated in [23] and the nonlinear system in the framework of the C1 norm in [7]. One
can refer to [28] (see also [22]) for an overview of the ISS for PDEs.

When looking at the stabilization of the flow of networks, almost all the works
concentrated on the static proportional control and without source terms. In [11,
13, 33], the exponential stabilization is studied under the assumption that there are
no source terms. In [6], the authors generalized their result for one channel to the
cascade case where the friction and the slope compensates each other. In [1, 2],
the authors use a backstepping approach to stabilize a general linear interconnected
hyperbolic system. Little research, however, has been carried on in the direction
where Proportional-Integral (PI) control is applied to networks. This type of control
is useful for its resilience to constant disturbances and is used in many practical
situations for the regulation of navigable rivers [34]. Nevertheless, one can note the
works by Trinh, Andrieu and Xu [39, 40] on this kind of control for the networks
modeled by Saint-Venant equations without source terms.

Our purpose in this paper is to analyze the exponential stability in the H2 norm as
well as the ISS and the regulation of the set-points of the networks modeled by Saint-
Venant equations with general source terms. In this general model we considered, the
length, the sectional area, the friction and the slope of each reach can be different
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along the channels, and can even obey to different models for the same channel.
Usually, the static control law may be subject to steady-states regulation errors in
case of disturbances or model inaccuracies. In this work, we use PI control combined
with Lyapunov approach to study the robust stability of N cascade channels network.
The main difficulty, apart from the source terms and the appearance of the additional
disturbances, lies in the complex boundary conditions coupling different channels. On
one hand, the equations in one channel coupled together through the boundary, on the
other hand, different channels coupled together through the junction points. We show
that the existence of a L2 basic quadratic Lyapunov function for an undisturbed linear
hyperbolic system with PI control implies the ISS in the H2 norm of the associated
nonlinear system with disturbances both inside the dynamics and at the boundaries.

Another contribution in this work is that we use less controls to realize the robust
stability. Noticing that the system is a 2N quasilinear hyperbolic system, but only has
N controls. In general, it is not obvious at all that a system can be stabilized using
fewer boundary controls than equations. Indeed, when one boundary condition is
fixed, there exist examples where one cannot stabilize the system using static feedback
controls at the other boundaries, see [4, Proposition 5.12], or [19] for a concrete
example.

The structure of the paper is as follows. In section 2, we state the problem and
give the main result, Theorem 2.1. In section 3, a Lyapunov function for the linearized
system is constructed and the exponential stability in the L2 norm of the linearized
system is obtained. In section 4, we show a general result that the exponential stability
of the undisturbed linearized system implies the exponential ISS of the nonlinear
hyperbolic system with disturbances (Theorem 4.1) and prove Theorem 2.1.

2 Description of the cascade channels modeled by
Saint-Venant equations and main results

In this section, we shall illustrate the establishment of boundary control strategy
for the dynamics described by Saint-Venant equations with disturbances. Here, we
consider a cascade case, which is composed of N(N ≥ 2) non-horizontal reaches with
different lengths with arbitrary cross section, slope and friction respectively. For
each reach, the Saint-Venant equations are defined on [0,+∞) × [0, Li] respectively
as (see [26])

∂tAi + ∂x(AiVi) = 0,

∂tVi + Vi∂xVi + g∂1Gi(Ai, x)∂xAi

+ g∂2Gi(Ai, x) + g(Sf,i(Ai, Vi, x)− Sb,i(x)) = 0,

(1)

where i ∈ {1, ..., N}. For the ith channel, Ai = Ai(t, x) is the wet cross section,
Hi = Gi(Ai, x) is the height of the water, Vi = Vi(t, x) is the horizontal water velocity,
Sf,i is the friction and Sb,i is the slope. To be physically acceptable, the wet section
has to increase with the height of the water and reciprocally. This is mathematically
translated by ∂1Gi(Ai, x) > 0 for any x ∈ [0, Li] and i ∈ {1, ..., N}. On the other
hand, ∂2Gi(Ai, x) represents what would be the variation of the height of the water
with respect to the location x if the wet section remained constant and this term
depends on the section profile so we do not assume any sign for it. Also, the friction
term has to be increasing with the velocity and decreasing with the wet section (see
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[4]). ∂2Sf,i > 0 and ∂1Sf,i < 0. At the boundaries, the conditions are the following

A1(t, 0)V1(t, 0) =Q0,

Aj+1(t, 0)Vj+1(t, 0) =Aj(t, Lj)Vj(t, Lj),

Ai(t, Li)Vi(t, Li) =kp,i(A
∗
i (Li)−Ai(t, Li))

+ kI,iZi(t),

Żi(t) =A∗i (Li)−Ai(t, Li),

(2)

where j ∈ {1, ..., N − 1}, i ∈ {1, ..., N}, Q0 is a constant influx, A∗i (x) are steady-
states defined by (6)–(7), kp,i and kI,i are parameters to be regulated. Let us now
assume that there are external disturbances that occur both at the boundaries and
inside the dynamics of the system. The disturbances inside the dynamics could be
a consequence of rain, unknown external forces, imprecision of the model, while the
disturbances at the boundaries could result for instance from an actuation error, an
imprecision in the measurements, or an unsteady upstream flow. The system (1)–(2)
becomes

∂tAi + ∂x(AiVi) = d
(1)
1,i (t, x),

∂tVi + Vi∂xVi + g∂1Gi(Ai, x)∂xAi

+ g∂2Gi(Ai, x) + g(Sf,i(Ai, Vi, x)− Sb,i(x))

= d
(2)
1,i (t, x),

(3)

where (d
(1)
1,i , d

(2)
1,i )i∈{1,··· ,N} are the disturbances in the dynamics with boundary con-

ditions

A1(t, 0)V1(t, 0) =Q0 + d2,0(t),

Aj+1(t, 0)Vj+1(t, 0) =Aj(t, Lj)Vj(t, Lj),

Ai(t, Li)Vi(t, Li) =kp,i(A
∗
i (Li)−Ai(t, Li))

+ kI,iZi(t) + d2,i(t),

Żi(t) =A∗i (Li)−Ai(t, Li),

(4)

where d2,0 and (d2,i)i∈{1,··· ,N} are the boundary disturbances. The steady-states
(A∗i (x), V ∗i (x), Z∗i ) in the absence of the disturbances satisfy

(A∗i V
∗
i )x = 0,

V ∗i V
∗
ix + g∂1Gi(A

∗
i , x)A∗ix + g∂2Gi(A

∗
i , x)

+ g(Sf,i(A
∗
i , V

∗
i , x)− Sb,i(x)) = 0,

Z∗i =
Q0

kI,i
.

(5)

This system is well-posed as long as g∂1Gi(A
∗
i , x)A∗i − V ∗2i 6= 0 (see [26]) and in this

case, the steady-states (A∗i , V
∗
i ) satisfy

(A∗i )x =
−gA∗i (∂2Gi(A∗i , x) + Sf,i(A

∗
i , V

∗
i , x)− Sb,i(x))

g∂1Gi(A∗i , x)A∗i − V ∗2i
, (6)

(V ∗i )x =
gV ∗i (∂2Gi(A

∗
i , x) + Sf,i(A

∗
i , V

∗
i , x)− Sb,i(x))

g∂1Gi(A∗i , x)A∗i − V ∗2i
. (7)
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In this paper, we consider the physical steady-states: A∗i (x) > 0 and V ∗i (x) > 0 for
all x ∈ [0, Li]. We know that the solutions (A∗i (x), V ∗i (x)) of (6)–(7) exist for all
x ∈ [0, Li] as long as g∂1Gi(A

∗
i , x)A∗i − V ∗2i 6= 0 and in particular when the regimes

are in the subcritical case, i.e. the following condition holds

g∂1Gi(A
∗
i , x)A∗i (x)− V ∗2i (x) > 0. (8)

The supercritical case where g∂1Gi(A
∗
i , x)A∗i (x)− V ∗2i (x) < 0 is less interesting from

a control point of view since the wave propagation speeds have the same sign and
therefore the system can always be stabilized by boundary controls (see [21]).

As the N channels only coupled at the boundary, using a scaling, we can trans-
fer the system (3)–(4) to a new system in which the length of each channel is unit.
Indeed, let us introduce for the ith channel the new variable y := x/Li and denote

by Ãi(t, y) := Ai(t, Liy) and Ṽi(t, y) := Vi(t, Liy) the new unknowns. Without am-
biguity, we still denote by x the space variable, then we obtain the new disturbed
system

∂tÃi +
1

Li
∂x(ÃiṼi) = d

(1)
1,i (t, Lix) := d̃

(1)
1,i (t, x),

∂tṼi +
1

Li
Ṽi∂xṼi +

1

Li
g∂1Gi(Ãi, Lix)∂xÃi

+ g∂2Gi(Ãi, Lix) + g(Sf,i(Ãi, Ṽi, Lix)− Sb,i(Lix))

= d
(2)
1,i (t, Lix) := d̃

(2)
1,i (t, x),

(9)

defined on [0,+∞)× [0, 1]. Noticing that if we denote by (Ã∗i , Ṽ
∗
i ) the steady-states

of the above new system, then Ã∗i (x) = A∗i (Lix) and Ṽ ∗i (x) = V ∗i (Lix) with (A∗i , V
∗
i )

the steady-states of (1). Thus, the boundary conditions (4) become

Ã1(t, 0)Ṽ1(t, 0) =Q0 + d2,0(t),

Ãj+1(t, 0)Ṽj+1(t, 0) =Ãj(t, 1)Ṽj(t, 1),

Ãi(t, 1)Ṽi(t, 1) =kp,i(Ã
∗
i (1)− Ãi(t, 1))

+ kI,iZi(t) + d2,i(t),

Żi(t) =Ã∗i (1)− Ãi(t, 1),

(10)

for the new unknowns Ãi and Ṽi. Thus, we have transformed the disturbed system
(3)–(4) to the new system (9)–(10). In the following, we will focus on the ISS property
on the new system and we have the main result as following

Theorem 2.1. Assume that for i ∈ {1, · · · , N}

kp,i < 0 and kI,i < 0, or

kp,i >
g∂1Gi(Ã

∗
i (1), Li)Ã

∗
i (1)−Ṽ ∗2i (1)

Ṽ ∗i (1)
and kI,i > 0,

then the nonlinear system (9)–(10) is locally (exponentially) Input-to-State Stable.
More precisely, there exist γ > 0, δ > 0 and C > 0 such that for any T > 0,
any c = (ci)i∈{0,1,...,N} ∈ RN+1, any (Ã0

i , Ṽ
0
i , Z

0
i ) ∈ C0([0, T ];H2((0, 1);R2)) × R

and any disturbances d1 = (d̃
(1)
1,i , d̃

(2)
2,i )i∈{1,··· ,N} ∈ C0([0, T ];H2((0, 1);R2N )) and
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d2 = (d2,0, (d2,i)i∈{1,··· ,N}) ∈ H2((0, T );RN+1) satisfying the first-order compatibility
conditions1 associated to (10) with

‖(Ã0
i − Ã∗i , Ṽ 0

i − Ṽ ∗i )‖H2(0,1) + |Z0
i − Z∗i +

ci
kI,i
| < δ (11)

for i ∈ {1, · · · , N} and

‖d1(t, x)‖C0([0,T ];H2(0,1)) + ‖d2(t)− c‖H2(0,T ) < δ,

there exists a unique solution (Ãi, Ṽi, Zi)i∈{1,...N} ∈ C0([0, T ];H2((0, 1);R2)) ×
C1([0, T ];R) to (9)–(10) with initial condition (Ã0

i , Ṽ
0
i , Z

0
i )i∈{1,...,N} and we have the

following ISS estimate

N∑
i=1

(
‖(Ãi(t, ·)−Ã∗i , Ṽi(t, ·)−Ṽ ∗i )‖H2(0,1)+|Zi(t)− (Z∗i −

ci
kI,i

)|
)

≤Ce−γt
(

N∑
i=1

(
‖(Ã0

i−Ã∗i , Ṽ 0
i −Ṽ ∗i )‖H2(0,1)+|Z0

i − (Z∗i −
ci
kI,i

)|
))

+ C

(
2∑
k=0

‖e−γ(t−τ) (d2 − c)
(k)

(τ)‖L2(0,t)

)
+ C

( ∑
k1+k2≤2
k2≤1

‖e−γ(t−τ)∂k1t ∂k2x d1(τ, x)‖L2((0,t)×(0,1))

)
(12)

for any t ∈ [0,+∞).

Remark 2.1 (Constant disturbances). Here c can be chosen arbitrarily which means
that, thanks to the PI control, the system is robust to any constant disturbances. Hence
the result applies when the boundary disturbances d2 are not necessarily small but only
close to a constant disturbance. This explains that the ISS estimate (12) involves the
norm of d2 − c instead of the norm of d2. In particular, when there are no internal
disturbances but only constant boundary disturbances (i.e. d1 ≡ 0 and d2 ≡ c for
some c ∈ RN+1), the system is exponentially stable. This special case is also studied
in [43] for small constant disturbances.

3 A Lyapunov function for the linearized cascade
system

We start by looking at the exponential stability of the linearized system associated
with the undisturbed system (9)–(10). To this aim, we define the perturbation func-

tions ai, vi and zi with respect to the steady-states (Ã∗i (x), Ṽ ∗i (x), Z∗i ) as

ai(t, x) = Ãi(t, x)− Ã∗i (x),

vi(t, x) = Ṽi(t, x)− Ṽ ∗i (x),

zi(t) = Zi(t)− Z∗i .
(13)

1For an explanation of the concept of the compatibility conditions, see [4, Section 4.5.2]
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The linearization of the system (9) and the dynamics of the integral terms Zi around
the steady-states is

ait +
1

Li
Ṽ ∗i aix +

1

Li
Ã∗i vix +

1

Li
Ṽ ∗ixai +

1

Li
Ã∗ixvi = 0,

vit +
1

Li
viṼ

∗
ix +

1

Li
Ṽ ∗i vix +

1

Li
g∂1Gi(Ã

∗
i , Lix)aix

+
1

Li
g∂211Gi(Ã

∗
i , Lix)Ã∗ixai + g∂221Gi(Ã

∗
i , Lix)ai

+g∂1Sf,i(Ã
∗
i , Ṽ

∗
i , Lix)ai+g∂2Sf,i(Ã

∗
i , Ṽ

∗
i , Lix)vi=0,

żi = −ai(t, 1).

(14)

The linearized boundary conditions become

Ṽ ∗1 (0)a1(t, 0) + Ã∗1(0)v1(t, 0) = 0, (15)

Ṽ ∗j+1(0)aj+1(t, 0) + Ã∗j+1(0)vj+1(t, 0)

= Ṽ ∗j (1)aj(t, 1) + Ã∗j (1)vj(t, 1), (16)

Ṽ ∗i (1)ai(t, 1) + Ã∗i (1)vi(t, 1)

= −kp,iai(t, 1) + kI,izi(t). (17)

We consider the linearized system (14), (15)–(17) under an initial condition

ai(0, x) = a0i (x), vi(0, x) = v0i (x), zi(0) = z0i (18)

such that
(a0i (x), v0i (x)) ∈ L2((0, 1);R2), z0i ∈ R. (19)

The Cauchy problem (14), (15)–(18) is well-posed (see [4]).
We give the following definition of the exponential stability in the L2 norm.

Definition 1. The system (14), (15)–(18) is exponentially stable for the L2 norm if
there exist ν > 0 and C > 0 such that for every (a0i , v

0
i , z

0
i ) ∈ L2((0, 1);R2) × R (i ∈

{1, . . . , N}), the solution to the Cauchy problem (14), (15)–(18) satisfies

N∑
i=1

[
||(ai(t, ·), vi(t, ·))||L2(0,1) + |zi(t)|

]
≤ Ce−νt

N∑
i=1

[
||(a0i , v0i )||L2(0,1) + |z0i |

]
, ∀t ∈ [0,∞).

In this section, we show the following result

Theorem 3.1. If the control parameters satisfy

kp,i < 0 and kI,i < 0, or

kp,i >
g∂1Gi(Ã

∗
i (1), Li)Ã

∗
i (1)−Ṽ ∗2i (1)

Ṽ ∗i (1)
and kI,i > 0,

(20)

then the system (14), (15)–(18) is exponentially stable in the L2 norm.
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Proof. Observe that the linear system (14), (15)–(17) can be rewritten in Riemann
coordinates, let (

R1i

R2i

)
=

 Li

√
g∂1Gi(Ã∗

i ,Lix)

Ã∗
i

Li

−Li
√

g∂1Gi(Ã∗
i ,Lix)

Ã∗
i

Li

(aivi
)
. (21)

Then the system (14) is transformed into

∂tR1i + λ1i∂xR1i + γ1iR1i + δ1iR2i = 0,

∂tR2i − λ2i∂xR2i + γ2iR1i + δ2iR2i = 0,

żi=
R2i(t, 1)−R1i(t, 1)

2Li

√
Ã∗i (1)

g∂1Gi(Ã∗i (1), Li)
,

(22)

where λ1i, λ2i, γ1i, γ2i, δ1i and δ2i are all space-dependent and defined by the following

λ1i =
1

Li

(
Ṽ ∗i +

√
g∂1Gi(Ã∗i , Lix)Ã∗i

)
> 0,

λ2i =
1

Li

(√
g∂1Gi(Ã∗i , Lix)Ã∗i − Ṽ

∗
i

)
> 0

(23)

and using the abbreviation Gi for Gi(Ã
∗
i , Lix)

γ1i=
1

4

[
2g∂2Sf,i+2g(∂221Gi+∂1Sf,i)

√
Ã∗i

g∂1Gi

+3λ2i
Ã∗ix

Ã∗i
−λ1i

Li∂
2
12Gi

∂1Gi
+λ2i

∂211GiÃ
∗
ix

∂1Gi

]
,

γ2i=
1

4

[
2g∂2Sf,i+2g(∂221Gi+∂1Sf,i)

√
Ã∗i

g∂1Gi

−λ1i
Ã∗ix

Ã∗i
−λ2i

Li∂
2
12Gi

∂1Gi
+λ1i

∂211GiÃ
∗
ix

∂1Gi

]
,

δ1i=
1

4

[
2g∂2Sf,i−2g(∂221Gi+∂1Sf,i)

√
Ã∗i

g∂1Gi

+λ2i
Ã∗ix

Ã∗i
+λ1i

Li∂
2
12Gi

∂1Gi
−λ2i

∂211GiÃ
∗
ix

∂1Gi

]
,

δ2i=
1

4

[
2g∂2Sf,i−2g(∂221Gi+∂1Sf,i)

√
Ã∗i

g∂1Gi

−3λ1i
Ã∗ix

Ã∗i
+λ2i

Li∂
2
12Gi

∂1Gi
−λ1i

∂211GiÃ
∗
ix

∂1Gi

]
.

The boundary conditions (15)–(17) can be expressed as

R11(t, 0)λ11(0) +R21(t, 0)λ21(0) = 0, (24)

8



√√√√ Ã∗j+1(0)

g∂1Gj+1(Ã∗j+1(0), 0)

(
R1,j+1(t, 0)λ1,j+1(0)

+R2,j+1(t, 0)λ2,j+1(0)
)

=

√√√√ Ã∗j (1)

g∂1Gj(Ã∗j (1), Li)

(
R1j(t, 1)λ1j(1)+R2j(t, 1)λ2j(1)

)
,

(25)

R1i(t, 1)(λ1i(1)+
1

Li
kp,i)+R2i(t, 1)(λ2i(1)− 1

Li
kp,i)

= 2kI,izi(t)

√
g∂1Gi(Ã∗i (1), Li)

Ã∗i (1)
. (26)

For each channel, we rely on the construction of a Lyapunov function and since we
study the cascade channels, we have to combine the Lyapunov functions by adding
proper weights for each channel. Different from [6] or [13], as the extra integral terms
need to be processed, we shall consider the items of zi. Inspired by [24,26], we consider
the Lyapunov function candidate as the following

V =

N∑
i=1

αi

∫ 1

0

(
f1i(x)e

2
∫ x
0

γ1i(s)

λ1i(s)
ds
R2

1i(t, x)

+f2i(x)e
−2
∫ x
0

δ2i(s)

λ2i(s)
ds
R2

2i(t, x)
)
dx+

N∑
i=1

θiLiz
2
i (t), (27)

where αi > 0 and θi > 0 are constants to be chosen and f1i, f2i are given by

f1i =
1

λ1iηi,ε
, f2i =

ηi,ε
λ2i

, (28)

where ηi,ε is the solution to
η′i,ε =

∣∣∣∣δ1iϕiλ1i
+

γ2i
λ2iϕi

η2i,ε

∣∣∣∣+ ε

ηi,ε(0) =
λ2i(0)

λ1i(0)
+ ε,

(29)

with ϕi defined by

ϕi(x) = exp

(∫ x

0

(γ1i(s)
λ1i(s)

+
δ2i(s)

λ2i(s)

)
ds

)
. (30)

An important fact (showed in [26]) is that there exists ε1 > 0 such that for any
ε ∈ [0, ε1), ηi,ε exists on [0, 1] and in particular, when ε = 0

ηi,0 =
λ2i
λ1i

ϕi. (31)
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By (21), it is not difficult to check that there exist constant β > 0 such that

1

β

N∑
i=1

[
||(ai(t, ·), vi(t, ·))||2L2(0,1) + z2i (t)

]
≤ V (t)

≤ β
N∑
i=1

[
||(ai(t, ·), vi(t, ·))||2L2(0,1) + z2i (t)

]
(32)

for any t ∈ [0,+∞).
By introducing the compact notations

Yi =

(
R1i

R2i

)
(33)

and

Di(x) =

(
f1ie

2
∫ x
0

γ1i(s)

λ1i(s)
ds

0

0 f2ie
−2
∫ x
0

δ2i(s)

λ2i(s)
ds

)
, (34)

the equations for (R1i, R2i) in (22) can be rewritten as

∂tYi + Ai(x)∂xYi + Bi(x)Yi = 0, (35)

where

Ai(x) =

(
λ1i 0
0 −λ2i

)
, Bi(x) =

(
γ1i δ1i
γ2i δ2i

)
(36)

and the simplified form of (27) can be written as

V =

N∑
i=1

αi

∫ 1

0

Y Ti Di(x)Yidx+

N∑
i=1

θiLiz
2
i . (37)

The time derivative of V along the C1 trajectories of (35) is

V̇ = −
N∑
i=1

αi

∫ 1

0

(Ai(x)Yix + Bi(x)Yi)
TDi(x)Yidx

−
N∑
i=1

αi

∫ 1

0

Y Ti Di(x)(Ai(x)Yix + Bi(x)Yi)dx

+

N∑
i=1

θizi(t)(R2i(t, 1)−R1i(t, 1))

√
A∗i (1)

g∂1Gi(A∗i (1), Li)
.

(38)

According to (34) and (36), we observe that

Mi(x) := Ai(x)TDi(x) = Di(x)Ai(x)

=

(
λ1if1ie

2
∫ x
0

γ1i(s)

λ1i(s)
ds

0

0 −λ2if2ie−2
∫ x
0

δ2i(s)

λ2i(s)
ds

)
.

10



Therefore, using the symmetric matrices Mi(x) and (38), we obtain

V̇ =−
[ N∑
i=1

αi

∫ 1

0

(Y Ti Mi(x)Yi)xdx+

N∑
i=1

αi

∫ 1

0

Y Ti Ni(x)Yidx
]

+

N∑
i=1

θizi(R2i(t, 1)−R1i(t, 1))

√
A∗i (1)

g∂1Gi(A∗i (1), Li)
,

where
Ni(x) = Bi(x)TDi(x) + Di(x)Bi(x)−M′

i(x). (39)

Under constraints (20), we need to select appropriate αi and θi in order to guarantee
that V̇ is negative definite along the C1 solutions of the system (22), (24)–(26), i.e.,
the following conditions hold:

(a) The boundary part is nonpositive, namely

−
N∑
i=1

αi[Y
T
i Mi(x)Yi]

1
0

+

N∑
i=1

θizi(R2i(t, 1)−R1i(t, 1))

√
A∗i (1)

g∂1Gi(A∗i (1), Li)

≤ 0 (40)

for every Yi(t, 0) ∈ R2N and Yi(t, 1) ∈ R2N ;

(b) The matrices Ni(x) are positive definite for every x ∈ [0, 1].

Indeed, noticing that once conditions (a) and (b) hold, one can find a sufficiently
small positive real number µ such that

dV

dt
≤ −µV (41)

along the C1 solutions of the system. Since the C1 solutions are dense in the set of
L2 solutions, inequality (41) is also satisfied in the sense of distributions for the L2

solutions (see [4, Section 2.1.3] for more details). Consequently, V is an exponentially
decaying Lyapunov function and this, together with (32), completes the proof of
Theorem 3.1.

We first analyze condition (b). From (39), we get

Ni(x) =

(
Ni1 Ni2
Ni3 Ni4

)
, (42)

where

Ni1 = −(λ1if1i)
′e

2
∫ x
0

γ1i(s)

λ1i(s)
ds
,

Ni2=Ni3=γ2if2ie
−2
∫ x
0

δ2i(s)

λ2i(s)
ds

+δ1if1ie
2
∫ x
0

γ1i(s)

λ1i(s)
ds
,

Ni4 = (λ2if2i)
′e
−2
∫ x
0

δ2i(s)

λ2i(s)
ds
.
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From the definitions of f1i and f2i in (28), the diagonal elements of Ni(x) are positive.
Moreover, we obtain

det[Ni(x)]=e
2
∫ x
0

(
γ1i(s)

λ1i(s)
− δ2i(s)

λ2i(s)

)
ds
(
−(λ1if1i)

′(λ2if2i)
′

− (
γ2if2i
ϕi

+ δ1if1iϕi)
2
)
> 0

for any ε ∈ (0, ε1). Thus the matrices Ni(x) are positive definite for all x ∈ [0, 1]
when ε is sufficient small.

We now analyze condition (a). We first express the boundary conditions (24)–(26)
as follows. From (24),

R11(t, 0) = −R21(t, 0)λ21(0)

λ11(0)
. (43)

From (26),

R2i(t, 1) =
kp,i + Liλ1i(1)

kp,i − Liλ2i(1)︸ ︷︷ ︸
s1i

R1i(t, 1)

+ 2

√
g∂1Gi(A∗i (1), Li)

A∗i (1)

kI,i
Liλ2i(1)− kp,i︸ ︷︷ ︸

s2i

zi(t).

From (25), one has

R1,j+1(t, 0) =cj

[
λ1j(1)R1j(t, 1) + λ2j(1)R2j(t, 1)

]
− λ2,j+1(0)

λ1,j+1(0)
R2,j+1(t, 0).

(44)

Here and hereafter, for simplicity, we denote the coefficient

cj :=
1

λ1,j+1(0)

√
A∗j (1)

g∂1Gj(A∗j (1),Lj)

√
g∂1Gj+1(A∗j+1(0),0)

A∗j+1(0)
.

Thus, the boundary part in V̇ given in condition (a) can be rewritten as

−
N∑
i=1

αi[Y
T
i Mi(x)Yi]

1
0

+

N∑
i=1

θizi(t)(R2i(t, 1)−R1i(t, 1))

√
A∗i (1)

g∂1Gi(A∗i (1), Li)

=−α1R
2
21(t, 0)

(
λ21(0)f21(0)−λ11(0)f11(0)

(λ21(0)

λ11(0)

)2)
−
(
R1N (t, 1) zN (t)

)(α β
β θ

)(
R1N (t, 1)
zN (t)

)

−
N−1∑
j=1

(
R1j(t, 1) zj(t) R2,j+1(t, 0)

)ᾱ β̄ γ̄
β̄ θ̄ η̄
γ̄ η̄ ζ̄

 R1j(t, 1)
zj(t)

R2,j+1(t, 0)



(45)

12



with

α :=αNe
2
∫ 1
0

γ1N (s)

λ1N (s)
ds
(
λ1N (1)f1N (1)−s21N

λ2N (1)f2N (1)

ϕ2
N (1)

)
,

β :=− αNe2
∫ 1
0

γ1N (s)

λ1N (s)
ds
s1Ns2N

λ2N (1)f2N (1)

ϕ2
N (1)

− θN
2

(s1N − 1)

√
A∗N (1)

g∂1GN (A∗N (1), LN )
,

θ :=− αNe2
∫ 1
0

γ1N (s)

λ1N (s)
ds
s22N

λ2N (1)f2N (1)

ϕ2
N (1)

− θNs2N

√
A∗N (1)

g∂1GN (A∗N (1), LN )

and

ᾱ :=αje
2
∫ 1
0

γ1j(s)

λ1j(s)
ds
(
λ1j(1)f1j(1)−s21j

λ2j(1)f2j(1)

ϕ2
j (1)

)
−αj+1λ1,j+1(0)f1,j+1(0)c2j (λ1j(1)+λ2j(1)s1j)

2, (46)

β̄ :=− αje
2
∫ 1
0

γ1j(s)

λ1j(s)
ds
s1js2j

λ2j(1)f2j(1)

ϕ2
j (1)

−θj
2

(s1j − 1)

√
A∗j (1)

g∂1Gj(A∗j (1), Lj)

−αj+1λ1,j+1(0)f1,j+1(0)c2j (λ1j(1)

+ λ2j(1)s1j)λ2j(1)s2j ,

θ̄ :=− αje
2
∫ 1
0

γ1j(s)

λ1j(s)
ds
s22j

λ2j(1)f2j(1)

ϕ2
j (1)

− αj+1λ1,j+1(0)f1,j+1(0)c2jλ
2
2j(1)s22j

− θjs2j

√
A∗j (1)

g∂1Gj(A∗j (1), Lj)
,

γ̄ :=αj+1λ2,j+1(0)f1,j+1(0)cj(λ1j(1)+λ2j(1)s1j),

η̄ :=αj+1λ2,j+1(0)f1,j+1(0)cjλ2j(1)s2j ,

ζ̄ :=αj+1

(
−λ1,j+1(0)f1,j+1(0)(

λ2,j+1(0)

λ1,j+1(0)
)2

+ λ2,j+1(0)f2,j+1(0)
)
.

We analyze the sign of (45) from line to line. Firstly, from the definitions of f1i and
f2i in (28) together with ηi,ε solution to (29), one gets that the first line in (45) is
negative. Under condition (20), one has

s21i <
(λ1i(1)

λ2i(1)

)2
, i = 1, · · · , N (47)

then α > 0 follows immediately. We then calculate αθ − β2 and obtain
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αθ − β2 = α2
NFN (θN/αN ), (48)

where

Fi(x) =− x2

4
(s1i − 1)2

A∗i (1)

g∂1Gi(A∗i (1), Li)

−xs2iλ1i(1)f1i(1)e
2
∫ 1
0

γ1i(s)

λ1i(s)
ds

√
A∗i (1)

g∂1Gi(A∗i (1), Li)

+xs1is2ie
2
∫ 1
0

γ1i(s)

λ1i(s)
ds

√
A∗i (1)

g∂1Gi(A∗i (1), Li)

λ2i(1)f2i(1)

ϕ2
i (1)

−s22iλ1i(1)f1i(1)e
4
∫ 1
0

γ1i(s)

λ1i(s)
dsλ2i(1)f2i(1)

ϕ2
i (1)

for any i ∈ {1, ..., N}.
Note that Fi is a quadratic form whose discriminant is

∆ =
s22iA

∗
i (1)e

4
∫ 1
0

γ1i(s)

λ1i(s)
ds

g∂1Gi(A∗i (1), Li)

(λ2i(1)f2i(1)

ϕ2
i (1)

−λ1i(1)f1i(1)
)

·
(
s21i

λ2i(1)f2i(1)

ϕ2
i (1)

−λ1i(1)f1i(1)
)
. (49)

From the definitions of f1i, f2i and ηi,ε in (28)–(29) and noticing the property (31)
and 0 < λ2i < λ1i, we have

λ2i(1)f2i(1)

ϕ2
i (1)

− λ1i(1)f1i(1) =
η2i,ε(1)− ϕ2

i (1)

ϕ2
i (1)ηi,ε(1)

< 0. (50)

Moreover, under condition (47), one obtains also that

s21i
λ2i(1)f2i(1)

ϕ2
i (1)

− λ1i(1)f1i(1) < 0, (51)

which, together with (49) and (50) gives ∆ > 0. The axis of the symmetry of the
quadratic form is

2s2ie
2
∫ 1
0

γ1i(s)

λ1i(s)
ds

(s1i − 1)2

√
g∂1Gi(A∗i (1), Li)

A∗i (1)

·
(
s1i

λ2i(1)f2i(1)

ϕ2
i (1)

−λ1i(1)f1i(1)
)
.

(52)

Under condition (20), we can obtain

s2i < 0, s1i <
λ1i(1)

λ2i(1)
<

(
λ1i(1)

λ2i(1)

)2

, (53)

which proves that the term in (52) is positive. Overall, we have proved that under
condition (20), there exists θi/αi > 0 such that Fi(θi/αi) > 0 for any i ∈ {1, ..., N}
and in particular from (48), one obtains αθ − β2 > 0.

Next, we analyze the last line in (45). This line is related to the connection
between the previous reach j ∈ {1, · · · , N − 1} and the next reach j + 1 at the
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junctions. Therefore, in order to lighten the notations, in the following λi,j+1 stands
for λi,j+1(0) and λi,j for λi,j(1), for i = 1, 2. We consider the leading principal minors
of the 3× 3 matrix, namely

(i) ᾱ;

(ii) ᾱθ̄ − β̄2;

(iii) ᾱθ̄ζ̄ + 2β̄η̄γ̄ − γ̄2θ̄ − η̄2ᾱ− β̄2ζ̄.

Noticing the expression of ᾱ in (46), analyzing similarly to (51), one can easily check
that under condition (20), ᾱ > 0 when αj+1/αj is sufficiently small.

After some direct but tedious calculations, we get

ᾱθ̄ − β̄2 = α2
j

(
Fj(θj/αj) +

αj+1

αj
F̃j(θj/αj)

)
, (54)

where F̃j is an affine function of θj/αj and independent of (αi)i∈{1,...,N}. Since there
exists θj/αj > 0 such that Fj(θj/αj) > 0, one obtains immediately that, for a given
j and under condition (20), there exist θj/αj > 0 and sufficiently small αj+1/αj > 0
such that ᾱθ̄ − β̄2 > 0.

For the third leading principal minor given by (iii), we decompose it as

ᾱθ̄ζ̄ + 2β̄η̄γ̄ − γ̄2θ̄ − η̄2ᾱ− β̄2ζ̄

=ζ̄(ᾱθ̄ − β̄2) + γ̄(β̄η̄ − γ̄θ̄) + η̄(β̄γ̄ − η̄ᾱ)

=αj+1

{(
λ2,j+1f2,j+1−λ1,j+1f1,j+1

(λ2,j+1

λ1,j+1

)2)
(ᾱθ̄−β̄2)

+λ2,j+1f1,j+1cj

[
(λ1j+λ2js1j)(β̄η̄−γ̄θ̄)

+ λ2js2j(β̄γ̄−η̄ᾱ)
]}
. (55)

After direct computations, we obtain that

(λ1j + λ2js1j)(β̄η̄ − γ̄θ̄) + λ2js2j(β̄γ̄ − η̄ᾱ)

= λ2,j+1f1,j+1cjα
2
j

αj+1

αj
s2j

[ θj
αj

√
A∗j (1)

g∂1Gj(A∗j (1),Lj)

(λ1j+λ2js1j)(λ1j+λ2j)−e
2
∫ 1
0

γ1j(s)

λ1j(s)
ds
λ1jλ2js2j(λ2jf1j−

λ1jf2j
ϕ2
j

)
]
.

Substituting the above equation into (55), we obtain

1

αj+1

(
ᾱθ̄ζ̄ + 2β̄η̄γ̄ − γ̄2θ̄ − η̄2ᾱ− β̄2ζ̄

)
=α2

j

(
λ2,j+1f2,j+1 − λ1,j+1f1,j+1

(λ2,j+1

λ1,j+1

)2)
·
(
Fj(θj/αj) +

αj+1

αj
F̂j(θj/αj)

)
,

(56)

where F̂j(x) is an affine function of θj/αj and independent of (αi)i∈{1,··· ,N}. From
the definitions of f1i, f2i, ηi,ε and ϕi in (28)–(30), one obtains

λ2,j+1f2,j+1 − λ1,j+1f1,j+1

(λ2,j+1

λ1,j+1

)2
> 0.
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Since for a given j and under condition (20), there exists θj/αj > 0 such that
Fj(θj/αj) > 0, we can then choose αj+1 sufficiently small given αj such that

Fj(θj/αj) + (αj+1/αj)F̂j(θj/αj) is positive, which gives that the third leading prin-
cipal minor (iii) is positive. Thus, we get that the third line of (45) is negative.

Overall, with the Lyapunov function candidate defined in (27), we managed to
select appropriate αi and θi under constraints (20) such that condition (a) holds.

The proof of Theorem 3.1 is completed.

Remark 3.1. Noticing that one of the key points in the proof relies on the construc-
tion of the weighted function (28) that depends on the existence of the solution to
ODE (29). We have shown in [26] that for a class of general density-velocity equa-
tions, such condition is satisfied. Thus, the proof can be applied also to the general
density-velocity equations.

4 Exponential stability of the steady-states and
output regulation of the nonlinear system

In fact, the result of Section 3 also holds for the original nonlinear system provided
that we use the H2 norm instead of the L2 norm. In this section, we give a more
general result in an abstract framework: if the linearized hyperbolic system has a basic
quadratic Lyapunov function for the L2 norm, then the nonlinear system admits a
basic quadratic Lyapunov function for the H2 norm and the disturbed system is in
addition exponentially ISS in the H2 norm. Then we show that Theorem 2.1 follows
directly. Let a general quasilinear hyperbolic system with disturbances be of the form

∂tu +A(u, x)∂xu +B(u, x) + d1(t, x) = 0,(
u+(t, 0)
u−(t, 1)

)
= H

((
u+(t, 1)
u−(t, 0)

)
, Z

)
+ d2(t),

Ż = H̄(

(
u+(t, 1)
u−(t, 0)

)
, Z),

(57)

where u := (u1, · · · , un)T and ui : [0,+∞) × [0, 1] → R, Z : [0,+∞) → Rn,
d1 : [0,+∞) × [0, 1] → Rn and d2 : [0,+∞) → Rn. Let Mn,n(R) be the
set of n × n real matrices, A : Rn × [0, 1] → Mn,n(R) is of class C2 such that
A(0, x) = diag{λ1(x), · · · , λm(x),−λm+1(x), · · · ,−λn(x)} := diag{Λ+,Λ−} := Λ(x),
where λi(x) > 0,∀x ∈ [0, 1]. u+ = (u1, · · · , um)T and u− = (um+1, · · · , un)T .
B : Rn × [0, 1]→ Rn is of class C2 such that B(0, x) = 0. H and H̄ : Rn × Rn → Rn
are of class C2 and such that H(0,0) = 0 and H̄(0,0) = 0.

Theorem 4.1. Assume that there exists a diagonal and positive definite C1 matrix
Q(x) := diag{Q+(x), Q−(x)} with Q+ a m×m matrix function and Q− a (n−m)×
(n−m) matrix function such that the matrix

−(QΛ)′ +QM +MTQ (58)

is positive definite, where M = ∂1B(0, x). Assume in addition that there exists a
positive diagonal matrix Θ = diag{Θ1, · · · ,Θn} such that the matrix

W =

(
W1 W2

W3 W4

)
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is positive definite, where

W1 :=

(
Q+(1)Λ+(1) 0

0 −Q−(0)Λ−(0)

)
−KT

1

(
Q+(0)Λ+(0) 0

0 −Q−(1)Λ−(1)

)
K1

W2 :=KT
1

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
K2 − K̄T

1 ΘT

W3 :=KT
2

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
K1 − ΘK̄1

W4 :=KT
2

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
K2 − 2ΘK̄2

with K1 = ∂1H(0,0), K2 = ∂2H(0,0), K̄1 = ∂1H̄(0,0), K̄2 = ∂2H̄(0,0). Then the
system (57) is locally exponentially ISS around u ≡ 0 for the H2 norm, i.e. there
exist γ > 0, δ > 0, C > 0 such that for any T > 0, any (u0, Z0) ∈ H2((0, 1);Rn)×Rn,
and any disturbances d1 ∈ C0([0, T ];H2((0, 1);Rn)), d2 ∈ H2((0, T );Rn) satisfying
the first order compatibility conditions associated to (57) with(

‖u0‖H2(0,1) + |Z0|
)
< δ; and

‖d1(t, x)‖C0([0,T ];H2(0,1))+‖d2(t)‖H2(0,T )<δ, (59)

the system (57) with initial condition (u0, Z0) has a unique solution (u, Z) ∈
C0([0, T ];H2((0, 1);Rn))× C1([0, T ];Rn) satisfying(

‖u(t, ·)‖H2(0,1) + |Z(t)|
)

≤Ce−γt
(
‖u0‖H2(0,1) + |Z0|

)
+ C

(
2∑
k=0

‖e−γ(t−τ)d(k)
2 (τ)‖L2(0,t)

)
+ C

( ∑
k1+k2≤2
k2≤1

‖e−γ(t−τ)∂k1t ∂k2x d1(τ, x)‖L2((0,t)×(0,1))

)

for any t ∈ [0,+∞).

Remark 4.1. Just as in Theorem 2.1, d2 can be taken close to a constant disturbance
vector c rather than close to 0 as long as z → H(0, Z) is invertible. Indeed, in this
case, one can apply this result with d̃2 = d2 − c and H̃(u, Z) = H(u, Z + Zeq) + c
where Zeq is defined by H(0, Zeq) = −c. To simplify the computations, we consider
the case where c = 0.

Remark 4.2. Concerning the conservativeness of the conditions in Theorem 4.1, so
far as we know, it is only sufficient condition to guarantee the existence of quadratic
Lyapunov function for general n×n system in the H2 norm (see [4]). But for cascade
Saint-Venant equations, when there is no slope or friction, the conditions in Theorem
4.1 are necessary and sufficient to have exponential stability, see [4, Section 2.2].
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Remark 4.3. With a special choice of Q(x), conditions in Theorem 4.1 become LMI
conditions in [32]. The way we construct the weighted functions for our Lyapunov
function is to find explicitly the matrix function Q(x) and the constraints (20) on
the tuning parameters kp,i and kI,i are correspondingly requirements for Q(0) and
Q(1) (see [32, Proposition 2.1] for the LMI condition). However, so far as we know,
the LMI condition is theoretical and one can only find the conditions numerically as
shown in [32, 36]. And the advantage of our work is that we manage to construct
explicitly the weighted functions that results in the explicit conditions (20) for the
tuning parameters for the cascade Saint-Venant equations.

Proof of Theorem 4.1. The well-posedness is guaranteed by [41], we focus on the ISS
estimate. The proof is inspired from the proof of Theorems 6.6 and 6.10 in [4], adapted
in order to deal with the integral terms and the ISS. We consider the augmented
system with state (u, ∂tu, ∂

2
t u) where the dynamics of ∂tu and ∂2t u can be obtained

by taking partial time derivatives of the system and the boundary conditions in (57).
Let us set the following modified Lyapunov function candidate V (u, Z):

V (u, Z) = V1(u, Z) +
∑

k1+k2≤1

‖∂k1t ∂k2x d1(t, ·)‖2L2(0,1), (60)

where

V1(u, Z) =

2∑
i=0

V0(E(u, x)∂itu) +

2∑
i=0

∣∣∣∣ΘdiZ

dti

∣∣∣∣2
and V0 : L2((0, 1);Rn)→ R is defined by

V0(u) =

∫ 1

0

uTQ(x)u dx (61)

for any u ∈ L2((0, 1);Rn). Here the C2 class function matrix E(u, x) diagonalizes
A(u, x) at least in a neighborhood of u = 0, i.e., E(u, x)A(u, x) = D(u, x)E(u, x)
with D(u, x) a diagonal matrix whose diagonal entries are the eigenvalues λi(i =
1, · · · , n) of the matrix A(u, x). Moreover, E(0, x) = Id for any x ∈ [0, 1] (see [4,
Chapter 6] for the existence of E(u, x) and more details). Finally, Θ and Q are the
matrices given in Theorem 4.1.

Differentiating V0(E(u, x)u) with respect to the time t along the H3 trajectories
of (57), and noticing the properties of the matrix function E(u, x), one obtains

dV0(E(u, x)u)

dt
=

∫ 1

0

2uTE(u, x)TQ[E(u, x)u]t dx

=−
∫ 1

0

[uTE(u, x)TQDE(u, x)u]x dx

+

∫ 1

0

uT [E(u, x)TQDE(u, x)]xu dx

−2

∫ 1

0

uTE(u, x)TQE(u, x)B(u, x) dx

−2

∫ 1

0

uTE(u, x)TQE(u, x)d1(t, x) dx

+2

∫ 1

0

uTE(u, x)TQ[E(u, x)]tu dx. (62)
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Integrating by parts and using Cauchy-Schwarz inequality, noticing the properties of
the matrix function E(u, x), (62) becomes

dV0(E(u, x)u)

dt

≤−
[
uTQΛu

]1
0

+

∫ 1

0

uTE(u, x)T
(
(QΛ)′−QM−MTQ

)
E(u, x)u dx

+O(‖u‖C0(|u(0)|+|u(1)|)2)+O(‖u‖C1‖u‖2L2)

+ C(1 +O(‖u‖C0))‖u‖L2‖d1‖L2 . (63)

Here and hereafter, we omit the variable t when there is no ambiguity and we denote
by C various constants independent of u, Z, d1 and d2. The notation O(s) means
that there exist ε > 0 and C > 0 such that

(s ≤ ε) =⇒ (|O(s)| ≤ Cs).

Using the boundary conditions of (57), we have[
uTQΛu

]1
0

=

(
u+(1)
u−(0)

)T(
Q+(1)Λ+(1) 0

0 −Q−(0)Λ−(0)

)(
u+(1)
u−(0)

)
−
(

u+(1)
u−(0)

)T
KT

1

(
Q+(0)Λ+(0) 0

0 −Q−(1)Λ−(1)

)
K1

(
u+(1)
u−(0)

)
+

(
u+(1)
u−(0)

)T
KT

1

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
K2Z

+ZTKT
2

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
K1

(
u+(1)
u−(0)

)
+dT2

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
·
(
d2+2(1+O (‖u‖C0 +|Z|))

[
K1

(
u+(1)
u−(0)

)
+K2Z

])

=

u+(1)
u−(0)
Z

T

W0

u+(1)
u−(0)
Z


+dT2

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
·
(
d2+2(1+O (‖u‖C0 +|Z|))

[
K1

(
u+(1)
u−(0)

)
+K2Z

])
+O((‖u‖C0 + |Z|)(|u(1)|+ |u(0)|+ |Z|)2), (64)

where

W0 :=

(
W01 W02

W03 W04

)
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with

W01 = W1, W02 = W2 + K̄T
1 ΘT ,

W03 = W3 + ΘK̄1, W04 = W4 + 2ΘK2,

and W1, W2, W3, W4 are given in Theorem 4.1.
Overall, combining (63) and (64), we get

dV0(E(u, x)u)

dt

≤−

u+(1)
u−(0)
Z

T

W0

u+(1)
u−(0)
Z


+

∫ 1

0

uTE(u, x)T
(
(QΛ)′−QM−MTQ

)
E(u, x)u dx

+O(‖u‖C1‖u‖2L2)+C(1 +O(‖u‖C0))‖u‖L2‖d1‖L2

+O((|u(1)|+ |u(0)|+ |Z|)2(‖u‖C0 + |Z|))

+ dT2

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
·
(
d2+2(1+O(‖u‖C0+|Z|))

[
K1

(
u+(1)
u−(0)

)
+K2Z

])
. (65)

Similarly, taking the time derivative of V0(E(u, x)∂tu) and V0(E(u, x)∂2t u) along the
augmented system solutions of (57), one obtains

dV0(E(u, x)∂tu)

dt

≤ −

∂tu+(1)
∂tu−(0)

Ż

T

W0

∂tu+(1)
∂tu−(0)

Ż


+

∫ 1

0

∂tu
TE(u, x)T

(
(QΛ)′−QM−MTQ

)
E(u, x)∂tu dx

+O(‖u‖C1‖∂tu‖2L2)+C(1+O(‖u‖C0))‖∂tu‖L2
‖∂td1‖L2

+O((|∂tu(1)|+|∂tu(0)|+|Ż|)2 (‖u‖C0 +|Z|))

+ ḋT2

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
·
(
ḋ2+2(1+O (‖u‖C0 +|Z|))

[
K1

(
∂tu+(1)
∂tu−(0)

)
+K2Ż

])

(66)
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and

dV0(E(u, x)∂2t u)

dt

≤ −

∂2t u+(1)
∂2t u−(0)

Z̈

T

W0

∂2t u+(1)
∂2t u−(0)

Z̈


+

∫ 1

0

∂2t u
TE(u, x)T

(
(QΛ)′−QM−MTQ

)
E(u, x)∂2t udx

+O(‖u‖C1(‖u‖C1 +‖∂2txu‖L2)‖∂2t u‖L2 +‖∂2t u‖2L2))

+ C(1 +O(‖u‖C0))‖∂2t u‖L2
‖∂2t d1‖L2

+O
(

(|∂2t u(1)|+ |∂2t u(0)|+ |Z̈|

+|∂tu(1)|+|∂tu(0)|+|Ż|)2(‖u‖C1 +|Z|+|Ż|)
)

+ d̈T2

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
·
(
d̈2+2(1+O (‖u‖C0 +|Z|))

[
K1

(
∂2t u+(1)
∂2t u−(0)

)
+K2Z̈

])
+|d̈2|O((‖u‖C1 +|∂tu(1)|+|∂tu(0)|+|Z|+|Ż|)2). (67)

Next, using the equation for Z in (57), we get

d

dt

(
2∑
i=0

∣∣∣∣ΘdiZ

dti

∣∣∣∣2
)

=2

2∑
i=0

(
diZ

dti

)T
Θ
di+1Z

dti+1

=2

2∑
i=0

diZT

dti
Θ

(
K̄1

(
∂itu+(1)
∂itu−(0)

)
+ K̄2

diZ

dti

)

+O(

2∑
i=0

(|∂itu(1)|+|∂itu(0)|+
∣∣∣∣diZdti

∣∣∣∣)2(‖u‖C0 +|Z|)).

(68)

Combining (65)–(68) and noticing that −(QΛ)′ + QM + MTQ is positive definite,
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there exists γ > 0 such that

dV1(u, Z)

dt

≤−
2∑
i=0

∂itu+(1)
∂itu−(0)

diZ
dti

T

W

∂itu+(1)
∂itu−(0)

diZ
dti

−γ 2∑
i=0

V0(E(u, x)∂itu)

+O
(

(‖u‖C1+|Z|+|Ż|)
( 2∑
i=0

|∂itu(1)|+|∂itu(0)|+
∣∣∣∣diZdti

∣∣∣∣ )2)
+O(‖u‖C1

2∑
i=0

‖∂itu‖2L2)

+ C(1 +O(‖u‖C1))

2∑
i=0

‖∂itu‖L2

2∑
i=0

‖∂itd1‖L2

+O(‖u‖C1(‖u‖C1 + ‖∂2txu‖L2)‖∂2t u‖L2)

+

2∑
i=0

[didT2
dti

(
−Q+(0)Λ+(0) 0

0 Q−(1)Λ−(1)

)
·
(did2

dti
+2(1+O(‖u‖C0+|Z|))

[
K1

(
∂itu+(1)
∂itu−(0)

)
+K2

diZ

dti

])]
+|d̈2|O((‖u‖C1 +|∂tu(1)|+|∂tu(0)|+|Z|+|Ż|)2),

where W is the matrix defined in Theorem 4.1. Since W is positive definite, then
using Young’s inequality on the crossed term involving d1, there exists constant ν > 0
such that

dV1(u, Z)

dt

≤−ν
2∑
i=0

∣∣∣∣(∂ituT+(1), ∂itu
T
−(0),

diZT

dti
)

∣∣∣∣2−2γ

3

2∑
i=0

V0(E(u, x)∂itu)

+C(1+O(‖u‖C1 +|Z|+|Ż|))
( 2∑
k=0

|d(k)
2 |2+

2∑
k=0

‖∂kt d1‖2L2

)
+O(‖u‖C1

2∑
i=0

‖∂itu‖2L2)

+O(‖u‖C1(‖u‖C1 +‖∂2txu‖L2)‖∂2t u‖L2)

+O
(

(‖u‖C1 +|Z|+|Ż|)
( 2∑
i=0

|∂itu(1)|+|∂itu(0)|+
∣∣∣∣diZdti

∣∣∣∣ )2)
+ C|d̈2| (|∂tu(1)|+ |∂tu(0)|)2 . (69)

Note that, from (57)

(|∂tu(1)|+ |∂tu(0)|) ≤ C(‖u‖C1 + ‖d1‖C0). (70)
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Hence, using Young’s inequality again

|d̈2| (|∂tu(1)|+ |∂tu(0)|)2

≤C|ḋ2|2 (‖u‖C1 + ‖d1‖C0)

+ (|∂tu(1)|+ |∂tu(0)|)2 (‖u‖C1 + ‖d1‖C0) .

(71)

Note also that, from (57),

‖utx‖L2 ≤ C(‖u‖H2 + ‖∂xd1‖L2)(1 +O(‖u‖C0)). (72)

Besides, from (57), one has

|Ż| ≤ C (|Z|+ ‖u‖C0) . (73)

Using Young’s inequality on the crossed term involving d1 and then Sobolev inequality
that ‖u‖C1 ≤ C‖u‖H2 , there exist δ > 0 and η > 0 such that if ‖u‖H2 + |Z| ≤ η and
(59) holds, then

dV1(u, Z)

dt

≤− ν
2

2∑
i=0

∣∣∣∣(∂itu+(1), ∂itu−(0),
diZ

dti
)

∣∣∣∣2−γ2
2∑
i=0

V0(E(u, x)∂itu)

+C

2∑
k=0

|d(k)
2 |2+C(‖∂xd1‖2L2 +

2∑
k=0

‖∂kt d1‖2L2)

≤− 1

2
min(

ν

maxi(Θi)
, γ)V1(u, Z)+C

2∑
k=0

|d(k)
2 |2

+C
(
‖∂2t d1‖2L2 +

∑
k1+k2≤1

‖∂k1t ∂k2x d1‖2L2

)
. (74)

On the other hand, using Cauchy-Schwarz inequality, one has

d

dt

∑
k1+k2≤1

‖∂k1t ∂k2x d1‖2L2 ≤2
∑

k1+k2≤2
k2≤1

‖∂k1t ∂k2x d1‖2L2 ,

which, together with (74) and the definition of V (u, Z) gives

dV

dt
≤−µV +C

2∑
k=0

|d(k)
2 |2+C

∑
k1+k2≤2
k2≤1

‖∂k1t ∂k2x d1‖2L2 , (75)

where µ = 1/2 min(ν/maxi(Θi), γ). Using Gronwall’s inequality, the equivalence of
V and the square of ‖u‖H2 + |Z|+

∑
k1+k2≤1 ‖∂

k1
t ∂

k2
x d1‖L2 , one obtains(

‖u‖H2(0,1) + |Z|
)

≤Ce−
µ
2 t
(
‖u0‖H2(0,1)+|Z0|+

∑
k1+k2≤1

‖∂k1t ∂k2x d1(0, ·)‖L2(0,1)

)

+C

2∑
k=0

‖e−
µ
2 (t−τ)d

(k)
2 (τ)‖L2(0,t)

+C
∑

k1+k2≤2
k2≤1

‖e−
µ
2 (t−τ)∂k1t ∂

k2
x d1(τ, x)‖L2((0,t)×(0,1)). (76)
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Using Sobolev inequality again, (76) gives the exponential ISS with fading memory in
Theorem 4.1 for the H2 norm for any trajectory with H3 initial condition satisfying
the corresponding assumptions of Theorem 4.1. Finally, since this estimate only
involves the H2 norm of u, the result also holds for the H2 trajectories by the density
argument (see for instance [8, Lemma 4.2] for a similar argument).

Remark 4.4. Compared to the undisturbed case, V1(u, Z) is not anymore equiva-
lent to the square of the H2((0, 1);Rn) × Rn norm of (u, Z). Therefore, we add
the term

∑
k1+k2≤1 ‖∂

k1
t ∂

k2
x d1(t, ·)‖2L2(0,1) so that the Lyapunov function candidate

V (u, Z) defined in (60) becomes equivalent to the square of ‖u(t, ·)‖H2(0,1) + |Z(t)|+∑
k1+k2≤1 ‖∂

k1
t ∂

k2
x d1(t, ·)‖L2(0,1) which allows us to derive the ISS estimate.

Remark 4.5. One can note that for the Saint-Venant equations, the existence of Q
and Θ such that the matrices −(QΛ)′ + QM + MTQ and W are positive definite is
exactly the condition of Theorem 3.1 for the linearized system around the null steady-
state to have a basic quadratic Lyapunov function for the L2 norm.

We now show that Theorem 2.1 is an application of Theorem 4.1.

Proof of Theorem 2.1. This is a direct consequence of Theorem 4.1. Indeed, first
observe that we can assume without loss of generality that c = 0. Then
for the original nonlinear system, we define ai = Ãi − Ã∗i , vi = Ṽi − Ṽ ∗i ,
zi = Zi − Z∗i as previously in (13) and use the same change of variables as
in (21). After that, we change the order of the unknowns such that A(0, x) =
{λ11, λ12, · · · , λ1N ,−λ21,−λ22, · · · ,−λ2N}. Then, the system (9)–(10) is rewritten
in the form of (57). Choosing Q(x) = diag{g11, · · · , g1N , g21, · · · , g2N}, where for

each i ∈ {1, · · · , N}, g1i = αif1ie
2
∫ x
0

γ1i(s)

λ1i(s)
ds

, g2i = αif2ie
−2
∫ x
0

δ2i(s)

λ2i(s)
ds

with f1i and
f2i defined in (28) and Θ = diag{θ1L1, · · · , θNLN} with θi and αi chosen by the way
proposed in the proof of Theorem 3.1, the result follows directly.

5 Numerical Simulations

In this section, we make numerical simulations for the cascade nonlinear network of
three channels with different lengths. In Fig 1 and Fig 2, the curves of different
colors represent the corresponding values of different channels. Fig 1 represents the
height at the output of each channel, and Fig 2 represents the main result (12) for
each channel. We consider the case where the cross-section of the river channel is
a rectangular shape with a width of 1m, then Ai(t, x) = Hi(t, x), ∂1Gi(Ai, x) = 1
(i = 1, 2, 3). The specific data is as follows:

• The lengths of channels are L1 = 400m, L2 = 500m, L3 = 600m and H∗1 (0) =
1.5m, H∗2 (0) = 1.6m, H∗3 (0) = 2m respectively, the constant discharge Q0 =
1m3/s and the acceleration of gravity is 9.81m/s2. These values are typically
reasonable values for navigable river [3].

• We consider the steep slope, Sf,i =
kf,iV

2
i

Hi
, Sb,i = 1.5

kf,iV
∗2
i (0)

H∗
i (0)

, the selection of

the friction coefficients is kf,1 = 0.01, kf,2 = 0.02, kf,3 = 0.03.
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• The tuning parameters are kp,1 = −10, kI,1 = −10, kp,2 = 100, kI,2 = 1,
kp,3 = −0.5, kI,3 = −0.9. The initial perturbations are chosen to be sinusoidal
with an amplitude of 0.15 m in height and the disturbances in the dynamics

d
(1)
1,i = 0.0001(sin(t) + sin(x)), d

(2)
1,i = 0.0001(sin(t) + sin(x)), the boundary

disturbances d2,0 = 0.001 sin(t), d2,i = 0.001 sin(t) for i = 1, 2, 3.

Figure 1: Output measurements Hi(t, Li) with the PI control

Figure 2: Convergence of ‖Hi(t, ·)−H∗i , Vi(t, ·)− V ∗i ‖H2(0,Li) + |Zi(t)− Z∗i |.

We can remark that even if the theorem only gives a local result, it looks like in
practice the basin of attraction is significant. Indeed, adding perturbations with an
amplitude up to 15% of the nominal steady-state still seem to fall in the stability
area. Moreover, as could be expected, the controller takes reasonable values from a
physical perspective.
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6 Conclusion

In this paper, we have addressed the boundary Input-to-State Stability of a network
of channels in cascade, using Proportional-Integral controllers. For each channel, the
control input and measured output are on the downstream boundary and the channels
are coupling through the boundaries. We give exponential stability and ISS conditions
using a quadratic Lyapunov function. Interestingly, this control works even without
having direct information on the cross-section, the slope, friction model, or even the
steady-state, except at the boundaries. This is very useful from an application point
of view. Besides, the system is robust to constant boundary disturbances, as could be
excepted with a PI control. As a side result we show (see Theorem 4.1) that for any 1D
quasilinear hyperbolic system with a PI control, if the linearized system admits a basic
quadratic Lyapunov function for the L2 norm, then the nonlinear system admits a
basic quadratic Lyapunov function for the H2 norm and is (locally) exponentially ISS
with respect to internal and boundary disturbances. This goes beyond the framework
considered in the paper and could be applied to many other systems especially for
the general density-velocity systems, see [26].
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application aux crues des rivières et à l’introduction des marées dans leur lit.
Comptes Rendus de l’Académie des Sciences, 53:147–154, 1871.

[15] Ababacar Diagne, Mamadou Diagne, Shuxia Tang, and Miroslav Krstic. Back-
stepping stabilization of the linearized saint-venant-exner model. Automatica J.
IFAC, 76:345–354, 2017.

[16] Valérie Dos Santos and Christophe Prieur. Boundary control of open chan-
nels with numerical and experimental validations. IEEE transactions on Control
systems technology, 16(6):1252–1264, 2008.

[17] Francesco Ferrante and Christophe Prieur. Boundary control design for conserva-
tion laws in the presence of measurement disturbances. Mathematics of Control,
Signals, and Systems, 33(1):49–77, 2021.

[18] James. M. Greenberg and Tatsien Li. The effect of boundary damping for the
quasilinear wave equation. J. Differential Equations, 52(1):66–75, 1984.

[19] Martin Gugat and Stephan Gerster. On the limits of stabilizability for networks
of strings. Systems Control Lett., 131:104494, 10, 2019.

[20] Martin Gugat, Vincent Perrollaz, and Lionel Rosier. Boundary stabilization
of quasilinear hyperbolic systems of balance laws: Exponential decay for small
source terms. Journal of Evolution Equations, 18(3):1471–1500, 2018.

[21] Amaury Hayat. On boundary stability of inhomogeneous 2 × 2 1-D hyperbolic
systems for the C1 norm. ESAIM Control Optim. Calc. Var., 25:Paper No. 82,
31, 2019.

27



[22] Amaury Hayat. Boundary stabilization of 1d hyperbolic systems. Annual
Reviews in Control, 52:222–242, 2021.

[23] Amaury Hayat. Global exponential stability and input-to-state stability of semi-
linear hyperbolic systems for the l2 norm. Systems & Control Letters, 148:104848,
2021.

[24] Amaury Hayat. PI controllers for the general saint-venant equations. arXiv
preprint arXiv:2108.02703, 2021.

[25] Amaury Hayat and Peipei Shang. A quadratic Lyapunov function for Saint-
Venant equations with arbitrary friction and space-varying slope. Automatica J.
IFAC, 100:52–60, 2019.

[26] Amaury Hayat and Peipei Shang. Exponential stability of density-velocity sys-
tems with boundary conditions and source term for the H2 norm. J. Math. Pures
Appl. (9), 153:187–212, 2021.

[27] Long Hu, Florent Di Meglio, Rafael Vazquez, and Miroslav Krstic. Control of
homodirectional and general heterodirectional linear coupled hyperbolic PDEs.
IEEE Trans. Automat. Control, 61(11):3301–3314, 2016.

[28] Iasson Karafyllis and Miroslav Krstic. Input-to-state stability for PDEs. Springer,
2019.

[29] Christopher M. Kellett and Peter M. Dower. Input-to-state stability, integral
input-to-state stability, and L2-gain properties: qualitative equivalences and in-
terconnected systems. IEEE Trans. Automat. Control, 61(1):3–17, 2016.

[30] Miroslav Krstic and Andrey Smyshlyaev. Backstepping boundary control for
first-order hyperbolic PDEs and application to systems with actuator and sensor
delays. Systems Control Lett., 57(9):750–758, 2008.

[31] Miroslav Krstic and Andrey Smyshlyaev. Boundary Control of PDEs: A Course
on Backstepping Designs, volume 16 of Advances in Design and Control. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008.

[32] Pierre-Olivier Lamare, Antoine Girard, and Christophe Prieur. An optimisa-
tion approach for stability analysis and controller synthesis of linear hyperbolic
systems. ESAIM Control Optim. Calc. Var., 22(4):1236–1263, 2016.

[33] Günter Leugering and E. J. P. Georg Schmidt. On the modelling and stabilization
of flows in networks of open canals. SIAM Journal on Control and Optimization,
41(1):164–180, 2002.

[34] Xavier Litrico and Vincent Fromion. Modeling and control of hydrosystems.
Springer Science & Business Media, 2009.

[35] Christophe Prieur, Joseph Winkin, and Georges Bastin. Robust boundary control
of systems of conservation laws. Mathematics of Control, Signals, and Systems,
20(2):173–197, 2008.

[36] Christophe Prieur and Joseph J. Winkin. Boundary feedback control of linear hy-
perbolic systems: application to the Saint-Venant–Exner equations. Automatica
J. IFAC, 89:44–51, 2018.

28



[37] Tie Hu Qin. Global smooth solutions of dissipative boundary value problems for
first order quasilinear hyperbolic systems. Chinese Ann. Math. Ser. B, 6(3):289–
298, 1985.

[38] Eduardo D. Sontag. Smooth stabilization implies coprime factorization. IEEE
Trans. Automat. Control, 34(4):435–443, 1989.

[39] Ngoc-Tu Trinh, Vincent Andrieu, and Cheng-Zhong Xu. Boundary PI controllers
for a star-shaped network of 2x2 systems governed by hyperbolic partial differ-
ential equations. IFAC PapersOnLine, 50(1):7070–7075, 2017.

[40] Ngoc-Tu Trinh, Vincent Andrieu, and Cheng-Zhong Xu. Output regulation for
a cascaded network of 2× 2 hyperbolic systems with PI controller. Automatica
J. IFAC, 91:270–278, 2018.

[41] Zhiqiang Wang. Exact controllability for nonautonomous first order quasilinear
hyperbolic systems. Chinese Ann. Math. Ser. B, 27(6):643–656, 2006.

[42] Gediyon Yemane Weldegiyorgis and Mapundi Kondwani Banda. An analysis of
the input-to-state-stabilisation of linear hyperbolic systems of balance laws with
boundary disturbances. arXiv preprint arXiv:2006.02492, 2020.

[43] Liguo Zhang, Christophe Prieur, and Junfei Qiao. Local proportional-integral
boundary feedback stabilization for quasilinear hyperbolic systems of balance
laws. SIAM Journal on Control and Optimization, 58(4):2143–2170, 2020.

29


