
HAL Id: hal-04355287
https://hal.science/hal-04355287v1

Submitted on 20 Dec 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extrapolation and prediction of sequences in a vector
space

Claude Brezinski, Michela Redivo-Zaglia

To cite this version:
Claude Brezinski, Michela Redivo-Zaglia. Extrapolation and prediction of sequences in a vector space.
Journal of Computational and Applied Mathematics, 2022, 409, pp.114164. �hal-04355287�

https://hal.science/hal-04355287v1
https://hal.archives-ouvertes.fr


Extrapolation and prediction of sequences in a vector space

Claude Brezinski∗ Michela Redivo-Zaglia†

Dedicated to the memory of our friend Luc Wuytack

Abstract

The aim of this paper is to present a general theoretical framework for the extrapolation and
the prediction of sequences of elements in a vector space. Then, particular cases are studied
and recursive algorithms for implementing some of the procedures obtained are discussed.
Possible extensions of this work are evoked.

Keywords: extrapolation, polynomial extrapolation, Shanks extrapolation, sequence transforma-
tion, prediction, E-transformation.

Sequences play an important role in applied mathematics and in numerical analysis. They can
be produced by an iterative process, for example in the solution of systems of linear or nonlinear
equations, as the partial sums of series or the convergents of continued fractions for computing
special functions, or in discretization processes for the approximate solution of integral or differential
equations when the step size tends to zero, in quadrature methods, etc.. Their limit is usually the
exact solution of the problem concerned. When the convergence is slow, the practical usefulness
of these sequences is strongly reduced. However, they can be transformed in new sequences which,
under certain assumptions, converge faster to the same limit. Another problem related to sequences
is, knowing a certain consecutive number of their terms, to estimate the next ones.

These two problems can be simultaneously treated by extrapolation. The principal aim of
this paper is to present a general theoretical framework for the extrapolation to the limit of a
sequence whose terms are elements of a vector space, and for the prediction of its unknown terms.
This functional analysis framework contains two approaches which are based on annihilation and
difference operators. Then, particular cases leading to deeper results and to recursive algorithms
are studied.

The scene is set up in Section 1. The theoretical framework of extrapolation is presented in
Section 2, and used in Section 3 for the prediction of the missing terms of a sequence. Applications
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of this framework are given in Section 4. The first one concerns the E-transformation which is
a very general extrapolation method, the second one is the well known Shanks transformation.
In some cases, recursive procedures for the implementation of these extrapolation methods are
proposed. Concluding remarks and possible extensions of this work end the paper.

1 The scene

Let E be a vector space on K (R or C), and let EN be the vector space of sequences of elements of
E. Elements of E are denoted by bold symbols.

The terms of any (sn) ∈ EN can be written under the form

∀n, sn = s +ϕ(n),

with s ∈ E, and where ϕ is some application from N to E. If limn→∞ϕ(n) = 0 ∈ E, the sequence
(sn) converges, and s is its limit, otherwise it is called its antilimit.

Let D ⊆ Kk, and let now ϕ : N × D 7−→ E be a given application depending on an arbitrary

vector a = (a1, . . . , ak)T ∈ D of parameters, and let Vϕ,k be the linear variety of sequences of
elements of E such that, for all a ∈ D,

∀n, sn = s +ϕ(n, a). (1)

In this paper, we discuss the two following problems

• Extrapolation of the sequence (sn), which consists in computing s (or an approximation of it)
from a finite number of its consecutive terms.

• Prediction of the sequence (sn), which consists in computing its unknown terms (or approxi-
mations of them) from a finite number of consecutive known ones.

2 Extrapolation

Let us now show how to compute s, or an approximation of it, by an extrapolation procedure.
Two different strategies are explained. The first of them, named Polynomial Extrapolation, was
introduced in [2] for sequences of elements of a vector space, and then evoked again in [10]. In this
paper, we still extend it. The second strategy, named Shanks Extrapolation, was never published
before. Both strategies make use of annihilation and difference operators, and are related one to
each other. They were, in fact, implicitly used before in the construction of extrapolation methods,
but never presented for themselves in such a generality. The genesis of the transformations discussed
below was described in [14] (see also [16]).

We begin by a definition due to Weniger [41]. Let L : EN 7−→ EN be a linear operator. It is named
an annihilation operator for the sequence (v = (vn)) ∈ EN if (Lv = (Lvn)) = (0 = (0)) ∈ EN,
the sequence whose all terms are equal to 0 ∈ E. For example, the kth power ∆k = ∆(∆k−1) of
the forward difference operator ∆ defined by ∀n,∆vn = vn+1 − vn is an annihilation operator for
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the sequence (Pk−1(n)) where Pk−1 is a polynomial of degree k − 1 at most. The same is true for
the power ∇k = ∇(∇k−1) of the backward difference operator ∇ defined by ∇vn = vn − vn−1.
More generally, the kth power of the divided difference operator is an annihilation operator for the
sequence (Pk−1(xn)), where xn is a sequence of parameters.

Applying an annihilation operator L for the constant sequence (s) to (1) leads to

Lsn = Lϕ(n, a). (2)

For computing the vector a, this relation in E has to be transformed into a scalar one, or, more
precisely, into a set of scalar relations. For that purpose, let E∗ be the algebraic dual vector space
of E, that is the vector space of linear functionals on E. Its elements are also denoted by bold
symbols. Let yi ∈ E∗ for all i be linearly independent, and let 〈·, ·〉 denote the duality product
between E∗ and E. Let us mention that the yi’s can depend on n. Finally, let E be the operator
which transforms an element of a sequence (vn) of elements of E or E∗ into its following one, that
is Evn = vn+1. Its powers are defined as usual, E0 being the identity. Notice that, from (1), we
also have EiLsn = EiLϕ(n, a) and LEisn = LEiϕ(n, a) by the linearity of L.

If (sn) ∈ Vϕ,k, then (sn) has the form (1) with a uniquely defined vector a of parameters. If a is
known, then, for all n, we immediately have s = sn−ϕ(n, a). If a is unknown, it is first computed
starting from relation (2) by using one of the strategies described in the sequel, and s follows from
the preceding formula.

Now, if (sn) /∈ Vϕ,k, let us consider a sequence (tn = t + ϕ(n, a)) ∈ Vϕ,k, and impose it the
interpolation conditions tn+i = sn+i for i = 0, . . . , k. Assuming that it exists and is unique, we
first compute the vector a ∈ D as the solution of a system of k scalar equations, and, then, we
obtain t. This procedure for obtaining t is named extrapolation of the sequence (sn) since t should
be an approximation of s. Obviously, if E has a finite dimension, k must not be greater than this
dimension.

It exists several strategies for computing first the vector a when it is unknown, and then s or
its approximation t.

• The first strategy, named Polynomial Extrapolation (PE), for computing the vector a consists
in solving the system of equations

〈Eiy1, Lsn〉 = 〈Eiy1, Lϕ(n, a)〉, i = 0, . . . , k − 1, (3)

where Ei applies on the lower index of y1, that is Eiy1 = yi+1.

• In the second strategy, called Shanks Extrapolation (SE), the vector a is the solution of the
system

〈y1, E
iLsn〉 = 〈y1, E

iLϕ(n, a)〉, i = 0, . . . , k − 1, (4)

where Ei applies on the index n, that is EiLϕ(n, a) = Lϕ(n+ i, a), and EiLsn = Lsn+i.

It can be noticed that the difference between the two strategies is the position of the operator
Ei in the duality products. These two strategies can be mixed up and unified, and lead to obtaining
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a as the solution of the following system where the powers of the operator E have been distributed
on both sides of the duality product

〈Eiy1, E
jLsn〉 = 〈Eiy1, E

jLϕ(n, a)〉, i+ j = 0, . . . , k − 1. (5)

If j is fixed at 0, the PE is recovered, while, fixing i at 0, leads to the SE. Here, we will not consider
the other choices.

Once a has been obtained, we set t = sn − ϕ(n, a). Obviously, t depends on n, but also on
the function ϕ chosen, and on its fixed number k of parameters. For these reasons, we will denote
it by Ek(sn) for remembering the notation used by Shanks [34] in the scalar case. Thus, we have
defined the sequence transformation (in fact, several transformations) Tk : (sn) 7−→ (Ek(sn)) by

Ek(sn) = sn −ϕ(n, a), n = 0, 1, . . .

The set Vϕ,k is called the kernel of the transformation Tk, and we have the following result for
the sequences in it since, in this case, the uniquely defined vector a in ϕ has been exactly computed
by any of the preceding strategies

Theorem 1
By construction, if (sn) ∈ Vϕ,k, then, for all n, Ek(sn) = s.

Remark 1 Since the SE makes use of k successive relations (1), we can also consider the trans-
formations defined by Ek,i(sn) = sn+i −ϕ(n+ i, a) for n = 0, 1, . . .. Typical choices for i are i = 0
and i = k − 1.

Let us consider the particular case E = Rk, where k is the dimension of the vector a. The relation
Lsn = Lϕ(n, a) is a system of k equations in k unknowns, the components of the vector a. In this
case, it is not necessary to introduce neither the dual space E∗ nor the duality product. Solving
this system gives a, and thus the corresponding vector t. Thus, we directly obtain the sequence
transformation given by Ek(sn) = sn − ϕ(n, a), and, if (sn) ∈ Vϕ,k, the preceding Theorem holds
since it corresponds, in fact, to the Modified Minimal Polynomial Extrapolation (MMPE) [3], which
is the PE for the Shanks-transformation (see Section 4.2.1) with the particular choice yi = ei, the
vectors of the canonical basis of Rk.

Although the sequences produced by all transformations Tk are denoted by (Ek(sn)), it must
be understood that they do not furnish the same results for sequences outside Vϕ,k.

3 Prediction

When only a certain number of consecutive terms of a sequence are known, it could be interesting
to obtain approximations of some of the next missing ones. This is the problem of prediction of
the sequence (sn). The idea of prediction goes back, as far as we know, to Gilewicz who used
Padé approximants to predict the unknown coefficients of a formal power series [25]. The idea was
taken back in detail by Sidi and Levin with another rational approximation of power series in [38]
and continued in [39]; see also [32]. This approach had been used quite extensively in physics for
the approximation of unknown coefficients of quantum theoretical perturbation expansions that

4



can be extremely demanding [28, 29], but also for tackling more theoretical question [1]. Using
extrapolation methods, the idea was also exploited in [7] for scalar sequences, and then in [40]. Let
us now generalize it to sequences in E.

As for extrapolation, the principle of prediction consists in interpolating the sequence by a
sequence of Vϕ,k, which is equivalent to assuming that (sn) has the form sn = s+ϕ(n, a). The first
step of the prediction consists in estimating s by one of the extrapolation strategies described in
Section 2, thus leading to an approximation Ek(sn) of it for k and n fixed, and a vector a ∈ D ⊆ Rk.
If the computation of Ek(sn) and a need the knowledge of the elements s0, s1, . . . , sp of the initial
sequence, then an approximation tm of sm for any index m greater than the greatest index p used
in the extrapolation process can be computed by

tm = Ek(sn) +ϕ(m, a), m = p+ 1, p+ 2, . . . .

Obviously, when m increases the quality of the approximation tm of sm decreases.
In some particular cases, such as the Shanks transformation described in Section 4.2, the vector

a is used in ϕ(m, a) together with the vectors s0, s1, . . . , sp. In such a case, there exists another
possibility for predicting the unknown terms of the sequence (sn). As far as we known, it is new
and it is as follows. After having computed tp+1 as described above, the same vector a could be
used again in ϕ(p+2, a) but now with the vectors s1, . . . , sp, tp+1, thus leading to an approximation
tp+2 of sp+2. Then, the process can be repeated again with s2, . . . , sp, tp+1, tp+2, and so on. For
example, the Padé approximant [p/q] of the series f(t) = c0 + c1t+ · · · can be used in that way for
predicting the unknown coefficients cp+q+i for i = 1, 2, . . ..

4 Applications

Let us now apply the framework presented in Section 2. In the first example, the E-transformation,
the function ϕ is the most general linear combination of sequences of elements of E that has been
studied so far. The second example is an important particular case of it for which additional results
are obtained.

4.1 The E-transformation

The E-transformation, with its corresponding recursive E-algorithm, was introduced in [5] for
scalar sequences together with its extension to vector sequences. Let us enter it into our framework
and extend it one step further to sequences in E.

This transformation corresponds to

ϕ(n, a) = a1g1(n) + · · ·+ akgk(n), n = 0, 1, . . . ,

where the (gi(n))’s are given sequences of elements of E. Applying the annihilation operator L for
constant sequences to (1), we obtain, since Lϕ(n, a) = Lsn,

a0Lsn + a1Lg1(n) + · · ·+ akLgk(n) = 0, n = 0, 1, . . . , (6)

with a0 = −1 for homogenizing the notations.
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4.1.1 Polynomial Extrapolation

Let us begin by the PE (3). The linear system to be solved for obtaining the coefficients ai can be
written as

1 0 · · · 0
〈E0y1, Lsn〉 〈E0y1, Lg1(n)〉 · · · 〈E0y1, Lgk(n)〉

...
...

...
〈Ek−1y1, Lsn〉 〈Ek−1y1, Lg1(n)〉 · · · 〈Ek−1y1, Lgk(n)〉




a0
a1
...
ak

 =


−1

0
...
0

 .

Solving this system leads to the sequence transformation defined by

Ek(sn) =

∣∣∣∣∣∣∣∣∣
sn g1(n) · · · gk(n)

〈E0y1, Lsn〉 〈E0y1, Lg1(n)〉 · · · 〈E0y1, Lgk(n)〉
...

...
...

〈Ek−1y1, Lsn〉 〈Ek−1y1, Lg1(n)〉 · · · 〈Ek−1y1, Lgk(n)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈E0y1, Lg1(n)〉 · · · 〈E0y1, Lgk(n)〉

...
...

〈Ek−1y1, Lg1(n)〉 · · · 〈Ek−1y1, Lgk(n)〉

∣∣∣∣∣∣∣
. (7)

The numerator is the element of E obtained by expanding it with respect to its first row by using
the usual rules for that purpose.

This ratio can also be written as an extended Schur complement (see [8])

Ek(sn) = sn − [g1(n), . . . ,gk(n)]

 〈E
0y1, Lg1(n)〉 · · · 〈E0y1, Lgk(n)〉

...
...

〈Ek−1y1, Lg1(n)〉· · · 〈Ek−1y1, Lgk(n)〉


−1 〈E

0y1, Lsn〉
...

〈Ek−1y1, Lsn〉

 .

Let us now relate what precedes to the general problem of finite interpolation as described
in [20, Sect. 2.2] and [9].

Denoting by D
(n)
k the denominator of (7), let Ik be the operator

Ik : E 7−→ Ek = span{Lg1(n), . . . , Lgk(n)}

defined by

Ik(·) = −

∣∣∣∣∣∣∣∣∣
0 Lg1(n) · · · Lgk(n)

〈E0y1, ·〉 〈E0y1, Lg1(n)〉 · · · 〈E0y1, Lgk(n)〉
...

...
...

〈Ek−1y1, ·〉 〈Ek−1y1, Lg1(n)〉 · · · 〈Ek−1y1, Lgk(n)〉

∣∣∣∣∣∣∣∣∣ /D
(n)
k .

It is easy to see that

Ik(Lgi(n)) = Lgi(n), i = 1, . . . , k and Ik(Lsn) = Lsn = Lϕ(n, a).
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Let now Lk : E∗ 7−→ E∗k = span{E0y1, . . . E
k−1y1} be defined by

Lk(·) = −

∣∣∣∣∣∣∣∣∣
0 E0y1 · · · Ek−1y1

〈·, Lg1(n)〉 〈E0y1, Lg1(n)〉 · · · 〈Ek−1y1, Lg1(n)〉
...

...
...

〈·, Lgk(n)〉 〈E0y1, Lgk(n)〉 · · · 〈Ek−1y1, Lgk(n)〉

∣∣∣∣∣∣∣∣∣ /D
(n)
k .

We have
Lk(Eiy1) = Eiy1, i = 0, . . . , k − 1,

and for all (y,u) ∈ E∗ × E, it holds

〈y, Ik(u)〉 = 〈Lk(y),u〉 = −

∣∣∣∣∣∣∣∣∣
0 〈E0y1,u〉 · · · 〈Ek−1y1,u〉

〈y, Lg1(n)〉 〈E0y1, Lg1(n)〉 · · · 〈Ek−1y1, Lg1(n)〉
...

...
...

〈y, Lgk(n)〉 〈E0y1, Lgk(n)〉 · · · 〈Ek−1y1, Lgk(n)〉

∣∣∣∣∣∣∣∣∣ /D
(n)
k ,

which shows that Lk is the dual operator of Ik [9], and we have, for i = 0, . . . , k − 1, from what
precedes,

〈Eiy1, Lsn − Ik(Lsn)〉 = 〈Eiy1 − Lk(Eiy1), Lsn〉 = 0,

which are our interpolation conditions (3).

4.1.2 Shanks Extrapolation

For the SE (4), the vector a, augmented by a first component a0, is the solution of the system
1 0 · · · 0

〈y1, E
0Lsn〉 〈y1, E

0Lg1(n)〉 · · · 〈y1, E
0Lgk(n)〉

...
...

...
〈y1, E

k−1Lsn〉 〈y1, E
k−1Lg1(n)〉 · · · 〈y1, E

k−1Lgk(n)〉




a0
a1
...
ak

 =


−1

0
...
0

 .

Solving this system leads, for i = 0, . . . ,m where m is the largest index used to compute the
quantities Ek−1Lgi(n) (at least k), to the transformations

Ek,i(sn) =

∣∣∣∣∣∣∣∣∣
sn+i g1(n+ i) · · · gk(n+ i)

〈y1, E
0Lsn〉 〈y1, E

0Lg1(n)〉 · · · 〈y1, E
0Lgk(n)〉

...
...

...
〈y1, E

k−1Lsn〉 〈y1, E
k−1Lg1(n)〉 · · · 〈y1, E

k−1Lgk(n)〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈y1, E

0Lg1(n)〉 · · · 〈y1, E
0Lgk(n)〉

...
...

〈y1, E
k−1Lg1(n)〉 · · · 〈y1, E

k−1Lgk(n)〉

∣∣∣∣∣∣∣
. (8)

The ratio of determinants defining Ek,i(sn) can also be written under the form of an extended
Schur complement

Ek,i(sn)=sn+i−[g1(n+i), . . . ,gk(n+i)]

 〈y1, E
0Lg1(n)〉 · · · 〈y1, E

0Lgk(n)〉
...

...
〈y1, E

k−1Lg1(n)〉· · · 〈y1, E
k−1Lgk(n)〉


−1 〈y1, E

0Lsn〉
...

〈y1, E
k−1Lsn〉

.
7



Contrarily to what was done for the PE, this transformation cannot be put into the framework
of the general problem of finite interpolation as described in [9, 20] since it makes use of only one

linear functional, say y1. However, letting D
(n)
k be the denominator of (8), and setting

Ik(·) = −

∣∣∣∣∣∣∣∣∣
0 Lg1(n) · · · Lgk(n)

〈y1, E
0·〉 〈y1, E

0Lg1(n)〉 · · · 〈y1, E
0Lgk(n)〉

...
...

...
〈y1, E

k−1·〉 〈y1, E
k−1Lg1(n)〉 · · · 〈y1, E

k−1Lgk(n)〉

∣∣∣∣∣∣∣∣∣ /D
(n)
k ,

we have, as in the preceding strategy,

Ik(Lgi(n)) = Lgi(n), i = 1, . . . , k, and Ik(Lsn) = Lsn = Lϕ(n, a).

For the preceding reason, it is not possible to define an interpolation operator Lk in the dual space
E∗.

In the particular case L ≡ ∆, there exists a recursive algorithm for computing the Ek,0(sn)’s
(now simply denoted by Ek(sn)) without computing the determinants involved in their definition.
It is the E-algorithm whose rules are

E
(n)
k = E

(n)
k−1 −

〈y1,∆E
(n)
k−1〉

〈y1,∆g
(n)
k−1,k〉

g
(n)
k−1,k, k, n = 0, 1, . . . ,

g
(n)
k,i = g

(n)
k−1,i −

〈y1,∆g
(n)
k−1,i〉

〈y1,∆g
(n)
k−1,k〉

g
(n)
k−1,k, k, n = 0, 1, . . . ; i = k + 1, k + 2, . . . ,

with E
(n)
0 = sn and g

(n)
0,i = gi(n) for i = 1, 2, . . .

Setting g
(n)
0,0 = g0(n) = sn, the first rule can be included into the second one which, in this case,

has to be used for i = k, k + 1, . . . This algorithm extends the vector E-algorithm derived in [5],
and we have the following result whose proof follows the same lines as that given in [5, 6]

Theorem 2
E

(n)
k = Ek(sn), g

(n)
k,i = Ek(gi(n)), k, n = 0, 1, . . .

By a proof similar to that of Theorem 10 in [5], we have the following result which gives the
expansion of the error Ek(sn)− s if that of sn − s is known

Theorem 3
If sn = s + a1g1(n) + a2g2(n) + · · · , then

Ek(sn) = s + ak+1g
(n)
k,k+1 + ak+2g

(n)
k,k+2 + · · ·

4.2 The Shanks transformation

Shanks transformation for scalar sequences has been introduced by Shanks [34]. It was extended to
sequences in E in [3]. Its kernel is the set of sequences satisfying, for all n, the difference equation

α0(sn − s) + · · ·+ αk(sn+k − s) = 0, (9)

8



with α0αk 6= 0, and α0 + · · · + αk = 1, a condition which does not restrict the generality. The
interest of this transformation is based on the fact that sequences generated by a linear iterative
process of the form sn+1 = Msn + b have this form, and that those produced by a nonlinear one
sn+1 = F (sn) are close to it.

Equation (9) can also be written under two different forms similar to (1), that is

sn = s + a1∆sn + · · ·+ ak∆sn+k−1, (10)

with ai = −
∑k

j=i αj, or

sn = s + ã1∆sn + · · ·+ ãk∆ksn, (11)

where the coefficients ãi can easily be related to the αi’s.

Remark 2 Notice that, using the operator ∇, (9) can also be written under the form

sn+k = s + ā1∇sn+k + · · ·+ āk∇sn+1,

or with the powers of ∇, which allows a different writing for including it into the E-transformation.

The relations (10) and (11) show that the Shanks transformation enters into the framework of
the E-transformation for the particular choices gi(n) = ∆sn+i−1 and gi(n) = ∆isn for i = 1, . . . , k,
respectively. Moreover, for the first of these choices, additional results can be obtained as will be
seen below.

Applying the annihilation operator L, (10) becomes

a0Lsn + a1L∆sn + · · ·+ akL∆sn+k−1 = 0, (12)

with a0 = −1.

4.2.1 Polynomial Extrapolation

Replacing gi(n) by ∆sn+i−1 in (7) leads to a particular transformation given by the same ratio of
determinants. Let us add a first row (1, 0, . . . , 0) in the denominator of (7), and a first column
identical to the first column of the numerator from its second term. Then, in the numerator and in
the denominator, replacing each column, from the second one, by its sum with the preceding one
shows that this transformation can also be written as

Ek(sn) =

∣∣∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

〈E0y1, Lsn〉 〈E0y1, Lsn+1〉 · · · 〈E0y1, Lsn+k〉
...

...
...

〈Ek−1y1, Lsn〉 〈Ek−1y1, Lsn+1〉 · · · 〈Ek−1y1, Lsn+k〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

〈E0y1, Lsn〉 〈E0y1, Lsn+1〉 · · · 〈E0y1, Lsn+k〉
...

...
〈Ek−1y1, Lsn〉 〈Ek−1y1, Lsn+1〉 · · · 〈Ek−1y1, Lsn+k〉

∣∣∣∣∣∣∣∣∣

. (13)
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For L ≡ ∆, this transformation was defined by Brezinski [3] in 1975 and by Pugachev [33, Sect.
7, pp. 352-3] in 1978. It was also given and named the Modified Minimal Polynomial Extrapolation
with the acronym MMPE in 1986 [37]. If the yi’s are independent of n, this transformation can
be recursively implemented by the Sβ algorithm of Jbilou [26] (see also [27]). This algorithm is
still valid in our case with this independency assumption on n for the yi’s and for any annihilation
operator L. We set E

(n)
k = Ek(sn) and β

(n)
k is the element of E obtained by replacing the first

row of (13) by Lsn, . . . , Lsn+k. The proof exactly follows the same lines as the new proof of the
algorithm given in [16, pp.185-6].

Theorem 4
For k = 1, 2, . . . and n = 0, 1, . . ., we have

E
(n)
k =

E
(n)
k−1 − a

(n)
k E

(n+1)
k−1

1− a(n)k

,

β
(n)
k =

β
(n)
k−1 − a

(n)
k β

(n+1)
k−1

1− a(n)k

,

with E
(n)
0 = sn and β

(n)
0 = ∆sn for n = 0, 1, . . ., and where

a
(n)
k = 〈Ek−1y1,β

(n)
k−1〉/〈E

k−1y1,β
(n+1)
k−1 〉.

Let us mention that an algorithm more economical than the Sβ algorithm, and also valid for
sequences of elements of a general vector space, was proposed in [23].

Remark 3 If E ≡ Rp, p > 1 arbitrary, if L ≡ ∆, the choice y1 = ∆sn leads to the Minimal
Polynomial Extrapolation method (MPE) of Cabay and Jackson [18] in 1976 (notice that this method
was already given, but not studied, in [3, p. 356]), and the choice y1 = ∆2sn corresponds to the
Reduced Rank Extrapolation (RRE) obtained, in chronological order of discovery, by Kaniel and
Stein [30] in 1974, Mešina [31] in 1977, Germain-Bonne [24] in 1978, and finally Eddy [22] in
1979. The algorithm given in [23] also allows to implement recursively the MPE and the RRE.

4.2.2 Shanks Extrapolation

Replacing now gi(n) by ∆sn+i−1 in (8) leads to a similar transformation and a similar extended
Schur complement formula. As for the PE, replacing each column in the denominator of the
determinantal formula of the transformation (after adding it the first row (1, 0, . . . , 0) and a first
column identical to the first column of the numerator from its second term) and in its numerator
by its sum with the following one, we obtain
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Ek,i(sn) =

∣∣∣∣∣∣∣∣∣
sn+i sn+i+1 · · · sn+i+k

〈y1, E
0Lsn〉 〈y1, E

0Lsn+1〉 · · · 〈y1, E
0Lsn+k〉

...
...

...
〈y1, E

k−1Lsn〉 〈y1, E
k−1Lsn+1〉 · · · 〈y1, E

k−1Lsn+k〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

〈y1, E
0Lsn〉 〈y1, E

0Lsn+1〉 · · · 〈y1, E
0Lsn+k〉

...
...

〈y1, E
k−1Lsn〉 〈y1, E

k−1Lsn+1〉 · · · 〈y1, E
k−1Lsn+k〉

∣∣∣∣∣∣∣∣∣

. (14)

For the choice L ≡ ∆ and y1 independent of n, the Topological Shanks Transformations intro-
duced in [3] are recovered. The first of these transformations corresponds to i = 0, and the second
one to i = k. They can be recursively implemented by the Topological ε-algorithms (TEA1 and
TEA2, respectively), or, more economically in terms of storage and arithmetical operations, by the
Simplified Topological ε-algorithms (STEA1 and STEA2) [12, 13]. These transformations can also
be implemented by the ETEA given in [36, Chap. 5]. However, this algorithm is not recursive, and
it needs that all the computations be done again when k increases, which is not the case with our
algorithms.

Let us now show how to recover the rule of the first Simplified Topological ε-Algorithm (STEA1)

from the rules of the E-algorithm. We set E
(n)
k = E

(n)
k,0 = Ek(sn). Using the notation of the STEA1,

we also have ε̂
(n)
2k = E

(n)
k . It has to be reminded that the STEA1 comes out from the first Topological

ε-Algorithm (TEA1), and that, in this algorithm, the inverse of a couple (y,u) ∈ E∗ × E is the
couple (u−1,y−1) ∈ E∗ × E where u−1 = y/〈y,u〉 ∈ E∗ and y−1 = u/〈y,u〉 ∈ E. Thus, the inverse
of a single element of E or E∗ has no meaning in itself since it is always defined with respect to
another element of its dual space. In the rules of the TEA, the inverse of y1 is taken with respect
to ∆ε̂

(n)
2k , that is y−11 = ∆ε̂

(n)
2k /〈y1,∆ε̂

(n)
2k 〉 = ∆ε̂

(n)
2k /∆ε

(n)
2k where ε

(n)
2k is obtained by applying the

scalar ε-algorithm of Wynn [43] to the scalar sequence (〈y1, sn〉) (see page 334 of [3]). We indeed
have 〈y1,y

−1
1 〉 = 1. It was this relation that allows us to derive the STEA1 from the TEA1.

We start our journey to the STEA1 from the main rule of the E-algorithm

E
(n)
k+1 = E

(n)
k −

〈y1,∆E
(n)
k 〉

〈y1,∆g
(n)
k,k+1〉

g
(n)
k,k+1. (15)

We have

g
(n)
k,k+1 = (−1)k

∣∣∣∣∣∣∣∣∣
∆sn · · · ∆sn+k

〈y1,∆
2sn〉 · · · 〈y1,∆

2sn+k〉
...

...
〈y1,∆

2sn+k−1〉 · · · 〈y1,∆
2sn+2k−1〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
〈y1,∆

2sn〉 · · · 〈y1,∆
2sn+k−1〉

...
...

〈y1,∆
2sn+k−1〉 · · · 〈y1,∆

2sn+2k−2〉

∣∣∣∣∣∣∣
.

To simplify, the denominator of this expression will be denoted by H̄
(n)
k and the same determi-

nant with all the ∆2 replaced by ∆ by H
(n)
k . From the last relation on page 338 in the proof of the
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Topological ε-algorithm [3], we have

g
(n)
k,k+1 = (−1)ky−11 H

(n)
k+1/H̄

(n)
k .

We also have 〈y1,g
(n)
k,k+1〉 = (−1)kH

(n)
k+1/H̄

(n)
k , and it follows

〈y1,∆g
(n)
k,k+1〉 = (−1)k(H

(n+1)
k+1 H̃

(n)
k −H

(n)
k+1H̃

(n+1)
k )/H̃

(n)
k H̃

(n+1)
k .

By relation (12) of [4], the numerator of this expression is equal to H
(n+1)
k H̃

(n)
k+1. From the relations

(54) and (55) of [4], it also holds that

ε
(n)
2k+2 − ε

(n)
2k = −(H

(n)
k+1)

2/H̃
(n)
k H̃

(n)
k+1

ε
(n+1)
2k − ε(n)2k = H

(n)
k+1H

(n+1)
k /H̃

(n)
k H̃

(n+1)
k .

Thus, it follows

ε
(n)
2k+2 − ε

(n)
2k

ε
(n+1)
2k − ε(n)2k

= (−(H
(n)
k+1)

2/H̃
(n)
k H̃

(n)
k+1)/(H

(n)
k+1H

(n+1)
k /H̃

(n)
k H̃

(n+1)
k ) = −

H
(n)
k+1H̃

(n+1)
k

H
(n+1)
k H̃

(n)
k+1

,

a relation that can also be obtained by taking the duality product of (15) with y1 and using the
preceding determinantal expressions. Plugging all these relations into (15), we obtain

ε̂
(n)
2k+2 = ε̂

(n)
2k −

(
∆ε

(n)
2k

(−1)kH
(n+1)
k H̃

(n)
k+1/H̃

(n)
k H̃

(n+1)
k

)(
(−1)k

∆ε̂
(n)
2k

∆ε
(n)
2k

H
(n)
k+1

H̃
(n)
k

)

= ε̂
(n)
2k −

H
(n)
k+1H̃

(n+1)
k

H
(n+1)
k H̃

(n)
k+1

∆ε̂
(n)
2k ,

which is one of the form of the STEA1 [12], namely

ε̂
(n)
2k+2 = ε̂

(n)
2k +

ε
(n)
2k+2 − ε

(n)
2k

ε
(n+1)
2k − ε(n)2k

(ε̂
(n+1)
2k − ε̂(n)2k ).

5 Concluding remarks

In this paper, we present a general theoretical framework for the extrapolation and the prediction
of sequences of elements belonging to a vector space E. Extrapolation of a sequence aims at
constructing a new sequence converging faster to the same limit under some assumptions, or tending
to its antilimit if it does not converge. Prediction is a technique for estimating some of the unknown
terms of a sequence.

Two strategies for computing the unknown scalars involved in the expression of the error term
of the sequence considered were explored: the Polynomial Extrapolation (PE) defined by (3), and
the Shanks Extrapolation (SE) given by (4). The PE needs less terms of the sequence but several
elements of E∗, the dual space of E. The SE only requires one element of E∗, but more terms of
the sequence to be treated.
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These two strategies were first applied to sequences whose error term is a linear combination of
the most general possible terms. It is the E-transformation whose theoretical aspects are treated
in detail. For the PE (3), no recursive procedure for its implementation is known so far, while, in
the case of the SE (4), the E-algorithm allows such an implementation.

An important particular case of the E-transformation, the Shanks transformation, was then
studied. Both strategies can be implemented by a recursive algorithm: the Sβ-algorithm in the
case of the PE, and the topological ε-algorithms for the SE. The connection between these ε-
algorithms and the E-algorithm was established.

Our framework opens the way to new developments. We showed that the two strategies can be
mixed up to issue in a new one, never exploited, defined by (5), which uses several elements of E∗,
and a number of elements of the sequence between those needed by the two other strategies. This
approach could possibly be of interest for some applications. The sequence transformations (but
not the recursive algorithms) studied in this paper are still valid if the yi’s depend on a fixed value
of n. Moreover, in the case where E∗ ≡ E, two possible choices, each of them having two different
possibilities, can be of interest. The first one is in the spirit of the MPE: yi = Lsn+i−1 or yi = gi(n).
The second choice looks like the RRE: yi = L2sn+i−1 or yi = Lgi(n). The concept of coupled
sequence introduced in [17] can also be exploited in our context without difficulty. However, for
simplicity, we have not included it here, and this extension is left to the interested reader. Another
extension of this work, is to compute the vector a in (3) and (4) as the solution in the least squares
sense of an over determined system of equations obtained by replacing k by a larger integer, thus
following what was done by Cordellier for scalar sequences [19]. Finally, these strategies can be
used for extending other sequence transformations built for scalar sequences to sequences in E.
The case of rectangular matrix sequences satisfying a difference equation with rectangular matrix
coefficients was treated in [15]. It can easily be fitted into our framework.

The effectiveness of this framework and of these two strategies can be seen from the many
existing algorithms, see, for example, [11,14,16,21,35,36,41,42], and the papers on their applications
which are too numerous to be quoted here.
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